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ABSTRACT OF THE DISSERTATION

Randomized Fast Solvers for Linear and Nonlinear Problems in Data Science

By

Huiwen Wu

Doctor of Philosophy in Math

University of California, Irvine, 2019

Professor Long Chen, Chair

We construct a preconditioner for solving the linear least square problems, which are simplest

and most popular arising in data fitting, imaging processing and high dimension data analysis.

The existed methods for solving least squares problems either has a large computational cost or

depends highly on the condition number of the matrix. Recently, there is a surge of interest in

developing randomized algorithms for solving least squares problems for the purpose of efficiency

and scalability. We construct a new preconditioner equipped with sampling procedure to reduce

computational complexity and apply Gauss Seidel iterations to grab the high frequency compo-

nent of the solution, which reduces the dependence of performance of the conditioner number.

Experimental studies compared with Conjugate Gradient Descent method (CG) are presented on

six different simulations including dense Gaussian matrix, ‘semi Gaussian’ matrix, Sparse ran-

dom matrix, ‘UDV’ matrix and Graph Laplacian matrix and a non-negative constrained problem

to show the effectiveness of the proposed preconditioner.

A general scheme for solving non-constraint convex and smooth minimization problem minx∈V f(x)

is developed in this thesis. The scheme does gradient descent on each subspace based on a stable

space decomposition of V . With assumptions of Lipschitz continuous of the gradient on V and its

subspaces, convexity or strong convexity on V , we prove linear convergence for strongly convex

objective function for both non-uniform sampling and uniform sampling. For non-uniform sam-

xi



pling, the convergence depends on the expected condition number, and for uniform sampling, the

convergence depends on the supreme condition number. Moreover, we also show sublinear conver-

gence for convex function. Numerical examples on Nestrov’s worst function and linear regression

both outperform randomized coordinate method. We conclude that our scheme generalizes the

gradient descent methods, randomized (block) coordinate descent methods and full approximation

scheme.

xii



Chapter 1

Introduction

During the past two decades, there is a growing enthusiasm for “Big Data”. We now come a big

data era with great opportunities and challenges. Due to eruption of terabytes data, we confront

problems including but not limited to creation, transmitting, processing, and storage capacities.

Due to the randomness of data and problems, randomized algorithms are developed. Compared to

deterministic algorithms, randomized versions enjoy the benefits of easier convergence analysis,

better numerical performance, and significant complexity reduction.

In this thesis, we focus on two simple but fundamental problems arising in data science. One is

solving linear equation:

Ax = b, (1.1)

where A ∈ Rm×n, b ∈ Rm,m� n, and rank(A) = n.

Another one is non-constraint smooth and convex minimization problem:

min
x∈V

f(x), (1.2)

1



where f is a smooth and convex function and V is a Hilbert space.

We conclude the development of methods for least squares problems and non-constraint smooth

and convex problem and show the intrinsic relation between linear and nonlinear methods in Chap-

ter 3 and Chapter 5. We propose a randomized iterative method based on importance sampling

strategy and preconditioning for least squares problem (??) and a generic gradient type scheme

combined subspace decomposition and randomly gradient descent for (1.2), which are introduced

in Chapter 4 and Chapter 6 respectively.

The thesis is organized as follows.

• In Chapter 2, we present the simplest and most common problem in numerical linear al-

gebra – least squares problem. We introduce popular models and associated optimization

problems in data science including linear regression and logistic regression. We show that

the maximum likelihood settings of linear regression with a linear Gaussian noise is exactly

least squares problem. We also derive some fundamental properties of logistic regression.

More generally, we provide a non-constraint minimization problem setting with Lipschitz

continuous of first order derivative and convex or strongly convex assumptions.

• In Chapter 3, we review existing methods of least squares problem including direct methods,

iterative methods and recently developed randomized methods. Direct methods is easy to

implement but have limitation that computation complexity is O(mn2). When the matrix

is of huge size, it is not practical and extremely expensive to apply direct methods. Iter-

ative methods have the benefit that in each iteration, the complexity would be O(n) while

the drawback is the number of iterations to achieve accuracy ε highly depends on condition

number of matrix A. As the development of probabilistic learning, several fast least squares

solvers have been developed recently utilizing randomization see, for example [15, 37, 4].

These fast least squares solvers try to construct a spectrally equivalent but of smaller size

2



matrix via random transformation and random sampling or mixing. Due to the random

transformation, however, these methods destroy the sparsity of A, and thus not suitable for

sparse matrices.

• In Chapter 4, we go through our method for least squares problem non-uniform row sam-

pling fast least square solver [12]. In our method, we apply row sampling to matrix A in

first stage. Then we construct a preconditioner with Gauss-Seidel applied to the sampled

matrix AS . After all, we equip conjugate gradient with preconditioner we have constructed.

Our method reduces not only complexity by using iterative scheme but also iteration steps

by constructing an efficient preconditioner. By this preconditioner, the sparsity of original

problem is preserved. We apply our methods to 5 categories of matrix and improve iteration

steps to 1/4 compared to diagonal preconditioned conjugate gradient in worst case. One

application to non-negative constrained problem also shows a huge improvement.

• In Chapter 5, we review gradient type methods for non-constraint smooth and convex min-

imization problem including gradient descent methods (GD), coordinate descent methods

(CD) in cyclic fashion (CCD) and randomized fashion (RCD), stochastic gradient descent

methods (SGD) and mini-batch stochastic gradient methods (mini-batch SGD). We present

and compare convergence analysis of these methods. We also show the connections between

nonlinear methods and linear methods. Apply RCD to linear equation give randomized

Gauss-Seidel (RGS) while apply SGD to linear equation give randomized kaczmarz (RK).

We show duality between RGS and RK and RCD and SGD.

• In Chapter 6, we introduce our method for non-constraint smooth and convex minimization

problem – randomized fast subspace decent methods (RFASD). We combine the idea of RCD

and full approximation scheme (FAS) [11]. Suppose we have a stable subspace decomposi-

tion V =
∑

i Vi. Instead of doing gradient descent in each coordinate, doing gradient descent

3



in each subspace achieves better performance as long as the subspace decomposition is sta-

ble in appropriate norm so that condition number of original problem is reduced. Numerical

examples for Nesterov’s worst function [32] compared with RCD show the improvements.

Two accelerated versions of RFASD are also provided to further speed up the method.

• We conclude the thesis in Chapter 7. We develop a randomized row sampling preconditioner

for least squares problem by importance sampling and Gauss-Seidel iteration. We equip CG

with row sampling preconditioner and compare with diagonal preconditioned CG. To solve

non-constraint convex and smooth minimization problem, we construct a generic scheme

RFASD. We conclude existing methods GD, RCD, RBCD and FAS as examples of RFASD.

4



Chapter 2

Linear and Nonlinear Problems in Data

Science

In this chapter, we introduce one of fundamental problems in numerical linear algebra – least

squares problem. Then we come to two basic models in Data Science – linear regression and

logistic regression, which have linear and non-linear gradient of objective functions respectively.

After all, we give the basic setting of general minimization problem with convex and smooth

objective function.

2.1 Least Squares Problem

Least squares method is one of the simplest and most commonly applied techniques of data fitting.

It can be applied in statistics to construct linear regression model and unbiased linear estima-

tor [34], in imaging processing for image deblurring [6], and in high-dimensional data analysis

like canonical polyadic tensor decomposition [18] etc. Least squares problems arise when apply-

ing least squares method and fall into two categories: linear or ordinary least squares or nonlinear

5



least squares. Now we focus on linear least squares problem.

Consider the overdetermined system

Ax = b,

where A ∈ Rm×n, b ∈ Rm,m ≥ n, and assume rank(A) = n. As m > n, solutions to (1.1) are in

general not unique. The least squares solution to the overdetermined system (1.1) is

xopt = arg min
x
‖Ax− b‖22, (2.1)

where ‖ · ‖2 is the l2 norm of a vector.

Find the least squares solution xopt is mathematically equivalent to solving the normal equation

AᵀAxopt = Aᵀb. (2.2)

Since A is full rank, AᵀA is non-singular and thus xopt = (AᵀA)−1Aᵀb. However, traditional

methods to compute AᵀA is costing, i.e., O(n3) for QR or SVD decomposition.

2.2 Linear Regression

Linear Regression is one simple but important model in probabilistic learning. In this section, we

discuss the math problem after applying linear regression model and show the connection of linear

regression and one of the most fundamental problem in numerical linear algebra – least squares

problem. When the assumption for while noise is normal distribution, in order to achieve maxi-

mum likelihood, the linear system we confront in linear regression model is exactly least squares

problem. Various methods for least squares problems have been developed for least squares prob-

6



lem due to its fundamental role in numerical linear algebra, which will be introduced in Chapter 2.

These methods also contribute to solving linear regression problems.

In this section, we discuss the applications of least squares problem in data science. One important

and popular application is linear regression. We now show the maximum likelihood settings of

linear regression with a linear Gaussian noise is exactly a least squares problem. To illustrate the

equivalent relation, we follow notes of Lindsten et al. Probabilistic modeling - linear regression &

Gaussian processes [23].

Suppose we have a list of data {yi, xi1, xi2, · · · , xid}Ni=1 asN input-output data pairs where xik, yi ∈

R with k = 1, · · · , d.

A linear regression model assumes the linear relationship between dependent variable y and d-

vector input data x with a disturbance term ε. For a single i, the model takes the form.

yi = β0 + β1xi1 + · · ·+ βdxid + εi = xᵀi β + εi, i = 1, · · · , N, (2.3)

where β =



β0

β1

· · ·

βd


∈ Rd+1 and xi =



1

xi1

· · ·

xid


∈ Rd+1.

Combine (2.3) of N data, the model can be defined in a matrix form. The model is described as

y = Xβ + ε, (2.4)
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where

y =



y1

y2

· · ·

yN


, X =



xᵀ1

xᵀ2

· · ·

xᵀN


=



1 x11 x12 · · · x1d

1 x21 x22 · · · x2d

· · · · · · · · · · · · · · ·

1 xN1 xN2 · · · xNd


, ε =



ε1

ε2

· · ·

εN


.

• Each εi, i = 1, · · · , N is independent identical Gaussian random variables with mean 0 and

variance σ2, i.e. ε ∼ N (0, σ2).

• X is the matrix with each row xᵀi as concatenation of 1 and input data with d features[
xi1, xi2, · · ·xid

]ᵀ
.

• β ∈ Rd+1 is unknown deterministic parameter in maximum likelihood settings.

• y ∈ RN is a vector with each component yi as labels of corresponding input data xi.

• In training process, y is known and we need to figure out β, while in testing process, we use

β estimated in training and make prediction of y.

In order to simplify mathematical analysis, we assume conditionally independent for yi.

• (Conditional Independence) yi are conditionally independent given β, i.e.

p(y|β) = p(y1, y2, · · · , yN |β) =
N∏
i=1

p(yi|β). (2.5)

We observe randomness in label y due to (2.4), ε is Gaussian and X, β are deterministic. Thus

y −Xβ inherits Gaussian property.

ε ∼ N (0, σ2)⇒ y −Xβ ∼ N (0, σ2)⇒ y ∼ N (Xβ, σ2).
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Then we have

p(y|β) = N (y|Xβ, σ2), (2.6)

where

• p(y|β) denotes the conditional probability of y given parameter β and

• N (y|Xβ, σ2) is short for y is Gaussian with mean Xβ and variance σ2.

By assumption of conditional independence, we have

p(y|β) = p(y1, y2, · · · , yN |β) =
N∏
i=1

p(yi|β) =
N∏
i=1

N (yi|βᵀxi, σ2). (2.7)

Define the likelihood function L(β),

L(β) =
N∏
i=1

N (yi|βᵀxi, σ2). (2.8)

In order to maximize conditional probability p(y|β), it leads to maximize L(β), which is the same

as maximize log likelihood function

`(β) = log(L(β)) = log

(
N∏
i=1

N (yi|βᵀxi, σ2)

)

=
N∑
i=1

log
(
N (yi|βᵀxi, σ2)

)
=

N∑
i=1

log

(
1√

2πσ2
exp−(yi − βᵀxi)2

2σ2

)

= N log

(
1√

2πσ2

)
−

N∑
i=1

(yi − βᵀxi)2

2σ2
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The maximum likelihood solution is

β̂ML = arg min
β
`(β) = arg min

β

N∑
i=1

(yi − βᵀxi)2, (2.9)

which is exactly least squares solution of (2.1).

2.3 Logistic Regression

The next model in Data Science we introduce is Logistic Regression (LR) model. We discuss mo-

tivation, derivation of objective function from perspective of maximum likelihood and properties

of objective function in this section. We follow Shalizi’s lecture notes in statistics [40].

2.3.1 Introduction

Regression problem has continuous output variable while classification problem has discrete output

variable. For some problems, instead of simply guessing “yes” or “no”, we prefer a probability of

each instance belongs to some class. Then logistic regression model is needed.

Logistic regression model is perfect for binary classification problem. We want to know the prob-

ability p for data belongs to class A, where 1− p is the probability belongs to another class B. In

order to estimate p, we starts from simplest model – linear model.

• p = xᵀβ, x, β ∈ Rd+1, where x is the input data concatenated with 1 and β are parameters.

The model has issues that Firstly, p must between 0 and 1 but linear functions are bounded.

Secondly, in many situations, we empirically see “diminishing returns” – changing p by the

same amount requires a bigger change in x when p is already large or small than p is close

to 1
2
.
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• log(p) = xᵀβ, x, β ∈ Rd+1, where x is the input data concatenated with 1 and β are param-

eters. The problem is that logarithms are unbounded in one direction when p ∈ (0, 1).

• log
(

p
1−p

)
= xᵀβ, x, β ∈ Rd+1, where log

(
p

1−p

)
is logistic tranformation of p.

Now we have the model

log

(
p(x)

1− p(x)

)
= xᵀβ.

Solve for p(x), we have

p(x|β) =
1

1 + exp(−xᵀβ)
.

Definition 2.3.1. Sigmoid function

σ(t) =
1

1 + exp(−t)
∀t ∈ R. (2.10)

The plot of sigmoid function is in Figure 2.1.

Figure 2.1: Sigmoid Function

Source: Figure from [3]

In order to minimize the mis-classification rate, we should predict y = 1 where p ≥ 0.5 and y = 0

when p < 0.5, i.e. to guess 1 when xᵀβ is nonnegative and 0 otherwise. The decision boundary is

the line (hyperline) where xᵀβ = 0. Thus logistic regression is a linear classifier.
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2.3.2 Likelihood Function for Logistic Regression

Because logistic regression predicts probabilities, rather than just classes, we can fit it using likeli-

hood. For each training data-point, we have a vector of features xi and the observed label yi. The

probability of that class is either p if yi = 1 or 1− p if yi = 0. The likelihood is then

L(β) =
N∏
i=1

p(xi|β)yi(1− p(xi|β))1−yi . (2.11)

Take log on both sides, we have the log likelihood function.

l(β) =
N∑
i=1

(yi log(p(xi|β)) + (1− yi) log(1− p(xi|β))) . (2.12)

In order to maximize log likelihood function, we need to solve the minimization problem of neg-

ative log likelihood function. The mean of negative log likelihood function gives cost function of

Logistic Regression.

Definition 2.3.2. (Cost function of Logistic Regression)

c(β) = − 1

N

N∑
i=1

(yi log(p(xi|β)) + (1− yi) log(1− p(xi|β))) . (2.13)

Cost function of a single training instance has the form

c(β) =


− log(p(x|β)) if y = 1;

− log(1− p(x|β)) if y = 0.

(2.14)

It is easily to see the cost function of a single training instance is convex. The summation of convex

function is also convex.

From Figure 2.2 we can see, if the observed label is 1, p goes to 1, cost function reaches minimum
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Figure 2.2: LR cost function of single instance

while p goes to 0 cost function goes to∞. If observed label is 0, p goes to 0 cost function reaches

minimum while p goes to 1 cost function goes to∞. The aim of minimzation of cost function is

to push p to 1 if y = 1 and push p to 0 if y = 0.

Take derivative of log likelihood function we have

∂l

∂βj
= −

N∑
i=1

1

1 + exp(xᵀβ)
exp (xᵀβ)xij +

n∑
i=1

yixij

=
N∑
i=1

(yi − p(xi|β))xij.

The optimal point is where each component of gradient equal 0. This is a transcendental equation.

Thus there is no closed form solution.
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2.3.3 More on Logistic Regression Objective Function

Now we provide a simplified version of logistic regression objective function (2.13) presented as

an example in [20]. Then we come to derive some properties of Logistic Regression cost function

based on simplified formula (2.15).

By (2.13), we can write out the cost function

c(β) = − 1

N

N∑
i=1

(yi log(p(xi|β)) + (1− yi) log(1− p(xi|β)))

= − 1

N

N∑
i=1

(yi log(σ(xᵀi β)) + (1− yi) log(1− σ(xᵀi β)))

= − 1

N

N∑
i=1

(− log(1 + exp(−xᵀi β)) + (1− yi)(−xᵀi β))

Substitute parameter β by x, data matrix X with A, where aᵀi is row vector of A corresponding to

i-th data. Denote bi = 1− yi.

We have a simplified version of LR objective function. The probability we estimate is pi(x) =

σ(−aᵀi x), where σ is sigmoid function defined in (2.10).

f(x) =
1

N

N∑
i=1

[log(1 + exp(−aᵀi x))− biaᵀi x] (2.15)

Theorem 2.3.3. Cost function of Logistic Regression (2.15) is convex.
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Proof. We prove the cost function of Logistic Regression (2.15) is convex by calculating the Hes-

sian matrix of (2.15) and show it is symmetric positive definite (SPD). Following is the computa-

tion.

The second term −biaᵀi x in (2.15) is linear. When we compute second order derivative, it results

in 0. Thus we consider second order derivative of the first term in (2.15).

Let a =

[
a1, · · · , ad+1

]ᵀ
.

∂

∂xk
(log(1 + exp(−aᵀx))) =

∂

∂xk
(log(1 + exp(−

∑
j

xjaj)))

=
exp(−

∑
j xjaj)

1 + exp(−
∑

j xjaj)
ak

= −

(
1− 1

1 + exp(−
∑

j xjaj)

)
ak

∂2

∂x2k
(log(1 + exp(−aᵀx))) =

exp(−
∑

j xjaj)

(1 + exp(−
∑

j xjaj))
2
a2k

=

(
1

1 + exp(−
∑

j xjaj)
− 1

(1 + exp(−
∑

j xjaj))
2

)
a2k

∂2

∂xk∂xl
(log(1 + exp(−aᵀx))) =

(
1

1 + exp(−
∑

j xjaj)
− 1

(1 + exp(−
∑

j xjaj))
2

)
akal

Thus the Hessian matrix of Logistic Regression cost function is

Hkl =
1

n

n∑
i=1

exp(−aiᵀx)

(1 + exp(−aiᵀx))2
aikail.
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In matrix form,

H =
1

n

n∑
i=1

exp(−aiᵀx)

(1 + exp(−aiᵀx))2
aiai

ᵀ

=
1

n

n∑
i=1

(
exp(−aiᵀx)

(1 + exp(−aiᵀx))2
aiai

ᵀ

)

H is symmetric semi-positive definite since (SSPD) it is the linear combination of rank 1 matrices

aiai
ᵀ with positive coefficients. As long as the set of row vector {ai}Ni=1 is linear independent. H is

symmetric positive definite (SPD). Since the Hessian matrix of function f is SPD, f is convex.

To conclude, we have a brief summary of Linear Regression and Logistic Regression Model in

Table 2.1.

Table 2.1: Comparisons of Linear Regression and Logistic Regression

Linear Regression Logistic Regression
Problems Regression Binary Classification

Input Data with continuous target values Data with discrete labels
Output continuous categorical with probability
Model y = Xβ + ε, ε ∼ N(0, σ2) p(X; β) = 1

1+exp(−Xβ)

Objective Function f(β) = 1
N
‖y −Xβ‖2 f(β) = 1

N

∑N
i=1[log(1 + exp(xᵀi β))− yixᵀi β]

Properties Linear Convex Smooth Nonlinear Convex Smooth
Popular Solver Direct Solver SGD

2.4 Non-constraint Convex and Smooth Minimization Problem

Linear regression and Logistic regression are two specific minimization problem with convex and

smooth objective function. Now we come to general non-constraint minimization problem setting.
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Consider non-constraint minimization problem

min
x∈V

f(x), (2.16)

where f is a smooth and convex function and its derivative is Lipschitz continuous with constant L

and V is a Hilbert space. In practice, V = RN but might be assigned with an inner products other

than the standard l2 inner product. Solving minimization problem (1.2) is a central task with wide

applications in fields of scientific computing, machine learning and data science etc.

We consider the minimization problem (1.2) with following setting. The Hilbert space V is a vector

space equipped with an inner product (·, ·)V . Although our discussion might be valid in general

Hilbert spaces, we restrict ourself to the finite dimensional space and without of loss generality we

take V = RN .

The standard l2 dot product is

(x, y) = x · y :=
N∑
i=1

xiyi. (2.17)

But V could be assigned an inner product (·, ·)V other than l2 and the norm induced is

‖u‖V =
√

(u, u)V , ∀u ∈ V . (2.18)

In particular, given a symmetric positive definite(SPD) matrix A, a new inner product can be

defined with respect to A.

(u, v)A = (Au, v), ∀ u, v ∈ V . (2.19)

A new norm with respect to A is induced by A−inner product.

‖u‖A =
√

(u, u)A, ∀ u ∈ V . (2.20)
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Let V ′ := L(V ,R) be the linear space of all linear continuous mappings V → R, which is called

the dual space of V . Define dual norm on V ′: h ∈ V ′ 7→ ‖h‖ ∈ R+, by the formula

‖h‖V ′ = sup
‖x‖V≤1

|h(x)|. (2.21)

The duality pair 〈·, ·〉 is defined as

〈h, x〉 := h(x), ∀ x ∈ V , h ∈ V ′. (2.22)

Given by ‘F. Riesz representation theorem’ [24], for any h ∈ V ′ there exists one and only one

element xh ∈ V such that the representation formula

h(x) = (x, xh), ∀ x ∈ V (2.23)

holds. And

‖h‖V ′ = ‖xh‖V (2.24)

holds.

The objective function f(x) : V 7→ R may satisfy part of the following assumptions:

• (LC) The first order derivative of f is Lipschitz continuous with Lipschitz constant L, i.e.,

‖∇f(x)−∇f(y)‖V ′ ≤ L‖x− y‖V , ∀x, y ∈ V .

• (C) f is convex, i.e.,

f(x) ≥ f(y) + 〈∇f(y), (x− y)〉, ∀x, y ∈ V .

18



• (SC) f is strongly convex with strong convexity constant µ > 0, i.e.,

〈∇f(x)−∇f(y), x− y〉 ≥ µ‖x− y‖2V , ∀x, y ∈ V .
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Chapter 3

Existing Methods for Least Squares

Problems

Consider the linear equation (1.1) in Chapter 1. Suppose A is full rank. The solution of (1.1)

exists but may be not unique. Then we come to find the solution of normal equation (2.2), which

is also the solution of least squares problem (2.1). There are various methods for solving the

least squares problems (2.1). Two main approaches can be applied including direct methods and

iterative methods. For direct methods, a decomposition of AᵀA will be implemented like Gauss

Elimination, QR, SVD or Cholesky factorization.
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3.1 Direct Methods

3.1.1 Gauss Elimination

In order to solve (1.1) by Gauss Elimination, we start from augmented matrix equation of linear

system. 

a11 a12 · · · a1n b1

a21 a22 · · · a2n b2

· · · · · · · · · · · · · · ·

am1 am2 · · · amn bm.


Perform elementary row operations to transform the augmented matrix into upper triangular form.

The elementary row operations include row switching, row multiplication and row addition. Since

linear vector space is closed under linear combination, the three fundamental row operations would

not change the solution of linear system. The complexity for solving AᵀA by Gauss Elimination is

O(n3) with matrix multiplication O(mn2).

3.1.2 Cholesky Decomposition

Cholesky decomposition is a decomposition of a symmetric, positive-definite (SPD) matrix into

the product of a lower triangular matrix and its transpose, i.e.

A = LLᵀ, (3.1)

where L is a lower triangular matrix with real positive diagonal entries and Lᵀ is transpose of L.
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Another form which is closely related to Cholesky decomposition is LDL-decomposition.

A = LDLᵀ, (3.2)

where L is lower-triangular whose diagonal elements equal 1. Cholesky decomposition and LDL-

decomposition are mainly used for solve linear equations Ax = b, where A is SPD. Thus we can

apply them to normal equation (2.2). If we have Cholesky decomposition AᵀA = LLᵀ, (2.2) can

be solved by

1. Solve Ly = Ab with forward substitution;

2. Solve Lᵀx = y with backward substitution.

The algorithm to achieve Cholesky decomposition is a modified version of Gauss Elimination. Let

i := 1 and A(1) := A. At step i, matrix A(i) has the form

A(i) =


Ii−1 0 0

0 aii bᵀi

0 bi B(i)


The lower triangular matrix can be defined as

Li :=


Ii−1 0 0

0
√
aii 0

0 1√
aii
bi In−i


Then the update form holds

A(i) = LiA
(i+1)Lᵀ.

The algorithm will terminate when i = n, matrix multiplication from L1 to Ln gives the lower
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triangular matrix L, i.e.

L = L1L2 · · ·Ln.

Complexity of Cholesky decomposition is O(n
3

3
).

Apply Cholesky decomposition to solve normal equation (2.2), the complexity is O(mn2) for ma-

trix multiplication AᵀA, O(n3) for Cholesky decomposition, and O(n2) for forward and backward

substitution. Thus the total complexity is O(mn2 + n3 + n2).

3.1.3 QR Decomposition

A QR decomposition of matrix A is of the form

A = QR,

whereQ is an orthonormal matrix of sizem×m andR is an upper triangular matrix of sizem×n.

In the least squares case when m ≥ n, the bottom (m − n) rows of an m × n upper triangular

matrix consist entirely of zeros. We have a “thin” version of QR decomposition.

A = QR = Q

R1

0

 =

[
Q1, Q2

]R1

0

 = Q1R1,

where R1 is an n × n upper triangular matrix, 0 is an (m − n) × n zero matrix, Q1 is m × n, Q2

is m × (m − n), and the columns of Q1 and Q2 form an orthogonal set. The complexity for QR

decomposition of matrix A is O(mn2). After we get QR decomposition of matrix A, the linear

23



system (1.1) can be solved via

y = R−1b;

x = Q−1y.

Since Q is orhtonormal, Q−1 = Qᵀ. And the inverse of upper triangular matrix R can be solved

in linear complexity O(n). Thus the total time complexity of solving linear system would be

O(mn2 +mn+ n) which dominated by QR decomposition.

3.1.4 SVD Decomposition

In order to achieve SVD decomposition, we are actually seeking information of singular values

and singular vectors of matrix A.

Compute

A = UΣV T ,

where

• U is a m×m orthogonal matrix.

• Σ =


σ1 · · · 0

0 · · · 0

0 · · · σm

 is a diagonal m ×m matrix with non-negative real numbers σi on the

diagonal.

• V is a m× n orthogonal matrix.

The diagonal entries are σi of Σ are known as the singular values of A. Complexity of SVD
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decomposition is O(mn2). After SVD decomposition, least squares problem can be solved by

y = Uᵀb;

z = Σ−1y;

x = V z.

Since U and V are orthonormal matrices, computing inverse equal multiplying by transpose. Σ is

a diagonal matrix. Inverse of Σ is the diagonal matrix with diagonal elements 1
σi
, i = 1, · · · , n.

Then equation (1.1) can be solved in O(mn). The total complexity is O(mn2 + mn) with SVD

decomposition dominating complexity.

3.2 Iterative Methods

3.2.1 Residual Correction Method

For symmetric positive definite (SPD) matrix A, we have a residual-correction method for solving

(1.1). If A is not symmetric, we can apply residual correction method to normal equation (2.2) as

long as AᵀA is SPD. For the type of residual-correction method, we follow closely on Xu’s papers

[49, 50] and Chen’s notes [10], where discussion of implementation and convergence analysis can

be checked. The method is generated by three steps:

1. form the residual r = b− Axk;

2. compute correction e = Br where B is an approximation of A−1;

3. update with correction xk+1 = xk + e.
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Decompose SPD A into sum of three matrices.

A = L+D + U,

where D is diagonal, L is lower triangular, U is upper triangular and L = Uᵀ. There are various

choice of B. Here we lists some of them.

• Richardson BR = αI;

• Jacobi BJ = D−1;

• Forward Gauss-Seidel BFGS = (D + L)−1;

• Backward Gauss-Seidel BBGS = (D + U)−1;

• Symmetric Gauss-Seidel BSGS = (D + U)−1D(D + L)−1;

• Successive Over Relaxation (SOR) BSOR = α(D + αL)−1.

The update for each component of xk is

[xk+1]i =
1

aii
(bi −

i−1∑
j=1

aij[x
k]j −

n∑
j=i+1

aij[x
k]j). (3.3)

3.2.2 Conjugate Gradient Method

Conjugate Gradient (CG) method is an iterative method to solve symmetric and positive definite

(SPD) systems. It is applicable to sparse systems that are too large to be solved by a direct solver. In

general for Krylov subspace methods, only matrix-vector product instead of matrix-matrix prod-

uct is required and thus save the storage and reduce the complexity provided the method con-

vergences fast. In the overdetermined case, if CG is applied to the normal equation (2.2), only

the matrix-vector multiplication Au and Aᵀv is needed which cost O(nnz(A)) operations. Here
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nnz(·) is the number of nonzero entries of a matrix. In order to achieve the accuracy ε, CG needs

O(| log(ε)|
√
κ(AᵀA)) = O(| log(ε)|κ(A)) steps, where the condition number of matrix A is de-

fined by

κ(A) =
σmax(A)

σmin(A)
(3.4)

with σmax(A), σmin(A) being the maximal and minimal singular values of A respectively. There-

fore the complexity for CG applied to (2.2) for dense matrices is O(mnκ(A)| log(ε)|) while for

space matrices is O(nnz(A)κ(A)| log(ε)|). Tailored implementations of CG to normal equations

(2.2) include CGLS [7] and LSQR [36].

CGLS method is mathematically equivalent to applying CG to normal equations (2.2) without

actually forming the product matrix AᵀA [7].

LSQR is another implementation of a conjugate-gradient type method for solving sparse linear

equations and sparse least-squares problems, which is based on the Golub-Kahan bidiagonalization

process. It is algebraically equivalent to applying CGLS, but is likely to obtain more accurate

solutions in fewer iterations especially if A is ill-conditioned at the expense of more storage and

more complexity per iteration [36].

3.2.3 Kaczmarz Method

For consistent systems, Kaczmarz method can be applied. Recall that a linear system is called

consistent if there is at least one solution, i.e. b ∈ range(A) in (1.1). Kaczmarz method is to

project approximation xk onto the hyperplane aix = bi where ai is the i-th row of matrix A.

Kaczmarz method was first discovered by the Polish mathematician Stefan Kaczmarz, and was

discovered in the field of image reconstruction from projections by Richard Gordon, Robert Bender

and Cabor Herman in 1970, where it is called the Algebraic Reconstruction Technique(ART).
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The computational advantage of Kaczmarz methods relative to other methods depends on the sys-

tem being sparse. It has been demonstrated to be superior, in some biomedical imaging applica-

tions, to other methods such as filtered back projection method.

It has many applications ranging from computed tomography (CT) to signal processing. It can

be obtained also by applying to the hyperplanes, described by the linear system, the method of

successive projections onto convex sets (POCS) [2].

Here is an intuitive idea about how to understand Kaczmarz Method. To solve a linear system

Ax = b, we can view to find a linear combination of columns of A such that

x1a
1 + x2a

2 + · · ·+ xna
n = b,

where ai, 1 ≤ i ≤ n are the columns vectors of matrix A, i.e.

A =

[
a1, a2, · · · an

]
.

Then we try to understand Ax = b in another way. Suppose a1, · · · , am are the row vectors of

matrix A

A =



aᵀ1

aᵀ2

· · ·

aᵀm


.
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and x ∈ Rm is the solution we want to find. Then Ax = b can be written as

aᵀ1x = b1

aᵀ2x = b2

· · ·

aᵀmx = bm.

(3.5)

Since each equation aᵀi x = bi, 1 ≤ i ≤ m represents a hyperplane, the system (3.5) shows that

solution x is a point in the intersection of all the hyperplanes if the system is consistent.

3.2.4 Orthogonal Projection Operator

We define the orthogonal projection of x onto the hyperplane given by cᵀx = d,

Pc,d(x̃) = x− c

‖c‖2
(cᵀx̃− d).

This operator does an orthogonal projection of the current estimate vector x̃ onto the hyperplane

cᵀx = d.

Suppose x is any point in Rn. x0 is any point on the plane, i.e., (c, x0) = cᵀx0 = d.

Step 1. Do the inner product of c and v. Let v = x̃− x0.

cᵀx̃− d = cᵀx̃− cᵀx0 = cᵀ(x̃− x0) = (c, v).

Step 2. Project v onto the vector c.

Pc(v) =
c

‖c‖2
(c, v) =

c

‖c‖2
(cᵀx̃− d)
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c

v Projc(v)

Step 3. Orthogonally project point x̃ onto the plane cᵀx = d.

Pc,d(x̃) = x̃− Pc(v) = x̃− c

‖c‖2
(c, v) = x̃− c

‖c‖2
(cᵀx̃− d).

Oswald and Zhou [35] obtained the convergence rate of cyclic Kaczmarz method

‖xopt − xk‖22 ≤
[
1− 1

(log(n) + 1)κ(AᵀD−1A)

]k
‖xopt − x0‖22,

where xopt is the least squares solution, xk is the kth iterate, x0 is the initial guess andD is anm×m

diagonal matrix which induces a row scaling and k denotes the number of sweeps. In order to

achieve accuracy ε, the total complexity of Kaczmarz method isO(mn log(n)κ(AᵀD−1A)| log(ε)|).

The advantage of iterative methods is that they utilize the sparsity since in each iteration only

matrix-vector multiplications are calculated. For example, to achieve accuracy ε the complexity

of CG is O(nnz(A)κ(A)| log(ε)|) when A is sparse. For Kaczmarz method, the complexity also

reduces since the cost of each projection is less than O(n) depending on the sparsity of A. As the

iteration steps of both CG and Kaczmarz for consistent systems depend crucially on the condition

number κ(A), they are slow if A is ill-conditioned, i.e. κ(A) � 1. Preconditioner can be used

to improve the condition number and in turn accelerate the convergence. One way to construct

effective preconditioners is to use random sampling and random transformation, which will be

discussed in later section.
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3.3 Randomized Methods

There are several approaches to accelerate traditional least squares solvers via randomization. The

main idea is either use random sampling or random projection to reduce the size of the original

matrix, e.g. the randomized Kaczmarz method [41] and randomized fast solvers in [4, 16], or

construct preconditioners by random sampling to reduce the condition number which enable to

apply PCG [37] or LSQR [4] of the preconditioned system.

3.3.1 Randomized Kaczmarz Methods

Randomized Kaczmarz method does the orthogonal projection randomly. There are different ways

to implement random choice. One way is to choose each row with equal probability. Another one

is to choose with probability proportional to the norm of each row. Let pi denote the probability of

i− th row being chosen, then

pi =
‖ai‖22
‖A‖2F

, 1 ≤ i ≤ m.

The way to implement random sampling is to use a cumulative vector F . Define F as

F =



p1

p1 + p2

· · ·

p1 + · · ·+ pm


=



p1

p1 + p2

· · ·

1


.

Randomly generate a number t ∈ [0, 1]. Compare t with each component of F , find the first index

i such F (i) ≥ t. The corresponding ai is the row to be chosen.

The convergence rate of the cyclic Kaczmarz method highly depends on the ordering of rows of

A. In order to achieve a faster convergence which is independent of ordering of rows, choosing
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rows at random is a good strategy. For consistent systems, i.e. b ∈ Range(A), Strohmer and

Vershynin [41] proposed a randomized Kaczmarz (RK) method which selects the hyperplane to

do projection via the probability proportional to ‖ai‖22, and proved its exponential convergence in

expectation, i.e.

E(‖xk − xopt‖22) ≤ (1− κF (A)−2)k‖x0 − xopt‖22,

where xk is the k-th iteration, x0 is the initial guess, xopt is the least squares solution and κF (A) =

‖A‖2F‖(AᵀA)−1‖22 is a scaled condition number. To achieve the accuracy ε, the expected iteration

steps O(κ2F (A)| log(ε)|) and the total expected complexity is O(nκ2F (A)| log(ε)|).

For consistent systems, the randomized Kaczmarz method converges with expected exponential

rate independent of the number of equations in the system. Indeed, the solver does not need to know

the whole system but only a O(n log n) rows as the system is assumed to be consistent [41]. Thus

it outperforms some traditional methods like CG on general extremely overdetermined system.

The main limitation of RK is its inability of handling inconsistent systems. For instance, to solve

Ax = b, where b = y+w,with y = bR(A) is the projection of b onto range ofA andw = bR(A)⊥ , the

randomized Kaczmarz method is effective when least squares estimation is effective, i.e. the least

squares error ‖w‖2 is negligible [51]. Extension of randomized Kaczmarz methods to inconsistent

systems can be found in [29, 51, 47].

3.3.2 Fast Least Squares Solvers by Random Transformations

Drineas, Mahoney, Muthukrishnan and Sarlos [15] developed two randomized algorithms for least

square problems. Instead of solving the original least squares problem ‖Ax − b‖22, they solve an

approximate least squares problem ‖XAx−Xb‖22, where X = SHD for randomized sampling or

X = THD for randomized projection. The operator HD is the randomized Hadamard transfor-

mation which aims to spread out the elements of A and S is the uniform sampling matrix and T

is the randomized projection matrix aiming to reduce the size of the original problem. The com-
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plexity of Hadamard transformation is O(m log(m)) and the complexity of traditional methods to

the approximated least squares problem is O(rn2) with the sample size r = O(n/ε) is chosen so

that XA is full rank but r � m. The complexity reduce to O(mn log(n/ε) + n3/ε) � O(mn2)

provided ε is not too small [16].

Rokhlin and Tygert [37] proposed a fast randomized algorithm for overdetermined linear least

squares regression. They constructed subsampled randomized Fourier transform (SRFT) matrix T

of size r×m and then apply pivoted QR decomposition to TA = QRΠ, with a r×n orthonormal

matrix Q, an upper-triangular n × n matrix R and an n × n permutation matrix Π. Then apply

PCG with the right preconditioning matrix P = RΠ, i.e. to minimize the approximated system

‖AP−1y − b‖.

According to theory developed in [37], κ(AP−1) = κ(TU) where the columns of U are left

singular vectors of A. The condition number of TU can be controlled by the number of rows of T ,

i.e. r. In practice, κ(TU) ≤ 3 when r = 4n. In this method, it converges fast since κ(AP−1) is

much smaller than κ(A) but needs one QR decomposition which is O(n2r). The total theoretical

complexity is O((log(r) + κ(AP−1)| log(ε)|mn) +O(n2r).

Avron, Maymounkov and Toledo [4] developed an algorithm called BLENDENPIK, which super-

charges LAPACK’s dense least-squares solver. They introduce the concept of coherence number

µ(A), which is the maximum of squared norm of rows of Q, where the columns of Q are a set of

orthonormal bases of range of A. They find that the uniform sampling will work if the coherence

number of the matrix is small and apply the row mixing to reduce µ(A) if it is large [4]. The

crucial observation is that a unitary transformation preserves the condition number but changes

the coherence number µ(A). After prepossessing with row mixing, the coherence number of the

matrix µ(A) is reduced and uniform sampling can be applied to get a sampled matrix As with only

O(n log(n)) rows. Then they decomposed the sampled matrix As = QR and used LSQR method

to solve the original system Ax = b with preconditioner R−1 [4]. The complexity of row mixing is

O(mn log(m)) and of QR decomposition of sampled matrix is O(n3). LSQR applied to the linear
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system Ax = b with preconditioner R−1 costs O(mnκ(AR−1)| log(ε)|). To conclude, the total

complexity of BLENDENPIK method is O(mn log(m) + n3 +mnκ(AR−1)| log(ε)|).

3.4 Our Contribution

The common feature of these fast least squares solvers is that they all try to use random sampling

or random transformation to get a spectrally equivalent matrices but with considerably small size.

Then an efficient preconditioner can be constructed via these sampled matrices. However, the

preprocesses of all these methods transform sparse matrices into dense matrices, which cannot

take the advantage of sparsity if the original matrix A is sparse.

To conclude, the traditional methods like QR and SVD decomposition need O(mn2) which is pro-

hibitive whenm,n is large. Iterative methods such as CG and Kaczmarz can reduce the complexity

if the matrix is well conditioned and failed for the ill conditioned cases. Preconditioner based on

randomized row sampling algorithms have been developed but destroy the sparsity. Our contribu-

tion is the combination of two aspects: constructing a preconditioner which can keep the sparsity

and improving the poor conditioning for highly overdetermined matrix.
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Chapter 4

Importance Row Sampling Fast Least

Squares Solver

4.1 Row Sampling

4.1.1 Preliminaries and Notation

Before walking into the details of our algorithms, we introduce some notation and concepts we

may confront. Suppose A is a matrix of size m × n with m ≥ n. Denote a1, a2, · · · , am to

be the row vectors of A and a1, a2, · · · , an the column vectors of A. For any vector v, ‖v‖ =

(
∑

i v
2
i )

1
2 is the l2 norm of v and is called norm of v for short. For any matrix A, the spectral norm

‖A‖ = maxx 6=0 ‖Ax‖/‖x‖ is the induced matrix norm by vector l2 norm and the Frobenius norm

‖A‖F = (
∑

i,j a
2
ij)

1
2 .

Definition 4.1.1 (Condition Number). The condition number κ(A) of matrix A is defined as

κ(A) =
σmax(A)

σmin(A)
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with σmax(A), σmin(A) are the maximal and minimal singular values of A respectively.

A matrix is said to be singular if the condition number is infinite. In our setting, the matrix A is of

full rank. Thus the smallest singular value of A is nonzero and the condition number κ(A) <∞.

Recall that ‖A‖F = (
∑
σ2
i )

1
2 , where σi’s are all the singular values of matrix A.

Another concept need to mention is the coherence number introduced in [4].

Definition 4.1.2 (Coherence Number [4]). Let A be an m × n full rank matrix, and let U be an

m×n matrix whose columns form an orthonormal basis of the column space of A. The coherence

of A is defined as

µ(A) = max
1≤i≤m

‖ui‖22,

where ui is the ith row of matrix U .

Obviously, the coherence number of a matrix is always between n/m and 1. Matrices with small

coherence numbers are called incoherent [4], for example, the Gaussian matrix X which every

element is an independent number generated by standard normal distribution. One example of

semicoherent matrices is the one with large coherent number but only half rows have a large norm

in the orthogonal factor, for example,

Ym×n =

X(m−n/2)×n/2 0

0 In/2

 (4.1)

where In/2×n/2 is a square identity matrix. Coherent matrices are of large coherent number, for

instance,

Zm×n =

In
0

 , (4.2)

where In×n is the square identity matrix of size n.
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4.1.2 Row Sampling

We present a row sampling algorithm. Given a matrix Am×n and a probability mass function

{pk, k = 1, 2, · · · ,m}, which will be called sampling density, randomly choose s rows of A via

the given sampling density; see Algorithm 1.

Input: A ∈ Rm×n, b ∈ Rm, a probability mass function {pk, k = 1, 2, · · · ,m} and a
sample size s.

Output: Sampled matrix As ∈ Rs×n

for t = 1 : s do
Pick it ∈ {1, 2, · · · ,m} with probability Pr{it = k} = pk in identical and independent
distributed (i.i.d.) trials.

end for
Let S ∈ Rs×m with St,it = 1/(spit)

1/2, then As = SA is a sampling of A.

Algorithm 1: The row sampling algorithm introduced in [16].

Among various sampling densities, we chose the one proportional to the squared norm of each

row:

pk =
‖ak‖22
‖A‖2F

, k = 1, 2, · · · ,m. (4.3)

The naive uniform sampling pk = 1/m, k = 1, 2 · · · ,m fails when the coherence number of the

matrix is large. For example, for the coherent matrix Z defined in (4.2), we have to sample all

s rows from the first n rows otherwise we will get a rank deficient matrix, whose probability is

s!/ms.

4.1.3 Approximation property of the non-uniform sampling

If we write the normal matrix as the summation of rank 1 matrices

AᵀA =
m∑
i=1

aᵀi ai.
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Then the approximation obtained by the random sampling is given by

AᵀsAs =
1

s

s∑
t=1

1

pit
aᵀitait .

It is straightforward to verify that AᵀsAs is an unbiased estimator for AᵀA, i.e.

E[AᵀsAs] = AᵀA, (4.4)

for any choice of sampling density. The choice (4.3) will minimize the variance in Frobenius

norms; see Lemma 1 of Chapter 2 in [27].

More importantly such row sampling density keeps the spectral norm in a small variance with high

probability. To show this, we need the following concentration result.

Theorem 4.1.3 (Matrix Bernstein (Theorem 6.1 in [45])). Let {Xk} be a sequence of independent

random, self- adjoint matrices with dimension d. Assume

E[Xk] = 0 and λmax(Xk) ≤ R almost surely.

Let

σ2 = ‖
∑
k

Var(Xk)‖ = ‖
∑
k

E(X2
k)‖.

Then for all t ≥ 0

Pr

(
λmax(

∑
k

Xk) ≥ t

)
≤ d exp

(
− t2/2

σ2 +Rt/3

)
. (4.5)

From the Matrix Bernstein inequality, we can derive the following corollary.

Corollary 4.1.4 (Sum of Rank-1 Matrices). Let y1, y2, · · · , ys be i.i.d. random column vectors in

Rn with

‖yk‖ ≤M and ‖E[yky
ᵀ
k]‖ ≤ α2,
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for k = 1, 2, . . . , s. Then for any ε ∈ [0, 1]

Pr

(
‖1

s

s∑
k=1

yky
ᵀ
k − E[y1y

ᵀ
1 ]‖ ≥ ε

)
≤ 2n exp

(
− 3sε2

(6α2 + 2ε)(M2 + α2)

)
.

Proof. Let Yk = yky
ᵀ
k, A = E [Yk], and Xk = (Yk − A)/s for k = 1, 2, . . . , s. Then E[Xk] = 0.

We bound the spectral norm of Xk as

λmax(Xk) = ‖Xk‖ ≤
1

s
(‖Yk‖+ ‖A‖) ≤ M2 + α2

s
,

where we use the fact ‖Yk‖ = ‖ykyᵀk‖ = ‖yk‖2 ≤M2. We then compute the variance

‖E[X2
k ]‖ = ‖Var(Xk)‖

=
1

s2
‖Var(Yk)‖

=
1

s2
‖E[Y 2

k ]− A2‖

≤ 1

s2
(‖E

[
‖yk‖2Yk

]
‖+ ‖A2‖)

≤ 1

s2
(‖‖yk‖E[[Yk]] + ‖A‖2)

≤ α2(M2 + α2)

s2
.

Here we compute Y 2
k = yky

ᵀ
kyky

ᵀ
k = ‖yk‖2Yk. Sum over k to get σ2 ≤ α2(M2 + α2)/s. And

‖
s∑

k=1

E[X2
k ]‖ = s‖E[X2

k ]‖ ≤ α2(M2 + α2)

s
,

since Xk, k = 1, · · · , s are i.i.d..

Plug the bound R ≤ (M2 + α2)/s, σ2 ≤ α2(M2 + α2)/s into inequality (4.5) and rearrange the
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terms, we get the desired result.

Pr

(
‖1

s

s∑
k=1

yky
ᵀ
k − E[y1y

ᵀ
1 ]‖ ≥ ε

)
≤ 2n exp

(
− 3sε2

6α2(M2 + α2) + 2ε(M2 + α2)

)
.

We shall apply this concentration result to our row sampling scheme.

Theorem 4.1.5. Let A be a matrix with size m× n. Let C = 2
3
(6‖A‖2 + 2ε)(1− logn(δ/2)) and

s = Cε−2n log n. Assume ‖A‖2F = n and As is a sampled matrix obtained by Algorithm 1 with

sampling density (4.3). Then

‖AᵀsAs − AᵀA‖ ≤ ε with probability at least 1− δ. (4.6)

Proof. Let y be a random variable taking value aᵀi /
√
pi with probability pi, 1 ≤ i ≤ m. And

yk, k = 1, 2, . . . , s be i.i.d. copies of y. Then

AᵀsAs =
1

s

s∑
k=1

yky
ᵀ
k,

and

E[yky
ᵀ
k] =

m∑
i=1

aᵀi ai = AᵀA.

Thus we have the bound

‖E[yky
ᵀ
k]‖ = ‖AᵀA‖ = λmax(A

ᵀA) = ‖A‖2,

and the bound

‖yk‖ ≤ max
1≤i≤m

‖ai‖√
pi

= ‖A‖F =
√
n.
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By Corollary 4.1.4, for all 0 ≤ ε ≤ 1

Pr

(
‖1

s

s∑
k=1

yky
ᵀ
k − E[y1y

ᵀ
1 ]‖ ≥ ε

)
≤ 2n exp

(
− 3Cn log(n)

(6‖A‖2 + 2ε)(n+ ‖A‖2)

)
.

i.e.

Pr (‖AᵀsAs − AᵀA‖ ≥ ε) ≤ 2n exp

(
− 3Cn log(n)

(6‖A‖2 + 2ε)(n+ ‖A‖2)

)
≤ 2n exp

(
− 3C log(n)

2(6‖A‖2 + 2ε)

)
= 2n

1− 3C
2(6‖A‖2+2ε) .

To satisfy Pr (‖AᵀsAs − AᵀA‖ ≥ ε) < δ, we need

C ≥ 2

3
(6‖A‖2 + 2ε)(1− logn(δ/2)).

Remark 4.1.6. Constant C used in Theorem 4.1.5 is not practical since the lower bound of C is

quit big. For example, when δ = 1
20
, ε = 1

2
, ‖A‖ ≤ 1 and n = 300, Cε−2 should be greater or

equal than 56
3

(1 + log300(40)) ≈ 30.74. In practice, Cε−2 = 4 is good enough to get a reasonable

sampling matrix. �

Corollary 4.1.7. With the same setting in Theorem 4.1.5, the following bound hold with high

probability

λmin(AᵀA)− ε ≤ λmin(AᵀsAs) ≤ λmax(A
ᵀ
sAs) ≤ λmax(A

ᵀA) + ε.

Proof. By the triangle inequality, we immediately get

‖AᵀsAsx‖ ≤ ‖AᵀAx‖+ ε‖x‖ ≤ (λmax(A
ᵀA) + ε) ‖x‖,
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which implies the desired inequality as AᵀsAs is symmetric. The lower bound of λmin(AᵀsAs) can

be proved similarly.

Notice that the spectrum bound obtained in Corollary will not imply the bound of the precondi-

tioned system (AᵀsAs)
−1AᵀA.

We call x ∈ Rn is of high frequency if the inequality

λmax(A
ᵀA)‖x‖2 ≤ Cf (A

ᵀAx, x), (4.7)

holds with a universal constant. Consider the decomposition of x using the eigen-vector bases of

AᵀA. Inequality (4.7) implies x is mainly expanded by eigen-vectors of high frequency. The con-

stant C in (4.7) is introduced to include not only the highest frequency but a range of frequencies

comparable to the highest one.

Note that (4.6) only implies As captures the high frequency component of a vector x. To apply the

sampling theory, we should rescale the matrix A to A/‖A‖ such that ‖A/‖A‖‖ ≤ 1 and thus with

high probability we have

‖(As − A)x‖ ≤ εσmax(A)‖x‖.

With the property of high frequency vector, we know that

‖Asx‖ ≤ (1 + Cε)‖Ax‖.

For high frequency vectors, we will have

(AᵀsAsx, x) ≤ (AᵀAx, x) + ε(x, x) ≤
[
1 +

Cfε

λmax(AᵀA)

]
(AᵀAx, x),
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and similarly [
1− Cfε

λmax(AᵀA)

]
(AᵀAx, x) ≤ (AᵀsAsx, x).

This implies (AᵀsAs)
−1 is an effective smoother for AᵀA. Since Gauss-Seidel iteration can smooth

out the high frequency very quickly, we apply several symmetric Gauss-Seidel iterations instead

of computing (AᵀsAs)
−1 in practice.

4.1.4 Sampling Analysis

In Mahoney’s lecture notes of Randomized Numerical Linear Algebra, he provided the basic ap-

proximation properties of random sampling matrix product CR to AB [27]. We applied the results

to our random sampling preconditioner to obtain the approximation of sampled matrix AᵀsAs to

original system AᵀA.

Unbiased Estimator

Followed by Lemma 1 of Chapter 2 in [27], the lemma below shows that AᵀsAs is an unbiased

estimator for AᵀA.

Lemma 4.1.8. Let As be chosen using the sampling algorithm 1. We then have

E[AᵀsAs] = AᵀA, (4.8)

V ar[(AᵀsAs)ij] =
1

s

n∑
k=1

1

pk
A2
kiA

2
kj −

1

r
(AᵀA)2ij. (4.9)
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4.1.5 Graphs of AᵀsAs and AᵀA

To illustrate the approximation of the sampled matrix, we plot the graph of AᵀA and AᵀsAs below.

The matrix A is of size m × n, where m = 9314 and n = 100. The sampled matrix As is of size

Figure 4.1: Graphs of matrices AᵀA (left) and AᵀsAs (right). The matrix A is of size m× n, where
m = 9314 and n = 100. The sampled matrix As is of size s × n with s = 1843 and n = 100.
The matrix A is rescaled so that the diagonal of AᵀA is one. The entries which have small absolute
values less than a threshold θ = 0.125 in the matrix AᵀA and AᵀsAs is filtered out and not plot in
the graph.

s × n with s = 1843. The matrix A is rescaled so that the diagonal of AᵀA is unit. The entries

which have small absolute values less than a threshold θ = 0.125 in the matrix AᵀA and AᵀsAs is

filtered out and not shown in the graph. Each edge in the graph represents one entry in the matrix

and the thickness of edge represent the magnitude respectively. From the figure, we find out that

the two graphs are almost identical which means the sampling strategy is able to capture the entries

in the normal matrix with a large absolute value.
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4.2 PCG with a Preconditioner based on Row Sampling

In this section, we present our algorithm by constructing a fast, efficient and easy to implement

randomized row sampling preconditioner and apply PCG to solve the normal equation.

4.2.1 Algorithms

We first normalize the matrix A to make the column vectors have unit length, which enables all

diagonal entries of AᵀA are one and ‖A‖2F = n. We then apply the row sampling to get a smaller

matrix As of size s × n by randomly choosing s = O(n log(n)) rows of the normalized matrix

Am×n with sampling density pi = ‖ai‖22/n. We build our preconditioner by using a few steps of

symmetric Gauss-Seidel (SGS) iteration to solve the approximate problem AᵀsAse = r. After all,

we apply PCG to the normal equation AᵀAx = Aᵀb with this preconditioner.

Input: A ∈ Rm×n, b ∈ Rm, convergence threshold ε ∈ (0, 1).

Output: approximated x̃opt ∈ Rm.

1. Normalization: A← AD−1, where Djj = ‖aj‖2, with aj being the jth column vector of

A for 1 ≤ j ≤ n.

2. Sampling: Sample the row of A to get As of size s× n with s = 4n log(n) by row

sampling Algorithm 1 with probability (4.3).

3. Preconditioner: Construct preconditioner e = Pr by solving AᵀsAse = r via several

symmetric Gauss Seidel iterations; see Algorithm 3.

4. PCG: Use PCG to solve AᵀAx = Aᵀb with the preconditioner constructed in Step 3. Stop

when the relative residual is below ε.

Algorithm 2: Randomized Sampling Preconditioned PCG

For easy of understanding and completeness, the symmetric Gauss-Seidel method is presented
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below in Algorithm 3.

Input: Sampled matrix As ∈ Rs×n, residual r ∈ Rn, number of symmetric Gauss-Seidel
iterations t ∈ Z+.

Output: Correction e ∈ Rn.

for i = 1 : t do

e← e+B−1(r − AᵀsAse)

with B the lower triangular part of AᵀsAs.
end for
for i = 1 : t do

e← e+ (Bᵀ)−1(r − AᵀsAse)

with Bᵀ the upper triangular part of AᵀsAs.
end for

Algorithm 3: The Preconditioner using Symmetric Gauss-Seidel Iterations.

4.2.2 Complexity

We compute the complexity of PCG with the randomized sampling preconditioner for both dense

matrices and sparse matrices. We use s = 4n log(n) as the default sample size. Here the factor 4 is

chosen to balance the set up time and solver time. Similarly the number of SGS is set as 5 to balance

the inner iteration of preconditioner and outer iteration of PCG. For example, in the ‘sprand’ case

with m = 90000, n = 300. If the sampling size is decreased to s = 2n log(n) ≈ 3432, the PCG

iterations increase by about 15%. If the sampling size is increased to s = 8n log(n) ≈ 13689,

iterations would be 16% less. Thus, we choose s = 4n log(n) as an optimal point balancing the

sampling size and iterations in order to minimize the computation cost.

For dense matrices, in the normalization step, we needO(mn) to calculate the norm of each column

‖aj‖2 and O(mn) for the matrix multiplication AD−1. Sampling costs O(sn) = O(n2 log(n)).

The matrix multiplication AᵀsAs costs O(sn2) = O(n3 log(n)). The preconditioner in PCG, i.e.

several symmetric Gauss Seidel is applied to AᵀsAse = r needs O(n2). Finally, PCG iteration

steps k = O(| log(ε)|κ(PA)) until reaching tolerance ε costs O(kmn) = O(| log(ε)|κ(PA)mn).
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Note that since we only do matrix vector multiplication with Ax and Aᵀ(Ax) instead of matrix

product AᵀA, the computation cost for each PCG step is only O(mn) not O(mn2). Thus the total

complexity is O(| log(ε)|κ(PA)(mn+ n2)) +O(n3 log(n)) when A is dense.

Complexity would be reduced significantly when the matrix is sparse. Let nnz(M) be the number

of nonzero elements of matrix M . In the normalization step, the cost is reduced to O(nnz(A))

for both the column calculation and matrix multiplication AD−1. In the sampling step, the sample

size is s and the complexity is reduced to at most O(nnz(A)). The matrix product of AᵀsAs costs

between O(nnz(As)) and O(n · nnz(As)). The preconditioner costs O(nnz(AᵀsAs)). And k =

O(| log(ε)|κ(PA)) PCG iterations needed. The total complexity is O(| log(ε)|κ(PA)(nnz(A) +

nnz(AᵀsAs))) +O(αnnz(As)) for sparse matrices, where α ∈ [1, n] depends on the sparse pattern

of As. For sparse matrix A with nnz(A)� mn, the proposed solver is thus more efficient.

Table 4.1: Complexity of Algorithm 2 for Dense and Sparse Matrices

Dense Matrix Sparse Matrix
Normalization O(mn) O(nnz(A))

Sampling O(n2 log(n)) O(nnz(A))
AᵀsAs O(n3 log(n)) O(nnz(As)) to O(n · nnz(As))

Preconditioner O(n2) O(nnz(AᵀsAs))
CG iteration O(| log(ε)|κ(PA)mn) O(| log(ε)|κ(PA)nnz(A))

Theoretically we cannot find a uniform control of the condition number of the preconditioned

matrix PA.

4.3 Numerical Results

We shall compare PCG with our randomized sampling preconditioner with CG for the normalized

matrix which is equivalent to use PCG for the original matrix with a diagonal preconditioner.

The column with prefix ‘Setup’ in tables is the CPU time for preprocess including sampling and
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normalization for RS and only normalization for CG. The column ‘Time’ is the CPU time for

iterative methods. Thus the sum of these two are the CPU time for the whole algorithms. The

column ‘κ(AᵀA)’ lists the condition number of AᵀA and µ(A) is the coherence number with

normalized A. We list the coherence number here to emphasize the weighted row sampling works

well and robust to the coherence number. It is shown in [4] that the uniform sampling fails when the

coherence number of the matrix is large. In our sampling algorithm, we use the sampling density

proportional to the squared norm of each row. Tolerance for PCG or CG is set to be 10−7 and

maximum iteration steps is set to be 500. Notice that iterative methods may end without reaching

the tolerance.

As the sampling is random, for each category, we pick up a typical matrix and run our solver 10

times and compute the mean and standard derivation.

We tested several classes of matrices – including well conditioned matrices, ill conditioned matri-

ces, incoherent matrices and coherent matrices; see Table ??.

Table 4.2: Classes of Matrices

incoherent coherent
well conditioned Gaussian (Example 1) semi Gaussian (Example 2)
ill conditioned UDV, sprand (Example 3, 4) graph Laplacian (Example 5)

4.3.1 Gaussian Matrix

The Gaussian matrix is constructed by MATLAB command

A = randn(m,n)

with each entry ofA is generated independent and identically by a standard normal random variable

. The matrix AᵀA has a small condition number followed by Bai and Yin’ results [5].
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Theorem 1 in [5] claims that if a matrix Xp×n with each element being a random number with

mean zero and variance 1 generated independent and identically, and let

S =
1

n
XXᵀ.

Then, if E|X11|4 ≤ ∞, as n→∞, p→∞, p/n→ y ∈ (0, 1),

lim
n→∞

λmin(S) = (1−√y)2 a.s.

lim
n→∞

λmax(S) = (1 +
√
y)2 a.s.

where λmin and λmax are the smallest and largest eigenvalues of S respectively.

In our case, 1
m
AᵀA is the sample covariance matrix.

More precisely by Theorem 2 in [5], the limit of condition number of AᵀA can be calculated as

κ(AᵀA) =
λmax(A

ᵀA)

λmin(AᵀA)
→

m(1 +
√
n/m)2

m(1−
√
n/m)2

=

√
m+

√
n√

m−
√
n
.

Thus AᵀA is well conditioned as long as the matrix size n,m is large enough, and A has a rectan-

gular shape, i.e. m� n. When m = n2, limn→∞ κ(AᵀA) = (
√
n+1)2

(
√
n−1)2 almost surely.

Since each element is generated independent and identically, the Q factor of A’s QR decomposi-

tion has evenly distributed magnitude in each row. Thus the coherence number µ(A) of Gaussian

matrix is also small. In summary the Gaussian matrix belongs to the category– ‘well conditioned

and incoherent matrices’.
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Table 4.3: Gaussian Matrix: Residual and Iteration Steps

n m nnz(A) κ(AᵀA) µ(A) Residual.CG Iter.CG Residual.RS Iter.RS
109 3000 11881 8.39 0.05 5.03e-08 10 7.00e-08 11
141 5000 19881 8.30 0.01 8.60e-08 9 5.19e-08 11
200 10000 40000 7.70 0.02 1.70e-08 9 4.42e-08 11
282 20000 79524 7.22 0.05 4.03e-08 8 2.70e-08 11
400 40000 160000 7.40 0.09 9.62e-08 7 2.64e-08 11

Table 4.4: Gaussian Matrix: Elapsed CPU Time

n m Time.CG Setup.CG Sum.CG Time.RS Setup.RS Sum.RS
109 3000 2.56e-03 2.32e-03 4.88e-03 3.33e-03 6.33e-03 9.66e-03
141 5000 5.34e-03 5.56e-03 1.09e-02 8.32e-03 1.30e-02 2.13e-02
200 10000 1.90e-02 1.95e-02 3.84e-02 2.51e-02 4.05e-02 6.56e-02
282 20000 3.46e-02 4.34e-02 7.80e-02 4.09e-02 7.31e-02 1.14e-01
400 40000 1.00e-01 1.26e-01 2.27e-01 1.43e-01 2.06e-01 3.48e-01

Table 4.5: Gaussian Matrix: Mean and Sample Standard Deviation

n m Iter.Mean Iter.Std Time.Mean Time.Std Setup.Mean Setup.Std
109 3000 11 0 3.37e-03 5.39e-04 5.64e-03 9.15e-04
141 5000 11 0 1.0e-02 1.58e-03 1.40e-02 1.80e-03
200 10000 11 0 1.47e-02 2.62e-03 2.56e-02 4.18e-03
282 20000 11 0 4.04e-02 3.59e-03 7.25e-02 7.14e-03
400 40000 10.9 0.31 1.40e-01 5.94e-03 2.12e-01 1.42e-02

4.3.2 ‘Semi Gaussian’ Matrix

The ‘semi Gaussian’ matrix used in [4] has the following block structure. The left upper block B

is a Gaussian matrix of size (m− n/2)× n/2 and the right lower block In/2 is an identity matrix

of size n/2× n/2.

Am×n =

B 0

0 In/2

 .
It belongs to the category– ‘well conditioned and coherent matrices’. For such ‘semi Gaussian’

matrices, the coherence number µ(A) = 1. It is shown in [4] that the uniform sampling fails for

this example.
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They are also well conditioned since

AᵀA =

Bᵀ 0

0 I


B 0

0 I

 =

BᵀB 0

0 I

 ,
and when λmax(B

ᵀB) ≥ 1

κ(AᵀA) ≤ κ(BᵀB).

The Gaussian matrix B is well conditioned by the analysis in previous section 4.3.1. So is A.

Table 4.6: ‘Semi Gaussian’ Matrix: Residual and Iteration Steps

n m nnz(A) κ(AᵀA) µ(A) Residual.CG Iter.CG Residual.RS Iter.RS
62 1000 992 1.99e+03 1 2.25e-08 9 6.85e-08 11

108 3000 2970 5.82e+03 1 6.87e-08 8 3.70e-08 12
140 5000 4970 9.80e+03 1 2.43e-08 8 6.09e-08 11
200 10000 10100 1.95e+04 1 6.48e-08 7 6.79e-08 11
282 20000 20022 3.84e+04 1 2.28e-08 7 7.37e-08 11

Table 4.7: ‘Semi Gaussian’ Matrix: Elapsed CPU Time

n m Time.CG Setup.CG Sum.CG Time.RS Setup.RS Sum.RS
62 1000 7.03e-04 3.96e-04 1.10e-03 1.78e-03 2.16e-03 3.94e-03
108 3000 2.31e-03 2.95e-03 5.26e-03 4.03e-03 7.25e-03 1.13e-02
140 5000 5.14e-03 6.31e-03 1.14e-02 9.95e-03 1.49e-02 2.49e-02
200 10000 1.54e-02 1.77e-02 3.31e-02 2.47e-02 3.84e-02 6.31e-02
282 20000 3.19e-02 4.28e-02 7.47e-02 4.36e-02 7.83e-02 1.22e-01

Table 4.8: ‘Semi Gaussian’ Matrix: Mean and Sample Standard Deviation

n m Iter.Mean Iter.Std Time.Mean Time.Std Setup.Mean Setup.Std
62 1000 11.7 0.68 1.18e-03 7.75e-05 1.35e-03 4.27e-04

108 3000 11.7 0.48 2.65e-03 1.30e-04 5.31e-03 3.12e-03
140 5000 11.9 0.57 6.36e-03 8.77e-04 1.14e-02 4.87e-03
200 10000 11.7 0.67 1.51e-02 2.04e-03 2.69e-02 5.00e-03
282 20000 11.3 0.48 4.51e-02 6.93e-03 7.69e-02 8.21e-03
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4.3.3 ‘Sprand’ Matrix

The ‘sprand’ (sparse random) matrix is generated by Matlab function

A = sprand(m,n,s,1/c),

where m is the number of rows, n is the number of columns, s is the sparsity and c is the estimated

condition number. We can control the condition number by the input c. When c is large, the

generated matrix is ill conditioned. The coherence number is still small due to the randomness.

Thus it belongs to the category ‘ill conditioned and incoherent matrices’.

To test the robustness to the condition number, we fix m = 90000, n = 300 and the sparsity

s = 0.25 and change c to get several matrices with large condition number; see Table 4.9-4.11.

Table 4.9: ‘Sprand’ Matrix m = 90000, n = 300: Residual and Iteration Steps.

nnz(A) κ(AᵀA) µ(A) Residual.CG Iter.CG Residual.RS Iter.RS
87248 3.87e+03 7.17e-03 9.05e-08 98 9.97e-08 21
87208 1.91e+04 5.86e-03 8.70e-08 181 6.80e-08 38
86278 7.55e+04 3.91e-03 8.36e-08 264 7.94e-08 58
86654 2.89e+05 7.81e-03 9.17e-08 233 9.37e-08 50
86816 7.40e+05 7.71e-03 8.18e-07 296 4.77e-08 70

Table 4.10: ‘Sprand’ Matrix m = 90000, n = 300: Elapsed CPU Time

nnz(A) Time.CG Setup.CG Sum.CG Time.RS Setup.RS Sum.RS
87248 1.66 0.35 2.01 0.52 0.68 1.20
87208 3.23 0.43 3.65 0.88 0.65 1.53
86278 4.39 0.33 4.72 1.29 0.57 1.86
86654 3.92 0.35 4.27 1.13 0.56 1.69
86816 5.00 0.33 5.33 1.56 0.54 2.10

Notice that for very ill-conditioned matrices, CG without preconditioners will not reach the toler-

ance 10−7; see row 5 in Table 4.9. Although theoretically CG will result in the exact solution with

at most n-steps, the large condition number causes the instability. Our preconditioner is effective

and PCG converges within 100 steps.
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Table 4.11: ‘Sprand’ Matrix m = 90000, n = 300: Mean and Sample Standard Deviation

Iter.Mean Iter.Std Time.Mean Time.Std Setup.Mean Setup.Std
23.3 1.95 0.57 4.45e-02 0.59 3.73e-02
39 1.70 0.92 4.13e-02 0.57 1.55e-02

60.9 3.63 1.41 7.98e-02 0.56 1.03e-02
51.2 2.44 1.18 5.73e-02 0.55 2.61e-02
69.4 2.63 1.60 6.14e-02 0.56 1.85e-02

Table 4.12: ‘Sprand’ Matrix m = 40000: Mean and Sample Standard Deviation

n κ(AᵀA) Iter.Mean Iter.Std Time.Mean Time.Std Setup.Mean Setup.Std
50 28323 17.2 1.48 0.03 7.74e-03 0.04 1.37e-02

100 31278 26.3 1.70 0.09 6.29e-03 0.06 2.42e-03
200 60858 54.6 2.46 0.36 2.00e-02 0.16 5.84e-03
400 88807 72.1 4.84 1.07 8.05e-02 0.62 1.91e-02
800 1.13e+05 86.3 2.41 3.00 8.59e-02 3.04 8.30e-02

We fix m = 40, 000, c = 100, s = 0.25 and vary n. Again our preconditioned PCG works well.

The relation between column numbers n and averaged iteration steps are plotted in figure 4.2.

Figure 4.2: steps vs number of columns

We then fix n = 200 and c = 100 and vary m. The iteration steps are uniform to m. Notice that

for fixed n = 200, the sample size s = 4n log n ≈ 4239 is fixed which is very small portion for

large m.
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Table 4.13: ‘Sprand’ Matrix n = 200: Mean and Sample Standard Deviation

m κ(AᵀA) Iter.Mean Iter.Std Time.Mean Time.Std Setup.Mean Setup.Std
10000 58417 54.2 3.82 0.11 1.12e-02 0.07 4.95e-03
20000 48309 39.5 1.78 0.14 7.75e-03 0.10 6.81e-03
40000 69855 45.2 3.36 0.32 2.55e-02 0.17 5.40e-03
70000 49447 46.8 2.66 0.56 2.85e-02 0.26 9.24e-03
90000 73177 56 2.21 0.86 3.08e-02 0.34 9.22e-03

4.3.4 UDV Matrix

The UDV matrices are a random matrix generated by A = UDV, where U is an m×n random or-

thonormal matrix, V is an n×n random orthonormal matrix andD = diag[1, 1+(c−1)/n, · · · , c]

and c is the estimated condition number. For this kind of matrices, we can control the condition

number by parameter c. When c is large enough, it belongs to the category ‘ill conditioned and

incoherent matrices’.

Table 4.14: ‘UDV’ Matrix m = 90000, n = 300, nnz(A) = 90000: Residual and Iteration Steps

κ(AᵀA) µ(A) Residual.CG Iter.CG Residual.RS Iter.RS
5936 4.81e-03 9.68e-08 116 7.21e-08 24

18853 4.61e-03 9.68e-08 202 8.81e-08 38
1.44e+05 4.66e-03 4.42e-07 294 8.44e-08 68
4.75e+05 4.65e-03 1.32e-05 369 7.92e-08 86
1.07e+06 4.72e-03 9.89e-06 253 4.44e-08 91

Again CG fails to converge for the last three matrices in ‘UDV’ group when the condition number

is large.

Table 4.15: ‘UDV’ Matrix m = 90000, n = 300, nnz(A) = 90000: Elapsed CPU Time

κ(AᵀA) µ(A) Time.CG Setup.CG Sum.CG Time.RS Setup.RS Sum.RS
5936 4.81e-03 2.44 0.42 2.86 0.49 0.47 0.96

18853 4.61e-03 3.77 0.43 4.20 0.71 0.45 1.16
1.44e+05 4.66e-03 5.47 0.42 5.89 1.30 0.45 1.75
4.75e+05 4.65e-03 5.88 0.44 6.32 1.57 0.45 2.02
1.07e+06 4.72e-03 5.53 0.43 5.96 1.65 0.44 2.09
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Table 4.16: ‘UDV’ Matrix m = 90000, n = 300, nnz(A) = 90000: Mean and Sample Standard
Deviation

κ(AᵀA) Iter.Mean Iter.Std Time.Mean Time.Std Setup.Mean Setup.Std
5936 23.1 0.57 0.51 7.8e-02 0.45 3.79e-02

18853 38.8 0.63 0.76 7.51e-02 0.43 6.91e-03
1.44e+05 72 0.82 1.42 1.67e-01 0.48 9.76e-02
4.75e+05 86.4 0.52 1.86 2.37e-01 0.47 5.84e-02
1.07e+06 90.2 0.42 1.81 1.98e-01 0.48 5.91e-02

4.3.5 Graph Laplacian Matrix

The graph Laplacian matrices are generated based on the graph of sparse random matrices. We

extract positions of all nonzero entries from matrixA generated in the previous test, i.e. the ’sprand’

group. And use them to construct edge incidence matrix B. The corresponding row in matrix B

represents the edge with weight and direction in the graph generated by AᵀA. For example, if

(AᵀA)13 = 2, this means there is an edge with weight 2 pointing from vertex v1 to vertex v3 in the

graph. The corresponding row in B is bk =

[
2 0 −2

]
, where k is the index of the edge pointing

from vertex v1 to vertex v3. The extend B by a scaled identity matrix – B̃ =

 B
cIn

, with c a real

number between 0 and 1. The extension is to make the matrix product BᵀB is nonsingular. Again

we normalize B̃ ← B̃D−1, where Djj = ‖bj‖2, j ∈ [n] and bj is the jth column of B̃.The scaled

matrix B̃(m+n)×n is the graph Laplacian edge matrix.

Table 4.17: Graph Laplacian Matrix n = 300: Residual and Iteration Steps

m nnz(A) κ(AᵀA) µ(A) Residual.CG Iter.CG Residual.RS Iter.RS
87548 87248 11.14 1 4.52e-08 17 4.64e-08 12
87508 87208 153.7 1 9.49e-08 32 5.42e-08 13
86578 86278 2276.4 1 8.69e-08 47 2.54e-08 20
86954 86654 31910 1 8.35e-08 48 5.81e-08 17
87116 86816 622310 1 7.50e-08 29 3.80e-08 20
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Table 4.18: Graph Laplacian Matrix n = 300: Elapsed CPU Time

m Time.CG Setup.CG Sum.CG Time.RS Setup.RS Sum.RS
87548 1.29e-02 7.03e-03 1.99e-02 1.17e-02 4.57e-02 5.74e-02
87508 1.73e-02 5.64e-03 2.29e-02 1.12e-02 3.63e-02 4.75e-02
86578 2.61e-02 5.13e-03 3.12e-02 1.62e-02 2.99e-02 4.61e-02
86954 2.71e-02 5.61e-03 3.27e-02 1.72e-02 3.70e-02 5.42e-02
87116 1.73e-02 5.63e-03 2.29e-02 1.72e-02 3.63e-02 5.35e-02

Table 4.19: Graph Laplacian Matrix n = 300: Mean and Sample Standard Deviation

Iter.Mean Iter.Std Time.Mean Time.Std Setup.Mean Setup.Std
12.4 0.70 8.93e-03 5.06e-03 1.62e-02 6.07e-03
13.8 0.42 1.07e-02 7.99e-04 1.46e-02 6.33e-04
19.1 0.57 1.63e-02 1.54e-03 1.56e-02 7.74e-04
17.6 0.52 1.41e-02 6.40e-04 1.49e-02 1.31e-04
19.5 0.71 1.65e-02 1.05e-03 1.55e-02 1.14e-03

4.3.6 Non-negative Constrained Problem

Our preconditioner also works for non-negative constrained least squares problem.

Ax = b subject to x ∈ C, (4.10)

where A ∈ Rm×n, b ∈ Rm, C = Rn
+. In order to satisfy the non-negative constrain, a projection

step is implemented every 5 steps of CG. The projection is defined as

PC(x)i =


xi, xi ≥ 0

0, xi < 0;

for i = 1, · · · , n.

The data comes from public domain MATLAB package AIR Tools II [1]. In test problems, we can

generate a sparse matrixA, a right hand side b and an exact solution x. We tested on three problems

including ‘fancurvedtomo’ and ‘sphericaltomo’. CG and CG with Gauss Seidel preconditioner are

compared. Since all three matrices A have a small number of columns, non sampling is done in
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(a) (b)

Figure 4.3: (a) fancurvedtomo (b) sphericaltomo

this example. The tolerance is set to be 10−5 while maximum iteration steps is set to be 5000.

Numerical results are presented in TABLE 4.20. The decreasing of error ‖xk − x∗‖ as iterations

increasing are shown in FIGURE 4.3.

Table 4.20: Non-negative Constrained Problem m = 10260, n = 1600

κ(A) error.CG time.CG iter.CG error.RS time.RS iter.RS
‘fancurvedtomo’ 154.22 4.36e-04 2.02 310 2.14e-05 1.11 5
‘sphericaltomo’ 71.93 8.66e-05 0.40 64 1.10e-10 0.73 3

Compared to diagonal preconditioned CG with projection, our preconditioner exhibits a significant

improvement on the numerical performance. The iteration steps are decreased from 310 to 5 and 64

to 3 for ‘fancurvedtomo’ and ‘sphericaltomo’ respectively. This result shows a potential capability

of dealing with constrained problem in future.
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4.3.7 Summary of Numerical Results

It is well known that CG works well for the well conditioned matrices. However, CG does not

converge in the fifth matrix for the ’sprand’ group and the last three matrices in UDV group, see

Tables 4.9 and 4.14. Round off errors occur in orthogonalization make CG fail to converge within

n steps. With our random sampling preconditioner, PCG converges for all of them. The iterative

steps and elapsed CPU time are reduced to 1/3 for ill conditioned matrices in both the ‘sprand’

group and UDV group. In the last case, we tests on the graph Laplacian matrices. Due to the simple

structure of the matrices, both methods converge with 0.04 for elapsed CPU time. But our method

almost halve the iterative steps to converge. Although we cannot prove the uniform convergence,

the performances listed ahead indicates that our random sampling preconditioner is efficient and

effective.

Another remark is the standard deviation of iterations and CPU time are acceptable. The random-

ness comes from sampling which results a small variance in iterative steps and CPU time. Most of

the examples, the ration of standard deviation to mean of iterative steps is from less than 0.1% to

2%. Only for the ‘sprand’ cases, we have a ratio ranges from 2% to 5%.
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Chapter 5

Review of Coordinate Descent Type

Methods

In this chapter we review popular methods for nonconstraint optimization problems (5.1) men-

tioned in Chapter 1.

min
x
f(x), (5.1)

with assumptions f is convex or strongly convex and∇f is Lipschitz continuous.

A generic iterative method for solving (5.1) is in the form

xk+1 = xk + αksk, (5.2)

where xk is current point, αk is a step size and sk is a search direction. Gradient-type method

searches in direction related to gradient direction. For example, gradient descent (GD) method

updates with negative gradient direction, i.e. sk = −∇f(xk). In huge-scale optimization problem,
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the computation of a function value or simplest full-dimensional gradient would be very expensive

[31]. This is the motivation to update one or few components of gradient every update. Coordinate

descent (CD) method updates with one component of negative gradient direction while keeping

other components fixed. Block coordinate descent (BCD) method updates with several compo-

nents of negative gradient direction while keep the remaining components fixed. When ∇f is

Lipschitz continuous, we can prove sub-linear convergence for GD for convex f with bounded-

level assumption and linear convergence for strongly-convex f . There are two fashions of CD –

cyclic CD (CCD) and randomized CD (RCD). CCD updates by traversing components cyclicly

while RCD chooses components to update randomly.

For cyclic CD (CCD), it is almost impossible to estimate the rate of convergence [31]. Luo and

Tseng proved the local rate of convergence for cyclic CD for objective function of the form

f(x) = g(Ex) + 〈b, x〉,

where g is a proper closed convex function in Rm, E an m× n matrix having no zero column, and

b a vector in Rn with almost cyclic rule and Gauss-Southwell Rule in [26].

When adding randomness to CD, i.e. choosing component via some probability in each update,

enables global convergence analysis feasible. Let index ik be a random variable at update k. Denote

∇ikf(xk) = [∇f(xk)]ik . Taking expectation of∇ikf(xk) with respect to random variable ik results

in an unbiased estimate of full gradient ∇f(xk) with some probability. Then RCD converges

similarly as CD with a smaller convergence rate in expectation sense. Nesterov gives a type of

probability in [31], a chosen strategy is given by

pαi = Lαi

(
n∑
j=1

Lαj

)−1
, i ∈ 1, · · · , n, (5.3)

where Li is Lipschitz constant at each subspace Vi consisting of one component or several com-

ponents and provides convergence of Randomized Block Coordinate Descent (RCD) via (5.3).
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Nesterov also shows the performance of RCD is better than standard worst-case bounds for deter-

ministic algorithm [31]. Wright provides a simple version of convergence of RCD with uniform

sampling, fixed step size of convex function f under bounded level assumptions in [48].

We shall present convergence analysis for CD and RCD, RBCD with uniform sampling (α = 0

in (5.3)) or importance sampling (α = 1 in (5.3)), fixed step size of convex or strongly-convex

function f for comparisons of our methods randomized fast subspace descent methods (RFASD).

Besides this, more work have been done for Coordinate Descent Type methods. For example, Lu

developed a randomized block proximal damped newton method (RBPDN) in [25] for composite

minimization problem

min
x∈RN
{F (x) := f(x) + Ψ(x)},

where f(x) is convex and differentiable and Ψ(x) =
∑n

i=1 Ψi(xi) has a block separable structure.

When RBPDN applied to smooth convex minimization problem, it uses Newton method in each

block, i.e. update the search direction by H−1ii (x)[∇f(x)]i. The complexity reduces compared to

Newton’s method since only Newton’s iterations on local problems are needed, i.e. the size of

Hessian is reduced to the block size. There is a tradeoff between convergence rate and complexity

considering the dimension of subspace. If the dimension of subspace is too small, i.e. 1 or 2, the

subspace Hessian loses lots of information leading to slow convergence in each update. While

if the dimension of subspace is large, for example, N
2

, the computation of subspace Hessian and

Hessian inverse is still costing.

Another approach besides RCD which is also a light version of GD is stochastic gradient descent

methods (SGD). Instead of RCD which picks up one component of x to update, SGD picks one

instance of data and associated objective function to compute gradient. Similarly, we can increase

the size of data to update in one iteration which corresponds to mini-batch SGD.

Apply RCD to linear equation (1.1) gives randomized Gauss Seidel Method (RGS) and apply SGD

to l(1.1) gives randomized Kaczmarz (RK). RGS and RK are mathematically equivalent when
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applying to primal and dual problems. Enlightened by this face, RCD and SGD can also solve

primal and dual problems.

In section 2 we present algorithms of GD and convergence analysis of GD. In section 3, we review

algorithms of CCD, RCD and RBCD and convergence of RCD and BRCD. In section 4, we give

brief introduction of SGD and mini-batch SGD. Last but not least, in section 5, we give the duality

relation of RCD and SGD and apply them to linear equation to get RGS and RK respectively.

5.1 Gradient Descent Methods

5.1.1 Gradient Descent Scheme

This first method introduced here is Gradient Descent Method (GD), which is a fundamental algo-

rithm in convex optimization. The update form of GD is

xk+1 = xk − αk∇f(xk), (5.4)

where ∇f(xk) is gradient of function f evaluated at current point xk and αk is a value chosen

either by (1) performing exact minimization, (2) or choosing a value satisfying traditional line

search conditions, (3) or making a “short-step” based on prior knowledge of the properties of f

[48] .
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Algorithm of GD for (5.1) is presented in Algorithm 4.

1: Choose x0 and k ← 0;

2: for k = 0, 1, · · · do

3: Compute gradient of f and evaluated on xk to get ∇f(xk);

4: Update with step size αk > 0

xk+1 ← xk − αk∇f(xk);

k ← k + 1;

5: end for
Algorithm 4: Gradient Descent Method

We recall basic assumptions for objective function f in Chapter 1.

• (LC) The first order derivative of f is Lipschitz continuous with Lipschitz constant L, i.e.,

‖∇f(x)−∇f(y)‖V ′ ≤ L‖x− y‖V , ∀x, y ∈ V .

• (C) f is convex, i.e.,

f(x) ≥ f(y) + 〈∇f(y), (x− y)〉, ∀x, y ∈ V .

• (SC) f is strongly convex with strong convexity constant µ > 0, i.e.,

〈∇f(x)−∇f(y), x− y〉 ≥ µ‖x− y‖2V , ∀x, y ∈ V .

Under Lipschitz continuous (LC) assumption for∇f , GD achieves linear convergence for strongly

convex f and sub-linear convergence for strongly convex f with fixed step-size 0 < αk <
2
L

and

optimal convergence rate achieved when αk = 1
L
, where L is Lipschitz constant of∇f .
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5.1.2 Convergence of Gradient Descent Methods

Theorem 5.1.1. Suppose Assumption (LC) holds. Suppose αk := α is constant and α ∈ (0, 2
L

) in

Algorithm 4. The sequence {f(xk)} generated by Algorithm 4 is strictly decreasing for k > 0.

Proof. (LC) is mathematical equivalently to

f(x)− f(y) ≤ 〈∇f(y), x− y〉+
L

2
‖x− y‖2V . (5.5)

Then combine with GD update form (5.4). Furthermore, assume αk := α is fixed.

f(xk+1)− f(xk) ≤ 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2V

= −α‖∇f(xk)‖2V ′ +
L

2
α2‖∇f(xk)‖22

= −α(1− L

2
α)‖∇f(xk)‖2V ′

Let 0 ≤ α ≤ 2
L
, we have α(1− L

2
α) > 0. Thus f(xk+1)− f(xk) < 0, which implies the sequence

generated by Algorithm 4 is strictly decreasing.

5.1.3 Linear Convergence of Strongly Convex Function

Now we present the result that GD achieves linear convergence for strongly convex objective func-

tion f .

Theorem 5.1.2. Suppose Assumption (LC) and (SC) hold. Set constant step size α = 1
L

. For all

k > 0, we have

f(xk)− f ∗ ≤
(

1− µ

L

)k
(f(x0)− f ∗). (5.6)
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To achieve accuracy ε, we need k = O
(
L
µ

ln
(
1
ε

))
iterations.

Proof. By the proof of Theorem 5.1.1, we have

f(xk+1)− f(xk) ≤ −α(1− L

2
α)‖∇f(xk)‖2V ′ (5.7)

Inserting f ∗ and −f ∗ into L.H.S. of (5.7) gives

f(xk+1)− f ∗ + f ∗ − f(xk) ≤ −α(1− L

2
α)‖∇f(xk)‖2V ′

Denote dk = f(xk)− f ∗, for k > 0.

dk+1 − dk ≤ −α(1− L

2
α)‖∇f(xk)‖2V ′

Let α = 1
L

, −α(1− L
2
α) achieves maximum − 1

2L
. R.H.S of (5.7) changes to

−α(1− L

2
α)‖∇f(xk)‖2V ′ = − 1

2L
‖∇f(xk)‖2V ′

By Assumption (SC), we have

‖∇f(xk)‖2V ′ ≥ 2µ(f(xk)− f ∗) = 2µdk

Thus

dk+1 − dk ≤ −µ
L
dk

i.e.

dk+1 ≤
(

1− µ

L

)
dk ≤

(
1− µ

L

)k
d0

This gives convergence property of GD for strongly-convex objective function f .
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In order to achieve accuracy ε, we require

f(xk)− f ∗ ≤
(

1− µ

L

)k
(f(x0)− f ∗) ≤ ε

(
1− µ

L

)k
≤ ε

d0

k ≥ O

(
ln(ε)

ln
(
1− µ

L

)) ≈ O

(
ln ε

−µ
L

)
≈ O

(
L

µ
ln

(
1

ε

))

We use the fact that the natural logarithm (with base e) has Maclaurin series

ln(1− x) = −
∞∑
n=1

xn

n
.

5.1.4 Sub-linear Convergence of Convex Function

In this section we present the sub-linear convergence property of convex objective function f .

Before move to convex case, one more assumption need to be made.

• (BL) Bounded level set: f is convex and uniformly Lipschitz continuously differentiable,

and attains its minimum value f ∗ on a set S. There is a finite constant R0 such that the level
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set for f defined by x0 is bounded, that is,

max
x∗∈S

max
x
{‖x− x∗‖ : f(x) ≤ f(x0)} ≤ R0. (5.8)

Theorem 5.1.3. Suppose Assumption (LC), (C) and (BL) hold. For all k > 0, we have

f(xk)− f ∗ ≤ 2LR2
0

k
, (5.9)

To achieve accuracy ε, we need k = O
(
L
ε

)
iterations.

Proof. Since f is convex,

f(xk)− f ∗ ≤ 〈∇f(xk), xk − x∗〉 ≤ ‖∇f(xk)‖V ′‖xk − x∗‖V ≤ R0‖∇f(xk)‖V ′ .

By Assumption (LC) with α ∈ (0, 1
L

)

f(xk+1)− f(xk) ≤ − 1

2L
‖∇f(xk)‖2V ′

Denote dk = f(xk)− f ∗. Then

dk+1 − dk ≤ − 1

2L
‖∇f(xk)‖2V ′ ≤ −

1

2LR2
0

(dk)2.

Divide both sides by (dk)2, we have

1

dk+1
− 1

dk
=
dk − dk+1

dkdk+1
≥ dk − dk+1

(dk)2
≥ 1

2LR2
0

.

Apply this result recursively, we have

1

dk
≥ 1

d0
+

k

2LR2
0

≥ k

2LR2
0
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In order to achieve accuracy ε, we have

2LR2
0

k
≤ ε

k ≥ 2LR2
0

ε
= O

(
L

ε

)

5.2 Randomized Coordinate Descent Methods

In Wright’s paper of Coordinate Descent Algorithms [48], he describes ‘coordinate Descent (CD)

are iterative methods whose each iterate is obtained by fixing most components of the variable

vector x at their values from the current iteration, and approximately minimizing the objective

with respect to the remaining components.’ The difference between GD and CD is for GD, each

iterate update all components of x in gradient descent direction while for CD, each iterate only

updates one or several components of x and keep remaining unchanged. Here is the update of CD.

xk+1 = xk − αk[∇f(xk)]ikeik (5.10)

Two essential questions about CD update form is (1) how to choose αk and (2) how to choose

component index ik? Turning to step size αk, three strategies can be applied. The choice of step

size can be implemented in a similar way as we discuss for GD, i.e., exact line search, or traditional

line search or predefined “short step” based on prior knowledge of f [48].

To answer question (2), there are two popular ways of selections.
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• (Cyclic Selection)

ik = [k mod n] + 1, k = 1, 2, · · · (5.11)

• (Randomized Selection) ik’s with k ∈ {0, 1, 2, · · · } are independent identical distributed

random variables with mass probability function defined in 5.12.

P{ik = j} = pj, j ∈ {1, 2, · · · , n} (5.12)

If ik is chosen in cyclic fashion, i0 starts from 1 and move forward one step in each update until

reach the last component of x. Then ik comes back to 1 again and updates cyclicly. In this

case, each component would be updated once in n updates. In randomized version, ik is chosen

according to some probability pj with
∑

j pj = 1 and 0 ≤ pj ≤ 1 for j ∈ {1, · · · , n}. In this case,

not every component will definitely get updated in n iterations. Algorithm will pay more emphasis

on component associated with larger probability and less on the ones with smaller probability. In

randomized version, there are various sampling strategies including sampling without replacement

(shuffling) and with replacement, uniform sampling or importance sampling. These variants would

be discussed later sections.
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The algorithm of cyclic coordinate descent (CCD) is presented in Algorithm 5.

1: Choose x0 and k ← 0;

2: for k = 0, 1, · · · do

3: Choose index ik ∈ {1, · · · , n} via cyclic selection (5.11)

4: Evaluate gradient∇f of component ik at current point xk;

5: Update with step size αk > 0

xk+1 ← xk − αk[∇f(xk)]ikeik ;

k ← k + 1;

6: end for
Algorithm 5: Cyclic Coordinate Gradient Descent Method

The algorithm of randomized coordinate descent (RCD) is presented in Algorithm 6.

1: Choose x0 and k ← 0;

2: for k = 0, 1, · · · do

3: Choose index ik ∈ {1, · · · , n} via randomized selection (5.12);

4: Evaluate gradient∇f of component ik at current point xk;

5:

6: Update with step size αk > 0;

xk+1 ← xk − αk[∇f(xk)]ikeik ;

k ← k + 1;

7: end for
Algorithm 6: Randomized Coordinate Descent Method
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5.2.1 Convergence of Randomized Coordinate Descent Method

For cyclic CD (CCD), there is few job to prove and convergence and estimate the rate of con-

vergence [31]. A local rate of convergence of block coordinate descent method for convex dif-

ferentiable minimization with almost cyclic and Gauss-Seidel rules can be found in [26] and for

nondifferentiable minimization in [46]. Full approximation storage scheme also gives a frame

work for convergence analysis of CCD since Cauchy Schwarz holds for coordinate decomposition

and dependance on the scaled condition number is a constant [11].

Now we discuss the global convergence of randomized CD (RCD) for strongly convex function

and convex function.

Euclidean space Rn has a natural space decomposition – decomposed as direct sum of each com-

ponent.

Rn = ⊕ni=1span{ei} (5.13)

In order to analysis convergence of RCD, we assume component-wise Lipschitz continuous on f .

• (LCi1) Lipschitz continuous restricted in each component with Lipschitz constant Li, i.e.,

‖[∇f(x+ tei)]i − [∇f(x)]i‖ ≤ Li|t|, ∀ t ∈ R

In Nestrov’s paper [31], a strategy to randomly choose index i is given by

pαi = Lαi

(
n∑
j=1

Lαj

)−1
, i ∈ 1, · · · , n. (5.14)

We specifies two strategies with corresponding optimal fixed step size and give convergence results

for both strongly convex objective function and convex function.
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Let α = 0 gives first sampling strategy – uniform sampling. For uniform sampling, optimal step

size is given by

α ≡ 1/Lmax, Lmax =
n

max
i=1

Li.

• Uniform Samnpling. The probability of choosing i-th subspace is

pi =
1

n
, i ∈ {1, 2, . . . , n}. (5.15)

Let α = 1 gives another popular sampling strategy – importance sampling. For importance sam-

pling, optimal step size is given by

αik = 1/Lik , ik ∈ {1, · · · , n}.

• Importance Sampling. The probability of choosing i-th subspace is

pi =
Li
`
, i ∈ {1, 2, . . . , n}, (5.16)

where ` =
∑n

i=1 Li.

Wright defines coordinate Lipschitz constant Lmax = maxni=1 Li proves linear convergence for

strongly convex objective function and sub-linear convergence for convex objective function in

expectation sense with fixed step size α ≡ 1/Lmax in [48]. The proof is a modification of conver-

gence analysis of GD. This is the case applying uniform sampling with fixed step size.

We now present both sampling strategies with corresponding step size for strongly-convex function

and convex function respectively in Theorem 5.2.1, Theorem 5.2.2 , Theorem 5.2.3 and Theorem

5.2.4 respectively. The convergence results are similar to Gradient Descent case Theorem 5.1.2

and Theorem 5.1.3 but in expectation.

Theorem 5.2.1. Suppose Assumption (LCi1) and (SC) hold. Set constant step size α ≡ 1/Lmax
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. Let xk be approximation obtained by Algorithm 6 after k − 1 update. Randomly choose ik with

uniform distribution independently from previous choice. For all k > 0, we have

E(f(xk))− f ∗ ≤
(

1− µ

nLmax

)k
(f(x0)− f ∗). (5.17)

To achieve accuracy ε, we need k = O
(
nLmax

µ
ln
(
1
ε

))
iterations.

Theorem 5.2.2. Suppose Assumption (LCi), (C) and (BL) hold. Let xk be approximation obtained

by Algorithm 6 after k − 1 update. For all k > 0, we have

E[f(xk)]− f ∗ ≤ 2nLmaxR
2
0

k
, (5.18)

To achieve accuracy ε, we need k = O
(
nLmax

ε

)
iterations.

Theorem 5.2.3. Suppose Assumption (LCi1) and (SC) hold. Let xk be approximation obtained by

Algorithm 6 after k−1 update. Randomly choose ik with importance sampling 5.16 independently

from previous choice. Set constant step size αik = 1/Lik . For all k > 0, we have

E(f(xk))− f ∗ ≤
(

1− µ

`

)k
(f(x0)− f ∗), (5.19)

where ` =
∑n

i=1 Li. To achieve accuracy ε, we need k = O
(
nLmax

µ
ln
(
1
ε

))
iterations.

Theorem 5.2.4. Suppose Assumption (LCi), (C) and (BL) hold. Let xk be approximation obtained

by Algorithm 6 after k − 1 update. Randomly choose ik with importance sampling 5.16 inde-

pendently from previous choice. Set constant step size αik = 1/Lik . For all k > 0, we have

E[f(xk)]− f ∗ ≤ 2`

R2
0

k, (5.20)

where ` =
∑n

i=1 Li. To achieve accuracy ε, we need k = O
(
`
ε

)
iterations.
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To conclude, RCD achieves linear convergence of strongly convex function f and sub-linear con-

vergence of convex function f with fixed step size α ≡ 1/Lmax in expectation sense. The benefits

of RCD compared to GD is instead of computing gradient of all components in one update, it needs

gradient of one component at each update, which reduce the complexity cost. The drawbacks of

RCD are it needs component-wise Lipschitz constant Li to decide step size and sacrifices conver-

gence rate from (1 − µ
L

) to (1 − µ
nLmax

) with uniform sampling and to (1 − µ
`
) with importance

sampling in strongly-convex case and L
k

to nLmax

k
with uniform sampling and to `

k
with importance

sampling for convex case.

5.2.2 Block Randomized Coordinate Descent Method

Instead of updating one component every iteration, Block Randomized Coordinate Descent (RBCD)

updates several components at one iteration and keeps other components fixing. We use the same

setting as in Nesterov’s paper [31].

Consider a decomposition of Rn on J subspaces:

Rn = ⊕Ji=iRni , n =
J∑
i=1

ni.

The unit matrix can be partitioned correspondingly.

In = (U1, · · · , UJ) ∈ Rn×n,

where

• Ui ∈ Rn×ni maps from Rni to Rn is called prolongation or inclusion;

• Uᵀi ∈ Rni×n maps from Rn to Rni is called restriction or projection.
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Then any vector x =

[
x(1), · · · , x(J)

]
∈ Rn where x(i) ∈ Rni is decomposed as

x =
J∑
i=1

Uix(i)

The partial gradient∇fi(x) with respect to x(i) is defined as

∇if(x) = Uᵀi ∇f(x) ∈ Rni , x ∈ Rn.

Similarly, we requires the Lipschitz continuous conditions on each subspace Rni , i ∈ 1, · · · , J .

• (LCi2) Lipschitz continuous restricted in each subspace with Lipschitz constant Li, i.e.,

‖∇if(x+ Uihi)−∇if(x) ≤ Li‖hi‖, hi ∈ Rni , i = 1, · · · , J, x ∈ Rn.

We describes algorithm of RBCD as follows.

1: Choose x0 and k ← 0;

2: for k = 0, 1, · · · do

3: Choose index ik ∈ {1, · · · , J} according to distribution p;

4: Evaluate gradient∇f of component i at current point xk;

5: Update with step size αk > 0;

xk+1 ← xk − αkUik∇ikf(x);

k ← k + 1;

6: end for
Algorithm 7: Randomized Block Coordinate Descent Algorithm [31]

Convergence results are provided in following theorems.
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Theorem 5.2.5 (Uniform sampling & strongly convex case). Suppose Assumption (LCi2) and

(SC) hold. Set constant step size α ≡ 1/Lmax . Randomly choose ik with uniform sampling

independently from previous choice. For all k > 0, we have

E(f(xk))− f ∗ ≤
(

1− µ

JLmax

)k
(f(x0)− f ∗). (5.21)

To achieve accuracy ε, we need k = O
(
JLmax

µ
ln
(
1
ε

))
iterations.

Theorem 5.2.6 (Importance sampling & strongly convex case). Suppose Assumption (LCi2) and

(SC) hold. Set constant step size αik = 1/L
k

. Randomly choose ik with importance sampling

independently from previous choice. For all k > 0, we have

E(f(xk))− f ∗ ≤
(

1− µ

`

)k
(f(x0)− f ∗). (5.22)

To achieve accuracy ε, we need k = O
(
`
µ

ln
(
1
ε

))
iterations.

Theorem 5.2.7 (Uniform sampling & convex case). Suppose Assumption (LCi2), (C) and (BL)

hold. Randomly choose ik with uniform sampling independently from previous choice. For all

k > 0, we have

E[f(xk)]− f ∗ ≤ 2JLmaxR
2
0

k
, (5.23)

To achieve accuracy ε, we need k = O
(
JLmax

ε

)
iterations.

Theorem 5.2.8 (Importance sampling & convex case). Suppose Assumption (LCi2), (C) and (BL)

hold. Randomly choose ik with importance sampling independently from previous choice. For all

k > 0, we have

E[f(xk)]− f ∗ ≤ 2`R2
0

k
, (5.24)

To achieve accuracy ε, we need k = O
(
`
ε

)
iterations.
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When we apply importance sampling, it is required to known the Lipschitz constants in each sub-

space Rni .

5.2.3 Randomized Gauss-Seidel Method

To solve linear equation

Ax = b,

we can define corresponding minimization problem as least squares problem (5.25) mentioned in

Chapter 1.

f(x) =
1

2
‖Ax− b‖2. (5.25)

In [48], Wright points out that CD highly related to standard Gauss Seidel method or Success Over

Relaxation (SOR) method applying to normal equation. Now we give a brief derivation to show

applying RCD to (5.25) is equivalently to applying randomized forward Gauss Seidel to normal

equation (2.2).

Apply RCD to (5.25). For simplification, we denote the random variable index with i instead of

ik. Let αk = 1
‖ai‖2 . The update form is

xk+1 = xk − αk[∇f(xk)]i

= xk − 1

‖ai‖2
[Aᵀ(Axk − b)]i

= xk +
1

‖ai‖2
[Aᵀb− AᵀAxk]i

= xk +
1

[AᵀA]ii
[Aᵀb− AᵀAxk]i
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which is the update formula when applying randomized Gauss Seidel to linear equation AᵀAx =

Aᵀb. Here we use the fact that column of a is normalized, i.e.,

[AᵀA]ii = (ai)ᵀai = 1.

Wright also mentioned in [48] that applying RCD to linear system (5.25) update wk = Aᵀxk to the

primal problem

min
w

1

2
‖w‖22 subject to Aw = b. (5.26)

This duality relation will be discussed in later section in this chapter.

5.2.4 Summary of Randomized Coordinate Descent Type Methods

The convergence results of GD, RCD, RBCD with uniform or importance sampling for convex

or strongly-convex functions are listed in Table 5.1 which provides a good reference when we

compare RFASD with CD type methods. To conclude,

• CD comes with the idea to reduce complexity of evaluate full gradient in huge-scale opti-

mization problem.

• RCD is an improvement of CCD due to easy analysis of convergence and better convergence

performance than cyclic version.

• RBCD is a block version of RCD with more components updated in each iteration, which is

a balance of complexity and storage between CD and RCD.
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Table 5.1: Examples: Number of iterations to achieve accuracy ε for the optimality gap.

Convex Strongly convex

GD O

(
L

ε

)
O

(
L

µ
log

1

ε

)
RCD O

(
NL

ε

)
O

(
NL

µ
log

1

ε

)
Uniform BCD n = J O

(
JL

ε

)
O

(
JL

µ
log

1

ε

)
Importance BCD n = J O

(
`

ε

)
O

(
`

µ
log

1

ε

)

5.3 Stochastic Gradient Descent Type Methods

To discuss stochastic gradient descent type methods including stochastic gradient descent method

(SGD), mini-batch stochastic gradient descent method (mini-batch SDG) and stochastic Newton

method or quasi Newton method, we follow closely the notations in review paper [8]. SGD is

another updated version of GD from the perspective that compute gradient is consuming in many

machine learning or deep learning problems. It updates gradient corresponds to one sample of

data, i.e., (xi, yi) instead of gradient evaluated on all data sets. Before introduce the detail of SGD,

we have assumptions of objective function f . Suppose objective function is either expectation risk

or empirical risk, i.e.

f(w) =


R(w) = E[f(w, ξ)]

Rm(w) = 1
m

∑m
i=1 fi(w),

(5.27)

whereR(w) is called expectation risk with ξ a random variable related to sample pair (xik , yik) and

Rm(w) is called empirical risk with i related to sample pair (xi, yi). Empirical risk can be viewed

as a special case of expectation risk by viewing i a random variable with equal probability on value
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{1, · · · ,m}, i.e.

P (i = j) =
1

m
, j ∈ {1, · · · ,m}. (5.28)

The update form can be defined as

wk+1 = wk − αkg(wk, ξk), (5.29)

where

g(wk, ξk) =



∇f(wk, ξk) (5.30)(
1

nk

) nk∑
i=1

∇f(wk; ξk,i) (5.31)

Hk

(
1

nk

) nk∑
i=1

∇f(wk; ξk,i) (5.32)

(5.30) corresponds to Stochastic Gradient Descent (SGD), (5.31) corresponds to mini-batch SGD

and (5.32) corresponds to stochastic Newton or quasi Newton with nk the size of mini-batch and

Hk a symmetric definite scaling matrix.

For simplicity of discussion, we denote ∇fi(x) = ∇f(x, ξi), where ξi is a realization of random

variable ξ.
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5.3.1 Stochastic Gradient Descent Method

The algorithm of SGD is described as follows.

1: Choose w0 and k ← 0;

2: for k = 0, 1, · · · do

3: Choose index ik ∈ {1, · · · ,m} according to distribution p;

4: Evaluate gradient∇fik(wk) at sample pair (xik , yik);

5: Update with step size αk > 0;

wk+1 ← wk − αk∇fik(wk);

k ← k + 1;

6: end for
Algorithm 8: Stochastic Gradient Descent Algorithm
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5.3.2 Mini-batch Stochastic Gradient Descent Method

The algorithm of mini-batch SGD is described as follows.

1: Choose w0 and k ← 0;

2: for k = 0, 1, · · · do

3: Choose index {1, · · · , ink} ⊂ {1, · · · ,m} according to distribution p;

4: Evaluate gradient∇fi(wk) at sample pairs {(xi, yi)}nki=1;

5: Update with step size αk > 0;

wk+1 ← wk − αk
nk∑
i=1

∇fi(wk);

k ← k + 1;

6: end for
Algorithm 9: Mini-batch Stochastic Gradient Descent Algorithm

5.3.3 Convergence Results of Stochastic Gradient Descent Type Methods

Now to come to discuss the convergence of SGD methods. Before that, we recall basic assumptions

as we have had for CD Type methods.

• (LC) The first order derivative of f is Lipschitz continuous with Lipschitz constant L, i.e.,

‖∇f(u)−∇f(v)‖V ′ ≤ L‖u− v‖V , ∀u, v ∈ V .

• (LCi) The first order derivative of fi is Lipschitz continuous with Lipschitz constant Li, i.e.,

‖∇fi(u)−∇fi(v)‖V ′ ≤ Li‖u− v‖V , ∀u, v ∈ V .
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• (SC) f is strongly convex with strong convexity constant µ > 0, i.e.,

〈∇f(u)−∇f(v), u− v〉 ≥ µ‖u− v‖2V , ∀u, v ∈ V .

Various discussion about convergence of SGD can be found in different scenarios. For simplicity,

we lists the convergence results of applying SGD to strongly convex function f with fixed step size

here. Suppose w∗ is minimum point achieved in minimization problem (5.27).

Definition 5.3.1. The residual of fi at minimum point is

σ2 = E[∇fi(w∗)]2 (5.33)

If ∇fi, i ∼ p with some distribution p is unbiased estimate of ∇f , we have σ2 is variance of fi at

minimum point, i.e.,

Vari(fi(w
∗)) = Ei[‖fi(w∗)‖2]− ‖Ei[fi(w∗)]‖2.

Let ε0 = ‖f(w0) − f(w∗)‖ and ε = ‖f(x) − f(w∗)‖ be the distance between initial point to

minimum point and distance between current point to minimum point respectively. Bach and

Moulines prove convergence rate depends on EL2
i

µ2
. In order to achieve accuracy ε, the expected

steps is at least k = 2 log(ε/ε0)
(
ELi
µ2

+ σ2

µ2ε

)
with a more general setting [28]. Deann et al prove a

convergence rate with a linear dependence on the uniform bound sup(Li/µ) via uniform sampling

strategy. They bring the idea of exponential convergence of randomized kaczmarz [42] and prove

linear convergence depending on expected bound E[Li/µ] via importance sampling. The steps

to achieve accuracy ε is given by k = 2 log(2ε0/ε)
(

supLi
µ

+ σ2

µ2ε

)
with uniform sampling and

k = 2 log(ε0/ε)
(

ELi
µ

+ ELi
inf Li

σ2

µ2ε

)
. Importance sampling reduces the dependence on smoothness

term to ELi
µ

but increases dependence on residual term. A way to balance this is use re-weighted

sampling with the cost of biased estimate of gradient ∇f . More generally, when update g(x; ξi)

is not an unbiased estimate for gradient ∇f(x), Léon et al give convergence analysis under first
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and second moment limit of g(x; ξi) for strongly convex function f , which also shows a linear

dependence of E[Li]/µ in expectation sense [9].

5.3.4 Randomized Kaczmarz Method

Objective function in least squares problem (2.1) can be viewed as an empirical risk function, i.e.,

f(w) =
1

2
‖Aw − b‖22 =

1

2m

m∑
i=1

m (〈ai, x〉 − bi)2 . (5.34)

Denote fi(w) = m
2

(〈ai, w〉 − bi)2 , i ∈ {1, · · · ,m}. The gradient of each fi is

∇fi(w) = m (〈ai, w〉 − bi) ai

Apply SGD to (5.34), we have update as

wk+1 = wk − αk∇fi(wk)

= wk − αkm
(
〈ai, wk〉 − bi

)
ai

Let αk = 1
m‖ai‖2 and do sampling with distribution proportional to norm of each row ‖ai‖2. It gives

update of randomized kaczmarz method [41].

wk+1 = wk −
(
〈ai, wk〉 − bi

) ai
‖ai‖2

.

In Deanna et al’ s paper [30], they show the connection between SGD and RK with uniform sam-

pling and importance sampling and bring the sampling strategy from RK to SGD to improve con-

vergence rate and find a trade-off between dependence on smoothness term E[Li]/µ and residual
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term σ2 defined in (5.33).

To conclude, SGD type methods require the objective function has the form of empirical risk

or expectation risk 5.27. For each update, a single fi can be chosen or a batch os fi can be

chosen. The batch size is an parameter to tune in implementation. Step size can be chosen either

to be fixed with pre knowledge of objective function or diminishing. Sampling strategy can be

either uniform sampling, importance sampling or combination of these two. Convergence of SGD

depends linearly on condition number of problem ELi
µ

or supLi
µ

. There is a trade-off between

smoothness term and residual term, which gives hint when choosing sampling strategy. Apply

SGD to least squares problem (1.1) gives RK.

5.4 Duality

5.4.1 Randomized Kaczmarz Methods and Randomized Gauss Seidel Meth-

ods

Theorem 5.4.1. Applying Randomized Gauss-Seidel methods (RGS) to (5.35)

AAᵀw = b, whereAᵀw = x. (5.35)

is mathematically equivalent to applying randomized kaczmarz methods (RK) to (1.1).

Proof. By applying RGS, we have update

wk+1 = wk + (AᵀA)−1ii (bi − (AAᵀwk)i)ei. (5.36)
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Multiply both sides by Aᵀ, we have

Aᵀwk+1 = Aᵀwk + (AAᵀ)−1ii (bi − (AAᵀwk)i)ai

xk+1 = xk +
1

‖ai‖2
(bi − 〈ai, xk〉)ai

Hefny et al [17] mention RK selects row in each update while RGS selects column in each update.

Also, using RK to equation Aα = b with A = XXᵀ and b = y can is the same as using RGS to

equation A′β = b′ with A′ = XᵀX and b = Xᵀy with a primal-dual mapping β = Xᵀα. They

also give suggestions to use RGS when m > n (num of rows greater than columns) and RK when

n > m (number of columns greater than rows).

5.4.2 Randomized Coordinate Descent Methods and Stochastic Gradient

Descent Methods

A popular optimization problem in machine learning is empirical risk minimization (ERM). We

introduce the problem following setting in [14]. Let X ∈ Rd×n be the data set and each row

xi, i ∈ 1, · · · , d corresponds to one data with n features. Let φj be associated loss function of xi.

Let λ be a positive regularized parameter. The primal formula of L2-regularized ERM problem is

min
w∈Rd

(
P (w) :=

1

n

n∑
j=1

φj(〈xj, w〉) +
λ

2
‖w‖22

)
, (5.37)

The dual formula of (5.37) is

max
α∈Rn

(
D(α) := − 1

2λn
‖Xα‖2 − 1

n

n∑
j=1

φ∗j(−αj)

)
, (5.38)

86



GD

RCD

BRCD RGS

SGD

RK Mini-batch SGD

dual

dual

Figure 5.1: Conclusions of Gradient Type Methods

where φ∗j(s) := sup{st− φj(t) : t ∈ R} is convex conjugate of φj in the Fenchel dual problem.

We can apply SGD to solve primal problem (5.37) while apply RCD for dual problem (5.38),

which is analogous to linear case described in Section 5.4.1. There is an issue when applying RCD

to (5.38), φ∗j are not necessary smooth. In this situation, we can use a proximal variance of RCD

[14].

More discussions about solving dual problems can be found in [38, 44, 39, 19, 13]

In this chapter, we review gradient descent methods (GD), randomized coordinate descent type

methods (RCD), stochastic gradient descent type methods (SGD). RC and SGD are two funda-

mental variants of GD when the computational complexity is not easy to handle. RCD or Block

RCD (BRCD) updates with one of few components of gradient while SGD or mini-batch SGD

update with one of few data. SGD requires the objective function to be in the form of expecta-

tion. One realization of random variable index i or ξi corresponds to one instance {xi, yi} in data

sets. Apply RCD to linear equation (1.1) gives Randomized Gauss-Seidel Methods (RGD) while

apply SGD to linear equation (1.1) gives Randomized Kaczmarz methods (RK). RGD and RK are

connected while applying to equivalent linear equations and SGD is mathematically equivalent to

RCD when applying to dual problems. Here is a graph to conclude this chapter.
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Chapter 6

Randomized Fast Subspace Descent

Methods

In this chapter, we present an optimization method – randomized fast subspace descent method

RFASD) for general non-constraint minimization problem with smooth and convex objective func-

tion. This method is an improvement of randomized coordinate descent (RCD).

Let V =
∑

i Vi be a space decomposition. Instead of do gradient descent on one or few coordinates,

we do gradient descent on some subspace of V . With a proper space decomposition, the local

problem will be of small size and have a small condition number so that preconditioned coordinate

descent method inside the subspace is fast and stable.

Consider non-constraint minimization problem

min
x∈V

f(x), (6.1)

where f is a smooth and convex function and its derivative is Lipschitz continuous with constant L

and V is a Hilbert space. In practice, V = RN but might be assigned with an inner products other
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than the standard l2 inner product. Solving minimization problem (1.2) is a central task with wide

applications in fields of scientific computing, machine learning and data science etc.

Coordinate descent methods decompose V by coordinates, i.e., V = ⊕{ei}Ni=1. Dividing V by

coordinates is not the only way to decompose a space. Multigrid method [43] provide a multilevel

space decomposition. With a proper space decomposition, the local problem will have a small

condition number so that preconditioned gradient descent method inside the subsapce is fast and

stable. With the hierarchical structure of multilevel subspace decomposition, the condition number

is also reduced and leads to faster convergence rate.

In [11], Chen, Hu and Wise borrow the idea of multigrid methods for solving the nonlinear equa-

tions to develop fast subspace descent (FASD) methods. In this chapter, we provide a general

scheme for randomized version of fast subspace descent (RFASD) method.

We assume Lipschitz continuous (LC) and strong convexity (SC) of f on V . Suppose there exists

a space decomposition: V = V1 + V2 + · · · VJ , with Vi ⊂ V , i = 1, · · · , J . And f restricted on

subspace Vi satisfies Lipschitz continuous condition (6.3).

For each subspace Vi, we assign a new inner product given by a symmetric and positive definite

matrix Ai with eigenvalue bound

µi(vi, vi)V ≤ (Aivi, vi) ≤ λi(vi, vi)V , ∀vi ∈ Vi. (6.2)

An outline of RFASD is as follows. Randomly choose a subspace Vik according to some sampling

distribution. Compute subspace search direction sik such descent direction (6.6) and approximate

gradient conditions (6.7).

Choose the step size αk =
δµik
Lik

and update via subspace correction

xk+1 = xk + αksik .
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The sampling distribution can be either uniform or non-uniform with probability proportional to

the local Lipschitz constant Li.

Denote ` =
∑J

i=1 Li and `S =
∑J

i=1

√
Li. κmax = maxi κi.

RFASD achieves linear convergence for strongly convex function and sub-linear convergence for

convex function with complexity O
(
γ2

δ2
JL

ε
κmax

)
and O

(
γ2

δ2
JL

µ
κmax log

1

ε

)
with uniform sam-

pling and O
(
γ2

δ2
`

ε
κmax

)
, O
(
γ2

δ2
`

µ
κmax log

1

ε

)
with non-uniform sampling. The complexity de-

pends on three factors: γ2

δ2
measures how good the descent direction approximates negative gradient

direction, L
µ

is the condition number of global space V and κmax = maxi κi where κi = Li
µi

is the

condition number of subspace Vi. Viewed in A norm, the global condition number L
µ

might be

reduced.

Construct a stable space decomposition

• (SD) Stable decomposition: there exists a constant CA > 0, such that

∀v ∈ V , v =
N∑
i=1

vi, and
N∑
i=1

‖vi‖2V ≤ CA‖v‖2V .

Then γ2

δ2
is bounded by CA. Subspace condition number is controlled as O(1) via subspace pre-

conditioner Ai. Numerical experiments of RFASD with preconditioner introduced in Section 6.4.3

(pre-RFASD) and RCD are provided on Nesterov’s worst function [32]. pre-RFASD converges

uniformly as dimension of V increases while iteration steps of RCD increases tremendously.

We further develop two acceleration methods for RFASD. AFASD-I is for case (
∑J

i=1 µisi, v)V =

〈−∇f(xk), v〉. In this situation, Nesterov acceleration can be applied with a different nonuni-

form sampling strategy [33]. A modified descent direction (6.25) is required. AFASD-I achieves

complexity bound O(
`S√
µ

log
1

ε
) for strongly convex function and O(

`S√
ε
) where `S =

∑J
i=1

√
Li,

which shows an improvement with RFASD.
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As mentioned in [21], a method may be accelerated if it has linear convergence rate for strongly

convex problems. We introduced the Catalyst acceleration of RFASD (AFASD-II), which uses

RFASD in an inner-loop to solve a regularized optimization problem and Nestrov acceleration

in an outer-loop. Convergence analysis and complexity estimate are provided. By choosing the

optimal parameter, AFASD-II achieves optimal complexity Õ
(√

L
µ

log 1
ε

)
for strongly convex

function and Õ
(√

L
ε

log 1
ε

)
for convex function. Here a log factor dependent on parameters is

hidden in the notation Õ.

6.1 Assumptions

We consider the minimization problem (1.2) with problem settings in Chapter 1. Furthermore, we

require a space decomposition and Lipschitz continuous on each subspace.

Suppose we have a decomposition of space

V = V1 + V2 + · · ·+ VJ , Vi ⊂ V , i = 1, · · · , J,

with the following assumption:

• (LCi) Lipschitz continuous restricted in each subspace with Lipschitz constant Li, i.e.,

‖∇f(x+ vi)−∇f(x)‖V ′ ≤ Li‖vi‖V , ∀ vi ∈ Vi (6.3)

For each subspace Vi, we assign a SPD matrix Ai. The equivalent relation between `2 norm and

Ai norm is described in following inequality.

• (SE) In subspace Vi, `2-norm andAi−norm are equivalent, i.e., there exist constants λi, µi, i =
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1, · · · , J such that

µi(vi, vi)V ≤ (Aivi, vi) ≤ λi(vi, vi)V , ∀vi ∈ Vi.

6.2 Algorithms

We propose the randomized fast subspace descent (RFASD) algorithm (Algorithm 10).

1: Choose x0 and k ← 0

2: for k = 0, 1, · · · do

3: Choose an index of subspace ik from {1, · · · , J}

4: Compute a subspace search direction sik ∈ Vik based on xk

5: Update the subspace correction: αk > 0

xk+1 := xk + αksik .

6: end for
Algorithm 10: Randomized Fast Subspace Descent Method

There are two candidates for distribution p used in the sampling step 3.

• Uniform Sampling. The probability of choosing i-th subspace is

pi =
1

J
, i = 1, 2, . . . , J. (6.4)

• Importance Sampling (with distribution proportional to subspace Lipschitz numbers). The
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probability of choosing i-th subspace is

pi =
Li
`
, i = 1, 2, . . . , J, (6.5)

where ` =
∑J

i=1 Li.

6.3 Convergence Analysis of RFASD

In this section, we discuss the convergence of RFASD. We consider the randomized version with

uniform and non-uniform sampling. We assume each Ai satisfies (SE) with constants µi and λi.

In RFASD Algorithm 10, we have freedom to choose the search direction si, i = 1, 2, · · · , J , at

each iteration. In general, it should approximate the gradient in certain sense in order to provide a

convergent algorithm. Therefore, we make the following assumptions:

• (DD) Descent direction: let si be computed using xk and satisfies

〈−∇f(xk),
J∑
i=1

si〉 ≥ δ

(
J∑
i=1

µi‖si‖2Ai

)
≥ 0 with some δ > 0 (6.6)

• (AP) Approximate gradient: there exists a constant γ such that

‖∇f(xk)‖V ′ ≤ γ

(
J∑
i=1

λi‖si‖2Ai

) 1
2

(6.7)

6.3.1 Linear convergence rate for strongly convex functions

We start with the case that f is strongly convex, i.e., Assumption (A2) holds, and show that RFASD

convergence linearly with properly chosen step size αk for uniform sampling (assume we do not
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know Li).

Theorem 6.3.1 (Uniform sampling & strongly convex case). Suppose Assumption (LC) and (SC)

hold. Assume the search direction si satisfies (DD) and (AP) for i = 1, 2, · · · , J . Furthermore,

assume index ik is chosen uniformly and α =
µikδ

L
, then for all k > 0, we have

E
(
f(xk)

)
− f ∗ ≤

(
1− µ

JL

δ2

γ2
1

κmax

)k (
f(x0)− f ∗

)
, (6.8)

where κi = λi
µi

is the condition number of subspace Vi and κmax = maxκi.

Proof. By the Lipschitz continuity (LC) and subspace norm equivalence (SE) , we have

f(xk+1) ≤ f(xk) + α〈∇f(xk), sik〉+
L

2
α2‖sik‖2V

≤ f(xk)− α〈−∇f(xk), sik〉+
L

2µik
α2‖sik‖2Aik

Choose α =
δµik
L

, we have

f(xk+1) ≤ f(xk)− δµik
L
〈−∇f(xk), sik〉+

δ2µik
2L
‖sik‖2Aik .

Take conditional expectation conditioned by xk with probability pi = 1
J
, j = 1, · · · , J.

E
(
f(xk+1)

)
≤ f(xk)− δ

JL
〈−∇f(xk),

J∑
i=1

µisi〉+
δ2

2JL

J∑
i=1

µi‖si‖2Ai

Assumption (DD) ≤ f(xk)− δ2

2JL

J∑
i=1

µi‖si‖2Ai

≤ f(xk)− δ2

2JL

1

κmax

J∑
i=1

λi‖si‖2Ai

Assumption (AP) ≤ f(xk)− δ2

2JLγ2
1

κmax

‖∇f(xk)‖2V ′ . (6.9)

From strong convexity (SC), we have f(xk) − f ∗ ≤ 1
2µ
‖∇f(xk)‖2V ′ . Use this inequality and
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subtract f ∗ from both sides of the above inequality, we have

E
(
f(xk+1)

)
− f ∗ ≤

(
1− µ

JL

δ2

γ2
1

κmax

)(
f(xk)− f ∗

)
.

By taking expectation with respect to xk on both side, we obtain (6.8).

The convergence rate 1− µ
JL

δ2

γ2
1

κmax
is determined by 3 terms where

• µ
JL

= 1
Jκ

contains information of κ = L
µ

the condition number of global problem and J the

number of subspaces,

• δ2

γ2
measures how good

∑J
i si approximate ∇f(xk),

• 1
κmax

is determined by condition number of subspace Vi.

Here is an estimate of δ
γ
.

|〈−f(xk),
J∑
i=1

si〉| ≤ ‖f(xk)‖V ′‖
J∑
i=1

si‖V

≤ ‖f(xk)‖V ′
J∑
i=1

‖si‖V

≤ ‖f(xk)‖V ′
√
J

(
J∑
i=1

‖si‖2V

) 1
2

≤ ‖f(xk)‖V ′
√
J

(
J∑
i=1

λi‖si‖2Ai

) 1
2

By (AP) and (DD)

δ

(
J∑
i=1

µi‖si‖2Ai

)
≤ γ

(
J∑
i=1

λi‖si‖2Ai

) 1
2 √

J

(
J∑
i=1

λi‖si‖2Ai

) 1
2
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δ

γ
≤
√
J

∑J
i=1 λi‖si‖2Ai∑J
i=1 µi‖si‖2Ai

≤
√
Jκmax.

Similarly, we can analyze the convergence of RFASD when ik is sampled non-uniformly if sub-

space Lipschitz constant Li provided. The result is presented in the following theorem.

Theorem 6.3.2 (Importance sampling & strongly convex case). Suppose Assumption (SC) and

(LCi) hold. Assume the search direction si satisfies (DD) and (AP) for i = 1, 2, · · · , N . Further-

more, assume index ik is chosen non-uniformly with probability Lik∑J
i=1 Li

and αk =
δµik
Lik

, then for all

k > 0, we have

E
(
f(xk)

)
− f ∗ ≤

(
1− µ

`

δ2

γ2
1

κmax

)k (
f(x0)− f ∗

)
, (6.10)

where ` =
∑J

i=1 Li, κi = λi
µi

is the condition number of subspace Vi and κmax = maxκi.

Proof. By the Lipschitz continuity on each subspace (LCi) and subspace norm, we have

f(xk+1) ≤ f(xk) + α〈∇f(xk), sik〉+
L

2
α2‖sik‖2V

≤ f(xk)− α〈−∇f(xk), sik〉+
L

2µik
α2‖sik‖2Aik

Choose α =
δµik
Lik

, we have

f(xk+1) ≤ f(xk)− δµik
Lik
〈−∇f(xk), sik〉+

δ2µik
2Lik

‖sik‖2Aik .
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Take conditional expectation conditioned by xk with probability pi = Li
`
, j = 1, · · · , J.

E
(
f(xk+1)

)
≤ f(xk)− δ

`
〈−∇f(xk),

J∑
i=1

µisi〉+
δ2

2`

J∑
i=1

µi‖si‖2Ai

Assumption (DD) ≤ f(xk)− δ2

2`

J∑
i=1

µi‖si‖2Ai

≤ f(xk)− δ2

2`

1

κmax

J∑
i=1

λi‖si‖2Ai

Assumption (AP) ≤ f(xk)− δ2

2`γ2
1

κmax

‖∇f(xk)‖2V ′ . (6.11)

From strong convexity (SC), we have f(xk) − f ∗ ≤ 1
2µ
‖∇f(xk)‖2V ′ . Use this inequality and

subtract f ∗ from both sides of the above inequality, we have

E
(
f(xk+1)

)
− f ∗ ≤

(
1− µ

`

δ2

γ2
1

κmax

)(
f(xk)− f ∗

)
.

By taking expectation with respect to xk on both side, we obtain (6.8).

With non-uniform sampling, convergence rate also contains 3 terms including µ
`
, how good

∑J
i si

approximates∇f(xk) and local condition number. Since ` =
∑J

i=1 Li ≤ NL, we have

1− µ

`

δ2

γ2
1

κmax

≤ 1− µ

JL

δ2

γ2
1

κmax

,

which means that non-uniform sampling is better then uniform sampling. Of course, in practice,

Lipschitz constants Li might not known which makes non-uniform sampling difficult to use.

6.3.2 Sublinear convergence for convex functions

Next, we give the convergence result without strong convexity, i.e. µ = 0 in Assumption (A2).

The following assumption is needed.
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• (BL) Bounded level set: f is convex and uniformly Lipschitz continuously differentiable,

and attains its minimum value f ∗ on a set S. There is a finite constant R0 such that the level

set for f defined by x0 is bounded, that is,

max
x∗∈S

max
x
{‖x− x∗‖ : f(x) ≤ f(x0)} ≤ R0. (6.12)

We still use the same step size and show that RFASD converges sublinearly in this case.

Theorem 6.3.3 (Uniform sampling & convex case). Suppose the space decomposition satisfies

(LC) and the search direction si satisfies (DD) and (AP) for i = 1, 2, · · · , J . Assume index ik is

chosen uniformly and α =
δµik
L

, then for all k > 0, we have

E
(
f(xk)

)
− f ∗ ≤ 2γ2JLκmaxR

2
0

δ2k
, (6.13)

where κi = λi
µi

is the condition number of subspace Vi and κmax = maxκi.

Proof. From (6.9) and taking expectation with respect to xk, we have

E
(
f(xk+1)

)
− f ∗ ≤ E

(
f(xk)

)
− f ∗ − µ

2JL

δ2

γ2
1

κmax

E
(
‖∇f(xk)‖2V ′

)
(6.14)

Denote dk = E
(
f(xk)

)
− f ∗ and note that

f(xk)− f ∗ ≤ ∇f(xk)T (xk − x∗) ≤ ‖∇f(xk)‖V ′‖xk − x∗‖V ≤ R0‖∇f(xk)‖V ′ .

Then, by taking expectation of the above inequality and substitute it back into (6.14), we have

dk+1 ≤ dk − δ2

2JLγ2κmaxR2
0

(
dk
)2
.
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Based on the above inequality, we obtain

1

dk+1
− 1

dk
=
dk − dk+1

dkdk+1
≥ dk − dk+1

(dk)2
≥ δ2

2JLγ2κmaxR2
0

.

Recursively apply this, we have

1

dk
≥ 1

d0
+

δ2k

2JLγ2κmaxR2
0

≥ δ2k

2JLγ2κmaxR2
0

which implies (6.13).

Following the same argument, we can have the similar result for non-uniform sampling case as

shown in the following theorem.

Theorem 6.3.4 (Importance sampling & Convex). Suppose the space decomposition satifies (SA)

and the search direction si satisfies (DD) and (AP) for i = 1, 2, · · · , J . Assume index ik is chosen

is chosen non-uniformly with probability Lik
`

, and αk =
δµik
Lik

, then for all k > 0, we have

E
(
f(xk)

)
− f ∗ ≤ 2γ2`κmaxR

2
0

δ2k
(6.15)

where ` =
∑J

i=1 Li and κmax = maxi
λi
µi

is the condition number of subspace Vi.

Proof. The proof follows directly from (6.11) by using the same argument as the proof of Theo-

rem 6.3.3.

Again we have

2γ2`κmaxR
2
0

δ2k
≤ 2γ2JLκmaxR

2
0

δ2k
,

which implies that the non-uniform sampling convergences faster than the uniform sampling case

theoretically.
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6.4 Examples of Randomized Fast Subspace Descent Methods

In this section, we consider several methods which can be viewed as specific examples of Ran-

domized Fast Subspace Descent Methods.

6.4.1 Gradient Descent method

Let V = RN equipped with standard `2-norm and trivial space decomposition Vi = RN , i = 1.

Thus J = 1. Let A1 = I , which induces µ1 = λ1 = 1 and si = −∇f(xk). The Assumptions (DD)

and (AP) can be checked

s1 = −∇f(xk) and ‖s1‖2 = ‖∇f(xk)‖2,

which implies δ = 1 and γ = 1. Set α = 1. Since there is only one subspace, we do not need to

apply sampling. Theorem 6.3.1 and 6.3.3 recovers the convergence properties of gradient descent.

• Convex : O
(

2LR2
0

k

)

• Strongly convex: O
((

1− µ

L

)k)
Example 6.4.1. Consider the Nestrov’s ‘worst’ problem: for x ∈ RN ,

fL,r(x) =
L

4

(
1

2

(
x21 +

r−1∑
i=1

(xi − xi−1)2 + x2r

)
− x1

)
, (6.16)

where xi represents the i−th coordinate of x and r < N is a constant integer that defines the

intrinsic dimension of the problem [32]. The minimum value of the function is

f∗ =
L

8

(
−1 +

1

r + 1

)
. (6.17)
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The condition number of each subspace Vi = {xi} is O(r2). Randomness is memory efficiency

but does not contribute to convergence rate due to the ill-conditioning. Notice that the L, µ is

measured in `2-norm and thus could be very large for ill-conditioned problem.

6.4.2 (Block) coordinate descent method

Let V = RN with standard `2-norm ‖ · ‖. Define a partition of the unit matrix

In = (U1, · · · , UJ) ∈ RN×N , Ui ∈ RN×ni , i = 1, · · · , J.

Now we consider the space decomposition V = ⊕Ji=1Vi,where Vi = Range(Ui) and
∑J

i=1 ni = N.

Suppose the decomposition satisfies (LCi). The search direction is given by

si = −UiUᵀi ∇f(xk).

Let Ai = Ii. Thus µi = λi = 1 and κmax = 1. Again, it is easy to see that

J∑
i=1

si = −∇f(xk) and
J∑
i=1

‖si‖2 = ‖∇f(xk)‖2.

This implies Assumption (DD) and (AP) hold with δ = γ = 1. Therefore, choosing stepsize

α = 1, Theorem 6.3.1, 6.3.2, 6.3.3, and 6.3.4 recovery the classical convergence analysis of block

CD method [31] as follows,

• Uniform sampling & Convex : O
(

2JLR2
0

k

)

• Non-uniform sampling & Convex: O
(

2`R2
0

k

)

• Uniform sampling & Strongly convex: O
((

1− µ

JL

)k)
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• Non-uniform sampling & Strongly convex: O
((

1− µ

`

)k)

In [31], the author assumes f is coordinatewise Lipschitz continuous with constant Li, i.e

‖f ′i(xi + Uihi)− f ′i(x)‖∗(i) ≤ Li‖hi‖(i), hi ∈ Rni , i = 1, · · · , J, x ∈

The subspace is chosen with a random counter Aβ, β ∈ R. It generates an integer number i ∈

{1, · · · , n} with probability

p
(i)
β = Lβi ·

[
N∑
j=1

Lβj

]−1
, i = 1, · · · , J.

Popular choices of β is 0, 1
2
, 1. When β = 0, the distribution is uniform. When β = 1, the

distribution is proportional to subspace Lipschitz constant Lj . The convergence result on convex

function on Nestrov’s paper [31] is

E[f(xk)]− f ∗ ≤ 2

k + 4
·

(
n∑
j=1

Lβj

)
R2

1−β(x0). (6.18)

For strongly convex function f , assume the convexity parameter is µ > 0. Theorem 2 in [31]

shows that the function f is strongly convex norm ‖ · ‖[1−β] with convexity parameter µ1−β > 0.

And

E[f(xk)]− f ∗ ≤

(
1− µ1−β∑n

i=1 L
β
i

)
(f(x0)− f ∗) . (6.19)

Let n = J and β = 0, 1, Nestrov’s results (6.18) and (6.19) is

• Uniform sampling & Convex : O
(

2JR2
1

k + 4

)
;

• Non-uniform sampling & Convex: O
(

2`R2
0

k + 4

)
;

102



• Uniform sampling & Strongly convex: O
((

1− µ1

J

)k)
;

• Non-uniform sampling & Strongly convex: O
((

1− µ0

`

)k)
,

where µ0 = µ.

Since

‖x‖[1] =

(
N∑
i=1

Lix
2
i

) 1
2

≤ (maxLi)
1
2

(
N∑
i=1

x2i

) 1
2

= L
1
2‖x‖[0]. (6.20)

and by definition in [31],

R1(x0) = max
x
{max
x∗∈X∗

‖x− x∗‖[1] : f(x) ≤ f(x0)}.

We have

R1(x0) ≤ L
1
2R0(x0).

And by definition of strong convexity

〈∇f(x)−∇f(y), x− y〉 ≥ µ1‖x− y‖2[1],

〈∇f(x)−∇f(y), x− y〉 ≥ µ0‖x− y‖2[0] ≥ µ0
1

L
‖x− y‖2[0].

Thus

µ1 ≥
µ0

L
.

Our results recovers Nestrov’s results [31].

Remark 6.4.2. When J = N , it is Coordinate Descent Method. As J decreases, the convergence

is faster while the complexity in each update increases.
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6.4.3 Preconditioned RFASD

Consider space decomposition V = V1 + V2 + · · · + VJ and Vi ⊂ V and assume this space

decomposition is stable,

• (SD) Stable decomposition: there exists a constant CA > 0, such that

∀v ∈ V , v =
J∑
i=1

vi, and
J∑
i=1

‖vi‖2V ≤ CA‖v‖2V .

Let Ai be a SPD matrix on subspace Vi satisfying the assumption (SE). Ai is served as precondi-

tioner.

The search direction si is chosen as follows,

Aisi = −Ri∇f(xk),

wherer Ri is restriction operator V ′ → V ′i. Let Ii : Vi 7→ V be the natural inclusion and then

Ri = Iᵀi since (Rᵀi vi, v) = (vi, Riv) = (vi, v) = (Iivi, v), ∀vi ∈ Vi, v ∈ V .

To verify (DD), note that

〈−∇f(xk), µisi〉 = µi‖si‖2Ai

Summing over i,

〈−∇f(xk),
J∑
i=1

µisi〉 =
J∑
i=1

µi‖si‖2Ai .

Therefore Assumption (DD) holds with δ = 1.

Lemma 6.4.3. Assume the space decomposition V =
∑J

i=1 Vi satisfy the stable decomposition

assumption (SD). Let g = −∇f(xk), gi = Rig for i = 1, 2, . . . , N . Then

‖∇f(xk)‖2V ′ ≤ CA

J∑
i=1

‖gi‖2V ′i . (6.21)

104



Proof. For any w ∈ V , we chose a stable decomposition w =
∑J

i=1wi, wi ∈ Vi. Then

〈∇f(xk), w〉 =
J∑
i=1

〈∇f(xk), wi〉 =
J∑
i=1

〈gi, wi〉

≤

(
J∑
i=1

‖gi‖2V ′i

)1/2( J∑
i=1

‖wi‖2V

)1/2

≤ C
1/2
A

(
J∑
i=1

‖gi‖2V ′i

)1/2

‖w‖V .

Thus,

‖∇f(xk)‖V ′ = sup
w∈V

〈∇f(xk), w〉
‖w‖V

≤ C
1/2
A

(
J∑
i=1

‖gi‖2V ′i

)1/2

,

and the proof is completed by taking squares.

Lemma 6.4.3 implies that Assumption (AP) holds with γ = C
1/2
A .

Now we have the following convergence results of preconditioned RFASD (pre-RFASD) methods.

Table 6.1: Complexity of pre-RFASD

Convex Strongly convex

Uniform Sampling O

(
CAJLκmax

ε

)
O

(
CAJLκmax

µ
log

1

ε

)
Importance Sampling O

(
CA`κmax

ε

)
O

(
CA`κmax

µ
log

1

ε

)

For BCD, the convergence rate for strongly convex function with uniform sampling is 1 − 1
J
µ
L

,

while for RFASD the convergence rate is 1− 1
J

1
CA

µ
L

1
κmax

. The convergence rate of BCD is simply

depends on L
µ

– the condition number of function f in space V and J– the number of subspaces.

The convergence rate of RFASD is influenced by L
µ

– the condition number of function f in space

V , J– the number of subspaces, CA– the constant in stable decomposition and κmax– the maximum

condition number of f on subspaces Vi. The issue for BCD is the condition number L
µ

can be very

large for ill-conditioned problem. Thus the convergence is slow. However, if we apply RFASD,

the condition number L
µ

is reduced to O(1) if measured in ‖ · ‖A. The local condition number
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κmax can also be reduced to O(1) if proper preconditioner Ai is found. And CA is controllable by

stable decomposition of space V . Thus 1
CA

µ
L

1
κmax

in RFASD is much smaller than µ
L

in BCD, which

accelerates convergence significantly.

6.4.4 Randomized Full Approximation Storage Scheme

For full approximation storage (FAS) scheme, consider the space decomposition V = V1 + V2 +

· · ·+ VJ and Vi ⊂ V . We assume the space decomposition satisfies the following assumption

Let Ii : Vi 7→ V be the natrual inclusion and Ri = Iᵀi . Let Qi : V 7→ Qi be a projection

operator and, ideally,Qiv should provide a good approximation of v in the subspace Vi. In addition,

fi(x) : Vi 7→ R is the local objective functions. Here, we have freedom to choose fi on subspace

Vi and assume the following conditions on fi hold.

• (LCfi) Lipschitz continuity of the first order dervative: for all x, y ∈ Vi

‖∇fi(x)−∇fi(y)‖V ′ ≤ Li‖x− y‖V .

• (SCfi) Strong convexity: for all x, y ∈ Vi

〈∇fi(x)−∇fi(y), x− y〉 ≥ µi‖x− y‖2V .

For FAS, the search direction si, i = 1, 2, · · · , N , is chosen in the following way,

si := (ηi −Qix
k), 〈∇fi(ηi), vi〉 = 〈∇fi(Qix

k)−Ri∇f(xk), vi〉, ∀vi ∈ Vi.

Assume∇2f exists. Define Ai =
∫ 1

0
∇2fi(Qix

k + tsi)dt. Then

µi(vi, vi)V ≤ 〈Aisi, si〉 ≤ λi(vi, vi)V .
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(SE) holds with λi and µi defined in (LCfi) and (SCfi).

Now let us verify Assumption (DD) and (AP). For (DD),

〈−∇f(xk), µisi〉 = µi〈∇fi(Qix
k + si)−∇fi(Qix

k), si〉

= µi〈Aisi, si〉

= µi‖si‖2Ai .

Therefore Assumption (DD) holds with δ = 1.

For (AP), by Lemma 6.4.3, we have γ = C
1/2
A .

We have the following convergence results of randomized FAS (RFAS) scheme in the RFASD

framework.

Table 6.2: Complexity of RFAS

Convex Strongly convex

Uniform Sampling O

(
CAJLκmax

ε

)
O

(
CAJLκmax

µ
log

1

ε

)
Importance Sampling O

(
CA`κmax

ε

)
O

(
CA`κmax

µ
log

1

ε

)

Remark 6.4.4. If we use fi(w) = 1
2
‖w − Qix

k‖2Ai , RFAS is the same as preconditioned RFASD.

This illustrates why they have the same convergence results.

6.5 Numerical Results of Randomized Fast Subspace Descent

Methods

In this section, we consider several methods which can be viewed as specific examples of Ran-

domized Fast Subspace Descent Methods.
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6.5.1 Randomized CD and Preconditioned FASD

Numerical experiments are done on Nestrov’s worst function described in Example 6.4.1. The

comparison are made between randomized CD (RCD), Preconditioned RFASD (RFASD) and Pre-

conditioned RFASD with permutation (non-replacement sampling) (RFASDperm). To illustrate the

influence of randomization, performance of cyclic CD and FASD are provided.

Preconditioner is constructed by Geometric Mulgirid Methods (GMG). Total number of iterations

is listed in column niter1.mean, niter2.mean and niter3.mean for RCD, RFASD and RFASDperm

respectively. The number of iterations niter1dn of RCD is counted by total numbers of sweeps

divided by N– dimension of V while the number of iterations niter2dj of RFASD and niter3dj of

RFASDperm are counted by total number of sweeps divided by J– number of subspaces while for

each i, dim(Vi) = 1.

We compare the numerical results as following. Each experiment is tested on 8 times for RCD and

RFASD and statistics of numerical results are listed in TABLE 6.3 and TABLE 6.5. Statistics of

numerical results of RFASD and RFASDperm are compared in TABLE 6.4 and TABLE 6.6. From

TABLE 6.3, we find the niter1dn has a sharp increasing asN increases while niter2dj has a uniform

bound as J increases. From TABLE 6.4, we find both niter2dj and niter3dj have uniform bounds

as J increases while the bound for niter3dj is smaller. Permutation (non-replacement sampling)

contributes to fast convergence.

As mentioned in TABLE 6.19, the complexity of RCD is O
(
NL

µ
log

1

ε

)
. In `2 norm, the con-

dition number of Nestrov’s worst function in nondegenerate case is O(N2). The complexity is

O

(
N3 log

1

ε

)
. Iteration steps increase tremendously as N increases. For preconditioned RFASD,

the complexity is O
(
CAJLκmax

µ
log

1

ε

)
. Viewed in A norm, the condition number of Nestrov’s

worst function is L
µ

= O(1). InAi norm, the condition number of sub problem is 1. Thus κmax = 1.

By multigrid subspace decomposition, CA is controllable. This explains the uniform convergence

steps for RFASD in Nestrov’s worst function.
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The elapsed CPU time for RCD, RFASD and RFASDperm are shown in TABLE 6.7 and 6.8, which

implies RFASD and RFASDperm increases much faster than RCD in setup time but save a lot in

iteration time and thus total CPU time. This is because for RFASD and RFASDperm, prolongation

and restriction matrices need to be computed. However, RFASD and RFASDperm achieve uniform

iteration steps. Thus RFASD and RFASDperm benefits in the total elapsed CPU time.

CPU time for cyclic CD and preconditioned FASD are shown in TABLE 6.12 and 6.13.Similar

phenomenon can be observed by the different trend of setup time and iteration time. Cyclic CD

needs almost half iteration steps to reach accuracy compared to random CD since it goes through

every coordinate of space V in one epoch. Cyclic FASD also shows a faster convergence than

random FASD but not significant as the difference between cyclic CD and random CD. It needs

approximately one third less iterations measured in niter2 and 4 5 less steps measures in niter2dj.

Table 6.3: RCD and RFASD iterations mean

RCD RFASD
N niter1.mean niter1dn.mean diff1.mean J niter2.mean niter2dj.mean diff2.mean
7 1147.9 163.98 4.80e-13 11 135.38 12.31 6.55e-12

15 8864.1 590.94 1.93e-12 26 337.5 12.98 1.82e-10
31 66704 2151.7 7.96e-12 57 845.5 14.83 1.61e-09
63 4.88e+5 7741 3.13e-11 120 1814.1 15.12 1.15e-08

127 3.50e+6 27576 1.20e-10 247 3963.9 16.05 1.12e-07
255 2.47e+7 96672 4.65e-10 502 7897 15.73 8.30e-07
511 1.23e+8 2.40e+5 5.71e-08 1013 16044 15.84 7.92e-06

Table 6.4: RFASD and RFASDperm iterations mean

RFASD RFASDperm

J niter2.mean niter2dj.mean diff2.mean J niter3.mean niter3dj.mean diff3.mean
11 135.38 12.31 6.55e-12 11 39.25 3.57 3.19e-12
26 337.5 12.98 1.82e-10 26 169 6.5 1.33e-10
57 845.5 14.83 1.61e-09 57 393.25 6.90 1.43e-09

120 1814.1 15.12 1.15e-08 120 881.75 7.35 1.33e-08
247 3963.9 16.05 1.12e-07 247 1822 7.38 1.17e-07
502 7897 15.73 8.30e-07 502 3806.8 7.58 1.04e-06

1013 16044 15.84 7.92e-06 1013 7785.6 7.69 8.44e-06
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Table 6.5: RCD and RFASD iterations std

RCD RFASD
N niter1.std niter1dn.std diff1.std J niter2.std niter2dj.std diff2.std
7 36.20 5.17 3.54e-14 11 80.75 7.34 7.96e-12

15 142.98 9.53 1.41e-13 26 42.96 1.65 8.02e-11
31 265.99 8.58 2.26e-13 57 129.9 2.28 5.46e-10
63 1585.9 25.17 1.49e-12 120 157.27 1.31 5.41e-09

127 5313.9 41.842 2.5309e-12 247 409.81 1.6591 2.094e-08
255 23946 93.90 6.12e-12 502 708.22 1.41 1.55e-07
511 0 3.11e-11 6.84e-11 1013 1382.7 1.36 1.06e-06

Table 6.6: RFASD and RFASDperm iterations std

RFASD RFASDperm

J niter2.std niter2dj.std diff2.std J niter3.std niter3dj.std diff3.std
11 80.75 7.34 7.96e-12 11 28.22 2.57 6.53e-12
26 42.96 1.65 8.02e-11 26 22.46 0.86 8.17e-11
57 129.9 2.28 5.46e-10 57 18.52 0.32 3.33e-10

120 157.27 1.31 5.41e-09 120 81.13 0.68 4.43e-09
247 409.81 1.66 2.09e-08 247 63.99 0.26 3.20e-08
502 708.22 1.41 1.55e-07 502 255.16 0.51 2.34e-07

1013 1382.7 1.36 1.06e-06 1013 385.81 0.38 1.68e-06

Table 6.7: RCD, RFASD and RFASDperm CPU time mean

RCD RFASD RFASDperm

N setup1.mean iter1.mean J setup2.mean iter2.mean setup3.mean iter3.mean
7 2.70e-04 7.84e-03 11 3.75e-04 7.51e-04 2.60e-04 3.75e-04

15 1.37e-04 4.28e-02 26 1.56e-03 8.31e-04 3.02e-04 4.48e-04
31 4.49e-04 3.07e-01 57 c2.52e-03 2.52e-03 3.76e-04 8.82e-04
63 1.24e-04 2.41 120 8.48e-04 9.80e-03 5.06e-04 3.85e-03

127 1.41e-04 18.34 247 1.39e-03 4.82e-02 1.24e-03 1.91e-02
255 1.96e-04 133.68 502 5.74e-03 2.42e-01 4.65e-03 1.21e-01
511 3.24e-04 811.64 1013 3.06e-02 3.71 2.59e-02 1.69

110



Table 6.8: RCD, RFASD and RFASDperm CPU time std

RCD RFASD RFASDperm

N setup1.std iter1.std J setup2.std iter2.std J setup3.std iter3.std
7 2.09e-04 3.94e-03 11 2.60e-04 1.08e-03 11 1.66e-04 8.85e-04

15 8.05e-05 6.18e-03 26 3.51e-03 3.04e-04 26 2.46e-04 6.24e-04
31 9.65e-04 4.38e-02 57 5.89e-03 4.06e-04 57 1.24e-04 2.68e-04
63 4.49e-05 4.73e-01 120 7.35e-04 7.60e-04 120 6.83e-05 4.23e-04

127 2.41e-05 4.22 247 9.66e-04 9.47e-03 247 4.17e-04 6.81e-04
255 3.80e-05 16.50 502 7.67e-04 2.45e-02 502 6.24e-04 3.34e-02
511 9.84e-05 82.10 1013 5.65e-03 5.43e-01 1013 2.55e-03 3.34e-01

6.5.2 Cyclic CD and Preconditioned FASD

The results of cyclic version CD and preconditioned FASD are also included in TABLE 6.9, 6.10

and 6.11.

Table 6.9: cyclic CD iterations mean

N niter1.mean niter1dn.mean diff1.mean
7 559 79.86 5.57e-13

15 4380 292 3.03e-12
31 32735 1056 1.27e-11
63 2.38e+05 3779 5.16e-11

127 1.70e+06 13360 2.07e-10
255 1.19e+07 46472 8.30e-10
511 8.08e+07 1.58e+05 3.32e-09

Table 6.10: cyclic pre-FASD iterations mean

J niter2.mean niter2dj.mean diff2.mean
11 79 7.18 1.20e-12
26 262 10.08 5.33e-11
57 629 11.04 8.20e-10

120 1392 11.6 1.19e-08
247 2912 11.79 1.27e-07
502 6050 12.05 1.05e-06

1013 12267 12.11 7.86e-06
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Table 6.11: cyclic CD and pre-FASD iterations std

cyclic CD cyclic pre-FASD
N niter1.std niter1dn.std diff1.std J niter2.std niter2dj.std diff2.std
7 0 1.52e-14 0 11 0 9.50e-16 0

15 0 0 0 26 0 1.90e-15 0
31 0 0 0 57 0 0 0
63 0 4.86e-13 0 120 0 1.90e-15 0
127 0 0 0 247 0 1.90e-15 0
255 0 0 0 502 0 1.90e-15 0
511 0 0 0 1013 0 0 0

Table 6.12: cyclic CD and pre-FASD CPU time mean

cyclic CD cyclic pre-FASD
N setup1.mean iter1.mean J setup2.mean iter2.mean
7 6.41e-4 2.68e-3 11 7.36e-4 5.11e-4

15 1.61e-4 1.83e-2 26 3.11e-4 5.80e-4
31 1.89e-4 1.36e-1 57 4.30e-4 1.57e-3
63 1.95e-4 9.90e-1 120 5.79e-4 7.65e-3

127 1.49e-4 7.24 247 1.03e-3 3.46e-2
255 2.00e-4 57.74 502 3.57e-3 1.84e-1
511 3.34e-4 493.18 1013 2.28e-2 2.67

Table 6.13: cyclic CD and pre-FASD CPU time std

cyclic CD cyclic pre-FASD
N setup1.std iter1.std J setup2.std iter2.std
7 1.31e-3 8.88e-4 11 1.51e-3 1.01e-3

15 4.96e-5 2.06e-3 26 1.12e-4 2.57e-4
31 8.39e-5 1.69e-2 57 8.33e-5 7.67e-5
63 9.48e-5 1.69e-2 120 9.98e-5 1.07e-3

127 4.55e-5 1.74e-1 247 1.30e-4 3.52e-3
255 3.38e-5 1.30 502 8.52e-4 5.26e-3
511 2.27e-4 7.64 1013 4.22e-3 3.19e-1

112



(a) (b)

(c)

Figure 6.1: Random CD and FASD (a) Setup Time (b) Iteration Time (c) Total Time
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(a) (b)

(c)

Figure 6.2: Cyclic CD and pre-FASD (a) Setup Time (b) Iteration Time (c) Total Time
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6.5.3 Linear Regression

We also test RCD and randomized RFASD in linear regression problems and list results in Table

6.14 and 6.15. In this example, RCD fails to converge to minimal.

The objective function of minimization problem in [20] is f(x) = 1
m
‖b− Ax‖2 + λ‖x‖22.

• Data matrix Am×n : each row is independently sampled from a N-dim Gaussian distribution

with mean 0 and variance Σ;

• x: randomly select N/10 entries of x, each of which is independently sampled from a uniform

distribution over support (−2, 2);

• Label b: generated by linear model b = Ax+ ε, ε ∼ N (0, In);

• Covariance matrix Σ: Σii = 1,Σij ∈ {0, 0.5, 0.75, 0.95}. The larger of off-diagonal values,

the more ill condition of the data matrix A.

• Regularization parameter λ: parameter makes problem less ill-conditioned, λ = 0, 0.1/m.

Table 6.14: RCD and RFASD iterations: Gaussian Matrices

Problems randomized CD randomized pre-FASD
M N fopt niter1 niter1dn fopt1 niter2 niter2dj fopt2
14 7 4.38e-29 1.03e+05 1.48e+04 1.00e-1 62 5.17 8.92e-02
30 15 1.02e-27 6.4e+05 4.27e+04 2.68 618 2.94e+01 9.90e-02
62 31 1.31e-20 1.28e+06 4.12e+04 1.05e+02 2.12e+04 2.23e+02 9.96e-02

126 63 5.36e-18 2.56e+06 4.06e+04 2.05e+04 2.12e+04 2.23e+02 1.00e-01
254 127 2.68e-18 5.12e+06 4.03e+04 5.96e+04 1.94e+04 1.17e+02 1.00e-01
510 255 3.49e-15 1.02e+07 4.01+04 2.45e+04 1.62e+05 5.99e+02 1.00e-01

The following tables 6.16 and 6.17 provide applying RCD and Rpre-FASD to linear regression

with A is a UDV matrix defined in Chapter 3.
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Table 6.15: RCD and RFASD CPU time: Gaussian Matrices

Problems randomized CD randomized pre-FASD
M N setup1 iter1 step2 iter2
14 7 1.29e-03 1.26 1.68e-02 5.70e-04
30 15 1.92e-03 7.34 1.089e-03 4.77e-03
62 31 1.94e-03 1.57e+01 1.33e-03 2.42e-02

126 63 2.59e-03 4.02e+01 1.86e-03 3.06e-01
254 127 4.72e-03 1.22e+02 3.58e-03 4.97e-01

Table 6.16: RCD and RFASD iterations:UDV Matrices

Problems randomized CD randomized pre-FASD
M N fopt niter1 niter1dn fopt1 niter2 niter2dj fopt2
14 7 1.72e-01 1.51e+05 2.16e+04 2.73e-1 2.93e+02 2.66e+01 2.72e-01
30 15 3.84e-01 6.4e+05 4.27e+04 1.98 3.21e+02 1.33e+01 4.79e-01
62 31 4.10e-01 1.28e+06 4.13e+04 1.14e+02 1.70e+04 3.39e+02 7.52e-01

126 63 6.52e-01 2.56e+06 4.06e+04 1.77e+03 1.30e+04 1.32e+02 7.52e-01
254 127 7.493-01 5.12e+06 4.03e+04 6.25e+03 4.08e+04 2.47e+02 8.48e-01
510 255 1.17 1.02e+07 4.01+04 2.07e+04 1.59e+05 5.98e+02 1.271

Table 6.17: RCD and RFASD CPU time:UDV Matrices

Problems randomized CD randomized pre-FASD
M N setup1 iter1 step2 iter2
14 7 6.17e-03 1.50 8.26e-04 2.38e-03
30 15 6.89e-03 6.74 1.08e-02 2.84e-02
62 31 1.78e-03 1.46e+01 1.37e-03 1.58e-01

126 63 7.34e-02 1.20e+02 3.59e-03 1.07
254 127 7.26e-03 4.15e+02 9.70e-03 7.28
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6.6 Accelerated FASD

In this section, we discuss how to accelerate RFASD. We consider two different cases. First case is

that (
∑J

i=1 µisi, v)V = 〈−∇f(xk), v〉, for any v ∈ V . In this case, Nesterov-type acceleration [32]

can be applied. Examples include coordinate descent and block coordinate descent method. Sec-

ond case is the general case that (
∑J

i=1 µisi, v)V 6= 〈−∇f(xk), v〉, for any v ∈ V . For this case,

directly apply Nesterov acceleration is difficult and we use the catalyst acceleration developed

in [22] to accelerate RFASD. The full approximation storage (FAS) scheme from multigrid com-

munity belongs to this case.

Denote ` =
∑J

i=1 Li and `S =
∑J

i=1

√
Li.

6.6.1 Case I: (
∑J

i=1 µisi, v)V = 〈−∇f(xk), v〉

For this special case, we adopt the acceleration techniques developed in [33] to accelerate the

RFASD method. The accelerated algorithm, which we call AFASD-I, is proposed as follows.

Here, we basically used Nesterov accelaration technique with a different nonuniform sampling

strategy. Following the idea proposed in [33], we use a modified version of Assumption (DD) as

follows.

• (DDm) Descent direction (modified version): let si be computed using yk,

〈−∇f(yk),
J∑
i=1

µi√
Li
si〉 ≥ δ

(
J∑
i=1

µi√
Li
‖si‖2Ai

)
≥ 0 (6.25)

Essentially, the right hand side is basically a weighted norm used in [33]. In fact, a general version

(
∑J

i=1 L
θ
i ‖si‖2V) with θ ∈ [−1, 1] was considered there.

Next theorem shows that AFASD-I (Algorithm 11) achieves acceleration, which shows the accel-
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1: Choose v0 = x0, set A0 = 0, B0 = 1
2: for k = 0, 1, · · · do
3: Choose a index of subspace ik from {1, · · · , J} with probability

pik =

√
Lik
`S

, where `S =
J∑
i=1

√
Li.

4: Solve ak+1 > 0 from the following equation

a2k+1

`2S
δ2

= (Ak + ak+1)(Bk + µak+1). (6.22)

5: Define

Ak+1 = Ak + ak+1, αk =
ak+1

Ak+1

,

Bk+1 = Bk + µak+1, βk =
µak+1

Bk+1

.

6: Update

yk =
(1− αk)xk + αk(1− βk)vk

1− αkβk
. (6.23)

7: Compute a subspace search direction sik ∈ Vik and update

xk+1 = yk +
δµik
Lik

sik (6.24)

vk+1 = (1− βk)vk + βky
k +

ak+1

Bk+1pik
µiksik .

8: end for
Algorithm 11: Accelerated RFASD: case I (AFASD-I)
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eration still works for our general space decomposition, especially those with redundancy.

Theorem 6.6.1. Assume the Assumptions (SC), (LCi), (SCi) and (DDm) hold, then the sequences

xk and vk, k = 0, 1, · · · generated by AFASD-I (Algorithm 11) satisfy the following convergence

estimates,

BkE(‖vk − x∗‖2V) + 2Ak
(
E(f(xk))− f(x∗)

)
≤ ‖x0 − x∗‖2V . (6.26)

Proof. Denote wk = (1− βk)vk + βky
k, we have,

‖vk+1 − x∗‖2V = ‖wk +
ak+1

Bk+1pik
µiksik − x∗‖2V

= ‖wk − x∗‖2V +
2ak+1

Bk+1pik
(µiksik , w

k − x∗)V +
a2k+1

B2
k+1p

2
ik

µ2
ik
‖sik‖2V

≤ ‖wk − x∗‖2V +
2ak+1

Bk+1pik
(µiksik , w

k − x∗)V +
a2k+1

B2
k+1p

2
ik

µik‖sik‖2Aik .

Note that, ‖wk − x∗‖2V ≤ (1− βk)‖vk − x∗‖2V + βk‖yk − x∗‖2V , we have

Bk+1‖vk+1 − x∗‖2V ≤ (1− βk)Bk+1‖vk − x∗‖2V + βkBk+1‖yk − x∗‖2V

+
2ak+1

pik
(µiksik , w

k − x∗)V +
a2k+1µik
Bk+1p2ik

‖sik‖2Aik

Taking conditional expectation on both sides of the above inequality and use the fact that (1 −
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βk)Bk+1 = Bk and βkBk+1 = µak+1, we get

Bk+1E(‖vk+1 − x∗‖2V) ≤ Bk‖vk − x∗‖2V + µak+1‖yk − x∗‖2V

+
J∑
i=1

pi
2ak+1

pi
(µisi, w

k − x∗)V +
J∑
i=1

pi
a2k+1µi

Bk+1p2i
‖si‖2Ai

= Bk‖vk − x∗‖2V + µak+1‖yk − x∗‖2V

+ 2ak+1

J∑
i=1

(µisi, w
k − x∗)V +

a2k+1

Bk+1

J∑
i=1

µi
pi
‖si‖2Ai

= Bk‖vk − x∗‖2V + µak+1‖yk − x∗‖2V

+ 2ak+1

J∑
i=1

(µisi, w
k − x∗)V +

a2k+1`S

Bk+1

(
J∑
i=1

L
− 1

2
i µi‖si‖2Ai

)
.

(6.27)

Now we need to estimate the last two terms in the right hand side. For the last term, from (6.24),

we obtain

f(xk+1) ≤ f(yk)− δµik
Lik
〈−∇f(yk), sik〉+

δ2µ2
ik

2Lik
‖sik‖2V .

Take the expectation as before, we have

E
(
f(xk+1)

)
≤ f(yk)−

J∑
i=1

√
Li
`S

δµi
Li
〈−∇f(yk), si〉+

J∑
i=1

√
Li
`S

δ2µ2
i

2Li
‖si‖2V

Assumption (DDm) ≤ f(yk)− δ2

`S

(
J∑
i=1

µi√
Li
‖si‖2V

)
+

δ2

2`S

(
J∑
i=1

µi√
Li
‖si‖2V

)

≤ f(yk)− δ2

2`S

(
J∑
i=1

µi√
Li
‖si‖2V

)

Therefore, we have

(
J∑
i=1

µi√
Li
‖si‖2V

)
≤ 2`S

δ2
(
f(yk)− E(f(xk+1))

)
. (6.28)
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For the third term, from (6.23) and the definition of wk, we have

(1− αkβk)yk = (1− αk)xk + αk(1− βk)vk

= (1− αk)xk + αk(w
k − βkyk)

= (1− αk)xk + αkw
k − αkβkyk,

which implies wk = yk − 1−αk
αk

(xk − yk). Note that

ak+1

J∑
i=1

(si, w
k − x∗)V = ak+1〈∇f(yk), x∗ − wk〉

= ak+1〈∇f(yk), x∗ − yk +
1− αk
αk

(xk − yk)〉

(Assumption (SC)) ≤ ak+1

(
f(x∗)− f(yk)

)
− 1

2
µak+1‖yk − x∗‖2V

+ ak+1
1− αk
αk

(
f(xk)− f(yk)

)
= ak+1f(x∗)− Ak+1f(yk) + Akf(xk)− 1

2
µak+1‖yk − x∗‖2V .

(6.29)

Plug (6.29) and (6.28) back into (6.27), we have

Bk+1E(‖vk+1 − x∗‖2V) ≤ Bk‖vk − x∗‖2V + µak+1‖yk − x∗‖2V

+ 2ak+1f(x∗)− 2Ak+1f(yk) + 2Akf(xk)− µak+1‖yk − x∗‖2V

+
2a2k+1`

2
S

Bk+1δ2
(
f(yk)− E(f(xk+1))

)
= Bk‖vk − x∗‖2V + 2(Ak+1 − Ak)f(x∗)− 2Ak+1f(yk) + 2Akf(xk)

+ 2Ak+1

(
f(yk)− E(f(xk+1))

)
= Bk‖vk − x∗‖2V + 2Ak

(
f(xk)− f(x∗)

)
− 2Ak+1

(
E(f(xk+1))− f(x∗)

)
.
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Take the expectation and apply the above inequality recursively, we obtain

Bk+1E(‖vk+1 − x∗‖2V) + 2Ak+1

(
E(f(xk+1))− f(x∗)

)
≤ ‖x0 − x∗‖2V ,

where we use the fact that A0 = 0, B0 = 1, and v0 = x0.

Now we need estimate the growth of the coefficients Ak and Bk, which is given in the following

lemma.

Lemma 6.6.2. The sequences Ak and Bk, k = 0, 1, · · · , generated by the AFASD-I (Algorithm 11)

satisfies

Ak+1 ≥
δ2

4`2S
k2, Bk ≥ 1. (6.30)

Moreover, for the strongly convex case, i.e., µ > 0, the sequences can be further estimated as

follows:

Ak ≥
1

4µ

[
(1 + ζ)k − (1− ζ)k

]2 ≥ δ2

4`2S
k2 (6.31)

Bk ≥
1

4

[
(1 + ζ)k + (1− ζ)k

]2
, (6.32)

where ζ =

√
µδ

2`S
.

Proof. The proof is essentially the same as the proof given in [33]. We briefly recall the proof here

for the completeness.

Note that (6.22) can be rewritten as

(Ak+1 − Ak)2
`2S
δ2

= Ak+1(1 + µAk+1),
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where we use the fact that Bk+1 = 1 + µAk+1. Denote Ck =
√
µAk, k = 0, 1, · · · , then

µ−1C2
k+1(1 + C2

k+1) = µ−2
`2S
δ2

(C2
k+1 − C2

k)2 ≤ 4µ−2
`2S
δ2

(Ck+1 − Ck)2C2
k+1.

Then use the definition of ζ , we have

Ck+1 − Ck ≥ ζ(1 + C2
k+1)

1
2 ≥ ζ(1 + C2

k)
1
2 .

Then by mathematical induction, we have

Ck ≥
1

2

[
(1 + ζ)k − (1− ζ)k

]
≥ ζk,

which implies (6.31) if µ ≥ 0. If µ = 0, we have (Ak+1 − Ak)
2 `

2
S

δ2
= Ak+1 and (6.30) can be

derived directly. Finally, we just the fact Bk = 1 + µAk to estimate Bk so that (6.32) and (6.30)

follow immediately.

Now we present the finally convergence result in the following theorem by combing Theorem 6.6.1

and Lemma 6.6.2.

Theorem 6.6.3. Assume the Assumptions (A1), (A2), (SA), and (DDm) hold. Let sequences xk and

vk, k = 0, 1, · · · be generated by AFASD-I (Algorithm 11).

• If µ = 0, i.e, f is convex, and Assumption (BL) holds, then we have

E(f(xk))− f(x∗) ≤ 1

2Ak
‖x0 − x∗‖2V ≤

2`2SR
2
0

δ2k2
(6.33)

• If µ > 0, i.e., f is strongly convex, then we have

E(f(vk))−f(x∗) ≤ L

2
E(‖vk−x∗‖2V) ≤ 1

Bk

L

2
‖x0−x∗‖2V ≤ 2

(
1 +

√
µδ

2`S

)−2k
LR0. (6.34)
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Proof. (6.33) and (6.34) follow from Thereom 6.6.1 and Lemma (6.6.2).

Remark 6.6.4. To see AFASD-I actually accelerates RFASD, we need look at the complexity bound

of obtaining an approximate solution within ε accuracy. It is reasonable to assume si gives rea-

sonable approximation of −∇f and, therefore, the constants δ in Assumption (DD) or (DDm) and

γ in Assumption (AP) are just some constant indepedent of µ, `i, and L.

For strongly convex case (µ > 0), from (6.10) and (6.34), the complexity bounds are

Algorithm 10 (RFASD): O
(
`

µ
log

1

ε

)
Algorithm 11 (AFASD-I): O

(
`S√
µ

log
1

ε

)

Note that, if `
µ
≥ N , we have

`S√
µ

=
J∑
i=1

√
Li
µ
≤

(
J∑
i=1

Li
µ

) 1
2

J
1
2 =
√
J

(
`

µ

) 1
2

≤ `

µ
.

This means we achieve acceleration when `
µ
≥ J , i.e., the problem is ill-conditioned.

For convex case (µ = 0), from (6.15) and (6.33), the complexity bounds are

Algorithm 10 (RFASD): O
(

1

ε
`

)
= O

(
1

ε

J∑
i=1

Li

)

Algorithm 11 (AFASD-I): O
(

1√
ε
`S

)
= O

(
1√
ε

J∑
i=1

√
Li

)

The acceleration is quite clear.
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6.6.2 Case II: (
∑J

i=1 µisi, v)V 6= 〈−∇f(xk), v〉

In this case, we use the catalyst acceleration developed in [22]. It is a inner-outer iterative method

which can be interpreted as an inexact accelerated proximal point algorithm. More precisely, in the

inner-loop, it uses a linear convergent algorithm to approximately solve a regularized optimization

problem near a given point yk−1 defined as follows,

fk(x) := f(x) +
σ

2
‖x− yk−1‖2V . (6.35)

Then Nesterov acceleration is used as the outer-loop in order to achieve the overall acceleration.

In order to keep the presentation simple and clear, we use a special version of catalyst acceleration

in this paper to demonstrate how to accelerate RFASD in general and the algorithm (which is
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referred as AFASD-II) is presented in Algorithm 12

1: Choose x0, σ, and {εk}k≥0, set y−1 = y0 = x0 and q = µ
µ+σ

. If µ > 0, set α0 =
√
q,

otherwise α0 = 1.

2: for k = 1, · · · do

3: Compute an approximation solution xk of fk(x) with RFASD (Algorithm 10),

xk ≈ argminx∈V

{
fk(x) := f(x) +

σ

2
‖x− yk−1‖2V

}
,

with initial guess xk−1 and stopping criteria

fk(x
k)− f ∗k ≤

εkσ

2
‖yk−1 − xk‖2V . (6.36)

4: Update αk by solving

α2
k = (1− αk)α2

k−1 + qαk.

5: Compute yk

yk = xk + βk(x
k − xk−1) with βk =

αk−1(1− αk−1)
α2
k−1 + αk

6: end for
Algorithm 12: Accelerated RFASD: case II (AFASD-II)

Next we present the convergence theory of AFASD-II (Algorithm 12). Since the proofs are exactly

same as those in [22], we omit them and only state the theories. First, let us look at the convergence

of the outer-loop in the following theorem.

Theorem 6.6.5. Consider the sequences {xk} generated by AFASD-II (Algorithm 12).
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• For strongly convex case, i.e. Assumption (SC) holds with µ > 0, choose εk =
√
q

2−√q with

q = µ
µ+σ

, then we have

f(xk)− f ∗ ≤ 2

(
1−
√
q

2

)k (
f(x0)− f ∗

)
.

• For convex case, i.e. Assumption (SC) holds with µ = 0, choose εk = ( 1
k+1

)2 and further

assume Assumption (BL) holds, then we have,

f(xk)− f ∗ ≤ 4σR2
0

(k + 1)2
.

Now we investigate the inner-loop. Since we use RFASD (Algorithm 10) to solve minimiza-

tion 6.35, apply Theorem 6.3.2, its convergence is

E
(
fk(x

k)
)
− f ∗k ≤ (1− τ)t

(
fk(x

k−1)− f ∗k
)
,

where τ =
µ+ δ

J(L+ δ)

δ2

γ2
1

kmax

with uniform sampling and τ =
µ+ δ

`+ Jδ

δ2

γ2
1

kmax

with non-uniform

sampling proportional to Li + σ. Note here, as shown in Algorithm 12, we use xk−1 as the initial

guess and xk is the approximate solution satisfies the stopping criteria (6.36) after t inner iterations.

Then we have the following result about the inner-loop complexity Tk at outer iteration k, i.e.,

Tk := inf{t ≥ 0, xk satisifes (6.36)}. (6.37)

Theorem 6.6.6. Assume Assumption (LC) and (LCi) holds,

• For strongly convex case, i.e., µ > 0, then we have

E(Tk) ≤
1

τ
log

(
8

τ

(L+ σ)

σ

(2−√q)
√
q

)
+ 1.
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• For convex case, i.e., µ = 0, then we have

E(Tk) ≤
1

τ
log

(
8

τ

L+ σ

σ
(k + 1)2

)
+ 1.

Now we are ready to look at the complexity of the overall algorithm, which can be simply obtained

by multiply the inner and outer iterations.

Theorem 6.6.7. Under the same assumptions of Theorem 6.6.5 and 6.6.6, AFASD-II (Algorithm 12)

finds a solution within ε accuracy in at most ktotal iterations.

• For strongly convex case, i.e., µ > 0, then we have

E(ktotal) ≤
2

τ
√
q

[
log

(
8

τ

(L+ σ)

σ

(2−√q)
√
q

)
+ 1

]
log

(
2(f(x0)− f ∗)

ε

)
= Õ

(
1

τ
√
q

log
1

ε

)

• For convex case, i.e., µ = 0, then we have

E(ktotal) ≤
1

τ

√
4σR2

0

ε

[
log

(
32(L+ σ)R2

0

τε

)
+ 1

]
= Õ

(
1

τ

√
σ

ε
log

1

ε

)
.

Here the notation Õ hides some logarithmic dependencies on the L, µ, δ, γ, σ, and R0.

Now we need to choose the best σ. As suggested in [22], we should choose σ to maximize
τ√
µ+ σ

,

i.e.,

• With uniform sampling,

max
σ

τ√
µ+ σ

= max
σ

√
µ+ σ

J(L+ σ)

δ2

γ2
1

κmax

.

• With importance sampling,

max
σ

τ√
µ+ σ

= max
σ

√
µ+ σ

`+ Jσ

δ2

γ2
1

κmax

.
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The maximizer is

• With uniform sampling,

σ = L− 2µ, when L > 2µ.

• With importance sampling,

σ =
`

J
− 2µ, when ` > 2Jµ.

Therefore, the have the following complexity bounds of Algorithm 12 (AFASD-II).

• Uniform sampling & Convex: Õ
(
γ2

δ2
J
√

L
ε
κmax log 1

ε

)
• Importance sampling & Convex: Õ

(
γ2

δ2

√
J
√

`
ε
κmax log 1

ε

)
• Uniform sampling & Strongly convex: Õ

(
γ2

δ2
J
√

L
µ
κmax log 1

ε

)
• Importance sampling & Strongly convex: Õ

(
γ2

δ2

√
J
√

`
µ
κmax log 1

ε

)

As we can see, those bounds are near-optimal up to logarithmic constants according to the first-

order lower bound, see [32].

To conclude, in this chapter, we present a new generic scheme randomized fast subspace descent

methods for non-constraint problems (1.2). The way to construct the scheme is dividing space

V into several subspaces Vi which satisfies stable decomposition assumption. Randomly choose

a subspace Vik with either uniform or non-uniform sampling. Then compute search direction sik

such descent direction assumption (6.6) and approximate conditions (6.7). Apply gradient descent

with optimal step size on subspace Vik .
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The difference between Uniform RFASD and Non-uniform RFASD is the constant factor JL and∑J
i=1 Li. Since L = maxi Li, JL ≥

∑J
i=1 Li. Non-uniform RFASD would achieve a faster

convergence as long as we know the Lipschitz constant on each subspace Vi. If these constants are

hard to compute, Uniform RFASD can be applied. And when the Lipschitz constants of subspaces

have a small variance, the convergence rate of Uniform RFASD and Non-uniform RFASD would

have a small difference. In this situation, Uniform RFASD can be first choice.

We provide two accelerated version of RFASD. In the case (
∑J

i=1 µisi, v)V = 〈−∇f(xk), v〉, we

combine with Nesterov acceleration with a different nonuniform sampling strategy [33]. In the

case (
∑J

i=1 µisi, v)V 6= 〈−∇f(xk), v〉, we ensemble the technique of Catalyst acceleration and

RFASD gives the second accelerated scheme AFASD-II, which uses RFASD in an inner-loop to

solve a regularized optimization problem and Nestrov acceleration in an outer-loop.

For convex functions, we prove a sublinear convergence and for strongly convex function, we get

linear convergence rate. In order to achieve accuracy ε, the complexity of RFASD, AFASD-I and

AFASD-II schemes are listed in TABLE 6.18. Remark: A log factor dependent on parameters is

Table 6.18: RFASD & AFASD: Number of iterations to achieve accuracy ε for the optimality gap

Convex Strongly Convex

Uniform RFASD O

(
γ2

δ2
JL

ε
κmax

)
O

(
γ2

δ2
JL

µ
κmax log

1

ε

)
Importance RFASD O

(
γ2

δ2
`

ε
κmax

)
O

(
γ2

δ2
`

µ
κmax log

1

ε

)
AFASD-I O

(
`S√
ε

)
O

(
`S
µ

log
1

ε

)
Uniform AFASD-II Õ

(
γ2

δ2
J
√

L
ε
κmax log 1

ε

)
Õ
(
γ2

δ2
J
√

L
µ
κmax log 1

ε

)
Importance AFASD-II Õ

(
γ2

δ2

√
J
√

`
ε
κmax log 1

ε

)
Õ
(
γ2

δ2

√
J
√

`
µ
κmax log 1

ε

)
hidden in the notation Õ.

Gradient Descent (GD), Coordinate Descent (CD), Block Coordinate Descent (BCD), Precondi-

tioned Randomized Fast Subspace Descent (Pre-RFASD) and Randomized Full Approximation

Storage Scheme (RFAS) are specific examples of RFASD scheme.Convergence analysis of these
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methods can be recovered by analysis of RFASD. Complexity of them are listed in TABLE 6.19.

Table 6.19: Examples: Number of iterations to achieve accuracy ε for the optimality gap.

Convex Strongly convex Cost of one iteration

GD O

(
L

ε

)
O

(
L

µ
log

1

ε

)
O(N2)

CD O

(
NL

ε

)
O

(
NL

µ
log

1

ε

)
O(N)

Uniform BCD n = J O

(
JL

ε

)
O

(
JL

µ
log

1

ε

)
O(JN)

Importance BCD n = J O

(
`

ε

)
O

(
`

µ
log

1

ε

)
O(JN)

Uniform Pre-RFASD O

(
CAJLκmax

ε

)
O

(
CAJLκmax

µ
log

1

ε

)
O(N)

Importance Pre-RFASD O

(
CA`κmax

ε

)
O

(
CA`κmax

µ
log

1

ε

)
O(N)

Uniform FAS O

(
CAJLκmax

ε

)
O

(
CAJLκmax

µ
log

1

ε

)
O(N)

Importance FAS O

(
CA`κmax

ε

)
O

(
CA`κmax

µ
log

1

ε

)
O(N)
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Chapter 7

Conclusion

In this thesis we proposed one randomized fast solver based on row sampling for least squares prob-

lem and one general scheme for non-constraint convex and smooth convex optimization methods,

which exhibit huge potential for solving optimization problems in data science including but not

limited to linear regression, logistic regression and support vector machines. Introduction of linear

and nonlinear problems arising in data science are introduced in Chapter 2.

In the first job presented in thesis, we construct a randomized row sampling method which aims to

solve the least squares problems with matrix A is ill conditioned, sparse, overdetermined matrix of

size m× n with m � n. By row sampling , we capture the behavior of the high frequency of the

matrix and also reduce the size of matrix. The the preconditioner is constructed by applying Gauss

Seidel to approximate the solution of sampled system AᵀsAse = r. After we get a good approxi-

mation via preconditioner, CG is applied to get the solution. The preconditioner we constructed

is good since sampling captures the high frequency of the matrix and Gauss Seidel for sampled

system guarantee a good guess for the original system. This preprocess also reduce complexity

since by sampling we do not have to form the original system AᵀA of complexity O(mn2) and

via Gauss Seidel process, we do not have to compute the inverse of AᵀsAs, which costs O(n3).
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The last but not least is that this RS method is easy to implement. All we need to implement is

the row sampling, Gauss Seidel process and PCG. Existing methods for least squares problem is

presented in Chapter 3. Our construction of non-uniform row sampling fast least squares solver

and numerical results of our solver compared to diagonal preconditioned CG on various examples

are listed in Chapter 4.

For the second job, we provide a general scheme RFASD for solving convex or strongly convex

minimization problem minx∈V f(x). This method is constructed via subspace decomposition of V .

The general update scheme is

xk+1 = xk + αksik .

where sik satisfies descent direction and approximate gradient assumptions and αk is chosen to

be optimal. RFASD achieves linear convergence for strongly-convex problem and sub-linear con-

vergence for convex problem. The convergence rate and complexity depend on three factors: γ2

δ2

measures how good direction sik approximate negative gradient direction, L
µ

is condition number

of f on V while κmax is the largest condition number of fi on subspace Vi. It shows a trade-off in

practice. The optimal strategy is find a global preconditioner to reduce L
µ

, a stable space decompo-

sition such that γ2

δ2
is controllable and subspace preconditioner Ai to reduce κmax. The review of

development of gradient descent type methods including gradient descent, randomized coordinate

descent, block randomized coordinate descent, stochastic gradient descent and mini-batch stochas-

tic gradient descent methods, their application to linear problems and dual relation are presented in

Chapter 5. In Chapter 6, we present the RFASD as a general scheme. Convergence in expectation

for smooth convex and strongly convex objective functions are shown. Specifically, we point out

GD, CD, BCD and RFAS are specific examples of RFASD. Numerical experiments on Nesterov’s

worst function [32] and two accelerated schemes of RFASD are provided.
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