
Lawrence Berkeley National Laboratory
LBL Publications

Title
Geothermal Play Fairway Analysis, Part 2: GIS methodology

Permalink
https://escholarship.org/uc/item/7c80h8jm

Authors
DeAngelo, Jacob
Shervais, John W
Glen, Jonathan M
et al.

Publication Date
2024-02-01

DOI
10.1016/j.geothermics.2023.102882

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7c80h8jm
https://escholarship.org/uc/item/7c80h8jm#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Geothermics 117 (2024) 102882

Available online 4 December 2023
0375-6505/Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Geothermal Play Fairway Analysis, Part 2: GIS methodology 

Jacob DeAngelo a,*, John W. Shervais b, Jonathan M. Glen a, Dennis Nielson c, Sabodh Garg d, 
Patrick F. Dobson e, Erika Gasperikova e, Eric Sonnenthal e, Lee M. Liberty f, Drew L. Siler a,d, 
James P. Evans b 

a U.S. Geological Survey, 350 N. Akron Rd. P.O. Box 158 Moffett Field, CA 94035, United States 
b Utah State University, Logan, UT, United States 
c DOSECC Exploration Services, Salt Lake City, UT, United States 
d Geologica Geothermal Group, Inc, 9920 Pacific Heights Blvd, Suite 150, San Diego, CA 92121, United States 
e Lawrence Berkeley National Laboratory, Berkeley, CA, United States 
f Boise State University, Boise, ID, United States   

A R T I C L E  I N F O   

Keywords: 
Geothermal Play Fairway Analysis 
Snake River Plain 
Resource favorability 
Geothermal exploration 
GIS 
Python 

A B S T R A C T   

Play Fairway Analysis (PFA) in geothermal exploration originates from a systematic methodology developed 
within the petroleum industry and is based on a geologic, geophysical, and hydrologic framework of identified 
geothermal systems. We tailored this methodology to study the geothermal resource potential of the Snake River 
Plain and surrounding region, but it can be adapted to other geothermal resource settings. We adapted the PFA 
approach to geothermal resource exploration by cataloging the critical elements controlling exploitable hydro
thermal systems, establishing risk matrices that evaluate these elements in terms of both probability of success 
and level of knowledge, and building a code-based ‘processing model’ to process results. 

A geographic information system was used to compile a range of different data types, which we refer to as 
elements (e.g., faults, vents, heat flow, etc.), with distinct characteristics and measures of confidence. Discon
tinuous discrete data (points, lines, or polygons) for each element were transformed into continuous interpretive 
2D grid surfaces called evidence layers. Because different data types have varying uncertainties, most evidence 
layers have an accompanying confidence layer which reflects spatial variations in these uncertainties. Risk 
layers, as defined here, are the product of evidence and confidence layers, and are the building blocks used to 
construct Common Risk Segment (CRS) maps for heat, permeability, and seal, using a weighted sum for 
permeability and heat, but a different approach with seal. CRS maps quantify the variable risk associated with 
each of these critical components. In a final step, the three CRS maps were combined into a Composite Common 
Risk Segment (CCRS) map, using a modified weighted sum, for results that reveal favorable areas for geothermal 
exploration. Additional maps are also presented that do not mix contributions from evidence and confidence (to 
allow an isolated view of evidence and confidence), as well as maps that calculate favorability using the product 
of components instead of a weighted sum (to highlight where all components are present). Our approach helped 
to identify areas of high geothermal favorability in the western and central Snake River Plain during the first 
phase of study and helped identify more precise local drilling targets during the second phase of work. By 
identifying favorable areas, this methodology can help to reduce uncertainty in geothermal energy exploration 
and development.   

1. Introduction 

The work described herein was undertaken as part of an effort to 
assess undiscovered geothermal resources across the Snake River Plain 
(SRP) of southern Idaho and surrounding regions (Fig. 1). The project 

scope and findings are presented in a companion paper (Shervais et al., 
2024), and this paper is devoted to describing the methodology. Ter
minology specific to this study are italicized in their first usage and are 
contained in a glossary. 

Play Fairway Analysis (PFA) evaluates the favorability of resource 
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occurrence within a specified area by identifying the general factors, or 
components responsible for their occurrence. The three components 
examined in this study are: permeability, heat source, and seal. Each 
component consists of a group of elements (e.g., faults, vents, heat flow, 
etc.) that contribute to that component. Common Risk Segment (CRS) 
maps for each component were created by combining data from all the 
elements contributing to that component. For example, the CRS map for 
permeability was created by combining data representing mapped faults 
and structures inferred from geophysics. The CRS map for heat source 
was created by combining data representing regional heat flow, vents, 
helium isotope ratios, calculated multicomponent equilibrium reservoir 
temperatures, and measured groundwater temperatures. The CRS map 
for seal was made by combining data representing the extent of imper
meable lake sediments and regional aquifers with a hydrothermally 
altered clay seal. CRS maps from these three components were used to 
produce the final predictive surface, the Composite Common Risk Segment 
(CCRS) map. 

2. Approach 

Our geographic information system (GIS) approach is similar to that 
used by earlier investigations that pioneered the use of GIS in 
geothermal exploration (e.g., Coolbaugh et al. 2002, 2005, Noorollahi 
et al. 2008, Trumpy et al. 2015), and was developed in parallel with 
recent DOE-funded PFA projects in the United States (e.g., Lautze et al. 
2017a, 2017b, Ito et al. 2017). Raw data were first converted into 
ArcGIS shapefiles that used a common projection (Esri, 2023). These 
data files were used as inputs in a custom Python-based ‘processing 
model’ that automated most data-processing tasks associated with the 
production of CRS, CCRS, and other maps (Van Rossum and Drake, 
1995). 

Our study used a knowledge-driven (or expert-driven) approach in 
establishing weights and confidence values. Knowledge-driven ap
proaches estimate weight values based on expert opinion whereas data- 
driven approaches establish weights by use of statistical relationships 

between elements and known occurrences of the phenomenon being 
modeled (Bonham-Carter, 1994). We employed a knowledge-driven 
approach because there were too few geothermal systems in the study 
area to draw meaningful results about the strength of the relationship 
between any given element and the presence of geothermal systems (i.e., 
not enough training data). A data-driven approach requires the ability to 
compare elements to known occurrences of the phenomenon being 
predicted (training data). At present, there is only one operating 
geothermal plant in Idaho (Raft River) on the margins of the SRP in a 
Basin and Range type setting that may not be characteristic of many of 
the systems in the SRP. 

The SRP is divided into three distinct regions. The Central (CSRP) 
and Eastern SRP (ESRP) lie on the Yellowstone-Snake River Plain plume 
track but are largely underlain by an enormous cold-water aquifer (the 
Snake River aquifer; Lindholm, 1996), which suppresses surface heat 
flux (McLing et al., 2016; Lachmar et al., 2017). In contrast, the western 
SRP (WSRP) is overlain by lake sediments that prevent hydrothermal 
fluids from rising to the surface (Lachmar et al., 2019). As a result, most 
potential geothermal systems beneath the SRP would be blind (no 
obvious surface expression), thus requiring unconventional methods for 
characterization of resource potential. Our strategy to undertake a 
preliminary assessment to identify these blind systems relied on 
assigning relative weight values in a weighted sum model to the ele
ments and components based on the judgement of geoscientists familiar 
with the local controls on geothermal systems. 

2.1. Terminology 

We developed a uniform terminology for discussing GIS layers that 
are used and produced in the processing model. These layers are: (1) 
data layers, (2) evidence layers, (3) confidence layers, (4) risk layers, (5) 
CRS maps, (6) the CCRS map, (7) evidence only or confidence only maps, 
and (8) product maps. 

Fig. 1. Phase 1 Composite Common Risk Segment (CCRS) map, showing geothermal favorability predictions within the Phase 1 study area; warmer colors indicate 
higher favorability. Subregions (Western, Central, and Eastern SRP) are outlined with solid black lines. Red and yellow lines represent roads. Locations of Phase 2 
study areas are shown with dotted outlines. Hillshade from USGS 3D Elevation Program (U.S. Geological Survey, 2019). 
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(1) Data layers are the original data that are used as inputs for data 
processing. These data use a common projection and may include 
points, lines, or polygons, many of which include important 
attribute information. In some cases, raw data were pre-processed 
before being transformed into evidence layers; for example, fault 
and lineament segments were evaluated for slip and dilation 
tendency prior to geoprocessing into evidence layers (e.g., Morris 
et al. 1996).  

(2) Evidence layers are created by applying geoprocessing tools to 
data layers. Tools used include the application of either a density 
function (simple or kernel density), which calculates the occur
rence of objects within a given area, or a data interpolation 
function, which calculates intermediate values from a finite array 
of data points. Surfaces generated using these processes reflect 
the magnitude of the phenomena being modeled in their native 
units, for example the estimated heat flow or the density of vol
canic vents in every cell of the study area. Surfaces in native units 
become evidence layers after being scaled to values ranging from 
0 to 1.  

(3) Confidence layers reflect uncertainties in evidence layers and 
range from 0 to 1, with zero reflecting no confidence and 1 
reflecting complete confidence. These user-assigned values are 
assigned to map layers representing measured uncertainty. 
Interpolated evidence layers, for example, use the accompanying 
kriging standard error surface. Confidence for gravity is based on 
the distance to the nearest gravity measurement station. Confi
dence for mapped faults is based on published map scale (higher 
certainty for 1:24,000 scale, lower certainty for 1:250,000 scale). 
Confidence for magnetics is based on the survey quality (Drenth 
and Grauch, 2019).  

(4) Risk layers are the result of applying the confidence layer to the 
evidence layer. Risk layers are produced by multiplying the evi
dence layer (which shows likelihood of a resource characteristic 
being present) with the appropriate confidence layer (which as
sesses likelihood of data being reliable or complete).  

(5) CRS maps for the permeability and heat source components are 
the weighted sum of the risk layers within each component. 
Because each of these CRS maps represents the combination of 
multiple risk layers, and not all layers are equally diagnostic, a 
weighted sum is used to emphasize those layers that are thought 
to contribute most strongly to the characteristic in question, or to 
balance layers with different data densities that may contribute 
equally to that characteristic. The Seal CRS map was not con
structed as a weighted sum.  

(6) The CCRS map is the weighted sum of the permeability and heat 
source CRS maps multiplied by the Seal CRS map, then scaled 
from 0 to 1. This is the map that was used to assess resource 
favorability.  

(7) Evidence only and confidence only maps for the permeability and 
heat source components are the weighted sum of the evidence 
layers and confidence layers respectively within each component. 
These maps allow for just the evidence or just the confidence of a 
component to be examined without combining their influences as 
in the CRS map. Combining these component-scale maps results 
in CCRS-scale evidence only and confidence only maps. 

(8) Product maps were generated for CCRS, and the CRS-scale evi
dence only and confidence only maps. Instead of using a weighted 
sum, the product maps take the quotient of values from the three 
components. This approach is intended to favor places that have 
high estimated favorability in all components, not just some. 

2.2. Processing workflow 

The main GIS workflow of the study was carried out using tools built 
in Python, a scripting language that can execute geoprocessing tools in 
ArcMap and perform custom data manipulation and organization. These 

Python-based tools automate data processing to enhance the flexibility 
of the data analysis making it easily adaptable to perform assessments in 
other settings. 

2.2.1. Data transformation types 
Processing data layers into evidence layers typically involved either 

density functions to calculate the density distribution of an attribute or 
interpolation to calculate a continuous surface from point data (e.g., heat 
flow or groundwater temperatures). Density functions are used for data 
that are discontinuous by nature and where the geographic location of 
that data is important. Interpolation is used for data that are by nature 
continuous but are only sampled at points. 

Simple density functions count the number of like objects within a 
given radius (e.g., 10 km for faults in Phase 1) and calculate the density 
by dividing the sum by the area of the search radius. The calculated 
density is assigned to the entire radius. Kernel density functions assess 
data density by counting all instances of the data within a specified 
radius of a single point and dividing by the area of the search radius. This 
density is then distributed from a maximum at the location of the data to 
zero at the full radius of the search area using a quadratic function. Data 
may be weighted prior to counting. For example, fault segments and 
structural lineations are weighted by both dilation tendency and slip 
tendency on a scale from zero to 1.0, as a measure of their likelihood to 
serve as permeable pathways for fluid flow (Morris et al., 1996; Ferrill 
et al., 1999; see also Shervais et al., 2024). 

For interpolated layers, we used Empirical Bayesian Kriging (EBK), a 
geostatistical process that produces an estimate of the value of a prop
erty at each point on a continuous surface and a standard error surface 
that quantifies the uncertainty in the interpolation (Krivoruchko and 
Gribov, 2020). Standard kriging methods use existing data locations to 
predict the values at unknown locations. With EBK, a variogram is 
calculated using the original data. This variogram is then used to create 
a simulated dataset using an intrinsic random function and a variogram 
of the simulated data is created. Bayes’ rule is used to determine how 
likely the original data could be created by the variogram of the simu
lated data and weights it accordingly (Bayes, 1764). Prediction and 
prediction errors are derived using these weights. As a result, EBK claims 
to return a more generalized interpolation and a more robust estimate of 
standard errors compared to other kriging methods (Esri, 2023). 

2.2.2. Confidence 
Confidence levels are assigned using a fuzzy logic approach (user 

defined limits that range from 0 to 1). For interpolated surfaces using 
EBK the values are chosen based on the standard error map, with highest 
confidence (1.0) at the lowest standard errors and progressively lower 
confidence (values less than 1.0) at higher standard errors. Confidence 
values can be set to zero in places with no confidence, (as with the RTEst 
multicomponent geothermometer estimates (Neupane et al., 2014) that 
exceeded reasonable uncertainties), but confidence values generally 
ranged from a maximum of 1.0 to minimums at or above 0.5. For faults, 
the scale of mapping and map publication are important because 
regional scale mapping may simplify or omit some faults. This is 
particularly important to capture with a confidence layer because faults 
and structural complexity are considered important factors controlling 
geothermal systems (Faulds and Hinz, 2015). Local scale maps (1:24, 
000) were assigned higher confidence scores than regional scale maps 
(1:250,000). Similarly, the confidence layer for magnetic data is based 
on the coverage density of the sampled data used to generate structural 
lineations. The confidence layer for gravity data, however, is based on 
the distance from the nearest gravity station measurement. 

2.2.3. GIS processing model 
The GIS processing model, along with all data inputs and outputs, 

required tables, and documentation are available in data releases asso
ciated with Phase 1 and Phase 2 of this project (DeAngelo et al., 2021a, 
2021b). The processing model performs a series of steps defined in a set 
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of input tables. A ‘parameter table’ includes the name of GIS files for 
evidence and confidence data as well as instructions on how to use those 
data. For example, if an element uses a pre-existing grid (like an inter
polated surface), those surfaces must be directly sampled. If a density 
function is used on a data layer, such as lines or points (faults or vents), 
the user can specify a kernel or simple density, a weighting attribute, 
and a search radius. There are options to sample weights associated with 
categories from polygon inputs (e.g., aquifer or lacustrine extent), and to 
assign weights based on the distance to a feature, which can accom
modate specifying weights to specific distance intervals. Similarly, for 
confidence data, options exist to directly sample a preexisting surface, to 
use weights associated with categories from polygon inputs, or to assign 
weights based on the distance from a feature. Different options exist for 
data scaling, and there are custom options to accommodate processing 
choices made for this study. 

A coefficient table stores static coefficients chosen by expert opinion, 
for example: the relative weights of elements within a component, 
relative weights between components, confidence weights applied to 
confidence layers, scaling parameters, evidence weights, and distance 
thresholds. Each list of coefficients has a unique name that is used by the 
parameter table to access coefficient lists. A study area raster is chosen 
by a user to define the projection, processing extent, and cell size of the 
study. A user must also specify the name of a master points file that will 
contain all sampled and calculated data. The processing model generates 
output layers corresponding to evidence layers, confidence layers, CRS, 
CCRS, evidence only and confidence, and product maps. 

3. Data and results 

The three geothermal play components examined in this study 
(permeability, heat source, and seal) are defined by distinct elements (or 
geologic phenomena) which require different approaches to generate 
evidence layers and confidence layers, and to compute CRS maps. In this 
section we describe each element within each component in the Phase 1 
data. Section 4 describes changes made in Phase 2. All Phase 1 grids 
cover the same extent using a 2 km spacing (Fig. 1). 

3.1. Permeability 

Four elements were examined in constructing the permeability CRS 
map: (1) mapped faults; and lineations interpreted from maximum 
horizontal gradients of (2) mid-depth gravity anomalies, (3) deep 
gravity anomalies, and (4) magnetic field (pseudogravity) anomalies. 
These geophysically defined lineations reflect major lateral contrasts in 
density and magnetic properties that reveal potential structural features 
(e.g., faults or contacts) in the subsurface. These features can provide 
pathways for fluid flow (e.g., Shervais et al. 2014). The structures 
inferred from the gravity and magnetics data provide insights into po
tential buried permeable structures that would not be possible to detect 
in much of the SRP province if only mapped faults were considered 
(Fig. 2), given that much of the area is covered by Pliocene-Pleistocene 
volcanic flows and lacustrine deposits that obscure older structures. 
Mapped fault data are from the U.S. Geological Survey (USGS) Quater
nary fault database (Machette et al., 2003) and Idaho Geological Survey 
(Ludington et al., 2005). Geophysical data for the Phase 1 region were 
compiled from a variety of sources (Bankey et al., 2002; McCafferty 
et al., 1999; Hildenbrand et al., 2002). 

Faulds and Hinz (2015) have shown that geothermal permeability is 
favored by specific types of structural settings such as fault intersections, 
step-overs, and accomodation zones. Identifying these features from 
large or intermediate scale regional mapping is not practical, however, 
we chose an alternate approach that uses the density of faults and lin
eaments as a proxy for fault intersections. Thus, it is expected that areas 
with high densities of faults or lineaments are more likely to have fault 
intersections and fault-generated permeability. Once smaller scale 
prospects have been identified, fault density could be replaced or sup
plemented by mapped fault intersections as proposed by Faulds and 
Hinz (2015). 

For each element, two kernel density surfaces were created with a 10 
km search radius: one weighted by dilation tendency and the other by 
slip tendency (Siler et al., 2016; Shervais et al., 2024) (Fig. 2). To scale 
the evidence layers from the four different elements in a way that made 
them directly comparable to one another, each was scaled using the 
same maximum and minimum (zero) values. The maximum value was 
taken from the highest of the four evidence layer maximums. For 
example, the data layer for mapped faults (Fig. 2) contains many more 

Fig. 2. Kernel density surface of mapped faults weighted by dilation tendency. Surface values with warmer colors indicate greater dilation tendency (increased 
permeability). Similar surfaces were created for magnetic, mid-depth gravity, and deep gravity lineations for both dilation tendency and slip tendency. Red and 
yellow lines represent roads. Hillshade from USGS 3D Elevation Program (U.S. Geological Survey, 2019). 
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line segments per unit area than the data layer for any of the other three 
elements examined for permeability. The mapped faults evidence layer 
therefore had a higher maximum density than the evidence layers from 
the other elements and in our case, the maximum density value from 
mapped faults was used to scale. This was done separately for the 
dilation tendency and slip tendency evidence layers. By using the largest 
maximum value instead of each layer’s maximum, density values be
tween different data types all reflect the same features per unit area. 
These scaled values were later combined with values from the confi
dence layers to calculate risk layers for permeability. 

Confidence layers for mapped faults and magnetics were derived 
from polygon files that show the scale of sampling across the study area. 
Before being used in the processing model, polygons in each file were 
manually assigned codes indicating highest to lowest confidence. These 
codes correspond to user-defined weights or confidence values (Fig. 3-A, 
B). The two elements derived from gravity both used the same confi
dence layer and weights. The confidence layer for both gravity elements 
was constructed in the processing model by assigning weights based on 
distance to the nearest gravity station (Fig. 3-C). First, a surface was 
created from the gravity station point locations showing the distance to 
the nearest gravity station. This distance-surface was transformed using 
a list of distances and a list of weights (user-defined) to assign those 
weights for each distance bin. 

The risk values for each element were calculated by multiplying the 
scaled evidence and confidence values. The CRS value for permeability 
was calculated by multiplying each risk element by its weight from the 
list of weights for permeability, summing those products together, and 
scaling the data (Fig. 4). 

3.2. Heat source 

Five elements were examined in constructing the heat source CRS 
map: volcanic vents (locations, ages, and density), heat flow, helium 
isotopic composition in hot springs and wells, multicomponent geo
thermometry equilibrium reservoir temperatures in hot springs and 
wells, and groundwater temperatures. 

Volcanic vents were represented as point locations (Shervais et al., 
2015, 2016, 2024). Before processing, vents were assigned codes 
describing their size and age in order of relevance. These size and age 
codes corresponded to lists of weights for size and age. For each vent, the 
weight value from its age category was multiplied by the weight value 
from its size category and stored as the vent’s overall weight. This 
weight value was used in a weighted kernel density surface (10 km 
search radius) and scaled to create the evidence layer (Fig. 5). No con
fidence layer was used with vents, the scaled evidence layer therefore 
serves as the risk layer for vents. 

Helium isotope data were represented as point locations of analyzed 
spring and well water samples using measured 3He/4He ratios relative to 
air (R/Ra) (Dobson et al., 2015). Those values were used to weight a 
simple density function and create a density surface (10 km radius). A 
simple density function was used in this case because samples were 
believed to reflect the local conditions. No confidence data were used, 
and scaled values were used as the evidence layer and risk layer for 
helium. 

Heat flow data were compiled from USGS and Southern Methodist 
University Geothermal Lab databases (e.g., Blackwell, 1989; Blackwell 
and Richards, 2004; Williams and DeAngelo, 2008, 2011). These data 
were represented as point data. To reduce the effects of very high 
measurements on the regional heat flow estimates and better represent 
background conductive conditions, wells with heat flow over 120 

Fig. 3. Confidence maps for permeability elements. Each shows the confidence value applied across the study area. (A) Confidence for mapped faults determined by 
the scale of geologic mapping in the area showing level of uncertainty in original measurements. (B) Confidence for magnetics determined by the flight specifications 
of aeromagnetic surveys showing level of uncertainty characterized by line spacing and elevation above terrain. (C) Confidence for gravity showing level of un
certainty defined by distance to nearest gravity station. Hillshade from USGS 3D Elevation Program (U.S. Geological Survey, 2019). 
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mW/m2 were set to equal 120 mW/m2. Additionally, wells that 
appeared to depict thermal conductivity in a cold regional aquifer were 
removed. The data were interpolated using EBK into a surface estimating 
heat flow across the region (Fig. 6A). A surface estimating the standard 
error of the heat flow prediction was also created (Fig. 6B). These sur
faces were used as inputs in the processing model. The heat flow pre
diction values were then scaled using a user-defined minimum and 
maximum value. These scaled values were later combined with values 
from the confidence layer to calculate the risk layer for heat flow. The 
confidence layer was created by breaking up the standard error surface 
into five bins with each bin representing an equal portion of the standard 
error values between the minimum and maximum values. These bins 
were assigned a confidence value from a user-specified list. 

Multicomponent geothermometer reservoir temperatures (Neupane 

et al., 2014; Cannon et al., 2014), were interpolated using EBK for 
prediction and standard error by the same means as the heat flow data 
before being used as an input for the processing model. Confidence 
values were assigned based on the standard error surface using the same 
process as heat flow data. The approach taken with multicomponent 
equilibrium reservoir temperatures differed from the approach taken 
with heat flow because areas with very high standard error were 
assigned a confidence value of zero. The zone with the lowest confidence 
therefore had zero values for risk. 

Groundwater temperature data (e.g., Blackwell et al. 1992, Smith 
2004, McLing et al. 2014, 2016) went through the same process used for 
heat flow data using EBK. This involved EBK interpolation to generate 
evidence and confidence layers. 

The risk values for each element were calculated by multiplying the 

Fig. 4. Common risk segment (CRS) map for Permeability: eight risk layers (four elements, each weighted by dilation and slip tendency) were weighted and 
combined to create the CRS map. Warm colors indicate regions with high favorability. Red and yellow lines represent roads. Hillshade from USGS 3D Elevation 
Program (U.S. Geological Survey, 2019). 

Fig. 5. Kernel density surface of vents weighted by age and size. The product of the weights for age and size were used to weight the surface. Red and yellow lines 
represent roads. Hillshade from USGS 3D Elevation Program (U.S. Geological Survey, 2019). 
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scaled evidence and confidence values for layers that used confidence. 
Elements with no confidence had risk set equal to evidence. The CRS 
value for heat source was calculated by multiplying each risk element by 
its weight from the list of weights for heat source (Table 1), summing the 
products, and scaling the data (Fig. 7). 

3.3. Seal 

Two elements were examined in constructing the seal CRS map: lake 
sediments and aquifers. The lake sediment layer consisted of five poly
gons derived from regional geologic studies (Cluer and Cluer, 1986; 
Desborough et al., 1989; Anderson et al., 1997; Wood and Clemens, 
2002). Each polygon was assigned a weight from a list as were areas with 
no lake sediments. The distribution of a regionally extensive shallow 
aquifer in the eastern SRP (Lindholm, 1996) was used to establish either 
the presence or absence of an aquifer deep enough to form an aquitard at 
its base to act as a seal; weights were established for both zones. Weights 
were generally high, ranging from 0.9 to 1.0 to effectively lower 
favorability by a small amount in areas with no seal or with a less 
confidence of an effective seal. The product of the weight values from 
lake sediments and aquifers became the CRS for seal. Seal CRS values are 
relatively high (~0.8–1.0) so that when multiplied by the weighted sum 
of the permeability and heat source CRS maps, overall favorability will 
remain higher in areas with better likelihood of an impermeable seal. 

3.4. Composite common risk segment map 

The CCRS map (Fig. 8) is the weighted (Table 1) sum of the 
permeability and heat source CRS maps multiplied by the Seal CRS map, 
then scaled from 0 - 1. All coefficients used in both phases were arrived 
at after a process of trial and error was employed to ensure coefficients 
appeared to produce reasonable results (i.e., they do not overly-reflect 
elements that were thought to be less informative and/or less well- 

constrained) and show that known, deep, high-temperature wells have 
above average favorability. 

4. Phase 2 changes 

4.1. Changes from Phase 1 to Phase 2 

The second phase of the project focused on two subregions within the 
original Phase 1 study area: the Mountain Home and Camas Prairie 
study areas (Fig. 1). The study area for each region was examined at a 
higher resolution than the Phase 1 work, with Mountain Home using 
500 m spacing and Camas Prairie using 100 m spacing. Coefficients used 
in Phase 2 weighted sum calculations were different than those used in 
Phase 1 (Table 1). Some elements were updated or added in Phase 2 
work, with new field data added to the prior data compilation. 
Geophysical and other data (e.g., Hill and Pakiser 1967, Nielson and 
Shervais 2014) document a presence of mafic sill in the mid-crust of the 
WSRP, similar to that observed in the ESRP. An outline of this inferred 
sill was added as an additional element in the heat source component. 
New sets of geophysical (gravity, magnetic) lineations were constructed 
for each study area, and new measures of confidence were applied for 
some data. Volcanic vent and helium isotope data were also updated 
with new locations. 

A substantial change from Phase 1 involved using different length 
search radii when transforming data using density functions (Fig. 9). In 
both the Mountain Home and Camas Prairie regions, a 2.5 km radius was 
chosen for all evidence data except for helium data, which continued to 
use the 10 km buffer used in Phase 1 to reflect the wider area that could 
be representative of mantle influences. 

4.2. Additional map types 

The data releases associated with Phase 1 (DeAngelo et al., 2021a) 
and Phase 2 (DeAngelo et al., 2021b) contain evidence only and confi
dence only grids to compliment CCRS and CRS grids by separating out 
the effects of evidence and confidence (Fig. 10A–C). Grids showing the 
product (not a weighted sum) of all components, and the products of 
evidence only and confidence only are also included (Fig. 10 D–F). This 
is equivalent to the "veto equation" of Lautze et al. (2017a, 2017b). The 
product maps tend to highlight areas that are highly favorable for all 
components of the analysis, unlike the CCRS maps, which can still 
appear favorable if any individual component is not. 

It can be seen in Fig. 10 that the CCRS map (Fig. 10A) qualitatively 
looks very similar to the evidence-only map (Fig. 10B), and that the 
effects from confidence on the CCRS map are mild in most places and 
moderate in very few areas. Product maps (Fig 10. D–F) and their 
equivalent modified weighted sum maps (Fig 10. A–C) show similar map 
patterns where relatively high and low favorability values exist, but the 

Fig. 6. (A) Estimated heat flow surface created using EBK from locations of measured heat flow. (B) Standard error of predicted heat flow surface created using EBK 
from locations of measured heat flow. Red and yellow lines represent roads. Hillshade from USGS 3D Elevation Program (U.S. Geological Survey, 2019). 

Table 1 
Weighting coefficients used in weighted sum calculations in Phase 1 and Phase 
2. Weight coefficient values relate to the features in the data column in the order 
they appear.  

Phase Data W W W W W W 

1 CCRS: Permeability, heat source 8 5     
1 CRS permeability: Mapped faults, 

magnetic, mid gravity, deep gravity 
1 3 6 8   

1 CRS heat source: Vents, heat flow, 
helium, r-test, groundwater 

30 55 5 5 5  

2 CCRS: Permeability, heat source 1 1     
2 CRS permeability: Mapped faults, 

magnetic, mid gravity, deep gravity 
2 4 6 4   

2 CRS heat source: Vents, heat flow, 
helium, r-test, groundwater, sill 

10 10 2 5 10 8  
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product approach generated few moderate estimates of favorability, 
giving a starker contrast between areas of relatively high or low esti
mated favorability. 

5. Discussion 

The use of expert-chosen coefficients to define critical model pa
rameters has both benefits and drawbacks. One possible benefit is using 
a weighted sum or product calculation makes it evident how each 
element contributes to favorability estimates in a simple model. Data- 
driven models sometimes produce results that appear counterintuitive, 
and it may be hard to know whether counterintuitive results are 
suffering from a lack of training data, non-ideal model design, or if the 
results indeed reflect something real and new. It seems that data-driven 
models and model parameters should always be preferable to expert- 

defined weightings in situations where there is high confidence that a 
data-driven approach will produce robust results. However, many set
tings for geothermal resource PFA do not have conditions that would 
allow for high confidence, robust data-driven approaches (e.g., few data 
exist, etc.). Experts have limits in their ability to estimate ideal param
eters but do possess insights that constrain a PFA-style assessment to 
physical reality by providing reasonable estimates. Expert decisions can 
help assure that coefficients used in weighted sums produce reasonable 
results, distance thresholds (density and distance functions) and 
weightings (by attributes like slip and dilation tendency for example) 
appear appropriate for the data and setting, and confidence associated 
with evidence data is properly identified and quantified. Therefore, this 
approach may be especially useful in settings with little training data or 
for comparisons with data-driven models that may benefit from having a 
simple, expert-constrained model to compare against. 

Fig. 7. Common risk segment (CRS) map for heat source. Warm colors indicate regions with high favorability. Red and yellow lines represent roads. Hillshade from 
USGS 3D Elevation Program (U.S. Geological Survey, 2019). 

Fig. 8. Composite Common Risk Segment (CCRS) map. Warm colors indicate regions with high estimated geothermal favorability. Red and yellow lines represent 
roads. Hillshade from USGS 3D Elevation Program (U.S. Geological Survey, 2019). 
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A potential weakness in this and any expert-driven approach is that 
many of the expert decisions (coefficients, distances, etc.) are poorly 
constrained by data, and any attempt to find reasonable results through 
expert opinion and trial and error could overly reflect the biases of ex
perts. In Phase 1, trial and error guided modifications to coefficient 
weights in a process that led to certain elements being weighted more 
heavily within components, producing estimates that did not overly rely 
on any element in a way that appears to bias the results. For example, 
within the heat source component, data representing volcanic vents and 
background conductive heat flow were given far higher weights than 
data from the other elements (helium isotope data, multicomponent 
geothermometer water temperatures, groundwater temperatures) both 
due to higher confidence that they were modeled accurately, and they 
reflect processes that would be a better predictor of geothermal favor
ability. The exercise of trial and error was repeated in Phase 2 to settle 
upon coefficients and model parameters better suited to the subregions 
of Mountain Home and Camas Prairie. 

Automated processing enabled values for weights, confidence, and 
other parameters to be modified in stand-alone tables, and the analysis 
could be repeated. This made it easier to test ideas, come up with a well- 
informed final product, and identify areas for further study. This 
approach could be applied to different settings, as demonstrated with 
Phase 2 work and in an example application to data from another PFA 
project in Washington (Forson et al., 2017; Shervais et al., 2021). Re
gions identified by Phase 1 for a more detailed Phase 2 analysis were 
examined through trial and error to identify a smaller cell size, shorter 

search distances for density functions, and different coefficients for 
weight and confidence values. Adapting this methodology to other 
geothermal settings can be done by adding and/or removing data layers 
(elements), modifying weights and other parameters, and defining a 
study area to suit the setting and available data. 

This methodology is similar to those employed in other PFA projects 
(Lautze et al., 2017a; Forson et al., 2017; Faulds et al., 2018) in that it 
used expert-chosen weights to estimate geothermal favorability in a 
large region of the United States by either calculating a modified 
weighted sum (emphasizing moderate-strong presence of at least some 
critical components) or product (emphasizing strong presence of all 
components). In addition to the maps that show evidence, this meth
odology generated map products that include uncertainty in favorability 
estimates (CRS, CCRS, confidence-only maps) to account for data spar
sity and modeling uncertainties. Our approach has been supported by 
slimhole drilling in one of our Phase 2 focus areas (Lachmar et al., 2023). 

6. Conclusions 

We have developed an approach to PFA for use in geothermal 
exploration that is based on previously published conceptual models (e. 
g., Nielson and Shervais 2014, Nielson et al. 2015) and builds on 
methods used in earlier GIS and evidence-based approaches in 
geothermal exploration (e.g., Coolbaugh et al. 2002, 2005, Noorollahi 
et al. 2008, Trumpy et al. 2015). Most of the processing is automated 
using a Python-based processing model, that enabled modifications to 

Fig. 9. Mountain Home example CCRS maps showing the effects of changing density function search radius length. All tools using a search radius, with the exception 
of helium data, used the following radius in the following plots: (A) 1 km, (B) 2.5 km (chosen for use in Phase 2), (C) 5 km, and (D) 10 km (used in Phase 1). Hillshade 
from USGS 3D Elevation Program (U.S. Geological Survey, 2019). 
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inputs, weights, and other important parameters informed by expert 
opinion and trial and error. 

The three components we identified as being critical for the forma
tion of a hydrothermal system in the SRP included a heat source (heat 
flow, vents, helium isotope ratios, calculated multicomponent equilib
rium reservoir temperatures, measured groundwater temperatures, 
inferred sill), permeability (mapped faults and structures inferred from 
geophysics), and a seal (lake sediments and regional aquifers). Some 
elements had associated confidence data that accounted for data sparsity 
and modeling uncertainties. Expert-chosen coefficients were used to 
establish weighting relationships. Individual elements within heat and 
permeability components were combined using a weighted sum. These 
components were combined to create predictive surfaces, using either a 
weighted sum (CRS, CCRS maps) or by multiplying values (product 
map). Some models (CRS, CCRS maps) accounted for uncertainties in the 
underlying data layers, whereas others separated out the effects (evi
dence only and confidence maps). 

Our approach helped to identify areas of high geothermal favor
ability in the western and central SRP during the first phase of study and 

was used to examine smaller study areas at a finer scale during the 
second phase of work, identifying more precise local drilling targets 
(Shervais et al., 2020). This approach, or any expert-driven analysis 
benefits from its simplicity but is fundamentally prone to inaccuracy and 
bias. By identifying favorable areas, the methodology presented here 
can reduce uncertainty in the initial stages of geothermal energy 
exploration and development in settings that could benefit from a sim
ple, expert-constrained model. We caution, however, that no exploration 
strategy is risk free, and that in the end only a targeted program of 
drilling can confirm whether or not a viable resource is present (e.g., 
Wilmarth et al. 2017, Lachmar et al., 2023). 

Glossary 

Common Risk Segment (CRS) map: Raster grid depicting a compo
nent’s continuous range of values. The CRS maps for permeability and 
heat source are the weighted sum of risk layers from that component’s 
elements. The CRS map for seal is the product of weight values. 

Component: General geologic factor contributing to favorability, 

Fig. 10. Additional interpretive maps for comparison. (A) CCRS, (B) evidence-only, (C) confidence-only, (D) product, (E) evidence-only product, (F) confidence-only 
product. Red and yellow lines represent roads. Hillshade from USGS 3D Elevation Program (U.S. Geological Survey, 2019). 
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comprised of permeability, heat source, and seal. 
Composite Common Risk Segment (CCRS) map: Raster grid 

depicting the magnitude of the combined contributions of the study’s 
CRS maps. 

Confidence layer: Raster grid depicting an element’s continuous 
range of uncertainty values. 

Confidence-only map: The CRS-scale map depicts the weighted sum 
of the confidence layers within the permeability and heat source com
ponents; CCRS-scale map depicts the weighted sum of CRS-scale confi
dence-only maps of the permeability and heat source components. 

Data-driven: An approach to weighting elements that relies on sta
tistical relationships. 

Data layer: ArcGIS shapefile in common projection used in making 
an evidence layer for an element, typically either point, line, or polygon 
data. 

Element: Geologic factor being modeled in evidence, confidence and 
risk layers. 

Empirical Bayesian Kriging (EBK): An iterative geostatistical 
interpolation method. 

Evidence layer: Raster grid depicting an element’s continuous range 
of values. 

Evidence-only map: The CRS-scale map depicts the weighted sum of 
the evidence layers within the permeability and heat source compo
nents; CCRS-scale map depicts the weighted sum of CRS-scale evidence- 
only maps of the permeability and heat source components multiplied 
by CRS map for seal. 

Heat source: One of the three components used in the study 
comprised of the following elements: Heat flow, volcanic vents, helium 
isotopic ratios, multicomponent equilibrium reservoir temperatures, 
and groundwater temperatures. 

Interpolation: Process of estimating a raster surface of continuous 
values from point locations. 

Kernel density function: Raster surface depicting spatial density of 
point locations with the density distributed from a maximum value at 
the center to a zero value at the limit of the full radius using a quadratic 
function. These locations can be given weighted values. 

Knowledge-driven: An approach to weighting elements that relies on 
expert opinion. 

Permeability: One of the three components used in the study 
comprised of the following elements: mapped faults, lineations inter
preted from geophysics (mid-depth gravity and deep gravity), and 
magnetics. 

Product map: A CCRS-scale map depicts the product of either evi
dence or confidence values from the three components, to create either 
an evidence product map or a confidence product map. This approach is 
intended to favor places that have high estimated favorability or con
fidence in all components, not just some. 

Risk layer: Product of evidence and confidence layers; used in 
creating CRS map. 

Seal: One of the three components used in the study comprised of the 
following elements: Lake sediments and aquifers. 

Simple density function: Raster grid depicting spatial density of 
point locations. These locations can be given weighted values. 
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