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High-density lipoprotein (HDL) particles, long known for their critical role in the prevention

of cardiovascular disease (CVD), were recently identified to carry a wide array of

glycosylated proteins, and the importance of this glycosylation in the structure, function

and metabolism of HDL are starting to emerge. Early studies have demonstrated

differential glycosylation of HDL-associated proteins in various pathological states, which

may be key to understanding their etiological role in these diseases and may be

important for diagnostic development. Given the vast array and specificity of glycosylation

pathways, the study of HDL-associated glycosylation has the potential to uncover

novel mechanisms and biomarkers of CVD. To date, no large studies examining the

relationships between HDL glycosylation profiles and cardiovascular outcomes have

been performed. However, small pilot studies provide promising preliminary evidence

that such a relationship may exist. In this review article we discuss the current state

of the evidence on the glycosylation of HDL-associated proteins, the potential for

HDL glycosylation profiling in CVD diagnostics, how glycosylation affects HDL function,

and the potential for modifying the glycosylation of HDL-associated proteins to confer

therapeutic value.

Keywords: glycosylation, high-density lipoprotein (HDL), O-glycosylation, N-glycosylation, ApoA-I, APOC3, APOE

INTRODUCTION

It has been established across multiple cohorts that high density lipoproteins (HDL) are
atheroprotective (1–4). HDL are complex, heterogeneous nanoparticles, with various subclasses,
comprised of numerous functional proteins and lipids (5), and havemore recently been shown to be
highly glycosylated (6) and structurally and compositionally variable in various physiological and
pathological states (7, 8). Owing to this high heterogeneity, HDL particles have diverse biological
functions including immunomodulatory, anti-inflammatory, antioxidant, antithrombotic, and
anti-proteolytic functions among others, which are dependent on their composition (9–13). Protein
and lipid composition, as well as particle structure and size, are important known factors driving
differences in HDL functional capacity. The role of glycosylation in the differential functionality of
HDL particles has only recently started to emerge.

Protein glycosylation is generally an enzymatically driven post-translational modification of
newly biosynthesized proteins that occurs in the endoplasmic reticulum and Golgi apparatus
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where sugars are attached to proteins by N- or O-linkages,
forming glycans (14). N-glycans are attached to a nitrogen
atom on the asparagine moiety of the protein whereas
O-glycans are bound to the oxygen atom of either threonine or
serine (15). Glycans contribute to various biological capacities
including protein folding, receptor binding, enzyme activity,
and physical properties by lending charge to the protein,
and are vastly particular to the type, extent, and specific
site of glycosylation (15–19). Protein glycosylation functions
as a biological language and is important for biological
particle self- and non- self-recognition, molecule transport,
and endocytosis (20). In the last 8 years since it was first
demonstrated that HDL are highly glycosylated, and specifically
sialylated particles (6) (Figure 1), there has been a steady
increase in the evidence pointing to an important connection
between the glycosylation of HDL-associated proteins, and the
overall functionality of HDL particles. In this review paper
we will discuss the current state of the evidence on the
glycosylation of HDL-associated proteins, specifically, where we
stand in terms of development of cardiovascular disease (CVD)
diagnostics using HDL-glycosylation profiling, how glycosylation
of HDL proteins affects HDL function, and the potential for
modifying the glycosylation of HDL-associated proteins to confer
therapeutic value.

HDL GLYCOSYLATION PROFILING FOR
DIAGNOSTIC PURPOSES

One of the problems with HDL particle analysis for diagnostic
purposes has been the extreme complexity of these particles and
the lack of resolution of older measurement tools. For example,
although high HDL-cholesterol (HDL-C) concentrations have
been found to be protective against CVD, several large recent
studies demonstrated that the relationship between HDL-C
concentration and adverse health outcomes tends to follow a
U-shaped curve, with both low HDL-C and very high HDL-
C being associated with increased cardiovascular (CV) events
(21–23). Clearly, it is not simply the measurement of the total
amount of cholesterol carried within HDL that is diagnostic, but
rather some other aspect of HDL that is critical, whether it be
compositional, structural, or functional.

For more sophisticated measurements of HDL structure,
composition, and function, it is imperative to first isolate
the HDL particles and purify them from other potentially
contaminating components. Because HDL particles are so small
(7–12 nm in diameter) as to overlap with many plasma proteins
in terms of their size (e.g., ferritin), and because they are close
in density to other lipoprotein particles and even extracellular
vesicles, they are difficult to isolate and purify. According to
multiple proteomic studies HDL could carry as few as 12 key
proteins or up to an excess of 200 proteins (24, 25) depending
on how they are isolated (24, 26, 27). Various methods, and
combinations of these methods, have been used to isolate HDL
including ultracentrifugation, size exclusion chromatography,
immunoaffinity precipitation, and asymmetrical flow field flow
fractionation. More recently, methods combining these different

approaches have been used to improve the overall yield and
purity of HDL particles while preserving their structural and
functional integrity (28–30), including an optimized, validated
method using sequential flotation density ultracentrifugation
followed by size exclusion chromatography which yields highly
purified HDL fractions (5).

Once HDL particles are isolated, the analysis of their
glycosylation status can be performed. Pioneering work in
lipoprotein glycobiology establishing analytical methods for
profiling the glycome of HDL particles revealed for the first time
that HDL has bothN- andO-linked glycosylation and is distinctly
highly sialylated (6). Glycosylation analysis is a complex chemical
approach traditionally using mass spectrometry combined
with various extraction methods such as enzymatic digestion,
chemical cleavage, and liquid chromatography (31–35). HDL
glycosylation can be profiled in several ways: (1) the glycans
can be enzymatically or chemically cleaved, followed by
mass spectrometry (6), (2) site-specific glycoprofiling can be
performed by tandem mass spectrometry analysis of protease-
digested samples (6, 36, 37), and (3) hydrophilic interaction
liquid chromatography profiling can be performed, which uses
a combination of the three main types of liquid chromatography
for separation and profiling of glycan-containing peaks (38, 39).

To date, no large studies examining the relationships between
HDL glycosylation profiles and CVD outcomes have been
performed. However, small pilot studies provide promising
preliminary evidence that such a relationship may exist. For
example, in a small pilot study performed by our group,
differences in HDL glycan composition were able to differentiate
between individuals at equal risk for CVD based on clinical
parameters (i.e., total cholesterol, low-density lipoprotein-
cholesterol (LDL-C), HDL-C, etc.) who were found to have
arterial occlusion vs. not (37). The role of HDL glycosylation
in CV health is starting to be recognized as a promising
new research field (40). Larger cohort studies investigating
the relationships between HDL glycoprofiles and CV outcomes
across factors including age, sex, and ethnicity are needed,
and have the potential to add greatly to our ability to detect
individuals at risk for CVD earlier when disease prevention
measures are the most likely to be effective.

HOW GLYCOSYLATION OF HDL PROTEINS
AFFECTS HDL FUNCTION

Most of the known HDL-associated proteins are glycosylated,
and only a few are found to be non-glycosylated. In Table 1 we
provide information on the N- and/or O-glycosylation status,
sites of attachment, and number of unique glycans attached
for several HDL proteins for which this information has been
confirmed by extensive MS/MS analysis. Whereas, here are
many putative sites for O-glycosylation (i.e., any Ser or Thr
residue) on any given protein, whether O-glycans are actually
attached must be confirmed by advanced MS analysis. Thus,
although several HDL-associated proteins, such as ApoC-I have
Ser or Thr residues that could in theory be O-glycosylated, in
Table 1 we report only those that have been demonstrated to
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FIGURE 1 | HDL particles are highly glycosylated, containing both glycoproteins that can be N- and O-glycosylated, and glycolipids, with glycan groups added

enzymatically through highly regulated cellular processes. In contrast, non-enzymatic glycation of proteins such as ApoA-I can occur under conditions of

hyperglycemia.

beO-glycosylated by MS measurement of isolated HDL fractions
derived from a starting volume of 500 uL of plasma. It is
possible that some proteins (e.g., PLTP) are present at such low
abundance in isolated HDL that their glycoforms fall below the
limits of detection. Thus, to further investigate the glycosylation
status of these low-abundance HDL proteins future experiments
involving enrichment for these proteins will be required. Other
proteins, such as ApoA-I, have been reported to be glycosylated
in the literature, however, we do not include it in Table 1

because based on detailed MS analysis the O-glycosylation could
not be confirmed. In the following section we review what is
currently known about the impact of glycosylation of several key
HDL-associated on overall HDL metabolism and function, for
which there is currently information. As the field evolves this
list will doubtless grow and a more comprehensive picture of
the extent and diversity of glycans attached to HDL-associated
proteins will emerge.

Apolipoprotein A-I
ApoA-I, the major structural, defining HDL apoprotein
accounting for around 70% of total HDL protein mass, plays
a key role in lipid and cholesterol metabolism and is highly
associated with cardioprotection (42). Despite ApoA-I being

reported to possibly be glycosylated (43–45) extensive mass
spectrometry-based (MS)-based profiling demonstrated that
there is no evidence of ApoA-I glycosylation (25). ApoA-I
does not have the consensus sequence for N-glycosylation
(AsnXxxSer/Thr/Cys, where Xxx can be any amino acid except
proline), and whereas O-glycosylation is possible on any serine
or threonine residue, detailed analysis of isolated HDL has not
yielded any confirmed O-glycosylated peptides on ApoA-I. It
is possible that ApoA-I O-glycosylation can occur in certain
conditions or disease states, however MS-based analysis has
never confirmed the existence of this to date. ApoA-I can,
however, be non-enzymatically or chemically glycated (44),
which has been found to be deleterious for its function.

Apolipoprotein A-II
ApoA-II is the second most abundant HDL apoprotein,
representing as much as 20% of total protein mass (42), and
has been shown to have important implications for CV health
though results were historically inconsistent and controversial.
For instance one early study showed that low serum ApoA-II
was a marker of atheroprotection in patients with non-insulin-
dependent-diabetes mellitus (46) but conversely another study
showed that elevated levels of ApoA-II were proatherogenic
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TABLE 1 | Glycosylation status of HDL-associated proteins with confirmed glycosylation sites.

Protein N-glycans O-glycans Sites of attachment

Alpha-1-antichymotrypsin (AACT) 8 0 Asn106, Asn127, Asn271

Alpha-1-antitrypsin (A1AT) 18 0 Asn70, Asn107, Asn271

Alpha-1B-glycoprotein (A1BG) 1 0 Asn179

Alpha-2-HS-glycoprotein (FETUA or A2HSG) 17 2 Asn156, Asn176, Thr346

Apolipoprotein A-II (APOA2) 0 4 Ser35, Ser88, Thr95

Apolipoprotein C-III (APOC3) 0 21 Thr94

Apolipoprotein D (APOD) 28 0 Asn65, Asn98

Apolipoprotein E (APOE) 0 40 Ser215, Thr307/Ser308*, Ser76/Thr83*,

Ser129/Thr130*, Thr194, Ser197, Ser263,

Thr289/Ser290* Ser296 (25, 41)

Apolipoprotein F (APOF) 0 3 Ser269, Thr273/Thr27*

Apolipoprotein M (APOM) 9 0 Asn135

Clusterin (CLUS or APOJ) 10 0 Asn86, Asn291, Asn374

Complement C1s subcomponent (C1S) 2 0 Asn174

Complement C3 (C3) 4 0 Asn85

Hemopexin (HPX) 6 0 Asn187, Asn453, Asn240/Asn246*

Heparin cofactor 2 (HCF2) 2 0 Asn49

Kininogen-1 (KNG1) 4 0 Asn169, Asn205

Lecithin-cholesterol acyltransferase (LCAT) 1 0 Asn108

Serum amyloid A-4 (SAA4) 7 0 Asn94

Serum paraoxonase/arylesterase 1 (PON1) 8 0 Asn253, Asn324

Proteins included in this table include only those with glycosylation sites confirmed to actually express glycans at those sites by mass spectrometry analysis of isolated HDL fractions

from a starting volume of 500 uL of plasma, as described in (25). HDL-associated proteins that have been reported to be glycosylated previously, and/or have putative sites but that

either could not be confirmed by mass spectrometry or are present at low abundance such that they fall under the limit of detection, are not reported in this table.
*For these sites, the site of attachment could not be disambiguated thus both possible attachment sites are reported.

(47). However, more recently a large prospective study (n= 912)
showed that ApoA-II was indeed inversely associated with
future risk for coronary artery disease (CAD) and was exerting
antiatherogenic properties (48). ApoA-II binds to phospholipid
transfer protein (PLTP) on HDL (49), suggesting that it plays
an important role in the remodeling of HDL particles. ApoA-II
contributes to structural properties of HDL (50) and its presence
on HDL enhances ATP-binding cassette transporter-1 (ABCA-
1)-mediated efflux, suggesting that ApoA-II can contribute to
structural changes in ApoA-I, and improve functionality of the
HDL particle (51). Like ApoA-I, ApoA-II does not contain the
consensus sequence for N-linked glycosylation, however it has
been shown to be O-glycosylated (25, 52). The glycosylation of
ApoA-II contributes to its association affinities since sialylated
ApoA-II preferentially associates with smaller HDLwhereas non-
sialylated ApoA-II associates with all sizes of HDL (53). In a
recent study in patients who were equally at risk for CAD based
on traditional biomarkers and who were then diagnosed as either
having CAD or not using diagnostic coronary arteriography,
ApoA-II was significantly lower in CAD patients compared
to patients without CAD (7). In children given a lipid rich
dietary supplementation there was no difference in ApoA-II
glycosylation between groups, but the analysis did confirm that
ApoA-II indeed had multiple glycoforms (25). It is currently
unknown what the role of glycosylation in ApoA-II function
is, and whether the extent of sialylation drives the binding of
ApoA-II to smaller HDL particles or whether higher sialylation

is reflective of a particular pathway of metabolism that is linked
with the production of small particles.

Apolipoprotein C-III
ApoC-III is a critical metabolic protein whose glycosylation
status has long been known to be an important determinant of its
function. ApoC-III is a small (8 kDa) O-glycosylated apoprotein
whose glycans can be capped with 0, 1, or 2 sialic acids and
thus is often denoted as, ApoC-III0, ApoC-III1, and ApoC-III2
accordingly. Because of the negative charge conferred by the sialic
acids the ApoC-III glycoforms have differential migration on gel
(18), which enabled the study of its glycosylation much earlier
than more advanced MS-based tools became available. ApoC-
III is synthesized in the liver and intestine and found on very-
low-density-lipoproteins (VLDL), chylomicrons, LDL and HDL
and is a multifunctional protein whose primary functions are
to hinder apolipoprotein E (ApoE) mediated hepatic uptake of
lipoproteins, and to inhibit lipoprotein lipase, a key enzyme that
catalyzes the hydrolysis of triacylglycerols from lipoproteins to
free fatty acids and monoacylglycerol fragments (54). ApoC-III
has gained considerable attention due to its relationship with CV
health and the strong correlation with ApoC-III overexpression
and CVD due to its involvement in hypertriglyceridemia (55, 56).

Though the association between elevated ApoC-III
concentration and CVD has been established for some
time, the focus has been primarily on the role of ApoC-III
in VLDL metabolism, however, recently a relationship between
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ApoC-III and HDL has emerged. For example, CVD patients
have increased HDL ApoC-III content (57, 58). Changes in
sialyation in the more common glycoforms of ApoC-III have
been observed in multiple conditions including uremia, obesity,
kidney disease, cancers and diabetes (8, 59–62). The enzyme
from the GalNAc-transferase family Golgi-localized polypeptide
N-acetyl-D-galactosamine-transferase 2 isozyme (GALNT2)
initiates the first step in the O-glycosylation of ApoC-III, as
well as several other lipoprotein-associated targets including
ApoE, PLTP, and angiopoietin-like 3 (ANGPTL3) (63). Loss of
function of GALNT2 was found to be associated with extremely
low HDL concentrations (64), highlighting the importance
of O-glycosylation of critical apoproteins and related proteins
involved in lipoprotein remodeling in HDLmetabolism. Elevated
circulating levels of triglycerides (TG) are a risk factor for CVD
(65) which is positively correlated with circulating ApoC-III
concentrations (66, 67). High-throughput mass spectrometric
immunoassay found that increased plasma TG levels were
associated with higher ratio of ApoC-III1 over ApoC-III2 (68).
Importantly, it is already well-known that the sialylation state
of ApoC-III associated with LDL particles is responsible for its
binding affinity to cell surface receptors, with ApoC-III2 being
preferentially cleared by heparan sulfate proteoglycans and
conversely ApoC-III1 being more effectively cleared by the LDL
receptor and other receptors in the LDL receptor family (69). It
is currently unknown whether and how the sialylation state of
ApoC-III associated with HDL particles influences the binding
of those HDL to cell surface receptors.

The glycosylation of ApoC-III is more complex than was
previously thought. In addition to the known glycosite at
position Alanine-74 (Ala)-74 (70) and the three possible non-
sialylated and sialylated glycans attached at this site (6), our
group identified a total of 20 glycoforms most of which were
fucosylated and nearly half were sialylated (15). Interestingly,
13 unique glycoforms of ApoC-III were significantly enriched
in HDL particles compared to serum, with the HDL-associated
glycoforms being more highly sialylated (15). These findings
suggest that either ApoC-III glycosylation state modifies its
affinity for a specific lipoprotein class, or that the metabolism of
ApoC-III and its exchange between the circulating lipoproteins
is reflected in its glycosylation. Research is needed to better
understand the mechanisms driving these intriguing findings
about the links between ApoC-III glycosylation and its
association with HDL vs. the ApoB containing lipoproteins, and
the unique role of ApoC-III in HDL particle metabolism.

In a recent study comparing the site-specific glycosylation
of ApoC-III in patients across the spectrum from healthy, to
those with metabolic syndrome to diabetic patients with chronic
kidney disease on hemodialysis, ApoC-III was differentially
glycosylated in patients with metabolic syndrome and diabetic
hemodialysis compared to controls (37). Patients with chronic
kidney disease who were on hemodialysis and patients with
metabolic syndrome had HDL that were significantly more
enriched in ApoC-III especially in di-sialylated ApoC-III (ApoC-
III2) compared to the control group (37). Importantly, HDL
ApoC-III glycosylation was able to distinguish between HDL that
suppressed vs. increased IL-6 secretion by monocytes stimulated

with lipopolysaccharide (LPS), when clinical biomarkers such
as total cholesterol, LDL cholesterol, C-reactive protein (CRP),
glucose and blood pressure were not discriminatory in this
immunomodulatory ability (37). These intriguing preliminary
findings suggest that ApoC-III glycosylation may play an
important role in directing the immunomodulatory capacity of
HDL particles.

Apolipoprotein E
ApoE may well be one of the most influential proteins in
lipoprotein biology, and in metabolic health overall. Genome-
wide association studies across multiple geographic regions
have irrefutably identified APOE, which directs lipoprotein
metabolism both peripherally and in the central nervous system,
as the single strongest genetic marker of extreme longevity
across multiple, multi-ethnic cohorts (70). APOE genotype is
a major risk factor for a number of age-related pathologies
including CVD and Alzheimer’s disease (71, 72). ApoE exists
in three isoforms, ApoE2, ApoE3, and ApoE4, with ApoE4
conferring increased risk for both CVD and Alzheimer’s (73–75).
Importantly, it is well-known that compared to ApoE3 the
ApoE4 isoform has a reduced ability to induce cholesterol
efflux (76, 77), and has a higher binding affinity for VLDL
than HDL particles, altering its metabolic fate (78). Unlike
the intracellular fate of ApoB-100, which is largely degraded
upon uptake via the LDL receptor, as much as 80% of ApoE
internalized as part of VLDL particles is recycled and re-
secreted as part of HDL particles (79). This recycling and re-
secretion pathway is not exclusive to hepatocytes, and instead
has been demonstrated to occur across a wide variety of cell
types (79). Importantly, when internalized as part of TG-rich
lipoproteins via receptors in the LDL receptor family, ApoE4
is more likely to be retained in the cell than recycled and re-
secreted as part of HDL particles compared to ApoE3, resulting in
diminished concentrations of ApoE4 in circulation and reduced
cholesterol efflux (76). The endocytic vesicles involved in ApoE
recycling were identified to contain sialyltransferase enzymes
(80), suggesting that addition of sialic acid residues to ApoE
glycan structures may be a critical step in directing ApoE
from internalized TG-rich particles to re-secreted HDL particles.
In support of this hypothesis, it has been found that HDL-
associated ApoE is more highly sialylated than VLDL-associated
ApoE (81).

ApoE was found to be glycosylated in 1979 (82), with 6
sialylated glycoforms identified (83). ApoE does not contain
the consensus amino acid sequence for N-linked glycosylation,
and instead is O-glycosylated with mucin-type glycans at
the originally characterized site at Threonine194 (Thr194),
which is not essential for ApoE secretion (84). More recently,
additional glycosylation sites have been identified, including
one at Thr212 (85), and 3 additional sites were identified
at Serine290 (Ser290), Thr289 and Ser296 in ApoE secreted
by macrophages isolated from peripheral blood mononuclear
cells of a single donor with ApoE3/E3 genotype (86). It was
recently shown that ApoE in fact has two more glycosites,
for a total of 7 mucin-type O-glycosylation sites, with
glycans ranging from simple GlcNAc to biantennary structures
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containing sialylation and fucosylation (87). Evidence regarding
the importance of ApoE glycosylation in lipoprotein function
is starting to emerge, building on the established evidence
that ApoE structure impacts the metabolism of lipoproteins
(41, 76). An aberrantly glycosylated variant of ApoE causes
defective binding to the LDL receptor (88). ApoE is highly
sialyated when associated with HDL compared to serum, and
its sialylation state is involved in mediating ApoE’s binding
affinity to HDL vs. VLDL (81, 89). ApoE glycosylation was
shown to be considerably different in cerebral spinal fluid
(CSF) than in serum (90) and its extent of sialylation in
CSF affects ApoE binding to amyloid beta, thus influencing
the development of plaque formation and Alzheimer’s disease
(91) and suggesting that glycosylation of ApoE may be tissue-
specific (90). Importantly, it was recently demonstrated that site-
specific glycoprofiles of HDL-associated ApoE are correlated with
HDL functional capacity (87), strongly suggesting that ApoE
glycosylation is important for HDL function. ApoE isoform-
specific glycoprofiling has not yet been performed and will likely
be important in distinguishing ApoE genotype-specific effects on
disease risk.

Alpha-1 Antitrypsin
A1AT is an acute phase protein mainly synthesized by the
liver, which acts as a protease inhibitor, and which has been
shown to increase dramatically during inflammation and has
also been found to persist post infection (92). Recent work
showed that statins can also induce A1AT concentrations, and
that association of A1AT with HDL protects the protein and
enhances its anti-proteolytic activity in the context of the highly
oxidative environment of the acute phase response (93). Post
translational modifications of A1AT contribute to changes in
conformation that may influence its function (94). Differential
glycoforms of A1AT have been reported in patients with various
types of lung cancers and are used in lung cancer diagnosis (95).
Sialylation variations of A1AT have also been observed in patients
with COVID-19 (96).

A1AT is N-glycosylated, and its site-specific glycosylation
profiles differ when associated with HDL compared to serum
(15). A1AT glycosylation is critical for its secretion by monocytes
(97), is differential between serum and hepatocytes (98),
and has increased fucosylated biantennary glycans in the
serum of hepatocellular carcinoma patients (99). The site-
specific glycosylation profiles of A1AT were highly differential
between diabetic chronic kidney disease patients on hemodialysis
compared to patients with metabolic syndrome and healthy
controls: kidney disease patients had a higher proportion
of monofucosylated to non-fucosylated glycans, and a lower
proportion of di-sialylated glycans on A1AT (37). In the same
study, HDL particles that attenuated the amount of Interlukin-
6 (IL-6) secreted by LPS-stimulated monocytes had higher
amounts of A1AT as well as lower amounts of several disialylated
glycans across multiple sites, suggesting A1AT and its specific
glycoprofile are involved in mediating HDL immunomodulatory
function (37). A disialylated A1AT glycopeptide was also
positively correlated with cholesterol efflux capacity in healthy
young adults (87), and in young children from Ghana (25).

These findings suggest an important connection between HDL
A1AT glycosylation, particularly disialylated A1AT glycans, and
HDL functionality.

Alpha-2-HS-Glycoprotein
A2HSG is a hepatically derived protein found in plasma and
associated with HDL particles (24). Several studies have shown
that A2HSG is critically important for CV health (100–103),
playing a particularly important role in preventing vascular
calcification, and emerging as an independent risk factor of
CVD and all-cause mortality (100). A2HSG is differentially
glycosylated in patients with chronic pancreatitis and pancreatic
cancer (104). Site-specific analysis of HDL-associated A2HSG
revealed that it is highly sialylated and decorated with both
N- and O-glycans at multiple sites (6). In patients with chronic
kidney disease HDL were enriched with non-sialylated A2HSG,
and non-sialylated A2HSG was enriched in HDL particles
that enhanced IL-6 secretion by LPS-stimulated monocytes
(37). Interestingly, A2HSG concentrations were lower in HDL
compared to serum but specific glycoforms were significantly
more enriched in HDL than in serum (15). Multiple A2HSG
glycopeptides were positively correlated with HDL cholesterol
efflux capacity and immunomodulatory capacity in healthy
adults (87), and in young children in Ghana supplemented with
a lipid-based nutrient supplement (25).

Lecithin-Cholesterol Acyltransferase
LCAT functions as a key enzyme in reverse cholesterol transport
and HDL particle maturation by esterifying free cholesterol
with a fatty acid from phosphatidylcholine (lecithin), which
allows HDL particles to carry a larger cholesterol load as
cholesteryl esters (CE) in the core of the particle (105). LCAT
is strongly linked with CV health and disease (106). ApoA-
I is a potent activator of LCAT (107). Mutations in the
LCAT gene lead to altered function of the enzyme resulting
in elevated levels of TG and reduced HDL-C, which can lead
to atherosclerotic pathology (108). The glycosylation of LCAT
has been known since the 1990’s, with both N-linked and
O-linked glycoforms identified (109, 110), and with important
implications for LCAT function (111). The glycosylation of LCAT
is critical for its structural stability and function (112). Loss
of glycosylation at several sites resulted in loss of function but
loss of glycosylation at site 408 increased the activity of the
enzyme (113). Desialylation of LCAT by neuraminidase resulted
in considerable alteration of LCAT activity, reducing cholesterol
esterification and concomitantly reducing the size of HDL (114).
Depending on LCAT glycotype LCAT binds preferentially to
HDL or ApoB-containing lipoproteins (115). These findings
provide strong evidence that LCAT glycosylation is imperative
for overall lipoprotein metabolism as well as cholesterol efflux
and transport globally, as well as metabolism and efflux capacity
of HDL particles in particular.

Cholesterol Ester Transfer Protein
CETP is a critical mediator of lipid transfer between HDL and
ApoB-containing lipoproteins, which in the context of high
TG concentrations, transfers CE from HDL in exchange for
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TG from ApoB-lipoproteins, thereby enriching HDL particles
with TG and altering their metabolism (116, 117). Loss of
function genetic mutations in CETP and lower concentrations
of CETP are associated with lower LDL-C and increased
HDL-C, and lower risk of CVD, which has made CETP a
major pharmacological target for CVD and atherosclerosis
prevention (116, 118). CETP is highly sialylated with four
N-linked glycoforms (119). A major form of serum CETP
lacking glycosylation at Asparagine341 (Asn341) was shown
to have markedly increased functionality compared to other
forms (119, 120). Defective sialylation of CETP in heavy alcohol
drinkers showed a significant reduction in the function of
CETP compared to controls (121). Patients with a congenital
disorder of glycosylation of the glycosyltransferase enzyme beta-
1,4-galactosyltransferase 1 have defectively glycosylated CETP
with reduced functionality, and larger HDL than healthy controls
(122). CETP is a minor component of HDL, whose function is
to temporarily associate with HDL while bridging between the
HDL and ApoB particle between which the exchange of lipids
occurs, thus it is often missed as an HDL-associated protein
depending on the HDL isolation method and sensitivity of the
protein detection method (24). However, its importance in lipid
metabolism and strong links with CVD make it an important
protein whose content and glycosylation when associated with
HDL particles is an area of focus for future studies.

Phospholipid Transfer Protein
The primary function of PLTP is to transfer phospholipids from
ApoB containing TG-rich lipoproteins to HDL (123, 124). As
a key modulator of HDL size, composition, and concentration
PLTP has gained considerable attention for its role in the
development of CVD (125). PLTP overexpression has been
reported to be an independent risk factor for CAD and is
associated with type II diabetes and obesity (126). Two forms of
PLTP have been described that have high and low phospholipid
transfer activity, which may explain the conflicting findings of
the association between PLTP and pro- vs. anti-atherogenic
effects (127). Higher concentrations of the low-activity PLTP
type may be the driver of the pro-atherogenic effects, and
PLTP glycosylation may play a critical role in the function and
activity of the protein. Human PLTP has 6 N-linked and 2
O-linked glycoforms (123). Multiple earlier studies showed that
tunicamycin treatment disrupts the ability of cells to secrete
PTLP, suggesting glycosylation is necessary for synthesis and
secretion (128, 129). A later study confirmed that inhibition
of PLTP N-glycosylation affected its structural stability and
markedly reduced its ability to be excreted resulting in the non-
glycosylated PLTP being intracellularly degraded (125). Much
like CETP, PLTP is a protein that temporarily associates with
HDL particles to mediate the exchange of material between HDL
and ApoB-containing lipoproteins, thus the ability to detect its
presence on HDL depends on the nature of the HDL isolation
method. Although PLTP is a minor constituent of HDL particles
and thus measuring its glycosylation may be limited without
enrichment prior to analysis, its content and glycosylation profile
are likely to be important factors in overall HDL metabolism.

POTENTIAL FOR MODIFYING THE
GLYCOSYLATION OF HDL-ASSOCIATED
PROTEINS TO CONFER THERAPEUTIC
VALUE

Given the growing evidence that HDL glycosylation may be
critically involved in both metabolism and function, with
implications for both CVD diagnosis and treatment, the potential
for HDL-based therapeutics targeting HDL glycosylation is
compelling. Strategies to reduce CVD risk and prevent or reverse
CVD by increasing the concentration of HDL particles have
been largely disappointing. Increasing the number of HDL
particles through pharmacological means (e.g., CETP inhibitors,
niacin), has met with some success, however the ability to
further reduce residual CVD risk following LDL-lowering with
statins has been difficult to achieve (130, 131). Several additional
HDL modifying therapies, including injection with reconstituted
HDL particles, ApoA-I, as well as extracorporeal HDL lipid
depletion, where HDL particles are removed from plasma,
exogenously delipidated, and then reinfused, have similarly
met with modest success despite promising results in animal
trials (132, 133). Thus, novel therapeutic approaches to increase
not just the concentration but also the function of HDL
particles remain an important area of research. The potential for
dietary and pharmacological strategies to improve HDL function
via modulation of HDL glycoprofiles is tantalizing given the
growing evidence of the importance of HDL glycosylation in
its function. Several recent studies show promising results for
the modification of HDL glycosylation through diet. Whereas,
the glycosylation of HDL-associated ApoE was not affected by
a short-term intervention with Mediterranean vs. fast food diet,
the glycosylation of HDL-associated ApoC-III was significantly
altered in just 4 days (87). Specifically, disialylated ApoC-III
(ApoC-III2) was increased after the Mediterranean diet whereas
nonsialylated ApoC-III (ApoC-III0) was increased after 4 days
of consuming a diet enriched in saturated fat and simple sugars
and depleted in fiber (87). These alterations were associated with
HDL cholesterol efflux capacity as well as immunomodulatory
capacity (ability to suppress cytokine secretion in stimulated
monocytes) (87). In young children in Ghana supplemented with
a lipid nutrient supplement, HDL glycopeptides that were altered
by the supplement were correlated with HDL cholesterol efflux
capacity (25). There is also evidence that targeting GALNT2
activity may be a viable strategy to alter the glycosylation of
HDL-associated proteins and thus increase HDL concentration
and function (64, 134). While this research area is very new,
early tantalizing evidence provides support for the idea that the
alteration of HDL glycoprofiles via dietary or pharmacological
interventions may be a viable strategy for improving the
functional capacity of HDL particles and thus improving
CV outcomes.

CONCLUSION

While the study of HDL glycosylation is still in a nascent
state, emerging evidence suggests that differential glycoprofiles
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of HDL-associated proteins may be diagnostic and may reveal
new mechanisms in lipoprotein-mediated aspects of CVD.
In order to uncover glycan-based disease biomarkers newly
developed glycan analytical methods need to be applied to
large, comprehensively characterized, and preferably genotyped
cohorts with known CV outcomes. Basic cell and molecular
biology studies are also needed to better understand how
glycosylation affects HDL metabolism and function, so that the
potential for modifying the glycosylation of HDL-associated
proteins through intervention to confer therapeutic value can

be realized. In the last 10 years there has been progress

toward developing the fundamental methodologies for both

the isolation of HDL from plasma and the analysis of
HDL glycosylation especially using MS. This field is now
ripe for major discoveries utilizing these tools in the areas
of glycan-based HDL CVD biomarkers, novel CVD disease

mechanisms, and ultimately, novel HDL-based therapeutics
for cardioprotection.
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