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1Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095,
USA
2Department of Architecture, Design and Media Technology, Aalborg University, 9000 Aalborg, Denmark
3Department of Design and Environmental Analysis, Cornell University, Ithaca, NY 14853, USA

NP-W, 0000-0002-0448-8037

The environment plays an important role in disease dynamics and in deter-

mining the health of individuals. Specifically, the built environment has a

large impact on the prevention and containment of both chronic and infec-

tious disease in humans and in non-human animals. The effects of the built

environment on health can be direct, for example, by influencing environ-

mental quality, or indirect by influencing behaviours that impact disease

transmission and health. Furthermore, these impacts can happen at many

scales, from the individual to the society, and from the design of the

plates we eat from to the design of cities. In this paper, we review the

ways that the built environment affects both the prevention and the contain-

ment of chronic and infectious disease. We bring examples from both human

and animal societies and attempt to identify parallels and gaps between the

study of humans and animals that can be capitalized on to advance the

scope and perspective of research in each respective field. By consolidating

this literature, we hope to highlight the importance of built structures in

determining the complex dynamics of disease and in impacting the health

behaviours of both humans and animals.

This article is part of the theme issue ‘Interdisciplinary approaches for

uncovering the impacts of architecture on collective behaviour’.
1. Introduction
The health of individuals and populations is affected by the environment in

which they live. Some environments harbour more pathogens than others

and population densities vary across environment, which influences disease

transmission dynamics. Moreover, variation in resource distribution across

environments can determine movement patterns, which can expose individuals

to new pathogens, but also contribute to their health by increasing activity. The

built environment can be modified to promote healthy behaviours and reduce

the risk of contracting a disease.

Perhaps the most striking illustration of how the built environment can

affect both health behaviour and disease comes from the history of urban plan-

ning over the past century [1–4]. Disease was the raison d’être for the advent of

urban planning in Europe and the USA, and one of the central motifs that

shaped architecture of modernism. Throughout the nineteenth and early twen-

tieth century, urban environments such as London, Paris, New York City and

Chicago were densely populated and characterized by residences in proximity

to factories, animal yards, slaughter houses and crowded tenement houses with

little airflow or light. The cities were plagued with epidemics of infectious dis-

ease. Waves of cholera, tuberculosis and typhoid swept through these cities,

wiping out significant portions of the population. Disease was not well under-

stood at the time and models such as ‘miasma theory’—that ‘bad air’ vapours

transmitted pathogens—prevailed. However, there was a sense that the
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congestion, pollution, lack of sunshine and poor airflow con-

tributed to illness. In response, the mid-nineteenth century

public health movements [5] and the extensive rebuilding

of European and North American cities ensued, with the

aim of improving the overcrowded and unsanitary urban

living conditions [6,7]. Zoning, i.e. separation of uses, was

introduced to spatially segregate residential, commercial

and industrial uses, and housing regulations required light

and air flow. Remarkably, these efforts to configure the

built environment to control infectious disease in the late

1800s and early 1900s ultimately contributed to chronic

diseases in the twenty-first century.

The separation of uses through zoning and development

of suburbs, along with the advent of the automobile, led, 100

years later, to environments that discourage walking and pro-

mote movement in the private automobile. We now have a

physically inactive population with rising rates of obesity

and related chronic diseases such as diabetes, cancer and cor-

onary heart disease. The field of urban planning and, to some

extent, architecture have now—since the early 2000s—

renewed partnership with public health to respond to the

new health crises: physical inactivity, poor diet and obesity.

In an attempt to curb the obesity epidemic, urban planning

efforts have begun to target both sides of the energy balance

equation—diet and physical activity [8]—by considering the

accessibility, availability and affordability of healthy foods

and aspects of the built environment (e.g. density, mixed

use and design features) to encourage physical activity. In

addition, there is growing recognition that low-income and

minority neighbourhoods are often ‘food deserts’ character-

ized by the abundance of liquor stores and fast food

restaurants but with a dearth of grocery stores. On a parallel

front, the relationship between mental health and the built

environment, in particular in urban centres, is becoming an

equally important concern. Chronic disease, such as

depression, has been linked to both social and physical

aspects of the built environment—from factors such as

social isolation and poverty in the neighbourhood to housing

quality, crowding and urban design of streets and green

spaces [9–11]. Current designers’ proposals for addressing

these mental health issues include the creation of spaces sup-

porting physical activity, social interaction and high-quality

access to nature, and are thus coinciding with the design

strategies for improving the physical health of the population.

The history of urban planning in the past century

highlights the effects that the built environment can have

on both the prevention and containment of chronic and

infectious diseases. Chronic disease is defined as a non-

communicable disease that persists for a long time and that

cannot be prevented by vaccination or cured by medication.

Infectious disease is caused by pathogenic microorganisms

and can spread among individuals. Strategies for battling

both types of disease includes pre-emptive preventions,

such as hand washing and vaccinations for infectious dis-

eases, and health-promoting behaviours, such as an active

lifestyle and healthy food habits for chronic diseases. Once

a disease becomes prevalent in a population, containment

becomes the main strategy for defence. For example, quaran-

tine of diseased individuals in the case of infections and

caring for sick individuals and improving their environment

in the case of chronic disease. Non-human animals are also

prone to both chronic and infectious diseases and they too

engage in prevention and containment behaviours. Ways
that the built environment can facilitate the prevention and

containment of disease in non-human animals include the

type of building materials that are used and the way built

structures organize the society and promote or prevent

certain interactions. Thus, the built environment can promote

both the containment and prevention of chronic and

infectious disease in human and non-human animals.

The built environment can affect health directly and

indirectly either through immediate, passive impact (e.g.

effects of indoor environmental quality) or by influencing

behaviours that can affect health, which can involve individ-

uals’ active participation (e.g. encouraging walking to

increase physical activity). It is worth noting that the defi-

nitions of human health and disease are products of

history, politics, economics and culture [2]. In this sense,

the notion of what it means to be healthy or sick is guided

not only by the available medical knowledge, but also by

broader social and cultural factors. For most of the nineteenth

and twentieth centuries, medicine was concentrated on path-

ology and finding ways of treating/curing disease. However,

as societies experienced an epidemiological transition [12]—

diminishing infectious disease and increasing the prevalence

of chronic diseases—the idea of health-related quality of life

has emerged as an instrument to cope with the new situation

[13]. Accordingly, the current understanding of health is not

only as an absence of disease but also as a state of complete

physical, mental and social well-being, which holds preven-

tion as important as cure and looks for long-term solutions

[14,15]. This idea is reflected in the current design approaches

to health problems and what is considered as a problem; the

aim of architectural and urban designs and behaviour inter-

ventions is to enhance overall well-being through mental

and physical health.

Prevention and containment of disease can happen at

many social and biological scales, given the multilayered

physical, social and socio-economic context of the built

environment. For example, at the society level, governments

can establish policy, which impacts states, counties, schools

and individuals. Individuals, in turn, may take actions to

impact their immediate environment, regardless of global

policy. Modelling approaches in biology scale from agent-

based [16], to population, to evolutionary models, and each

level provides different insights on disease dynamics. The

scale at which actions take place can impact what proportion

of the population is affected and how quickly remediation

can occur. Considering scales of action is important when

discussing the design of the physical environment. In this

sense, three scales are of particular relevance: the urban, archi-

tectural (or building) and behavioural design. Urban design

and planning can impact population-level processes by affect-

ing the proximity of individuals to one another, while at the

architectural scale, with the help of behaviour and product

design, spatial structures and targeted interventions can

impact individuals’ behaviour, thus promoting local changes.

In this paper, we review the impact of the built environ-

ment on both chronic and infectious disease. For each, we

detail ways that the built environment has been and can be

used for prevention or containment through examples from

both human and animal societies. Through this review of

the literature, we attempt to identify gaps between the

study of humans and animals that can be capitalized on to

advance the scope and perspective of research in each

respective field. For example, the scale at which containment
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action is taken in human societies might inform the conserva-

tion of animal populations, and the evolutionary perspective

that often characterizes studies of animal behaviours might

inform prevention strategies for human disease. Our goal

with this review of the literature is to set the groundwork

for further, more in-depth studies of each of the various

ways that the built environment affects health behaviours

and disease dynamics in humans and non-human animals.
 hing.org
Phil.Trans.R.Soc.B

373:20170245
2. Chronic disease
(a) Prevention in humans
In this section, we consider how the architecture of the

human environment can contribute to the prevention of chronic
disease—related to both physical health and mental health. We

consider three themes to illustrate health-promoting qualities

of physical environment. First, we consider how the physical

environment (at the urban, architectural and behavioural

scales) promotes physical activity, which helps to prevent

obesity and the associated chronic diseases including dia-

betes, heart disease and cancer. Second, we describe how

the built environment affects dietary habits, another impor-

tant factor in obesity. Third, we consider the effects of

housing and urban design on mental health. These three

themes are representative of the main research topics in cur-

rent health-related design, and the possibilities available for

promoting health and preventing chronic disease through

the built environment.
(i) Physical activity
In recent decades, recognition that the built environment can

affect physical activity or inactivity has led to efforts that

leverage the environment to promote physical activity and

thereby reduce the prevalence of associated chronic disease.

This realization has resulted in a reconnection of urban plan-

ning and public health, two fields that united in the early

1900s to combat infectious disease and then had little associ-

ation for many decades. Planners summarize the features of

the environment influencing physical activity at the urban

or neighbourhood scale by referring to the ‘3 Ds’: density,

diversity and design [4,17,18]. Density refers to the compact-

ness of physical infrastructure (i.e. distances between

buildings and functions). With more proximate destinations,

residents are more likely to walk rather than drive a vehicle.

Diversity refers to ‘mixed use’—in other words, combining

residential and retail within the community. This notion is

a reversal of the segregation of uses that occurred in the

early twentieth century in response to infectious diseases.

Diversity means that there will be walkable destinations

near the places where people live. The third D, Design, is rel-

evant on various levels. Neighbourhood design has been

revisited via neotraditional or new urbanist neighbourhoods

that are pedestrian-, rather than car-focused. Such pedestrian-

oriented designs have small lots, short setback distances (i.e.

distance from the street to the front of the building), porches

and sidewalks, in contrast to car-oriented suburbs that typi-

cally have 1 acre (or larger) lots, large setbacks and no

sidewalks. The features of neotraditional communities pro-

mote social interaction, sense of community and walking

[19]. People who live in neighbourhoods with a grid-like

street network pattern also tend to drive less than those
living in other kinds (e.g. suburban ‘loops and lollipops’) of

street networks [17]. Design further includes smaller-scale

design elements, such as street lights and benches, that

make a place pleasant and comfortable for walking. In

recent years, a fourth and fifth D have been added: Destina-

tion accessibility (i.e. ease of travel to a central business

district) and Distance to transit (i.e. the average distance

from the residence to the workplace or to the nearest train

station or bus stop) [18].

Building design can also be employed for its potential to

encourage physical activity. For example, placing a stairway

in a salient location and making it inviting and aesthetically

pleasing, while locating elevators in a less obvious, less cen-

tral position, may encourage stair use [20]. Colour, music and

artwork have been used to encourage the use of stairs [21].

These efforts to design buildings to promote physical activity

are ironic in light of research a century ago aimed at essen-

tially the opposite goal: ‘saving steps’ by improving the

efficiency of daily tasks [22]. In 2010, New York City pub-

lished ‘Active Design Guidelines’ encouraging design

decisions to help promote physical activity [18]. The guide-

lines address building design and urban design strategies.

On the building scale, four key themes are identified as

most critical to promoting physical activity [18]:

— Building circulation system. The design of the ‘connecting

spaces’ such as corridors, stairways, elevators and lobbies

can play a critical role in encouraging physical activity

within a building.

— Building elements. The availability, safety and comfort of

spaces such as stairs, shower rooms and bicycle storage

as well as smaller details such as the presence and location

of drinking fountains and benches can promote movement.

— Organization of the building programme. Configuration of

the activities within the building can help to ensure that

physical activity is ‘built in’ to daily activities. For

example, daily tasks that require physical activity include

going to a central location to retrieve mail, get coffee, or

pick up lunch. These strategies employing intentional dis-

tance or inefficiencies are referred to as ‘functional

inconvenience’ [23].

— Activity spaces. Building areas specifically programmed for

physical activity can also contribute to occupants’ total

physical activity. These spaces include swimming pools,

running tracks and exercise rooms.

Research has also begun to examine the effect of small-

scale environmental changes on increasing physical activity

or reducing sedentary behaviour, particularly within the

workplace. Neuhaus et al. [24] reviewed the evidence regard-

ing the influence of ‘activity-permissive’ workstations,

including fixed standing desks, height-adjustable desks,

treadmill desks, cycle ergometers and pedal devices fitted

under the desk. Of the 14 studies that examined effects on

sedentary behaviour, 11 found a significant effect of the inter-

vention with an average reduction in workplace sedentary

time of 90 min per 8-h workday. Other researchers have

begun to study the influence of architectural design in combi-

nation with activity-promoting furniture within the school

environment [25]. Dutch architects RAAAF (Rietveld Archi-

tecture-Art Affordances) have responded to society’s

epidemic of sedentary behaviour with the ‘End of Sitting’,

an art–architecture–philosophy installation that questions
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the inclusion of desks and chairs as default components

of the workplace and imagines what a space that affords

supported standing and varied postures might look like [26].

Finally, the field of behavioural economics [27], a cousin

to environmental psychology, offers additional insights

regarding the possible influence of context on physical

activity. For example, social norms can be used as ‘anchors’

to influence behaviour. By intervening in people’s percep-

tions regarding what are ‘normative’ or typical levels of

physical activity, people might become more active. Framing

physical activity as fun, rather than obligatory, could also

affect people’s likelihood to engage in physical activity [28].

Related to these themes, both policies and physical infrastruc-

ture can, together, affect physical activity norms. For

example, making public transportation affordable, providing

biking lanes and making automobile parking expensive can

encourage walking and biking, and discourage driving.

(ii) Diet
In parallel with studies examining the association of neigh-

bourhood design characteristics with physical activity, other

studies have been examining the association of neighbour-

hood features with dietary intake or obesity. A study of the

New York City food environment found that access to

healthy food stores was inversely associated with body

mass index and obesity prevalence [29]. Another study of

more than 3000 New Orleans residents found that after

adjusting for individual characteristics, each additional

supermarket in a respondent’s neighbourhood was linked

to a reduced likelihood of obesity, while fast food restaurants

and convenience stores were associated with greater obesity

odds [30]. Research also indicates that disparities in access

correspond to disparities in dietary intake. For example, in

a study of African American boys, greater availability of veg-

etables and juice at local restaurants was associated with

greater juice and vegetable consumption [31]. In a rare natu-

ral experiment, Wrigley et al. [32] found that when a new

grocery store was constructed within a ‘retail-poor’ area, con-

sumption of fruits and vegetables (FV) increased significantly

among those with the most FV-deficient diets.

On the building scale, research has begun to examine how

design features affect dietary intake. In the grocery store,

Cheadle et al. [33] found that the proportion of shelf space

dedicated to healthy foods, such as low-fat milk and dark

bread, was associated with individual dietary practices. The

effects may be similar within the home environment. Open

layouts, which provide visual access between the kitchen

and the living room, may encourage trips to the kitchen

and increase food intake [34]. In addition, research indicates

that smaller-scale environmental and product design features

also affect dietary intake. Larger plates, portions and

packages influence people to consume more [35–37]. In

addition, people tend to eat in ‘units’; in other words, typi-

cally, a person eats the entire item, regardless of the size of

the muffin or cookie [38]. Fortunately, small-scale environ-

mental features such as plate size can be modified to

mitigate over-consumption [39].

(iii) Mental health
In addition to its effects on health-related behaviours and

physical health, the built environment can affect mental

health, both positively and negatively. In the light of current
urbanization rates and evidence suggesting that city dwellers

have higher risks of mental health problems, such as

depression and anxiety, compared to inhabitants of rural

areas [10,40], the relationship between the urban mental

health and design has recently gained importance. The physical

and social environments of urban life can influence the mind

and the body at the neurophysiological and psychological

levels, and thus affect mental well-being [41,42].

Environmental properties such as spatial layout, architec-

tural features, traffic intensity, noise and pollution can have a

direct impact on physiological and psychological stress mech-

anisms. For example, at the urban scale, the spatial

configuration of the city and, more specifically, environ-

mental properties such as typology of open public spaces

(e.g. park, square and street), building density and local inte-

gration of street segments (i.e. how well a street segment is

integrated in the wider city network and traffic patterns)

can be used as predictors of urban stress [43]. Researchers

found that high values of local street integration, which is

associated with good walkability, are associated with low

stress, while large streetscapes and squares with low detail-

ing and complexity in building facades are more likely to

be perceived as stressful.

Although only depression is currently considered a

chronic mental disease, stress and anxiety cannot be excluded

as factors affecting the well-being of people in cities because

prolonged and cumulative exposure to cortisol can lead to

physical chronic diseases like stress-induced hypertension

[9,44]. Indirect effects of urban environments have been

associated with psycho-social processes, such as personal

control, crowding and presence of social networks and sup-

port [41,45,46]. Thus, physiological and psychological

stressors have the capacity to influence mental health both

at the individual level (e.g. individuals’ perceptions of the

environment) and through neighbourhood effects (e.g.

the experience of neighbourhood walkability and state of

maintenance and upkeep).

Because both the physical and social aspects of the urban

environment impact mental health and well-being, design

strategies aimed at preventing or diminishing the negative

effects and emphasizing the beneficial ones typically rely on

the interplay between these two dimensions. Specifically, a

recent report on the ‘Five Ways to Well-being’ [47] illustrates

how the social–physical interdependency can be used in the

design of architectural and urban spaces [14,48]. Three of the

five points are relevant here. First, the ‘connect’ idea corre-

lates the quantity and quality of social connections with

reported well-being and physical health. In the built environ-

ment, this is translated in the emphasis on designing

everyday public spaces, especially at the neighbourhood

scale, to create opportunities for people to see, hear and con-

nect with others [49–51]. However, social interactions are

also tightly connected with density and crowding, which

have been linked with increased stress and anxiety [52,53].

Second, the ‘keep active’ point emphasizes the link between

physical activity and well-being, which, in addition to effects

on physical health, as detailed above, is associated with

beneficial effects on mental health problems, like depression,

and thus requires designing more walkable and pedestrian-

friendly neighbourhoods [54,55]. Third, ‘take notice’

considers the benefits of mindfulness and paying attention

to the present as a way to reduce the symptoms of stress,

anxiety and depression. In the urban environment, ‘taking
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notice’ can be achieved through art, landscaping, wildlife fea-

tures and seating [14,56]. Overall, the availability of diverse

open public spaces, the high density of mixed-use develop-

ment that encourages walking and cycling, and access to

high-quality green spaces in the city can be linked to the posi-

tive effects of the physical and social urban environment on

mental health. While some of these aspects have been

better investigated, many mechanisms, e.g. how the physical

environment impacts the mind–body at the neurophysiologi-

cal level and how this, in turn, might modify behaviours, are

still unknown.

Housing quality, housing type and floor level are three

aspects of housing that have been associated with mental

health outcomes [57]. The relation between housing quality

and mental health may be mediated by social withdrawal.

In other words, poor housing quality can lead to increased

social withdrawal which, in turn, leads to poor mental

health [58]. One aspect of housing is interior density, i.e.

the number of people per room. Density, a physical, objec-

tively measureable phenomenon, affects crowding, a

psychological phenomenon, which in turn negatively affects

psychological well-being or mental health. The linkage

between crowding and mental health is explained by a dis-

ruption of socially supportive relationships among residents

of a crowded home. To cope with chronically crowded con-

ditions that provide limited ability to regulate social

interaction, occupants often socially withdraw. However, by

allowing opportunities to control social interaction, architec-

tural interior design can help to reduce the need to socially

withdraw and thereby dampen the effect of crowding on

mental health. Evans et al. [59] found that homes with greater

architectural depth—the number of spaces one must pass

through to reach rooms of the home [60]—buffer the impact

of density of mental health by reducing social withdrawal.

Complete social isolation can also impact mental health nega-

tively [61–63], and so, the built environment should balance

the ability to avoid crowding without risking the isolation of

its occupants.

It is important to note that these effects of architecture on

the prevention of chronic disease in humans occur within a

larger, complex ecological system [64] and thus are not

simple, direct effects. Rather, a variety of moderators or

‘effect modifiers’ influence the valence and strength of the

impact of the environment on human health and health-

related behaviours. This notion is illustrated by Evans

et al.’s findings [59] that architectural depth moderates the

effect of crowding on mental health. Similarly, Fich et al.
[65] showed that when exposed to a strong social stressor

(simulated job interview), the features of the built environ-

ment—presence or absence of openings in the room—

influence how fast participants recover from stress (measured

as cortisol levels). Thus, architecture might modulate people’s

physiological response in the case of acute stress events,

including social situations. Further research is necessary to

understand the role of built spaces in the case of acute as

well as prolonged or chronic stress, especially when their

causes are found in a complex socio-economic network.

Overall, it should be emphasized that the scale of effects

resulting from interactions between social and physical

environmental factors is still an open question. The aim of

this paper is to highlight the myriad ways that the built

environment shapes social relations and behaviour in space,

and in turn affects human health.
(b) Prevention in animals
Chronic diseases in animals are most commonly found in

domesticated and zoo animals. However, some chronic con-

ditions, such as long-term stress and nutritional deficiencies,

can impact wild animal populations. Specifically, chronic

stress can decrease animals’ survival in the wild [66] and

increase their susceptibility to infectious diseases [67]. In this

section, we detail how stress, diet and physical activity may

be impacted by the built environment in animals.

(i) Stress
Built structures can prevent chronic stressful conditions if

they provide an enriched physical and social environment.

Many industries have been impacted by the interaction

between the built environment and chronic stress, including

zoos, biomedical research and agriculture. Zoos have been

increasingly considering enclosure designs that provide ani-

mals with enriched environments to reduce stereotypical

behaviours, such as pacing and other repetitive movements,

which can lead to chronic heightened physiological stress,

i.e. high cortisol levels [68,69]. Built structures that facilitate

social interaction reduce stress because grooming in primates

and ungulates alleviates stress through the release of

b-endorphins [70–72]. Housing conditions of research ani-

mals may impact their physiology, thus biasing the results

of scientific studies. For example, housing conditions of

rhesus macaques can influence their social environment,

elevating their stress levels if they are housed alone, which

can bias the results of biomedical research [73]. Housing con-

ditions that lead to stereotypical behaviour of rodents used

for research may affect the validity, replicability and

reliability of studies through changes to animals’ brain func-

tion [74]. In agricultural settings, the structure of rearing

enclosures can influence long-term chronic social stress. For

example, piglets raised in an enriched environment do not

develop social stress later in life, but piglets reared in a fea-

tureless environment (simple farrowing crates) develop

chronic social stress [75]. Finally, the chronic stress of wild

animal populations can be impacted by built structures. For

example, great tits in urban environments express more

genes related to stress responses than rural birds [76]. Thus,

the built structures that humans construct to hold animals,

whether in zoos, laboratories, farms or cities, can have a

great impact on the chronic physiological conditions of the ani-

mals, which affect their fitness, welfare, utility for scientific

research and economic output.

(ii) Diet
Structures built by the animals themselves (rather than by

humans) that allow for food storage or acquisition can

buffer nutritional deficiencies that compromise animals’

health. For example, social insect nests often include

chambers that are dedicated to the storage of seeds [77].

Honeybees store nectar in the form of honey, and pollen for

protein, at specific locations in their hive [78]. These food

stores can ensure colony survival during the winter

months, when there are no flowers [79]. Spider webs and

beaver dams are structures that assist animals in collecting

food [80], thus potentially reducing long-term nutritional

deficiencies. Finally, bird nests and carnivores’ dens provide

both protection from predators and reduce the amount of

energy spent by parents caring for offspring by restricting
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their movements in search of food [81] and by reducing the

energetic costs associated with carrying offspring [82].

(iii) Physical activity
In contrast with humans, physical activity might not necess-

arily promote long or healthy lives in non-human animals.

For example, in social insects, queens that are long-lived

(more than 30 years in some species) are extremely sedentary,

compared to workers who are very mobile, yet short-lived

(mostly up to 1 year) [83]. These differences between

queens and workers likely stem from differences in metabolic

rates [84], genetics [85,86] and exposure to dangers. The high

activity of workers leads them outside the safety of their nest,

exposing them to dangers such as predation and desiccation.

Thus, the built environment, i.e. the ants’ nest, provides shel-

ter that may promote longevity. In mammals too, captivity

can increase longevity, especially for species with a fast

pace of life, for whom captive conditions, such as zoos, pro-

vide protection from predators, intraspecific competition and

disease [87].

(c) Containment in humans
Despite the efforts to prevent chronic diseases, like obesity

and depression, through the built environment, some

illnesses—especially those that are age-related—can only be

prevented and postponed to a certain point. For this reason,

an important part of design interventions in the physical

environment is aimed at the management of chronic conditions,

i.e. developing and maintaining the systems of care. In this

section, the issue of care is considered in three ways. First,

we discuss how the social and material environment can

serve as the support system in the context of diseases that

follow the ageing process, and what kinds of transformations

at the urban, neighbourhood and architectural scales can be

implemented as strategies for ‘caring through design’.

Second, we explore the potential of the built environment

as a therapeutic tool to alleviate or diminish the effects of

everyday stress and anxiety. We further discuss the topics

of biophilic design and cognitive restoration as elements of

passive design care, i.e. treating lifestyle consequences by

directly affecting individuals without requiring active partici-

pation or behavioural changes. Finally, we raise the question

of care in the context of geographical disparities in health and

the issues stemming from the lack of care in the state of the

built environment.

(i) Lifetime care through design
The global increase in ageing populations and corresponding

age-related physical and mental illnesses such as cardiovas-

cular conditions and dementia, coupled with sensory

impairments and reduced mobility, present a public health

challenge that can be partially answered through the design

of built environment. Over the past decade, different age-

and dementia-friendly design strategies for urban and archi-

tectural spaces have been developed under the common

theme of ‘ageing in place’ or ‘lifetime neighbourhoods’. The

guiding principle behind these strategies is supporting

active and independent involvement in local communities

to maintain health and manage existing long-term conditions

in older individuals. For example, at the urban and neigh-

bourhood levels, dementia-friendly designs target the

critical issues such as ease of wayfinding by proposing
environments that are familiar, legible, distinctive, accessible,

comfortable and safe [88]. Some of the key design features

include the presence of small, open public spaces with a var-

iety of activities and features, walkable neighbourhoods,

architecture with distinctive local character and identity,

public seating and ground-level building access as measures

of accessibility—in short, all environmental characteristics

that encourage physical activity and social interaction as ben-

eficial for physical and mental health in older people. This is

in accordance with recent studies indicating the links

between social deprivation and depression in high-density

cities like Hong Kong [89] and negative effects of deprived

and deteriorated neighbourhoods on physical activity

[90,91]. These health-related urban design interventions are

effective for most age groups. However, it should be

acknowledged that some policies, such as active design

guidelines, can lead to segregation of various user groups

(e.g. young, mobile individuals versus individuals with

reduced or no mobility [92]) that call for the development

of inclusive approaches.

The possibilities of caring through design for individuals

with chronic disease such as cancer have been explored at the

architectural scale of healthcare institutions. A well-known

example are Maggie’s Centres, which were established

with the idea that psycho-social interventions increases

patients’ chances of living longer [92,93]. These buildings

are designed to offer cancer patients a place to interact

with doctors and families outside of the stressful setting of

a traditional hospital and provide a sense of home, through

architectural design.
(ii) Therapeutic design and nature
Although we are only starting to understand how architec-

tural and urban environments can act therapeutically on

human minds and bodies, designers have been intuitively

exploring these capacities for their restorative effects, in par-

ticular for the purposes of managing stress and stress-related

diseases. Recently, the idea of biophilic design has linked the

extensive body of research on the health and stress-relieving

benefits of nature and the innate human inclination to seek

connections with nature, life and life-like processes; essentially,

biophilic design emphasizes the necessity of maintaining,

enhancing and restoring the beneficial experience of nature

in the built environment [94].

Views of and access to nature have been linked to a wide

variety of health outcomes (see reviews, [95,96]). Nature can

contribute to the management of stress and stress-related dis-

eases. For example, recent studies by Japanese researchers

examine the practice of ‘Shinrin-yoku’ or ‘taking in the

forest atmosphere’. In a series of studies, male college stu-

dents were randomly assigned to walk in the city and then

in the forest, or vice versa. Results indicated lower levels of

blood pressure, pulse rate and the stress hormone cortisol

along with increased parasympathetic nerve activity and

lower sympathetic nerve activity following the forest walks

compared to the urban walks [97].

For people with disease diagnoses, nature can enhance

their capacity to cope effectively. Cimprich [98,99] studied

women recently diagnosed with breast cancer and found

that patients randomly assigned to a nature intervention

showed significant improvements in attentional capacity in

the weeks following surgery, compared to those in the



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20170245

7
non-intervention group. Underlying this work is Attention

Restoration Theory [100], which suggests that we have two

types of attention: effortful ‘directed’ attention and ‘involun-

tary’ attention that is captured easily and effortlessly. With

use, directed attention becomes fatigued, resulting in diffi-

culty focusing, distractibility and irritability. The natural

environment engages involuntary attention and allows the

mechanism underlying directed attention to rest and recover.

Thereby, nature enhances attentional capacity and the ability

to cope and manage life’s demands, including coping

with illness.

Thus, design intentions are focused on fostering beneficial

contact between people and nature in both architectural and

urban spaces, by giving importance to features such as natu-

ral light, water, vegetation, views of nature, sensory/spatial

variability and establishing place-based relationships. In

brief, these architecture–nature principles can be summar-

ized in three broad experience categories: (i) nature in the

space—which refers to the presence and diversity of natural

elements and environmental conditions within the built

environment; (ii) natural analogues—which refers to objects,

materials and shapes that evoke nature; and (iii) nature of

the space—which refers to the spatial configurations resonat-

ing with evolutionary human preferences for exploration,

mystery and prospect/refuge [94,101].
(iii) Caring disparities
A final aspect of containment of chronic disease concerns the

uneven distribution of health, particularly in the USA. Low-

income and ethnic minority populations are more likely

than wealthy groups or than ’Whites’ to experience a variety

of adverse health outcomes, from coronary heart disease to

diabetes to chronic bronchitis [102]. The physical places

where people live—their houses, their neighbourhood and

their workplaces—contribute to the uneven and unequal geo-

graphical distribution of health. For example, in the USA,

researchers have documented that health-promoting and

health-deterring neighbourhood features such as supermar-

kets, liquor stores and fast food outlets are correlated with

race and socio-economic status of communities. Wealthier

neighbourhoods are more likely to have supermarkets and

gas stations with convenience stores compared to poor neigh-

bourhoods; the same is true of White compared to Black

neighbourhoods [103]. Powell et al. [104] found that in

Black neighbourhoods, the availability of chain supermarkets

was 52% of what it was in White neighbourhoods; differences

existed even after controlling for neighbourhood level income

[104] (for review, see [105]). A similar pattern is evident with

respect to the natural environment, which has well-documented

beneficial effects on human health and well-being [95,96].

Nature is often unequally distributed, with disenfranchised

populations having less access to natural amenities

[106,107]. In New York City, playgrounds in low-income

neighbourhoods are more likely, compared to playgrounds

in high-income neighbourhoods, to have a variety of hazards

including paint chips, trash, rot, rust, splinters and vandalism

[108]. Similarly, in Baltimore, Maryland, while Blacks are

more likely to live within walking distance of a park, those

parks are more likely to be hazardous or polluted, and are

typically smaller than those to which Whites have access.

So, what do these geographical patterns of health disparities

suggest with respect to containment? To most effectively
contain the epidemics of chronic disease that disproportio-

nately affect low-income and minority populations, it is

essential to tackle the underlying environmental justice

issues, and to distribute healthy, safe, nurturing environ-

ments across the population to promote equitable public

health.

(d) Containment in animals
Just as space may be used by humans to care for individuals

who are at risk of chronic disease, animals too designate

locations within their built environments for sensitive indi-

viduals. For example, social insects, such as ants and bees,

dedicate specific locations within the nest or hive for brood

(eggs, larvae and pupae) [77]. Brood can further be moved

around the nest to expedite development, for example, by

bringing larvae from deep inside the nest to near the soil sur-

face, where it is warm during the day [109–111]. Whether or

not animals modify their built spaces to create healthy

environments, or to create spaces to care for chronically sick

individuals, as humans do, is an open question.

(i) Spatial disparities
Disparity in habitat quality is key in determining population

structure and competition in animals. Animals regularly

compete over high-quality habitats and defend their terri-

tories [112]. Low population densities result in lower

competition and better access to resources [113], thus poten-

tially creating more healthy environments in which animals

may be less likely to suffer from malnourishment that

could lead to chronic stress. The need for shelter can create

socially facultative structures in animals that would not be

social otherwise. For example, yellow-bellied marmots rely

on burrows for wintering and for escaping from predators,

thus forming facultative social structures [114]. Interestingly,

individuals in larger groups express higher levels of faecal

glucocorticoid metabolites, an indicator of stress [115].

Thus, living in a built structure can, in some cases, lead to

chronic stress, and dispersing to find a less crowded

burrow system might be the best way to contain such chronic

stress. Similarly, harvester ant colonies will relocate to new

nest sites more frequently in environments with fewer

resources compared with areas that have high primary pro-

ductivity [116]. Thus, changing the built environment, i.e.

the nest, by relocating to a new one (instead of restructuring)

can potentially help avoid or contain stress induced by low

resource availability. Some animals prefer locations that are

near conspecifics, for example, to gain better access to

mates, and potentially because conspecifics can indicate

high habitat quality and be used as cues. Such attraction to

high-density areas is known as Alee effects [117,118] and

they may facilitate social interactions that can reduce chronic

stress, as detailed above.
3. Infectious disease
(a) Prevention in humans
In this section, we consider how the built environment can

prevent epidemics and the flow of infectious disease. As

noted above, contagious diseases have been the direct cause

for changes in the fields of urban planning and architecture

since the mid-nineteenth century in the efforts to eradicate
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the unhealthy living conditions that were believed to support

various epidemics. Specifically, the hygienist agenda was

embraced in the early twentieth century as one of the postu-

lates of modernism [1,92]. Closely linked with tuberculosis as

a medical obsession of the time, modern architecture has

produced a specific set of spatial typologies with assumed

therapeutic and prevention effects, such as large windows,

flat roofs and terraces open to sunlight, air, nature and phys-

ical exercise [6,119]. In this sense, modern architecture

developed around two kinds of symbolic figures: the ‘fragile

tuberculosis patient seeking a cure’ and the ‘athletic figure

seeking prevention from the diseases of modernity’ [119].

As in the case of chronic diseases, architects and urban

designers have historically applied similar strategies for

dealing with infectious diseases, whether through prevention

or finding ways to contain the epidemics’ spread and help

alleviate the symptoms once they appear. As with our

consideration of chronic disease, we examine the relation-

ship between infectious disease and the built environment

and design strategies at several levels, including urban,

architectural and small-scale design features within

buildings.
(i) Health, indoor environmental control and building materials
The legacy of modernist hygienist ideas for prevention of epi-

demics can be seen in contemporary sanitary approaches to

designing indoor environmental climate and in regulations

regarding the health effects of various building materials.

Environmental factors such as indoor air quality (e.g. air pol-

lution, odours, fresh air supply and ventilation), lighting

quality (e.g. view and illuminance), thermal comfort (e.g.

moisture and temperature) and acoustical quality (e.g. noise

from outside and indoors) are measured and controlled for

their effects on the three systems of the human body—the

nervous, immune and endocrine systems—through which

they influence physical and mental health [120]. To prevent,

or reduce, the spread of infectious diseases, contemporary

building standards take into account the different modes of

disease transmission, including indirect contact with airborne

pathogens and contaminated objects, direct person-to-person

contact and droplet spread. For example, in the case of

airborne viruses, such as influenza, engineering control

methods include the careful design of hospital building air

cleaning and ventilation (both natural and mechanical).

Such measures help dilute airborne pathogens and control

their movement between spaces [121]. The role of physical

structures in preventing disease spread was highlighted in

the 2003 outbreak of SARS (severe acute respiratory syn-

drome) in a private residential apartment complex in Hong

Kong, where the ventilation system and sanitary plumbing

expedited the spread of viral aerosols [122,123]. Furthermore,

disease can spread through contaminated objects, and the

choice of building materials and coatings of indoor surfaces,

such as walls, floors and furniture, can decrease the survival

of pathogens and ease cleaning and sterilization.

Pollutants originating from toxic substances in building

materials, such as heavy metals and asbestos, cause various

neurological, cognitive and behavioural disorders and dis-

eases like cancer [46]. Besides ‘sick-building’ syndrome,

there is now a movement toward transparency regarding

the chemicals and potentially harmful substances employed

in building materials, furniture and finishes within the
interior environment. Led by the architecture firm Perkins

and Will, the ‘Transparency Project’ (www.transparency.per-

kinswill.com) documents substances such as arsenic,

phthalates and volatile organic components, and their associ-

ated health risks. Moreover, with respect to urban outdoor

environments, a recent study of citizens in Barcelona has

found a link between urban air pollution and an increase in

cases of depression and anxiety [124]. One way to control

the pollution of urban air has been through the development

of new ‘living façade’ systems that use plants and other

organisms to absorb the pollutants of the city and purify the

air [2]. Similarly, with the attentiveness to which species are

planted in green areas, urban spaces are being transformed

into allergy- and asthma-free environments.

(ii) Small-scale design interventions
In addition to influences on infectious disease at the urban

and building scales, in recent years, researchers have begun

to consider how smaller design features of buildings, parti-

cularly healthcare environments, might deter the spread

of infectious disease. Approximately 5–10% of patients in

US hospitals acquire an infection while in the hospital, result-

ing in 99 000 deaths each year [125]. Handwashing is a

proven strategy to reduce infection rates and yet medical

staff compliance has been elusive. Birnbach et al. [126]

found that if the hand sanitizer dispenser was directly in

the line of vision, in comparison to when the dispenser was

adjacent to the doorway (as is quite typical), nearly 55% of

physicians sanitized their hands. When the sanitizer was near

the doorway, just 11.5% of physicians used it.

(b) Prevention in animals
Various aspects of the built environment can facilitate the

prevention of spreading infectious agents. Here, we discuss

a number of prevention measures observed in animals: anti-

bacterial or antifungal materials embedded within structures;

removing vectors of infection from the built environment;

avoiding locations that have been previously exposed to

pathogens, or show evidence of harmful consequences to

its occupants, and structuring the built environment in a

way that reduces interactions that may facilitate disease

transmission among individuals.

(i) Building materials
Certain building materials, such as plant parts with antibac-

terial or antifungal properties, are integrated into animal

nests to protect the inhabitants from disease [127]. Wood

ants use resin from coniferous trees as nesting material.

This resin inhibits the growth of bacteria and fungi and

enhances the survival of the nest’s inhabitants [128]. Honey-

bees incorporate resin from plants into the wax that forms

their hive, thereby reducing the bees’ investment in the

expression of immune function genes [129]. Several bird

species include green aromatic vegetation in their nest

materials to reduce parasite load [130–133] and wood rats

place California bay foliage in their nests to reduce the abun-

dance of ectoparasites [134]. Termites line their nest walls

with faecal pallets that decrease the germination of fungus

spores [135], and certain ant species secrete antimicrobial

compounds onto their nest walls to prevent the growth of

harmful microbes in the nest [136]. Finally, dry nesting

http://www.transparency.perkinswill.com
http://www.transparency.perkinswill.com
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material used by termites has lower loads of microorganisms

compared with damp nesting material [137].
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(ii) Removing and avoiding infectious agents
Removing vectors of infection from the nest, such as waste,

excretions and dead or sick individuals, is common in ani-

mals, especially in social insects. Honeybees and many ant

species remove dead individuals from their hive or nest

[138–140], a behaviour that extends the lives of the remaining

colony members [141]. Ants and bees can detect diseased

individuals and behave aggressively towards them [142]

until they leave the nest [143]. However, aggression is not

always required and, in some ant species, sick individuals

will remove themselves from the nest, without interacting

with nest-mates [144]. Studies of the mechanisms underlying

the ‘undertaking’ hygienic behaviour in honeybees have

revealed complex gene regulation [145] and uncovered

which neurotransmitters are associated with this task [146].

Waste is removed from the nest by specific ant workers that

do not perform other tasks [147,148] and will not go on to

perform other tasks before they die [149]. Interestingly, leaf

cutter ant species that live in wet environments will dig

special waste chambers inside their nest, while leaf cutter

ant species from arid environments will dispose of their

waste outside the nest [150]. One potential explanation for

this difference is that in wet environments, microorganisms

in the waste are more likely to spread and so confining

waste in chambers that can be closed off reduces the risk of

spreading pathogens. Other sanitary behaviours in animals

include the use of latrines to concentrate excretions in one

or a few locations inside or outside the nest. For example,

all individuals in a colony of social spider mites defaecate

in one location, usually near the exit of the nest [151], some

ant species concentrate their faeces in certain locations

inside the nest [152], and birds remove faecal matter from

their nest, especially when there are offspring present [153].

Many mammal species create faecal latrines; however, these

are mostly used for communication, rather than for sanitation

[154–158].

In addition to removing infectious agents, animals can

avoid locations that have either been exposed to pathogens

or show evidence of disease. For example, mole crickets

change where they dig tunnels to avoid areas where fungi

are present [159]. Pathogens may linger in the environment

and lead to the spread of disease. Non-synchronous crevice

use in the Gidgee skink results in more frequent transmission

of pathogens than direct social interactions [160]. Further-

more, the behaviours and habitat preference of the parasites

may play a critical role in where they are found and how

likely they are to persist inside a host’s burrow [161]. Thus,

the spatial behaviour of both hosts and parasites can

impact the spread of infectious disease. For example,

pygmy bluetongue lizards occupy burrows built by spiders

and their choice of which burrow to occupy and how fre-

quently to move between burrows can impact their parasite

load. Individuals that move frequently between burrows are

more likely to encounter and transmit a parasitic nematode

[162]. Some animals avoid locations that have signs of infec-

tions. For example, great tits avoid nest-boxes with fleas and

preferentially select clean nest-boxes [163]. Some ant species

avoid areas in a nest with microbes [164] or avoid moving

into nests with dead ants when selecting a new nest site
[165]. However, other ant species preferentially choose nest

sites with fungi [166], or with dead ants that are visibly

infected with fungi [167], over clean, empty nests. It is possible

that a low-dose exposure to such pathogens results in immu-

nity during later encounters with it (like a vaccination)

[168,169] or that the pathogen is attracting the ants and manip-

ulating them behaviourally to facilitate its spread. Thus, nest

selection does not always lead to the avoidance of disease.

(iii) Structure design
Animals may create structures that influence direct interactions

that facilitate disease transmission between individuals. For

example, creating compartmentalized spaces can segregate

the society and allow only subsets of individuals to interact

at any given time. Models comparing disease spread in

various structures predict that if an infection begins at a

single location, it will take longer to reach everyone in a

group housed in a compartmentalized structure, compared

with a compartment-less structure, in which individuals inter-

act with one another uniformly [16]. However, other models

show that spatial structures have only a small impact on dis-

ease transmission [170]. Empirical studies that examine the

relationship between the built environment, interaction pat-

terns and disease transmission are still lacking. Studies of

how population densities influence disease prevalence provide

some insights into how built structures may affect disease

transmission. For example, ecto-parasite loads decrease with

nest density in colonies of bee-eaters [171]. Furthermore, a

common argument in the social insect literature is that the

high density of social insects inside their nests puts them at

risk of rapidly transmitting infectious diseases within the

nest. However, such disease spread is seldom seen, leading

to the development of many hypotheses about how social

insects achieve ‘social immunity’ [172,173] or ‘organizational

immunity’ [174], including through structuring their nests to

regulate interaction rates [174]. For example, small nest

entrances protected by guard workers may prevent pathogens

from entering the nest [175]. Finally, wildlife managers may

take action to prevent the spread of disease, for example

through vaccination. However, such management actions

can, in fact, expedite the spread of disease by creating unna-

tural spatial clustering of animals. For example, the use of

feeding stations to distribute vaccinations for disease preven-

tion spatially clusters animals and increases the risks of

disease transmission [176].

(c) Containment in humans
While epidemic outbreaks of many communicable diseases,

like measles and poliomyelitis, have been largely reduced

thanks to vaccination and immunization, the complete eradi-

cation of infectious pathogens has been limited [177]. One

reason for this includes the changes in epidemiological

characteristics of infectious diseases due to increasing urban-

ization. According to Alirol et al. [178], higher population

density affects the transmission speed of diseases, such as

influenza and tuberculosis, that rely on direct contact and

proximity. The rural-to-urban migrations and worldwide

travel have also led to an increased risk of epidemics—

whether by introducing new pathogens to the urban environ-

ment from adjacent rural areas or because newcomers lack

the immunity to certain endemic diseases. The physical

environment of cities has either provided or eliminated



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc

10
favourable conditions for many infectious diseases.

Unplanned urban expansion, such as slums, has brought

about problems of inadequate sanitation, allowing the

spread of water-borne diseases and creating breeding sites

for various disease vectors, while improved housing con-

ditions and destruction of vector habitats resulted in a

decline in infectious diseases in other parts of cities [178].

For example, dengue fever (a mosquito-borne disease) is

now found mainly in tropical urban environments. This dis-

ease has re-emerged recently due to high population

densities, low herd immunity and increased mobility of

people, including viremic individuals, leading to broader

spatial propagation of the disease within the city [179]. In

this section, we discuss the current models for understanding

the flow of infectious diseases and strategies for containment

of epidemics in urban environments and within buildings.
.B
373:20170245
(i) Disease transmission and spatial configuration
Modelling the dynamics of infectious diseases in human

social networks requires looking at three interacting com-

ponents: the transmission of disease, the flow of information

regarding the disease and the spread of human preventive

behaviours against the disease [180]. The built environment

can have a significant impact on two of these components of

epidemics. First, because the diffusion of many infectious dis-

eases is closely linked to the patterns of human mobility and

social interaction, it is also directly influenced by the properties

of the built environment such as spatial configuration of spaces

within the buildings. Second, contemporary disease outbreaks

cause a disturbance in the usual everyday functioning of

public spaces and city infrastructures. Such changes occur

especially when preventive measures (both planned and spon-

taneous) take place and include emptying streets, fever

checkpoints at transportation hubs, forced closures of hospitals

and voluntary quarantines [123]. Hence, a major challenge for

epidemiology models lies in identifying and mapping the

overlap between the social, behavioural and spatial factors

that enable the transmission of disease.

Existing models have uncovered several important

aspects related to the effects of social interactions and

mobility patterns on disease dispersion. Modes of social

interaction and of disease spread both impact the number

of infected individuals. The nature of social contacts can be

close, e.g. individual contacts that happen at home, in work-

places and in social situations with friends, or casual, e.g.

occasional contacts at service places. Modes of disease trans-

mission include airborne droplets, contaminated surfaces or

direct transmission [181,182]. Importantly, contact networks

are heterogeneous, i.e. opportunities for transmission are

not equal for all individuals [183,184], but will depend on

their spatial and temporal patterns of use and mobility. For

example, the daily mobility patterns in developed high-

density urban societies (e.g. journeys to work) are highly

predictable. Therefore, public transportation and transfer

points are considered ‘transmission highways’. City-level

models based on integrated traffic information, geo-spatial

data and infection dynamics and spreading characteristics

allow for developing preventive strategies for particular dis-

eases, like airborne pandemic influenza A (H1N1) [185] and

vector-borne malaria influenced both by infected mosquitoes

and daily commuters [186]. When the daily routines of

inhabitants are irregular, for example in resource-poor
neighbourhoods in Peru, geographical space, economic and

social context structure all influence transmission dynamics

of an influenza-like pathogen. Less predictable movement

patterns corresponded with increased epidemic size [179].

While current epidemiological models generally consider

the spatial dimension of disease dispersion [187,188] typically

by using new technologies, such as geo-spatial mapping

(GIS), Bluetooth, mobile phone tracking and social networks,

the exact spatial configuration of the physical environment is

not taken into account. As illustrated in previous sections,

spatial structures can directly affect social interactions

within cities and buildings. A promising approach for incor-

porating architectural and organizational data into large-scale

epidemic forecasting models was proposed by Potter et al.
[189]. In their model, they used architectural distances

measured between workstations to model contact networks

between members of a research institute as directly

dependent on the spatial layout of the building.

(ii) Containment strategies through isolation and quarantine
The main aim of disease dynamics models is to identify criti-

cal infection points and propose effective mitigation strategies

either to prevent disease outbreaks (e.g. through targeted

immunization) or to contain epidemics. Control measures

that are directly related to the built environment typically

involve social distancing and include separation of ill individ-

uals from the rest of the population through spatial clustering,

i.e. isolation or quarantine, and closing public places such as

schools [181,190,191]. Historically, isolating sick individuals

began in the first hospitals, as early as the twelfth century.

Similarly, between the mid-nineteenth and mid-twentieth

century, there was mass building of sanatoriums, especially

for tuberculosis. The architecture of these sanatorium build-

ings was envisaged with the ease of care and sanitization in

mind, with specifically designed furniture and materials. It

further included open terraces and large windows as therapy

involving exposure to sunlight and air [6,119].

(d) Containment in animals
Containing infectious disease in animals can be achieved

by altering social interactions, for example, to facilitate

grooming behaviour and remove or avoid diseased individ-

uals. Furthermore, human intervention, for example, in the

case of wildlife management and conservation, may impact

the containment of infectious disease in animals.

(i) Social interactions
Grooming behaviour is one common method for containing

infectious diseases. In addition to reducing stress levels, as

discussed above, grooming is commonly used by animals

to clean themselves and others in their group of ectoparasites

[192–195]. Although grooming behaviour may prevent the

spread of ectoparasites, it can facilitate fomite transmission

and spread certain infectious diseases, such as tuberculosis

[196]. Therefore, self-grooming is more likely to contain a dis-

ease and allogrooming is more likely to facilitate disease

spread [197]. Furthermore, grooming can be associated with

energetic costs, because individuals who are grooming are

not resting, eating or watching out for predators [198].

Thus, built structures that can reduce these costs of grooming,

for example, by creating food stores and protecting from

predators, may promote animal health.
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As discussed above, removing diseased or dead individ-

uals from built structures is common in the animal world,

especially in social insects. This is similar to quarantine in

human societies, where sick individuals are spatially isolated

from healthy individuals to contain a disease. Relocating to a

new nest site, similar to human evacuations, is another way

to contain the spread of infectious agents [199].

More broadly, altering social interaction patterns through

modifications to the spaces that animals occupy can change

disease dynamics [200]. Theoretical work linking social inter-

actions and disease transmission reveals which interaction

patterns expedite disease transfer [201–203]. For example,

highly compartmentalized social structures, which can be

achieved by living in compartmentalized structures such as

nests with chambers, may slow the transmission of disease

[204–206]. Experimental work in honeybees provides some

information on how spatial organization may affect disease

transmission throughout a society. When colonies are

exposed to a pathogen for a short time, the disease remains

on the outskirts of the nest, but when the colony is exposed

to a disease for long periods, the infectious agents can

reach the centre of the hive and potentially affect the entire

colony [207]. Thus, the structure of the hive or nest can

impact the rate at which infectious agents spread and modi-

fications to this structure may aid in the containment of a

disease, once it has been introduced. Whether or not animals

modify the structures they live in to contain the spread of

infectious disease is an open question.

(ii) Human intervention
Containing infectious disease is a special concern for wildlife

management and conservation. For example, bat populations

have declined substantially due to a fungus causing ‘white

nose syndrome’ [208]. Models for containing the disease

take into account the spatial distribution of the caves in

which bats sleep to determine the best course of intervention

that will have the largest positive impact on the entire popu-

lation [209]. A large-scale, long-term, containment effort to

reduce tuberculosis in cattle in the UK has been to cull

badgers, which are a vector for the disease. However, the

spatial arrangement of badger populations and the dispersal

of healthy individuals into areas where badgers had been

culled led to faster spread of the disease instead of its contain-

ment [210,211]. Thus, spatial behaviour, such as dispersal,

den structure and occupation patterns, should be carefully

considered in wildlife management plans aimed at containing

infectious diseases [212].
4. Conclusion: the effects of the built
environment on disease and health
behaviours in both humans and animals

In our review of the literature to identify how the built

environment might impact disease and health behaviour in

both humans and animals, we identified parallels and differ-

ences between human and non-human animal societies that

may provide a basis for expanding our knowledge of both.

Many chronic diseases in both animals and humans

emerge from heightened stress. The built environment may

facilitate the reduction of stress by changing social inter-

actions. However, not all animals require the same amount
of social interaction to reduce stress. Crowding in humans

can induce stress and depression, but so can complete iso-

lation. Animal species differ in the amount of social

interactions they require: highly social species require fre-

quent interactions, whereas many social interactions

increase the stress in facultatively social species. Thus, the

amount of social interactions facilitated by the built environ-

ment should fit the social structure and preferences of the

species occupying the built structures. Feedback between

social processes and built structures can further influence

their effect on health behaviours. These social processes

differ between humans and animals and among social situ-

ations, thus raising the importance of considering social

processes and built structures in tandem. Future theoretical

work on the amount of social interactions that various struc-

tures facilitate may help prevent and contain chronic diseases

that stem from heightened stress in a wide range of species,

including humans, highly social non-human animal species

and solitary species.

In some cases, we found opposite impacts of built struc-

tures on human and animal health. For example, physical

activity promotes health and longevity in humans, but in ani-

mals, we see the largest within-species longevity differences

between individuals that are completely sedentary, protected

by their built environment and living to old age (social insect

queens), and those that are extremely active and die relatively

young (social insect workers). Similarly, built environments

that create easy access to energy-rich foods (such as sugars

and fats) benefit animals but harm humans. This difference

likely stems from the agricultural and industrial revolutions

that have enabled humans to produce food in excess and

escape the ‘Malthusian trap’.

Hygienic behaviours are used by both humans and ani-

mals to prevent the transmission of infectious agents. Both

humans and animals use certain building materials that pro-

mote health. Humans may be inspired by some of the

materials that animals use and incorporate those into their

buildings, or cleaning supplies, using biomimicry to prevent

the growth of microorganisms where they are not wanted.

Both humans and animals engage in sanitary behaviour—

whether it is hand washing in humans or removing infectious

agents in animals. Perhaps studies on where hand sanitizers

are positioned in hospitals can inform studies of sanitation

behaviour in animals. For example, these studies may guide

researchers seeking locations that promote sanitary beha-

viours in wild animals and inform the configuration of

animal enclosures for captive animals in zoos and biomedical

research facilities, to facilitate sanitary behaviours, such as

grooming.

Modifying how spaces are used can prevent and contain

infectious disease in both humans and animals. Isolation and

quarantine are common in human societies, similar to the

removal of infectious agents, dead or diseased individuals,

in animals. Evacuation of areas where epidemics are spread-

ing rapidly can be a way to contain infectious disease in

humans, similar to nest evacuations in animals. Furthermore,

animals may use spaces infected with low doses of microbes

to gain immunity, similar to vaccination in humans. Model-

ling how individuals move in different spaces and how

these movements influence interactions that may lead to dis-

ease transmission, using social network analysis, can improve

our understanding of the effects of the built environment on

disease transmission in both humans and animals.
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In both animals and humans, restructuring the built

environment can reduce or prevent disease transmission.

However, little is known about whether such changes are,

in fact, made. The built structures we discuss can be con-

structed by the individuals who occupy them, by other

individuals from the same species or by other species.

Regarding animals, we discuss both the structures that the

animals build themselves and structures that humans build

for them—for example, in zoos, agriculture and the labora-

tory. Humans often occupy spaces that others have

designed and built for them. Considering who designs

and constructs the built environment is fundamental for

understanding whether and how it can be modified in

response to various conditions, such as chronic and infec-

tious diseases. For example, in humans, many agencies

may be involved in permitting the re-modelling of spaces,

which may slow down the changes. Whether animals

modify the structures they build and occupy in response

to disease is still an open question. This open question can

be examined in animal systems using experimental manip-

ulations that might not be feasible to conduct in humans,

but may inform both human building designs and our

understanding of animal behaviours.

The impact of global climate change (GCC) will have a

variety of effects on the health of both humans and animals

[213–215]. While some of these impacts are predictable,

others cannot yet be forecast. As sea levels and temperatures

rise, humans will be increasingly faced with drought, floods,

natural disasters and consequent relocation and migration to

new regions. As temperatures rise, physical activity may be

less possible in some places but more viable in others [216].

In addition, the distribution of animal and human disease

vectors will likely be affected by rising temperatures. For

example, increase in mosquito populations and changes in

their spatial distribution may increase rates of malaria and

affect unprepared populations [217]. Human migration in

response to sea-level rise and natural disasters could further

change global disease transmission dynamics. Animal

health will also be impacted by GCC, for example, through

changes in distribution ranges that will expose animals to

new areas with potentially different pathogens or increased

temperatures that will increase the range of pathogens and/

or their persistence in the environment.

New digital and communication technologies that are

increasingly infusing the built environment, such as the

‘Internet of Things’, virtual reality, mobile communication

devices and cloud servers, are becoming indispensable in

understanding and monitoring health issues in both

humans and animals. For example, individual health tracking

devices are increasingly used to gather physiological and

psychological data to monitor individuals’ general health or

specific chronic conditions [218,219]. Various smart sensors

are currently used to improve the quality of indoor environ-

ments by gathering data on people’s comfort needs and

behaviour, both at the individual and at the social scales

[183,220,221]. These tracking systems will likely be used in

the future to develop personalized treatments and can con-

tribute to the investigation of the effects of physical and

social environments on health outcomes. Similarly, epide-

miological models could benefit from combining

information on spatial, social and behavioural factors

when modelling disease transmission within human and/

or animal populations separately, or in cases of zoonosis
outbreaks [222]. Novel technologies like virtual reality are

also being explored for their possible application for thera-

peutic purposes, such as restorative effects of being

virtually immersed in natural settings [223]. The cyber-

sphere may have multiple beneficial contributions for

understanding the underlying causes of health conditions

in humans and non-human animals.

We have discussed many ways in which humans and ani-

mals interact through built structures: for example, humans

build structures to keep animals in zoos, farms and labora-

tories; cities have become part of the habitat of many

animals and humans modify animal spaces as part of conser-

vation actions. One important interaction between humans

and animals that can be mediated by the built environment

is the propagation of zoonotic disease. Such interactions

have led to zoning of cities, as we detailed at the beginning

of the paper. However, zoonotic diseases are still prevalent

around the world and present an ongoing public health con-

cern because their emergence is tightly connected to

urbanization processes, global travel and trade routes, and

changes to ecosystems and biodiversity [178,224]. All these

changes have opened new disease transmission pathways

between humans, domestic animals and wildlife and are fuel-

ling multi-disciplinary approaches to control and prevent

infectious diseases. Therefore, epidemiological models

would benefit from insights into the impact of the physical

environment on the prevention and containment of both

infectious and chronic diseases. For example, understanding

the effects of urbanization on human and non-human

animal systems can offer new ways to predict the emergence

of novel diseases and new methods to control endemic zoo-

noses in developing countries and unplanned fast-growing

city areas. Interestingly, the implementation of health-pro-

moting design strategies to reduce chronic disease in

humans, such as providing green spaces in cities, has led to

an increase in biodiversity and in controlling potential zoono-

tic diseases. One way to examine the links between human

and animal activities and how they affect disease dynamics

has been through the development of human and animal

health information systems, which collect spatial disease

data at regional and national scales [225]. Further work is

needed to develop models of disease epidemics, especially

for crossing boundaries between human and animals and

across geographical space. Such models will require infor-

mation on zoonotic disease, host and vector-borne

transmission, and movement patterns of both humans and

animals. Thus, in-depth understanding of how interaction

patterns depend on the built environment would greatly con-

tribute to developing spatial models of infectious disease

transmission through social mixing networks, both within

and across species.

Overall, infectious and chronic diseases in humans and

non-human animals need to be understood as a worldwide

public health concern, given the largely anthropogenic dri-

vers such as the built environment behind many diseases.

Accordingly, securing the health and well-being of all

living social systems requires holistic and mutually informed

understanding and development of prevention strategies at

local, regional and global levels.
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