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Abstract

Topics in Particle Physics, Quantum Field Theory, and Cosmology

by

Jaryd F. Ulbricht

Our understanding of particles physics derives, in large part, from our ability to do

perturbative calculations by expanding around small coupling. This Feynman diagram-

matic approach has been incredibly successful in providing physicists a means to ap-

proximate physical observables. However, there are many scenarios where a perturba-

tive approach either does not exist or fails completely. In this thesis I will construct

several nonperturbative (or singularly perturbative) methods that have applications in

particle physics, quantum field theory, and cosmology. We will also investigate a broad

range of topics, including grand unified theories, the hierarchy problem, dark matter

phenomenology, the mathematical foundations of quantum mechanics, and a host of

mathematical methods useful in physics.
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Beyond Perturbation Theory

This is a collection of results derived by myself and in collaboration with others.

These results focus primarily on topics in quantum field theory, but also touch on some

other subjects such as cosmology and particle physics phenomenology. They share in the

development and application of new mathematical methods and alternative approaches

to problems in physics. The diversity of the spectrum of physical phenomena is, in

large part, a consequence of nonlinear dynamics. Except for an extremely small number

of special cases, we have no complete solutions of nonlinear systems. The existence

of nontrivial relativistic quantum field theories is not even established, at least at the

level of rigour of a mathematical proof. We then find ourselves investigating the natural

world with a mathematical framework that we don’t fully understand, whose dynamics

we don’t know how to solve. Let us begin with a historical perspective on how we have

come to find ourselves in this situation.

In the early 20th century our understanding of the physical world rested on

the foundations of classical mechanics, whose mathematical structure is symplectic ge-

ometry. In this theory a system of N particles in 3 dimensions is described by the

6N generalized momenta pi and coordinates qi, with a closed nondegenerate differential

2-form (symplectic form). The motion of particles was described by their trajectories
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through phase space, whose time evolution is governed by the Hamiltonian. This under-

standing of the universe led to a great number of incredibly successful theories, perhaps

culminating in the kinetic theory of gases and the explanation of Brownian motion.

I make this assertion because, before the papers by Einstein[1] and Smoluchowski[2],

there was disagreement amongst physicists over whether the atom, whose existence is

now regarded as obvious, was a mathematical construct or physical reality. The world,

it seemed, was perfectly fluid and continuous. Atoms, with their ungainly discreteness,

were an insult to our smooth existence in an unblemished cosmos. Of course, like freez-

ing water in a granite spire, this discreteness would soon shatter the foundations of 20th

century physics.

As the physics community was overtaken by the theory of the quantum, shortly

after the groundbreaking and Nobel prize winning research by Einstein on the photo-

electric effect[3], the mathematical structure of physical theories shifted from symplectic

geometry to the algebra of operators on Hilbert spaces. This shift resulted in a richer

structure in physical theories, but it came with a cost: it was unintuitive and mon-

storously complicated. Nevertheless, the young theory of quantum mechanics lifted the

clouds that obscured several outstanding problems in physics (to use the phrasing of

Lord Kelvin[4]), such as the ultraviolet catastrophe in black body radiation.

Early successes of quantum mechanics, such as the energy levels of the hy-

drogen atom[5] and the quantum harmonic oscillator[6], consisted of exactly solvable

problems1. Such problems, although incredibly useful in many regards, are not accu-
1The Bohr-Rutherford model of the hydrogen atom was built on the old quantum mechanics that

existed during the period of 1905 and 1925, and was itself inconsistent. It was replaced with the more
mature quantum mechanical theory of Pauli[7] and Schrödinger[8] in 1926
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rate representations of the natural world. These relatively simple models could not

reproduce the fine detail and heterogeneity of observation. To be sure, this is not a fea-

ture unique to quantum mechanics. Laplace and Lagrange were the first to consider the

motions of celestial bodies as perturbed from their exactly solvable Keplerian orbits[9].

Perturbation theory, which it came to be called, was soon applied to quantum mechanics

by Schrödinger[10] (time-independent) and Dirac[11] (time-dependent). More realistic

models could then be investigated, such as the Stark effect and Zeeman effect on the

spectrum of the hydrogen atom[7, 10], by considering small departures from the exactly

solvable systems.

Despite these successes, quantum mechanics had a problem: it appeared in-

consistent with special relativity2. Attempts to unite the two principals resulted in the

proliferation of infinities at higher orders of perturbation theory. The Klein-Gordon

equation[12–15] and the Dirac equation[16] were developed as fully relativistic wave

equations, but it was not known how to calculate anything beyond the trivial free

particle case. The leading order approximation from Dirac’s theory of the anomalous

magnetic dipole moment of the electron gave g ∼ 2, in the limit that the electromag-

netic coupling constant αEM → 0. This was reasonably close to the experimental value

(about 1 in 1000), and gave the correct splitting of the hydrogen atom spectrum, so

Dirac’s theory of the electron became the accepted theory at the time. However, this is

essentially a classical result, since it ignores intermediate particle states. In the words of

Sydney Coleman: “Even when relativistic effects are small, the kinematic effects of rela-
2It is still an open question of whether a general quantum theory is compatible with special relativity.

There are affirmative results in 2 and 3 dimensions, and some negative results in dimensions greater
than 4.
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tivity are precisely the same order of magnitude as the effects of pair states and we have

no business dealing with a system of only two bodies or one body in a potential.”[17]

In order to include the many particle states that should exist one formulates the theory

in terms of fields, rather than individual particles. Since these fields are quantum in

nature, this goes by quantum field theory (QFT).

The full theory of quantum electrodynamics is nonlinear in the fields, because

of the coupling between the electron and photon. This makes the theory nonlinear and

highly nontrivial. By assuming that the nonlinearities are small, that is that the theory

is in some sense “nearly free”, one might hope to make progress using perturbation the-

ory. The first attempts at calculating radiative corrections were disastrous, everything

beyond the leading order approximation was infinite. It took until the mid 1940s, in the

works of Richard Feynman[18–20], Julian Schwinger[21], and Shin‘ichirō Tomonaga[22–

25], to resolve the infinities in a process that came to be known as renormalization. In

renormalization the bare parameters of the theory are unphysical, and formally infinite.

One then allows the divergent components of the bare parameters to exactly cancel with

the divergences at each order in perturbation theory, so that the final result is finite.

Feynman constructed an algorithmic procedure for doing this process by drawing little

diagrams that represented each term in a perturbative expansion of observables in the

theory, with a corresponding set of rules that are easily inferred from the diagram.

After Feynman, Schwinger, and Tomonaga put quantum field theory on firm

footing (at least in the sense of being able to actually do perturbative computations),

there have been a number of major advancements in the field of theoretical particle

physics. Chen Ning Yang and Robert Mills extended the abelian gauge symmetry of

5



electromagnetism to non-abelian gauge groups in 1954[26], but non-abelian gauge bosons

must be massless in order to maintain gauge invariance. This issue was resolved in the

early 1960s by Yoichiro Nambu[27], Jefferey Goldstone[28, 29], Abdus Salam[29], and

Steven Weinberg[29] with the inclusion of the spontaneous symmetry breaking mecha-

nism of François Englert and Robert Brout[30], Peter Higgs[31], and Gerald Guralnik,

Carl Hagen, and Tom Kiggle[32]. This set the stage for the development of our current

theory of the universe on the smallest scales: the Standard Model of Particle Physics

(SM).

The SM is a QFT, with gauge symmetry SU(3) × SU(2) × U(1), corresponding

to the strong nuclear charge, weak nuclear charge, and hypercharge respectively. With

the exception of the strong nuclear force (quantum chromodynamics, or QCD) the

coupling parameters in the SM are relatively small, enabling a perturbative expansion

of observables. In 1973 David Gross and Frank Wilczek[33], and independently David

Politzer[34], showed that QCD was asymptotically free: the strong force becomes weaker

at shorter distance scales. This also allows one to do perturbative calculations, provided

the energy is sufficiently high.

There have been far more developments in the past 80 years that I have not

mentioned. We will stop here though, because the point is beginning to become clear:

most of the mathematical machinery we have at our disposal to understand particle

physics is of the same ilk as of that used by Laplace and Lagrange. We write observables

as an expansion around some small coupling (say λ):

⟨O⟩ = c0 + c1λ+ c2λ
2 + . . . .
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The leading order coefficient, c0, is the free problem, which is exactly solvable. The

higher order coefficients are calculated using Feynman rules, doing loop integrals, and

renormalizing. We have reduced an unsolvable problem into an infinite number of

solvable ones. Feynman diagrams and perturbation theory are the work horses of particle

physics. This is a massively useful tool that has allowed physicists to make predictions

at incredible precision.

However, there are physical phenomena which cannot be described using this

brand of perturbation theory. These include the electroweak sphaleron[35, 36], the

QCD instanton[37], soliton states[38], vacuum tunneling[39–41], and first order phase

transitions[42, 43]. In these examples the leading order approximation corresponds to

a nontrivial solution of a nonlinear boundary value problem, which typically has no

known analytic solution (an exception being the QCD instanton). These effects can be

approximated in a perturbative fashion, meaning we make an expansion around some

small parameter3, but this expansion involves a leading exponential term exp(−c/λ),

and we reserve the phrasing perturbative to mean a Taylor series in positive powers of

λ. Owing to their greater complexity, these phenomena are much less studied than

perturbative effects, and there exist far fewer tools for their analysis in comparison.

Additionally, perturbative approximations of some observables may be valid

in some region of parameter space, but fail in other regions. In most QFTs this is in

fact true for all small coupling expansions. Using an argument originally by Freeman

Dyson[44], the series expansion in powers of λ diverges for all λ > 0. At some order in

perturbation theory, roughly 1/λ, the coefficients begin to grow without bound4. This
3A better term for this kind of expansion would be singularly perturbative
4In fact we are quite lucky that the series is divergent. For two series representations of a meromorphic

7



is particularly apparent in QCD, where the strong coupling is divergent in the infrared

(IR), which is believed to be the cause of color confinement (though no formal proof

of such a claim exists). Again, we find ourselves with a dearth of options to analyze

physical phenomena in cases where the perturbative method fails.

The major theme of this thesis is the development of mathematical methods

useful in physics. This includes the investigation of nonperturbative methods, as well as

some analysis and applications to phenomenology. In Chapter 1 we investigate a scenario

where a perturbative analysis fails. It has been suggested that scattering cross sections

at very high energies for producing large numbers of Higgs particles may exhibit factorial

growth, and that curing this growth might be relevant to other questions in the Standard

Model. We point out, first, that the question is inherently nonperturbative; low orders

in the formal perturbative expansion do not give a good approximation to the scattering

amplitude for sufficiently large N for any fixed, small value of the coupling. Focusing

on λϕ4 theory, we argue that there may be a systematic approximation scheme for

processes where N particles near threshold scatter to produce N particles, and discuss

the leading contributions to the scattering amplitude and cross sections in this limit.

Scattering amplitudes do not grow as rapidly as in perturbation theory. Additionally,

partial and total cross sections do not show factorial growth. In the case of cross sections

for 2 → N particles, there is no systematic large N approximation available. That said,

we provide evidence that nonperturbatively, there is no factorial growth in partial or

function, one convergent and one divergent, the divergent series will typically converge on the correct
answer much more quickly than the convergent series, provided the divergent series is asymptotic. If the
universe had been unkind observables in QFT would have convergent series expansions and we would
have to calculate tens if not hundreds of terms to achieve even a modest level of precision. I encourage
the reader to try this with their favorite transcendental function.
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total cross sections. These results we found in collaboration with Michael Dine and

Hiren Patel[45].

In Chapter 2 we develop a uniform WKB method to study the density of

hypothetical dark matter particles as a function of the age of the universe. A solution

to the Boltzmann equation governing the thermal relic abundance of cold dark matter

is constructed by matched asymptotic approximations. The approximation of the relic

density is an asymptotic series valid when the abundance does not deviate significantly

from its equilibrium value until small temperatures. Resonance and threshold effects are

taken into account at leading order and found to be negligible unless the annihilation

cross section is negligible at threshold. Comparisons are made to previously attempted

constructions and to the freeze out approximation commonly employed in the literature.

Extensions to higher order matching is outlined, and implications for solving related

systems are discussed. We compare our results to a numerical determination of the

relic abundance using a benchmark model and find a fantastic agreement. The method

developed also serves as a solution to a wide class of problems containing an infinite

order turning point. This research was published in collaboration with Logan Morrison

and Hiren Patel[46].

In Chapter 3 we turn our attention to effective field theories and analysis. New

matter fields charged under the strong nuclear force would have dramatic phenomeno-

logical implications. Here, we systematically explore how these new states, which we

postulate belong to some representation of SU(3) of QCD, could interact with SM fields:

We analyze all lowest-dimensional “portal” operators for any SU(3) representation and,

motivated by grand unification, we extend our results to SU(N), for N > 3. This
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research was published in collaboration with Tesla Jeltema and Stefano Profumo[47].

In Chapter 4 we present a formula for calculating the regulated functional

determinant of a second order elliptic operator that possesses radial symmetry. The

formalism follows closely to what has been derived previously for second order ellip-

tic operators acting on a single scalar field. The generalization from scalar operators

to matrix operators is accomplished by identifying a privileged matrix solution of the

differential equation known as the principal matrix solution. We obtain UV finite re-

sults by renormalizing the determinant ratio using zeta function regularization, and

we also include a general procedure for the removal of zero modes. Explicit formula

for dimensions d = 2, 3, and 4 are given. The generalization to higher dimensions is

straightforward. This work is incredibly important and relevant for the study of non-

perturbative effects in quantum field theory, as functional determinants are the one-loop

contributions to correlation functions expanded around non-trivial saddle points of the

classical action. These results also incorporate the matrix structure necessary to directly

investigate nonperturbative effects in theories involving fermions. Finally, we note that

the procedure developed is more general than a small coupling expansion, as we only

require some large prefactor in the classical action (it need not be the inverse of some

small coupling 1/λ).
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Chapter 1

Behavior of Cross Sections for Large

Numbers of Particles

1.1 Introduction

The perturbation expansion of Greens functions in quantum field theories is

typically asymptotic, with the coefficient of the n’th order terms exhibiting factorial

growth in n[48]. This can be attributed to the factorial growth in the number of Feyn-

man diagrams with n.For some time it has been noted that there is similar growth in

the amplitudes for processes in scalar field theories with large numbers of final state

particles N , e.g. in 2 → N processes, already at the level of the leading order Feynman

diagrams[49–52]. This happens because, near threshold, the amplitudes are only very

weak functions of momenta, and there are N ! ways of rearranging the various final state

particles in the lowest order diagrams. At extremely high energies estimates are more

challenging, but there would seem likely to be factorially large numbers of contributions
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to amplitudes with the same sign. Various attempts have been made to compute or

estimate the behavior of amplitudes and cross sections in the limit of large N . These

analyses are in some instances perturbative, and in some instances attempt to include

non-perturbative effects. More recently it has been argued that the growth of ampli-

tudes implies a physical cutoff at energies much less than the Planck mass Mpl, thereby

reducing the severity of the hierarchy problem[53, 54].

In this paper, we take a critical look at the question of the growth of scattering

amplitudes and cross sections at very large N in λϕ4 theory. We start with the simple

observation that the problem is inherently non-perturbative for N ≫ 1/λ: at each order

in λ, one obtains additional powers of N ; the expansion parameter is λN . We will focus

on two classes of processes: 2 → N scattering and N → N particle scattering. We

will work near threshold (with |p⃗| = ϵm, where m is the particle mass and ϵ is a small

number which does not scale with N). In the first case, the scattering amplitude in

lowest order of perturbation theory grows as N !. Bose symmetry gives a 1/N ! factor,

and the phase space integral gives neither N ! enhancement or suppression. So one has

a cross section which grows as N !. In the case of N → N scattering there are, at

large N , of order (2N)! independent contributions to the scattering amplitude at low

orders, suggesting (2N)! growth of the scattering rate. But even near threshold the

amplitudes have complicated dependence on the momenta. If we focus on the most

singular momentum region, the perturbative rates do not exhibit factorial growth, and

we give a crude argument that this singular region dominates the cross section.

In either case the perturbative analysis is not reliable when N ≳ λ−1, and

we would like some insight (and ideally a systematic approximation scheme) into these

12



processes. In the case of N → N scattering we describe a non-perturbative computation

which we suspect to be the leading approximation in a systematic expansion in 1/
√
N .

This yields a cross section which decreases factorially with N as N becomes very large.

In the case of 2 → N , we adopt a different approach. There does not appear to be a

simple reorganization of the problem which would permit a systematic approximation

in 1/N . We describe an admittedly crude computation which suggests, again, that am-

plitudes grow more slowly than in perturbation theory and cross sections don’t exhibit

factorial growth.

As a strategy to explore the non-perturbative behavior we consider the problem

from the perspective of the path integral. To cast the scattering problem in this language

we employ the LSZ formalism. To render the LSZ result in a fashion which is convenient

for a path integral analysis we can proceed in two ways. One approach is to reorganize

the Feynman diagram expansion into a finite (power ofN) number of classes of diagrams,

each of which can be expressed as an integral of a Green’s function weighted by external

wave functions. Each of these Green’s functions, in turn, can be simply expressed as

a path integral. In some cases, taking the large N limit allows one to evaluate these

by semiclassical methods. This statement relies critically on the use of normalizable

wave packets, and the fact that there is a small space-time region where all of the wave

packets coincide. From the path integral perspective, it is only in this small region of

space-time, involving only a small subspace of the field space, where the large value

of N is important. The amplitudes do indeed appear to be dominated by a particular

classical configuration; more precisely a particular region of integration. This allows a

simple determination of the scaling with N , and a possible systematic expansion in 1/N
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for the case of N → N scattering. For 2 → N , we adopt a different approach. The

analysis is not systematic but strongly suggestive. As in the N → N case, this leads to

an expectation that the growth of the amplitude is slower than in perturbation theory,

and that the cross sections do not exhibit factorial growth with N .

In the rest of this note we investigate these questions. Other critiques and

responses have appeared elsewhere[55–57]; the issues we raise are somewhat different.

We will set aside the question of whether the theory has a sensible limit as its ultraviolet

cutoff is taken to ∞, but will explain the analysis which leads to the results stated

above. We first review, in section 1.2, the leading perturbative result for the cross

section in 2 → N scattering. We illustrate features of N → N scattering in section 1.3.

While there are a vast number of diagrams we isolate a subset of them by examining a

singular kinematic limit, where in low orders of perturbation theory there is not factorial

growth of the coefficient of the most singular behavior. We then argue that while the

non-singular diagrams are far more numerous, they are suppressed by factors of 1/N

relative to the singular diagrams.

In both cases, as we note in section 1.4, perturbation theory becomes unreliable

when N ≳ 1/λ, so any would-be conflicts with unitarity should arguably be viewed

with skepticism when derived from a perturbative framework. To obtain some insight

into the non-perturbative problem, in section 1.5, we review the behavior of a simple

one-dimensional integral (zero-dimensional field theory) which possesses some of the

features expected of actual ϕ4 theory. In section 1.6.1 we review some basic aspects

of scattering of wave packets in non-relativistic quantum mechanics in order to set

the stage for our discussion of some aspects of the LSZ formula in section 1.6.2. In

14



particular, we focus on the scattering amplitude for normalizable initial and final states

as well as aspects of the path integral. In section 1.7.1 we explain why, in the case of

N → N , this reorganization of the path integral is particularly effective and why the

approximation appears systematic. We also show that the amplitude is substantially

reduced over the leading perturbative contribution. On the other hand, for 2 → N ,

the approach provides, at best, a crude estimate. A more useful strategy, developed in

section 1.7.2, involves the study of an effective action for 2 → N processes, where the

N final state particles are near threshold. This problem can also be expressed in path

integral language and one can obtain a recursion relation for Γ2→N for different values

of N . The recursion relation, for N ≪ 1/λ, reproduces the perturbative result, but it

leads to slower growth at larger N . This, in turn, translates into a cross section which

does not exhibit factorial growth.

In our concluding section we remark on implications of this work for unitarity

at large N , and also suggest possible further directions which might give greater control

over this particular limit of quantum field theories.

1.2 Perturbative Analysis of 2 → N Scattering in λϕ4 The-

ory

We begin this section by reviewing a conventional perturbative analysis [49–52]

of the production of N non-relativistic scalars near threshold in a λϕ4 theory from an

initial state of two very highly energetic particles. The case where N = 2×3k lends itself

to a simple analysis. In that case there is a diagram where the two incident scattered
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particles produce two particles, and then each splits into three, each of these splits into

three, and so on, k − 1 times. All of the internal lines are far off shell, and one can

neglect the small kinetic energies of the final states. As a result, there are N ! nearly

identical contributions to the amplitude.

φ

φ

(
k0,k

)

(
k0,−k

)

φ1

φ2

φ3

φ4

φ5

φ6

φN−2

φN−1

φN

Figure 1.1: The initial state particles scatter to two very off shell particles, which then
decay to three particles, and those particles decay to more particles, etc...

One might wonder whether there is suppression arising from the numerous

propagators in the graph. The total number of vertices for this diagram is:

V =1 + 2
(
1 + 3 + 32 + · · · + 3k−1

)
,

=1 + 2
(

3k − 1
2

)
,

=N

2 .

(1.2.1)

The propagator suppression can be determined in a similar fashion. Take the initial

momenta to be
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k1 ∼
(
Nm

2 , 0, 0, Nm2 − ∆
)
, (N → ∞)

k2 ∼
(
Nm

2 , 0, 0,−Nm

2 + ∆
)
, (N → ∞)

(1.2.2)

Where ∆ ≪ Nm. The propagator suppression is (in units with the meson mass, m, set

equal to one):

h(N) =

 1(
N
2

)2
− 1


2

×

 1(
N
2

)2
3−2 − 1


6

× . . .×

 1(
N
2

)2
3−2(k−1) − 1


2×3k−1

(1.2.3)

Taking the log and neglecting the factors of −1 in the propagator gives:

ln(h(N)) ∼ −3 ln(3)N2 + 2 ln
(
N

2

)
+ ln(3), (N → ∞) (1.2.4)

There is no net N ! suppression from the large number of propagator factors.

While we won’t make claims as to the dominance of this set of diagrams, other classes

of tree level graphs do have an N ! type kinematic suppression. For example, if most of

the external lines connect in pairs to a single line, there is a substantial suppression.

Considering only this class of diagrams, of which there are roughly (3N/2)!1, and af-

ter dividing by a factor of (N/2)! coming from the N/2 insertions of the interaction

Lagrangian, we find:

M2→N ∼ 3−3N/2N !
(
λ

4

)N

(N → ∞) (1.2.5)

1There are of order N ! ways to rearrange the external lines and (N/2)! ways to relabel the vertices.
In the N → ∞ limit we write the product of N ! × (N/2)! ⇒ (3N/2)! The sense in which we mean this
is that both sides of the ⇒ have factors of NcN which are identical. In this paper we are primarily
concerned with factors of NcN and we will typically neglect factors such as aN and Nb.
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In the cross section there is a factor of 1/N ! from Bose statistics. There is

also a suppression from phase space when all of the particles are non-relativistic. If we

assume that, in the center of mass frame, the total energy is

√
s = N(1 + ϵ)m, (1.2.6)

where we will think of ϵ as small compared to 1 but not 1/N , we can consider final states

where the momentum of each particle is of order ϵm. Then the phase space factor is of

order

N∏
i=0

∫ √
ϵm d3pi

2m ∼ ϵ3/2Nm2N . (ϵ → 0, N → ∞) (1.2.7)

Multiplying by the squared amplitude (restoring the factors of m and multiplying by

the Bose statistics factor) the cross section goes like

σ2→N ∼
(
ϵ

3

)3/2N

N !
(
λ

4

)N/2
, (ϵ → 0, N → ∞) . (1.2.8)

For ϵ a small, but fixed, number the suppression from the phase space integral

does not compensate the factorial growth in the amplitude for N > 1/
(
ϵλ2). As we will

elaborate in section 1.4, the perturbative analysis is generally invalid once N ≳ λ−1.

Our goal will be to get some idea of the behavior in this non-perturbative region. We

will not be able to give a systematic analysis in λ and N , but we will argue shortly that

the non-perturbative growth of the amplitude is no faster than (N/2)! As a result cross

sections do not show factorial growth and there are no conflicts with unitarity. In the

next section we will study a different class of processes exhibiting factorial growth in
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the number of Feynman diagrams, for which a systematic analysis may be possible.

1.3 N → N Scattering

Another interesting class of processes involves N → N scattering with all par-

ticles near threshold. Naïvely, given that there are of order (N !)2 similar contributions

to the amplitude, while the Bose statistics factor behaves as 1/N !, potentially leading

to a rapid growth in the cross section. It is necessary, however, to consider possible

kinematic enhancement and suppression.

In particular, in leading order in perturbation theory, there are kinematical

enhancements of certain classes of diagrams. A particularly singular region occurs

when all (spatial) momenta are non-relativistic, and pairs of momenta are nearly equal:

p⃗i = k⃗i + δp⃗i. Then there are N ! contributions where all of the internal lines are within

p⃗i · δp⃗i of the mass shell. To compute the amplitude we need to weight the Feynman

diagrams with the initial and final wave functions and integrate. It is most convenient

to work in momentum space.

pN

p1

k1 k2

p2

kN−2

pN−2

kN−1

kN

pN−1

∼ ∼

. . .

. . .

Figure 1.2: N → N scattering. At every vertex an initial state particle scatters to a
final state particle with almost no momentum exchange. All of the propagators are then
nearly on shell.

Consider the squared amplitude and integrate over final states for some fixed

initial configuration. If the typical magnitude of the three-vector momentum is p, then
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we restrict the final state momenta to all be of order p, and focus on the integration

region:

k⃗i = p⃗i + δk⃗i, i = 1, . . . , N ;
∣∣∣δk⃗i

∣∣∣ < ∆k ≪ p. (1.3.1)

In this region of phase space we focus on the (2N)! diagrams where (at all but two

vertices, involving k⃗N and p⃗1) the ith final state particle emerges from the vertex from

which the (i+ 1)th initial state particle enters. The resulting amplitude behaves as

MN→N ∼ (2N)!
N !

(
λ

4

)N−1 N−2∏
i=1

i

2
∑i

j=1

(
k⃗1 − k⃗j+1

)
· δp⃗j

, (δp⃗i → 0, N → ∞). (1.3.2)

Note that because of the pairing, there is an N ! rather than (2N)! factor. When we

square the amplitude, integrate over the momenta δp⃗i, divide by the Bose statistic

factors for the initial and final states, and restrict |δp⃗i| ≪ p we obtain

σN→N ∼ N !p
N (∆k)N

µ2N
, (N → ∞). (1.3.3)

With a similar restriction on the momenta, but without the pairing, one has a suppres-

sion by at least two powers of ∆k/p for each unpaired momentum.

There are in fact, for fixed values of the initial and final momenta, vastly more

diagrams which do not exhibit this pairing ((2N)! rather than N !). However, these

diagrams are further suppressed by powers of N coming from the large number of terms

in some of the denominator factors. Roughly, the typical denominator is a sum of N2

terms, with random signs, so we might expect the sum to be of order N for roughly half

the order N propagators. The full propagator suppression might then be of order 1/N !
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from these diagrams, so that they are similar to those discussed previously, without the

extra kinematic enhancement. Moreover, the diagrams have phases, so we might expect

a factor of order N ! rather than (2N)! contribution to the amplitudes from summing

over all of the permutations in which not all momenta are paired.

We don’t claim this analysis to be more than suggestive, but we do believe it is

plausible that with these kinematic restrictions, even at the lowest non-trivial order in

perturbation theory, the factorial growth of the amplitudes is bounded from above2 by

(N/2)!. This is despite the roughly (3N/2)! Feynman diagrams that contribute to tree

level processes. However, any estimate derived from perturbation theory is not reliable

once N ≳ λ−1.

We will argue in the following sections that, non-perturbatively and in the

region with small paired momenta, there is actually a factorial suppression of the am-

plitude. We believe that this suppression can be rigorously established. For other

regions of phase space, our arguments for suppression will be plausible but less rigor-

ous. In any case, these considerations suggest that there is a region of phase space

in which the cross section does not exhibit factorial growth, though it is enhanced by

inverse powers of small momenta compared to naïve expectations.
2Here N is the total number of external particles. For a process that goes like N → N there are 2N

external lines, so the bound should be stated as:

MN→N = o (N !) (N → ∞).
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1.4 Limitations of The Perturbative Analysis

Going Beyond

Perturbation theory is not reliable for either of the previously discussed pro-

cesses for sufficiently large N . If N ≫ λ−1 then, for either 2 → N or N → N scattering,

one has an expansion in powers of λN . Once N ≫ 1/λ any partial sum of the pertur-

bative series becomes a very poor approximation of the true amplitude.

A quick way to see that the expansion is a power series in λN is to consider

coupling constant renormalization. At leading order we have seen that the scattering

amplitude behaves as λN/2 or λN for 2 → N or N → N processes respectively. The

effect of one loop renormalization is to replace λ → λ(1 +Aλ), so expanding in powers of

λ we have a term of order ANλ. This counting is easily seen to be general by examining

other classes of Feynman diagrams.

We have established that, order by order in perturbation theory, as one ap-

proaches the relativistic limit scattering amplitudes exhibit factorial growth for processes

such as 2 → N particles. However, it is not immediately clear how seriously to take

these results. It is perhaps troubling to uncover a set of questions in quantum field

theory which, even at weak coupling, we lack the tools to explore. We take some steps

towards the non-perturbative study of large N amplitudes in the following sections.
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1.5 A Model for Factorial Growth of Amplitudes

A Simple One Dimensional Integral

Certain features of the large order behavior of perturbation theory in quantum

mechanics and quantum field theory can be modeled by an ordinary integral. One of

our goals in this paper will be to reduce the scattering amplitudes for large N to similar

integrals. In a theory with λϕ4 coupling, the one dimensional integral,

Z(λ) = 1√
2π

∫ ∞

−∞
dϕ e− 1

2 ϕ2− λ
4 ϕ4

, (1.5.1)

counts (vacuum) Feynman diagrams. Indeed, we can expand in powers of λ using

“Wick’s Theorem" to write a Feynman diagram expansion. In this one dimensional

problem, the “propagator" is just 1; there are no momentum integrals to do. So every

diagram at order k gives simply (−1)k

k!

(
λ
4

)k
. Performing the expansion, order by order,

gives:

Z(λ) =
∞∑
k

zk

(
λ

4

)k

, (1.5.2)

where

zk = 1√
π

(−1)k

k! 4k Γ
(

2k + 1
2

)
. (1.5.3)

So we see factorial growth of the number of diagrams, and that the perturbation ex-

pansion is an asymptotic expansion, reliable only for k ≲ 1/λ. The original integral is,

of course, finite for all λ : Re(λ) > 0. The result can be written as a modified Bessel

function (See Appendix A.1); it is easy to check numerically that the series gives good
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agreement with the exact result if one only includes terms up to k somewhat smaller

than 1/λ.

For scattering in quantum field theory, we are interested in (connected) N -

point functions. Correspondingly, we can start with the study of the simple one dimen-

sional (Euclidean) integral:

Z(N,λ) = 1√
2π

∫ ∞

−∞
dϕϕNe− 1

2 ϕ2− λ
4 ϕ4

,

∼2N/2
√
π

∞∑
k=0

(−1)k

k! 4k Γ
(4k +N + 1

2

)(
λ

4

)k

, (λ → 0).

(1.5.4)

Provided N ≲ 1/λ, such that the asymptotic series reasonably approximates the func-

tion, we see that Z(N,λ) exhibits factorial growth in N ,

Z(N,λ) ∼ 1√
π

2
N
2 Γ
(
N + 1

2

)
, (λ → 0). (1.5.5)

The leading connected diagrams occur at order k = (N − 2)/2. Correspondingly, we

expect a contribution to Z:

Z(N,λ) ∼ − 1√
π

(−1)N/2(
N−2

2

)
!
2

3N−4
2 Γ

(3N − 3
2

)(
λ

4

)(N−2)/2
, (λ → 0)

∼ − (−1)N/2 54N/2

9
√

2π
N−3/2eN ln(N)−N

(
λ

4

)(N−2)/2
, (λ → 0, N → ∞)

(1.5.6)

So for this problem, perturbation theory is valid for N < 1/λ. We will explain shortly,

and in an appendix, why this counting, which includes both connected and disconnected

diagrams, gives the correct N ! dependence of the amplitudes in this limit.

For λN ≫ 1/4 the behavior is different, though the integral still exhibits

factorial growth in N for fixed λ. The maximum of the integrand is located at
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ϕ4
c + 1

λ
ϕ2

c − N

λ
= 0 (1.5.7)

For λN very large the location of the maximum is shifted substantially away from the

origin, and the integrand is dominated by ϕ4
c ∼ N/λ.

Z(N,λ) ∼ 2(N+1)/2

N1/4λ(N+1)/4 exp

N
4 ln

(
N

4

)
− N

4 − 1
2

√
N

λ
+ 5

16λ

, (N → ∞). (1.5.8)

It is easy to check these statements numerically.

So we have learned that, for N ≫ 1/λ, Z(N,λ) exhibits factorial growth, but

much slower than the factorial growth of perturbation theory. In subsequent sections,

we will argue that the behavior of scattering amplitudes at large N is similar: they

exhibit factorial growth, but slower than that of perturbation theory.

1.6 From an Ordinary Integral to the Path Integral

As a model for scattering amplitudes in field theory, the integral Z(N,λ) is

instructive, but has several limitations. The first is a relatively trivial one: the expo-

nential should be a phase (the argument should be purely imaginary). This does not

affect our large N estimate. Analytically continuing the integral (1.5.4) to the complex

ϕ plane we find it is absolutely convergent in four wedges, which are rotated by the

phase of the coupling (Figure 1.3).

So the integral defines a function of λ analytic in a wedge. The estimate above

holds perfectly well if we simply rotate the variable ϕ by a constant phase angle of π
4

and simultaneously rotate the coupling by −π
2 .

25



arg(λ)/4

φ

arg(λ)/4

π
8

Figure 1.3: Regions of convergence of the integral in (1.5.4). Contour integrals beginning
and ending in the gray shaded regions converge. The Euclidean version of the integral
is related to the Minkowski version by arg(ϕ) = π

4 , arg(λ) = −π
2 .

Another limitation is that the integral (1.5.4), in addition to generating con-

nected diagrams, also generates vacuum and disconnected diagrams. However, the

rough factorial growth of the generating function Z(j) and W (j) := ln(Z(j) /Z(0)) is

the same. This is readily proven by contradiction. Moving over to the full field theory,

the generating functional Z[J ] is described by a convergent series in inverse powers N .

As a result, so is W [J ]. If terms in the expansion of W grow more rapidly with N than

those of Z then, in fact, the growth of W must be faster than Z; similarly if terms in

W grow more slowly.

This last issue will not be so severe in 3+1 dimensions (as opposed to 0) when

we work with wave packets, each of some average momentum. Due to momentum con-

servation, in processes with 2 → N particles, the associated disconnected contributions

to the Green’s functions will largely vanish. So it is enough to divide out the vacuum
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diagrams.

The path integral is certainly far more complicated than the ordinary integral,

and the question is: to what degree is the behavior of this integral an indicator of

what happens in field theory. Various approaches have been offered as solutions to

this problem. We will argue that a particularly simple one is to use the LSZ formula,

with normalizable wave packets. As a result, the effects of large N are important only

in a small space-time region where the wave packets overlap. One might then expect

that, limited to this region, the path integral would be much like the ordinary integral.

Translating the results for the ordinary integral to the behavior of the field theory path

integral is the subject of the next few subsections.

1.6.1 Review of Non-Relativistic Scattering in Terms of Wave Packets

Our analysis of many particle scattering will rely on a wave packet approach.

In particular, it assumes that we can think of the scattering amplitude in terms of

normalizable initial and final wave packets labeled by a central momentum p⃗i and p⃗f

respectively. It is helpful to review the problem of wave packet scattering in ordinary

quantum mechanics. We first consider how to pass between the scattering amplitude

in the plane wave basis to a basis of normalizable states[58]. Consider, in particular,

the scattering amplitude of a particle in a potential, V (x⃗), with initial and final wave

packets, ψi(t, x⃗) and ψf (t, x⃗). We write the Fourier transform of these wave packets as:
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ψi(t, x⃗) =
∫ d3p

(2π)3 ψ̃i(p⃗) e−ip·x,

ψf (t, x⃗) =
∫ d3k

(2π)3 ψ̃f

(
k⃗
)
e−ik·x.

(1.6.1)

where k0 ≡ E
(
k⃗
)

and p0 ≡ E(p⃗) are the (on-shell) energy. We require the momentum

space distribution of scattering states to be narrowly centered on the average momen-

tum, a reasonable fulfillment of this requirement is to approximate the momentum

distributions by very narrow Gaussians:

ψ̃i(p⃗) =
(
2πσ2

)−3/2
e− (p⃗−p⃗i)2

2σ2 eip⃗·x⃗i
0 ,

ψ̃f

(
k⃗
)

=
(
2πσ2

)−3/2
e−(k⃗−k⃗f )2

2σ2 eik⃗· ⃗
xf

0 .

(1.6.2)

We have taken the spread in the momentum space wave packets to be identical for

simplicity. At non-relativistic energies the coordinate space center of these wave packets

propagate as

⟨x⃗⟩i ∼ x⃗i
0+ p⃗i

m
t, (σ → 0),

⟨x⃗⟩f ∼ ⃗
xf

0+ p⃗f

m
t, (σ → 0),

(1.6.3)

and have a widths that increase with time. We will assume, again for simplicity, that

this spreading can be neglected during the scattering process, so ∆x ≈ 1
σ . To obtain

an appreciable amplitude it is necessary that the trajectories of the two waves coincide

during some time interval of order m/σ.

We’ll confine our attention to the Born approximation for the scattering ampli-

tude and work in the interaction picture. We first consider as a basis of scattering states
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(non-normalizable) plane waves. We can write the S-matrix in terms of the interaction

picture time-development operator, U(t1, t2) as (taking the limit T → ∞):

⟨p⃗f |U(T/2,−T/2) |p⃗i⟩ := ⟨p⃗f |S |p⃗i⟩ (1.6.4)

where

⟨p⃗f |S |p⃗i⟩ = ⟨p⃗f |p⃗i⟩ + (2πi)δ (Ef − Ei) ⟨p⃗f |H ′ |p⃗i⟩ . (1.6.5)

The second term is the T matrix. In terms of the plane wave basis, the scattering

amplitude for our wave packets, ψi, ψf is

Ai→f =
∫ d3pi

(2π)3
d3pf

(2π)3 ψ̃
∗
f (p⃗f ) ⟨p⃗f |S |p⃗i⟩ ψ̃i(p⃗i) . (1.6.6)

Calculating the amplitude to first order in perturbation theory in terms of normalizable

states in the interaction picture, we can understand the expression in Equation (1.6.6)

in another way. In general, far away from the forward direction, the amplitude that an

initial state |Ψi⟩ time evolves into a state |Ψf ⟩ is:

Ai→f =
∫ T/2

−T/2
⟨Ψf | eiH0tH ′e−iH0t |Ψi⟩ dt . (1.6.7)

We can rewrite this in terms of Schrödinger picture states:

Ai→f =
∫

⟨Ψf (t)|H ′ |Ψi(t)⟩ dt . (1.6.8)

So for our scattering problem,
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Ai→f =
∫ T/2

−T/2
dt
∫ d3pf

(2π)3
d3pi

(2π)3 ψ̃
∗
f (t, p⃗f ) ⟨p⃗f |H ′ |p⃗i⟩ ψ̃i(t, p⃗i)

=
∫ T/2

−T/2
dt
∫ d3pf

(2π)3
d3pi

(2π)3 ψ̃
∗
f (p⃗f ) e−i(Ei−Ef )t ⟨p⃗f |H ′ |p⃗i⟩ ψ̃i(p⃗i)

=2π
∫ d3pf

(2π)3
d3pi

(2π)3 ψ̃
∗
f (p⃗f ) δ (Ef − Ei) ⟨p⃗f |H ′ |p⃗i⟩ ψ̃i(p⃗i)

(1.6.9)

The second line is equivalent to the coordinate space expression:

Ai→f =
∫ T/2

−T/2
dt
∫

d3xψ∗
f (t, x⃗)H ′(x⃗)ψi(t, x⃗) . (1.6.10)

If H ′ is short range, then this last expression has support only when the wave

functions overlap in a space-time region with size less than or order the range of the

potential. Note that in order to obtain a cross section from this, one must take |Ai→f |2,

and integrate over
(
d2xi

)
⊥ ≡ d2b weighted by the flux (this assumes, for simplicity,

identical wave packets up to translations). One also integrates over and d3xf , for

fixed b⃗, p⃗i, and p⃗f . The result, again, is appreciable only for a range of x⃗f where

the wave packet points back to the interaction point. In this range, one can replace

d3xf = r2 dr dΩ, allowing construction of the differential cross section. This will, in

fact, give a contribution proportional to the “cross section" of the target, the fractional

region over which the integrand is substantial. For a given p⃗f , this fixes x⃗f to lie in a

small region, |x⃗f | < µ−1, the range of the potential.

This generalizes immediately to multichannel problems with, for instance, one

particle initially impinging on a target (say a high Z atom), and many particles emerg-

ing. Again, one has an overlap of the Schrödinger wave function for the initial state,

evolved with the free particle Hamiltonian to some time t, and the final state particles,
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evolved back to time t. To obtain an appreciable result, there must be a time t where

all of the wave functions coincide within a space-time region of order the range of the

potential. Again, the (differential) cross section is obtained by integrating over d2xi

and dividing by the incoming flux.

If one formulates the amplitude in terms of the path integral, the integration

∫
[dx] is only significantly modified from the free particle result for the narrow range of

variables x(t) corresponding to the time interval where the wave packets overlap.

1.6.2 Scattering of Wave Packets using the LSZ Formula and the Path

Integral

We want to consider processes with many particles in the initial and/or final

state. Our goal is to determine the growth of the scattering amplitude for N ≫ 1/λ.

The LSZ formula for scattering casts the problem of scattering in terms of

Green’s functions, so it is a natural setting in which to apply path integral methods.

There is some discussion of wave packet scattering in this framework in textbooks,

e.g. [59]. We will review this here, from a perspective close to the non-relativistic

problem which we have described in the previous section, and which will be useful for

the questions we are studying here.

Let’s consider ϕ4 theory. In the LSZ formula, for a scattering process with

M particles in the initial state and N particles in the final state, we are instructed to

evaluate the quantity:
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M+N∏
i=1

[∫
d4xi fi(xi)

(
∂2

i +m2
)]

⟨ϕ(x1) . . . ϕ(xN+M )⟩ , (1.6.11)

where the functions fi satisfy the free Klein-Gordan equation. We would like to treat

this expression in the path integral, studying possible modifications associated with the

large number of particles in the initial and final states, M+N . The inverse propagators

in Equation (1.6.11) make this somewhat awkward, particularly when we attempt a large

N , semiclassical treatment. One approach is to consider classes of diagrams where one

contracts the external fields with fields in vertices, and evaluates the remaining Green’s

function. One then has to sum over the different classes.

An alternative is also useful. One traditional derivation of the LSZ formula

starts with initial and final states at times t = ±T , and evaluates:

M =
M∏

i=1

[∫
d3xi ψi(x⃗i)

] N∏
j=1

[∫
d3yj ξj(y⃗j)

]

× ⟨ϕ(−T, x⃗1) . . . ϕ(−T, x⃗M )ϕ(T, y⃗1) . . . ϕ(T, y⃗N )⟩ . (1.6.12)

Here ψi, ξj are initial and final state wave functions at times ±T . They are taken

to be normalizable and non-overlapping. The correlation function can be studied per-

turbatively. A non-perturbative approach could involve construction of a one-particle

irreducible effective action at (N +M)th order in ϕ. If this interaction, ΓM→N , is local

the structure of the resulting path integral has many features in common with the toy

integral. In particular, only the integration over a small local region of space-time is

modified by large N .
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1.7 Non-Perturbative Analysis

1.7.1 N → N

We have argued that we can reduce the problem of computing the scattering

rate for large numbers of particles to a problem of summing over a finite set of correlation

functions which can be evaluated using the path integral. We might hope that large N

might facilitate a non-perturbative evaluation, as in the case of the ordinary integrals

we studied in previous sections. The use of wave packets of finite extent enhances the

fields in a small region, mimicking some features of the ordinary integral at large N .

Consider, first, the case of N → N scattering. We saw that, in perturbation

theory, there is a region of the phase space integral for which one class of diagrams is

enhanced dynamically. There were of order (N !)2 diagrams in this subset (coming from

N ! rearrangements of the initial state particles and N ! rearrangements of the final state

particles) and a factor of 1/N ! due to the number of vertices, but the corresponding

(N !)2 enhancement in the squared amplitude was compensated by the Bose statistics

factors associated with the initial and final states. The number of diagrams without

any kinematic restriction grows as (2N)!, but arguably the dynamical dependence of the

typical diagram on N compensates this growth. On the other hand, even for the class

of diagrams where the growth is not factorial, we have not yet described a systematic

approach to the computation of the amplitudes, and any claim for the general behavior

is conjectural. Perturbatively, the kinematically enhanced region arises when pairs of

initial and final momenta are nearly the same, p⃗i = k⃗i + δp⃗i. So calling fi the initial

state wave functions, with momenta centered around p⃗0
i and width ∆p, and similarly
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denoting the final state wave functions and mean momenta by gi, k⃗i, we are interested

in the set of correlation functions, of which one example (dropping terms of order 1) is:

A =
N∏

i=1

∑
perm gi

∫
d4xi

〈
ϕ2(x1) . . . ϕ2(xN )

〉
f1(x1) g∗

1(x1) . . . fN (xN ) g∗
N (xN ) . (1.7.1)

This integral is much like our one dimensional toy example in two ways. First, writing

this as a path integral and exponentiating the fields appearing in the Green’s function:

A =
∫

[dϕ]e
i
∫

d4x

{
1
2 (∂µϕ)2− m2

2 ϕ2− λ
4 ϕ4
}

+
∑N

i=1 ln[
∫

d4xfi(x)g∗
i(x)ϕ2(x)]

. (1.7.2)

The logarithmic term in the exponent is enhanced when all of the points nearly coincide.

This enhancement is largest if pairs of the fi’s and gi’s are nearly the same, in which case

the exponent is of order N . This is similar to the configurations of parallel momenta

we discussed in perturbation theory. For random permutations, we might expect the

exponent to be of order
√
N . If we assume that the path integral is dominated by a

particular classical configuration, ϕcl(x), we have:

(
∂2 +m2

)
ϕcl(x) = λϕ3

cl(x) + 2
N∑

i=1

fi(x) g∗
i (x)ϕcl(x)∫

d4y fi(y) g∗
i (y)ϕ2

cl(y)
(1.7.3)

For parallel or nearly parallel pairs of momenta and identical or nearly identical initial

and final state wave packets, the second term on the right hand side is of order Nϕ−1
cl .

The right hand side of the equation can be made to vanish if ϕcl ∼ N1/4; the left hand

side of the equation is then of order N1/4, i.e. suppressed by N−1/2 relative to the

separate terms on the right hand side. In this case, the dominant term in the classical
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action is of order N ln(N)/2, giving an amplitude growing as (N/2)!, in contrast to the

tree level growth of N ! found using perturbation theory. Alternatively, we can literally

view the path integral as like our ordinary integral, thinking of ϕ(0) as a single variable.

This yields the same N ! dependence as above.

For non-parallel momentum pairs, we might expect a suppression, as in the

perturbative case. From this latter point of view, the contractions of the external

fields where the pairs of fields have different momenta involve integrations over different

variables. In this case, we might not expect the modification due to the large value of

N to be captured by the model integral or the semiclassical solution. Indeed, we would

not expect appreciable modifications from the perturbative result. If we attempt an

analysis of the sort we did for parallel momenta in perturbation theory for non-parallel

momenta, assuming that the terms in the exponent add with random phases, we would

find a contribution for each contraction behaving as (N/8)!. The N ! contributions then

would also add with random phases, yielding a contribution to the amplitude behaving

as (3N/8)!. Squaring and dividing by the Bose statistics factors would yield a slightly

larger contribution to the cross section, but still falling with N for large N .

We should ask: to what extent is this analysis systematic? For the subset

of contributions where the momenta are paired, we can give a rough argument that

corrections to the leading approximation are down by powers of N . We distinguish two

types of corrections: corrections to the classical solution and “loop" corrections to the

amplitude. Substituting back in the original equation and writing

ϕcl = ϕ0
cl + δϕcl + δϕquant, (1.7.4)
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where δϕcl ∼ N−1/4, i.e. the expansion of the classical solution about the leading result

appears to be an expansion in powers of N−1/2. Quantum (loop) corrections have a

δϕquant propagator proportional to N−1/2, and three point vertices of order N1/4, so

loop corrections appear to scale with N−1/2 as well. So, while we will not investigate this

further here, it appears that for these processes there is a systematic 1/N expansion.

Establishing this requires demonstrating that classes of contributions with different

contractions of the external fields are indeed suppressed.

1.7.2 2 → N Scattering

For 2 → N processes we have not found a systematic 1/N expansion. If we pro-

ceed as we did for N → N scattering we encounter a functional integral whose integrand

involves multiple integration variables (roughly ϕ
(
nm, 0⃗

)
and ϕ

(
rm, 0⃗

)
), whose cou-

pling is complicated. However, similar considerations suggest that the non-perturbative

growth of the amplitude is far slower than the perturbative one. For instance, suppose

we have computed an effective action for 2 → N particles,

LI = Γ2→N

N ! ϕN . (1.7.5)

We expect that if, in the center of mass frame, the typical spatial momenta is of order

|p⃗| ≪ m, then Γ2→N is approximately independent of p. It is convenient to avoid the

factors of inverse propagators, so with our N final state particles with wave functions

ψi(x⃗) in the Schrödinger picture at some large time T , we need to study:
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M2→N = Γ2→N

N !

N∏
i

[∫
d3xi ψi(x⃗i)

] ∫
d4z

〈
ϕN (z)ϕ(T, x⃗1) . . . ϕ(T, x⃗N )

〉
. (1.7.6)

Note that the wave functions have support only when x⃗1, . . . , x⃗N are well separated at

time t = T , and we have explicitly implemented the assumption of locality.

To determine the dependence of the scattering amplitude on N we will proceed

in two steps. First, Then we will determine the N dependence of the Green’s function

appearing in the expression for M2→N in Equation (1.7.6).

Consider, first, the problem in perturbation theory. We can write an iter-

ative relation between Γ2→N and Γ2→N/3; these correspond to terms in the effective

Lagrangian:

Leff =Γ2→N

ϕ̃N
(
m, 0⃗

)
N ! Leff =Γ2→N/3

ϕ̃N/3
(
3m, 0⃗

)
(N/3)! . (1.7.7)

where ϕ̃ is the momentum space field and m is the scalar mass. For general N we can

compute the N point Green’s function, either starting with Γ2→N or with Γ2→N/3, and

expand the path integral to order N/3 in the interaction:

Γ2→N

N !
〈
ϕ̃N
(
m, 0⃗

)
ϕN
(
m, 0⃗

)〉
=

λN/3

(N/3)!
Γ2→N/3
(N/3)!

〈
ϕ̃N/3

(
3m, 0⃗

)
ϕ̃N
(
m, 0⃗

)
ϕ̃N
(
m, 0⃗

)
ϕ̃N/3

(
3m, 0⃗

)〉
. (1.7.8)

The correlation functions can be evaluated just as for our one dimensional integrals.

For N ≪ 1/λ gives
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Γ2→N = N !
(N/3)!Γ2→N/3. (1.7.9)

This is solved by

Γ2→N = CN !, (1.7.10)

where C is a constant, as expected from perturbation theory (the constant can be

determined by matching to the perturbative result). If we consider the limit N ≫ 1/λ,

proceeding as in Equation (1.5.8) we obtain the recursion relation:

(N/2)!
N ! Γ2→N =(N/2)!(N/6)! 1

(N/3)!2 Γ2→N/3,

⇒ Γ2→N =C(N/2)!Γ2→N/3

(1.7.11)

This is solved by

Γ2→N = C

(3N
4

)
!, (1.7.12)

where, again, C is some arbitrary constant. With this result we can consider the scat-

tering amplitude using the version of the LSZ formula of Equation (1.7.6). For the

perturbative case we recover the result M ∼ N !. For the case when λN is large, we

have instead:

M ∼
(
N

2

)
!
(3N

4

)
! 1
N ! , (N → ∞),

∼
(
N

4

)
!, (N → ∞)

(1.7.13)
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The first factor of Equation (1.7.13) is that which we have just derived for Γ2→N ; the

second is from the correlation function of N fields near the same point, the third is from

the definition of the effective action. This result gives a cross section which falls off as

σ2→N ∼ 1
(N/2)! (N → ∞) (1.7.14)

This analysis is not systematic. In particular, in deriving our would-be non-

perturbative recursion relation for Γ2→N , we performed an expansion of the exponent

of the interaction term in powers of λ. Despite the previous concerns we make the

following observations:

1. This analysis makes clear that the leading perturbative result is misleading and

likely vastly overestimates the amplitude for large N .

2. Given that we have only considered, in effect, the summation of an infinite subclass

of diagrams, it is likely that we still overestimate the result.

1.8 Conclusions

In quantum field theories perturbative expansions of observables around small

coupling are almost always divergent asymptotic expansions; if λ is a typical coupling

constant, the number of Feynman diagrams at order k is typically of order (2k)!, and

the series approximates the actual theory only for k ≲ 1/λ.

For scattering processes involving large numbers of particles there is also fac-

torial growth of the number of diagrams, now with the number of particles, N , as well

as the order of perturbation theory. This raises two prospects: First, that perturbation
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theory is not a reliable tool for computing scattering amplitudes, for sufficiently large

N ; and second, that the amplitudes might themselves grow quickly with N , endanger-

ing unitarity. In this paper we have investigated both of these issues. We focused on

two classes of processes: N → N particles scattering, with all particles near threshold,

and 2 → N scattering. We first reviewed the situation in the lowest non-trivial order

in perturbation theory. In N → N scattering, there is N ! growth in the amplitude;

Allowing for Bose statistics factors, this class of contributions to the cross section does

not show factorial growth. Without this restriction there are vastly more diagrams, so

there is the potential for such growth, even if the vast majority of the diagrams are not

kinematically enhanced. We gave crude arguments that these other diagrams actually

have factorial suppression. In the case of 2 → N scattering the amplitude does grow

as N !, so the amplitude-squared as (2N)!. There is a 1/N ! from Bose statistics, so the

lowest order contribution to the cross section does grow factorially.

In both cases we have noted that, for N ≫ 1/λ, perturbation theory breaks

down. It is not a priori clear that any standard non-perturbative tools are available for

a systematic computation. To obtain some insight into the non-perturbative problem,

we have studied scattering in λϕ4 theory in a path integral framework. To set up the

problem we have considered scattering of normalizable wave packets and worked with

the LSZ expression for the scattering amplitude. Because the wave packets are localized,

there is a significant modification of the path integral from the free-field form only in

a small space-time region where all of the wave packets overlap. We set up the path

integral problem in two ways: one more suitable for the N → N process, the other more

suitable for the 2 → N process.
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In the case of N → N scattering we argued that the dominant contribution is

due to diagrams with pairs of momenta nearly equal. This corresponds to a class of con-

tributions which can be treated semiclassically, with the amplitude growing factorially,

but more slowly than in perturbation theory, and corrections which can be computed

as a series in 1/
√
N . As a result, the cross sections for large N are suppressed, and

there are no issues with unitarity. We gave some arguments that the approximation is

systematic, though we will not claim they are rigorous.

For 2 → N scattering we reorganized the computation in terms of an effective

action for 2 → N . Here our tool was a recursion relation for Γ2→N . Taking the limit

N ≪ λ−1 reproduced the results from perturbation theory. For N ≫ λ−1, this relation

yielded much slower growth, so that the scattering cross section does not show factorial

growth. As we explained, the calculation is not systematic, but it likely overestimates

the cross section.

We note that the authors of [53, 54] have also formulated the problem in

terms of classical field evolution[60]. Such a system can be described in the language

of coherent states, with large values for the field eigenvalue, corresponding to large

occupation numbers. This problem is slightly different than the one we have considered

here, where we had many widely separated particles; the coherent state problem would

correspond to large numbers of particles in, say, two identical incoming and two identical

outgoing states. But in this case, the problem is equivalent to classical evolution. The

classical cross section is limited by energy conservation; one can’t have the equivalent

of factorial growth.

What is perhaps interesting in these problems is that there is a regime of
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quantum field theory for which, even at weak coupling, our standard tools of analysis

fail to yield reliable results. We view our work as providing a strategy to explore this

domain. It would be desirable to make the N → N analysis more solid, and to make

further inroads in the 2 → N problem, perhaps proving rigorous bounds if not providing

a systematic approximation procedure.
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Chapter 2

Asymptotic Analysis of the Boltzmann

Equation for Dark Matter Relic

Abundance

2.1 Introduction

Successful cosmological theories must explain various observations, such as

the structure of the cosmic microwave background, baryonic acoustic oscillations, struc-

ture formation, among others. These observations always require a cold, nearly (elec-

tromagnetically) neutral, non-baryonic matter component, which we call dark matter

(DM) [61, 62]. Observations with Planck [63] show that 85% of all matter in the Universe

consists of DM. While we know the basic properties of DM (it interacts gravitationally

and at most weakly with the known Standard Model (SM) particles), the precise nature

of DM is unknown. Some of the most popular theories of DM involve extending the

SM by adding new particles. DM candidates often arise naturally in models trying to
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address other outstanding issues such as the hierarchy problem, the strong CP problem,

and neutrino masses (e.g., neutralinos in super-symmetry [64], axions [65] and sterile

neutrinos [66], respectively.)

For any theory of particle DM to be viable, the theory must produce DM with

the observed relic abundance of ΩDMh
2 ≡ ρDMh

2/ρcrit ≈ 0.12 [63], where the relative

uncertainty of today’s value of Hubble’s parameter H0 is absorbed into the dimensionless

Hubble parameter h

H0 ≡ h× 100 km s−1 Mpc−1. (2.1.1)

Therefore, it is necessary to be able to compute the abundance of DM for a given

theory accurately. The standard method for determining the abundances of DM for a

given theory is by solving the Boltzmann equation, which in the standard Friedman-

Roberston-Walker cosmology is [67]:

∂fχ

∂t
−H

|p|2

E

∂fχ

∂E
= C[fχ], (2.1.2)

where fχ(p, t) is the DM phase-space distribution, p the DM momentum, E the DM

energy E =
√

p2 +m2
χ, H the Hubble scale and C[f ] the collision term which depends

on the details of the DM model. In all but a select few cases it is sufficient to take the

first moment of this equation1, which, in the cases where the DM interacts with the SM

via χχ̄ ↔ SM, takes the form of:

dnχ

dt + 3Hnχ = − ⟨σχχ̄→SMvMøl⟩
(
n2

χ − n2
χ,eq

)
, (2.1.3)

1See Ref. [68] for an example where more than just the first moment of the Boltzmann equation must
be considered.
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where nχ is the DM number density

nχ = g

∫ d3p
(2π)3 fχ, (2.1.4)

nχ,eq is the DM equilibrium number density obtained by setting fχ = fχ,eq given by a

Bose-Einstein or Fermi-Dirac distribution: 1/[exp(E/T ) ± 1] depending on the statis-

tics of the DM particle, and ⟨σχχ̄→SMvMøl⟩ (which we will shorten to ⟨σvMøl⟩) is the

thermally-averaged cross section:

⟨σvMøl⟩ =
∫
σvMølfχ,eq(E1)fχ,eq(E2) d3p1 d3p2∫
fχ,eq(E1)fχ,eq(E2) d3p1 d3p2

, (2.1.5)

with σ being the zero-temperature cross section for χχ̄ → SM. This form of the Boltz-

mann equation is often modified to absorb the effects of the expanding Universe by

scaling the solutions with the entropy density of the SM, s, through Y ≡ nχ/s. We

then have the following differential equation:

dY (x)
dx = −λ f(x)

[
Y 2(x) − Y 2

eq(x)
]
, (2.1.6)

The dependent variable Y is the comoving number density of a particle species (it is

common to refer to Y as the abundance for brevity), i.e. the number of particles per

cosmic comoving volume element. The independent variable x ≡ mχ/T is the ratio of

the particle mass to the temperature of the thermal bath. The equilibrium abundance,

Yeq, is the comoving number density of a particle species when in thermal (chemical)

equilibrium with the thermal bath. The prefactor λf contains the cross section of the

particle species and is given by

λ f(x) ≡
√
π

45
mMpl
x2

√
g∗,eff(x) ⟨σvMøl⟩ , (2.1.7)
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where ⟨σvMøl⟩ implicitly depends on x and g∗,eff(x) is a function characterising the

effective number of degrees of freedom contributing to the energy density and entropy

density of the universe:

√
g∗,eff(x) ≡ heff(x)√

geff(x)

(
1 + 1

3
d ln(heff(x))

d ln(x)

)
. (2.1.8)

The effective number of degrees of freedom contributing to the total energy density

and entropy density are geff(x) and heff(x) respectively. The limiting behavior Y∞ ≡

limx→∞ Y (x) of the solution is the quantity of interest, and determines the thermal relic

density.

The starting point for our analysis is Equation (2.1.6), but it cannot be solved

exactly, and therefore one resorts to obtaining approximations. The most common

method of approximation is direct numerical integration. The use of general-purpose

integrators tend to fail due to the largeness of λ, and even sophisticated algorithms

like Radau5 [69], LSODA [70] struggle because the differential equation is exceptionally

stiff which requires high precision arithmetic. Dedicated software packages to obtain

dark matter relic abundances from particle physics models such as micrOMEGAS [71],

and DarkSUSY [72], etc. fare better due to additional heuristics supplied to their

integrators. However, prepackaged software designed to solve (2.1.6) are compatible

with only a small subset of beyond-standard-model (BSM) scenarios, which limits the

end user from performing an analysis of more exotic models such as those with Lorentz

violation or large N Yang-Mills [73].

An alternative approach to obtaining the limiting behavior of (2.1.6) is to

look for analytic approximations. Several approximations exist in the literature such
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as [67, 74], and can provide results accurate to 1-5%, confirmed by comparing against

results of numerical integration. However, by nature of their construction it is not

possible to systematically improve upon these approximations simply because there is

no way to assign a parametric dependence on the error.

The mathematical technique allowing for the construction of approximations

while bounding the error is asymptotic analysis (for an in depth review of perturbation

theory and asymptotics see [75]). The error is managed by a controlling parameter such

that, as the controlling parameter is taken arbitrarily close to some limit point, the error

vanishes relative to the approximation. It is in this sense that we can consider the error

to be ‘small’. A natural choice for the problem at hand is to choose λ in (2.1.6) as the

controlling parameter, and to attempt to construct an asymptotic approximation in the

limit λ → ∞.

The authors of [76] attempted to construct an asymptotic approximation by

using boundary-layer-analysis, yielding a technically more correct result with the req-

uisite scaling behavior of the error. However, we found their matching procedure to

be inconsistent. We were able to correct these errors to arrive at similar results. But

in order to get a good approximation we had to perform a resummation of the largest

terms of a divergent series, and for this reason we found it more intuitive to take a

different approach, based on the Wentzel–Kramers–Brillouin (WKB) technique.

In this paper, we present our asymptotic approximation to (2.1.6). Our final

results are given by (2.5.1), (2.5.2), and (2.5.3). The paper is structured as follows:

In Section 2.2 we derive the large and small x behavior of the solution as well as the

large x asymptotic behavior of the thermal cross section and equilibrium abundance
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for later reference. To (2.1.6) we associate a second order linear differential equation of

Schrödinger type, making a WKB analysis possible. However, there exists an infinite

order turning point (where the potential and all its derivatives vanish) at x = ∞. Such

classes of differential equations are notoriously difficult to solve, so to circumvent this

issue we employ a more robust uniform WKB ansatz in Section 2.3 that is better suited

to the infinite order turning point problem, and construct asymptotic solutions in three

subregions of x ∈ (0,∞): The thermal equilibrium region (I), freeze-out region (II),

and post-freeze-out region (III). We preform an asymptotic match of region I and III in

Section 2.4 at leading and next to leading order, removing all undetermined constants.

After matching we take the limit x → ∞, yielding an asymptotic approximation of

the relic density. In Section 2.5 we collect our results and compare our approximation

against a numerical determination of the relic density using a benchmark model. We find

that our approximation, when compared to numerical results, gives sub-percent errors

when the dark matter candidate freezes out at roughly x = 25. To our knowledge, we

are the first to present an asymptotic approximation to Y∞. We are also unaware of a

previous application of this method to the infinite order turning point problem.

2.2 Asymptotic behaviors

We briefly discuss the asymptotic behavior of some of the quantities in (2.1.6)

and the general large and small x behavior of the solution. The equilibrium abundance

of a particle species is given by

Yeq(x) = A

∫ ∞

0

s2 ds
e

√
s2+x2 ∓ 1

, (2.2.1)

48



where the upper sign is for bosons and the lower for fermions, and A is given by

A ≡ 45
4π4

g

heff(x) , (2.2.2)

where g is the number of internal degrees of freedom of the particle species and heff(x)

is the number of relativistic degrees of freedom contributing to the entropy density. The

large x behavior of the the equilibrium abundance is

Yeq(x) ∼
√
π

2Ax
3/2e−x, (x → ∞). (2.2.3)

Figure 2.1: Typical behavior of the thermally averaged annihilation cross section ⟨σvMøl⟩
as a function of x, the vertical axis is GeV−2. On the left threshold effects dominate. In
the center threshold effects have decayed away and resonance contributions now domi-
nate. On the right all threshold and resonance effects are negligible and the thermally
averaged cross section assumes the form of a power law (in this case a constant).

For temperatures T ≲ 3m, where m is the mass of particle species in question,

the phase space distribution for all statistics is well approximated by the Maxwell-

Boltzmann distribution. Making this substitution the 2 → all thermally averaged anni-
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hilation cross section reduces to a single integral [67],

⟨σvMøl⟩ ∼
∫ ∞

0
dϵ σvlab K (ϵ, x) , (x → ∞), (2.2.4a)

K (ϵ, x) = 2x
K2

2 (x)
ϵ1/2(1 + 2ϵ)K1

(
2x

√
1 + ϵ

)
, (2.2.4b)

where

ϵ ≡ s− 4m2

4m2 . (2.2.5)

We can further approximate the thermal kernel (2.2.4b) using the large argument ex-

pansion of the modified Bessel function.

K (ϵ, x) ∼ 2x3/2
√
π

ϵ1/2(1 + 2ϵ)
(1 + ϵ)1/4 exϕ(ϵ), (x → ∞), (2.2.6a)

ϕ(ϵ) = − 2
(√

1 + ϵ− 1
)
, (2.2.6b)

When x is very large we can estimate the integral using Laplace’s method. We first

located the maximum of the integrand in (2.2.4a), and denote this point ϵ0. In the limit

that x → ∞ this maximum is just the maximum of ϕ(ϵ). The approximation of the

thermally averaged cross section then has a residual exponential character exp[xϕ(ϵ0)].

If σvlab is sufficiently smooth, i.e. any resonances are broad and all annihilation channels

are of similar scale, then ϵ0 = 0 and ϕ(0) = 0, so the thermally averaged cross section

goes like some power of x. In this case a more thorough treatment, using Watson’s

lemma, yields:

⟨σvMøl⟩ ∼
∞∑

k=0
σkx

−k, (x → ∞), (2.2.7)

where the coefficients σk are easily found. There are two common scenarios in which

the estimate (2.2.7) breaks down for intermediate values of x: when the annihilation
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cross section contains a very narrow resonance or the dominant annihilation channel

has support only when s > 4m2. For a narrow resonance the annihilation cross section

approaches a delta function in the limit that the width of the resonance goes to 0. If

this narrow resonance is centered at s = m2
R then ϵ0 ∼

(
m2

R − 4m2)/4m2 and

ϕ(ϵ0) ∼ −mR − 2m
m

.

Alternatively, if there exists an annihilation channel that is kinematically unavailable

when s < sTh = 4m2
Th, but that dominates the cross section when s > sTh, then

ϵ0 ∼
(
m2

Th −m2)/m2 and

ϕ(ϵ0) ∼ −2(mTh −m)
m

.

Therefore, we can characterize the thermally averaged cross section for intermediate to

large x by

⟨σvMøl⟩ ∼xβe−αx
∞∑

k=0
ckx

−k, (x → ∞) (2.2.8a)

α =


0 Power Law
mR−2m

m Resonance
2(mTh−m)

m Threshold
(2.2.8b)

The coefficients β and ck generally depend on the choice of α. It is almost always

the case that the leading order behavior of the thermally averaged cross section has

no exponential decay (i.e. α = 0) for very large x. We then expect that α will make

rapid transitions as we move from intermediate x to large x, ultimately going to 0

once x becomes sufficiently large. We see that this assumption is correct in Fig. 2.1.

For more complicated models, including those with coannihilation, determining the

appropriate value for α analytically can be difficult. In Appendix B.1 we derive a
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method of calculating α numerically for general models where the differential equation

for the abundance can be reduced to (2.1.6).

Substituting the power law approximation (2.2.7) into (2.1.7) yields the stan-

dard behavior of f(x) for large x,

f(x) ∼ x−n−2, (x → ∞), (2.2.9)

where n is the order of the first non vanishing term in (2.2.7). The normalization of the

thermally averaged cross section has been stripped away and included in the parameter

λ.

For x not too large we approximate the solution to (2.1.6) by assuming a formal

series expansion in powers of 1/λ:

Y (x) ∼
∞∑

k=0
Yk(x)λ−k, (λ → ∞). (2.2.10)

This gives the approximate solution

Y (x) ∼ Yeq(x) −
Y ′

eq(x)
2λ f(x)Yeq(x) , (λ → ∞). (2.2.11)

Because Yeq decays exponentially fast this solution becomes invalid when λ f(x)Yeq(x) =

O(1). When x is very large, such that λ f(x)Yeq(x) ≪ 1 we can neglect the last term

on the right hand side of (2.1.6), resulting in a second approximation

Y (x) ∼
[ 1
Y∞

− λ

∫ ∞

x
f(s) ds

]−1
, (x → ∞). (2.2.12)

Assuming Y∞ > 0, and because the integral

λ

∫ ∞

x
f(s) ds
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generally diverges as x → 0, there necessarily exists some 0 < xpole < ∞ such that

1
Y∞

− λ

∫ ∞

xpole
f(s) ds = 0

This approximation is therefore only valid when x ≫ xpole > 0, and we cannot satisfy

the boundary condition at x = 0.

x

Y (x)

Yeq(x)

II

I

III

Figure 2.2: The abundance of a particle species as a function of x ≡ m/T . In region I
the abundance closely tracks the equilibrium abundance. In region III the abundance
asymptotes to a constant, denoted Y∞. Region II represents the transition between
region I and III. The wedges sketch the extent of each of the regions.

Generally the approximate solutions (2.2.11) and (2.2.12) have no overlap in

their region of validity, so the arbitrary constant Y∞ cannot yet be determined. One

must either construct an intermediate solution whose region of validity overlaps with
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both the large λ and the large x approximations, or modify one or both solutions such

that they have some overlap. We take the latter approach, essentially resumming the

largest components of (2.2.10) to all orders.

2.3 Construction of asymptotic solutions

We begin by transforming (2.1.6) from a first order non-linear differential (Ric-

cati) equation into a second order linear differential equation of the Schrödinger type

by changing the dependent variable to

Y (x) = 1
λ f(x)

d
dx ln

(√
λ f(x)u(x)

)
, (2.3.1)

so that

u′′ −
[
(λfYeq)2 + 3

4
(f ′

f

)2
− 1

2
f ′′

f

]
u = 0 ,

u′(0)
u(0) = λ f(0)Yeq(0) − f ′(0)

2f(0)

(2.3.2)

Using the canonical WKB ansatz,

u(x) ∼ exp
(
λ

∞∑
k=0

Sk(x)λ−k

)
, (λ → ∞), (2.3.3)

gives the solution for Y as a formal power series in 1/λ.

Y (x) ∼
∞∑

k=0

S′
k(x)
f(x) λ

−k + f ′(x)
2λ f2(x) , (λ → ∞). (2.3.4)

We see that the 1/λ series solution of (2.1.6) is equivalent to the WKB solution of

(2.3.2).

In what follows we construct asymptotic approximations for small x (Region

I), large x (Region III), and intermediate x (Region II), shown schematically in Fig. 2.2.

The region II approximation is superfluous, as we will see the domain of validity of the
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region I and III solutions generally overlap (and hence the region I approximation can

be asymptotically matched directly onto the region III approximation). However, the

approximation in the overlap region motivates a definition of a freeze-out temperature

that ensures a consistent asymptotic expansion in all three regions. In order to simplify

our notation we define:

Q(x) ≡ f(x)Yeq(x) , (2.3.5a)

P (x) ≡3
4

(
f ′(x)
f(x)

)2
− 1

2
f ′′(x)
f(x) , (2.3.5b)

so that (2.3.2) becomes

u′′ −
[
λ2Q2(x) + P (x)

]
u = 0. (2.3.6)

Before proceeding we make some observations about the behavior of these two

functions Q(x) and P (x). Consider, for example, the following large x behavior of f

from (2.2.8a):

f(x) ∼ xβe−αx, (x → ∞). (2.3.7)

The resulting behavior for Q(x) and P (x) is

Q(x) ∼
√
π

2Ax
β+3/2e−(1+α)x, (x → ∞), (2.3.8a)

P (x) ∼α2

4 − αβ

2x + β(2 + β)
2x2 , (x → ∞). (2.3.8b)

and are shown in Fig. 2.3. Because of the exponential decay in (2.3.8a) Q(x) and

all its derivatives vanish as x → ∞. Note that there are two linearly independent

solutions to (2.3.6), and the WKB approximations of these two solutions are multivalued.

Therefore, if we approximate the full solution as a specific combination of these two
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Figure 2.3: The functions f(x), P (x), and λQ(x) using a benchmark model (see Sec-
tion 2.5).

linearly independent solutions near x = ∞, the same combination cannot be used for

xe2πi. This is known as the Stoke’s phenomenon. Essentially, the problem is that the

approximations are necessarily domain dependent. In this case, because x = ∞ is an

essential singularity, in the neighborhood of the turning point there exists an infinite

number of domains (bounded by Stoke’s and Anti-Stokes lines), each requiring a different

combination of linearly independent solutions. This is the infinite order turning point

problem.
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2.3.1 Thermal equilibrium region (Region I)

In the small x region, we construct a uniform WKB approximation to (2.3.2).

The ansatz, originally constructed by Langer [77], is:

uI(x) = i

(
S

S′

)1/2
Kν(λS) , (2.3.9)

where Kν(z) is the modified Bessel function of the second kind, and S(x) admits a series

expansion in 1/λ,

S(x) ∼
∞∑

k=0
S2k(x)λ−2k, (λ → ∞). (2.3.10)

The order parameter ν is left to be determined, it will be chosen to prolong the validity

of the approximation. We remark that with the choice ν = 1
2 the ansatz (2.3.9) reduces

to standard WKB. This construction is particularly well suited to the infinite order

turning point problem, as can be seen by considering the exact solutions of

d2y

dt2 −
[
λ2e−2t + ν2

]
y = 0, (2.3.11)

which are linear combinations of modified Bessel functions Iν
(
λe−t

)
, Kν

(
λe−t

)
.

The prefactor of (2.3.9) is chosen so that (2.3.2) becomes a differential equation

entirely in terms of S(x), and the factor of i ensure the solution is real-valued for

positive x. Substituting the ansatz (2.3.9) into (2.3.6) and then inserting (2.3.10) into

the resulting equation allows one to solve for each term by equating powers of 1/λ:

−1
2

(
S′′′

S′

)
+ 3

4

(
S′′

S′

)2
+
(
ν2 − 1

4

)(
S′

S

)2
+ λ2(S′)2 − λ2Q2(x) − P (x) = 0.

λQ(0) − 1
2
f ′(0)
f(0) = −λS′(0) Kν+1(λS(0))

Kν(λS(0)) + 1
2

[
(1 + 2ν)S

′(0)
S(0) − S′′(0)

S′(0)

] (2.3.12)

Solving (2.3.12) at leading order gives

S0(x) = −
∫ x

0
Q(s) ds+ S0(0) . (2.3.13)
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The boundary condition dictates that the sign of S′
0(x) must be negative, but the initial

value is arbitrary. If the leading order solution changes sign at some finite value of x

we will have to contend with the Stoke’s phenomenon, so we require S0(x) be bounded

from below. This is guaranteed with the choice S0(∞) = 0, yielding

S0(x) =
∫ ∞

x
Q(s) ds . (2.3.14)

We now estimate S0(x) for large x . Begin by making a change of variables to

t ≡ s/x.

S0(x) = x

∫ ∞

1
Q(xt) dt (2.3.15)

If x is large Q(xt) is exponentially suppressed everywhere along the range of integration.

Then write

Q(x) ∼ F (x) e−(1+α)x, (x → ∞), (2.3.16)

where we assume that F (x) contains no exponential terms. If resonance or threshold

effects are negligible we will set α = 0. Inserting (2.3.16) into (2.3.15) and expanding

F (xt) as a Taylor series around x then gives

S0(x) ∼ Q(x)
F (x)

∞∑
n=0

1
(1 + α)n+1

dn F (x)
dxn

, (x → ∞). (2.3.17)

The errors introduced are exponentially small as x → ∞. Because F (x) contains no

exponential terms by assumption this series naturally organises itself as an expansion

in powers of 1/x.
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Solving for the next to leading order term in (2.3.12) we find

S2(x) =
(
4ν2 − 1

)
8

[ 1
S0(x) − 1

S0(0)

]

− 1
2

∫ x

0

ds
Q(s)

{
P (s) + 1

2
Q′′(s)
Q(s) − 3

4

[
Q′(s)
Q(s)

]2}
+ S2(0)︸ ︷︷ ︸

Standard WKB

. (2.3.18)

The integral can be approximated in a very similar way as for S0(x). We report only

the leading order term:

S2(x) ∼ − 1
2(1 + α)

ϕ(x)
Q(x) , (x → ∞), (2.3.19)

where

ϕ(x) ≡ P − ν2
(
S′

0
S0

)2
−

√
S′

0
S0

d2

dx2

√
S0
S′

0
. (2.3.20)

S2(x) is then exponentially increasing as x → ∞. In order to extend the region of

validity of our approximation we choose ν to cancel the leading order large x component

of (2.3.20). The last term of (2.3.20) is at most of order O
(
1/x3),√

S′
0
S0

d2

dx2

√
S0
S′

0
∼ − 1

2(1 + α)
d3

dx3 ln(F (x)), (x → ∞). (2.3.21)

This fantastic cancellation of the lower order terms is due to the ansatz (2.3.9). On the

other hand,

S′
0(x)
S0(x) ∼ −(1 + α) + F ′(x)

F (x) , (x → ∞). (2.3.22)

Therefore, if P (x) is not asymptotic to a constant, we should choose ν = 0. As stated

previously P (x) should only contain constant terms at large x if the cross section is

decaying exponentially fast due to a low lying resonance or threshold. If this is the case

then we should choose

ν = ± α

2(1 + α) , (2.3.23)
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so that the constant term cancels. We can therefore guarantee that in the worst case

scenario

S2(x) ∼ −1
2

D

xQ(x) , (x → ∞). (2.3.24)

for some constant D. This indicates an improvement over standard WKB, because

λS0(x) = 1 occurs when x = O(ln(λ)). At this same point the correction S2(x) /λ =

O(1/ ln(λ)) at most, and therefore our approximation extends into the region where

λS0(x) ≪ 1 (FIG. 2.4). We then define the upper bound of the thermal-equilibrium

region by where the leading order term is equal in magnitude to the correction term,

λ2Q2(x+) := 1
x+

. (2.3.25)

The more common scenario is α = 0 and β = −2, which yields a much larger upper

bound

λ2Q2(x+) := 1
x3

+
. (2.3.26)

In any case x+ = O(ln(λ)) due to the exponential decay of the equilibrium abundance,

so that as λ → ∞ the upper bound of the region of validity also goes to infinity as

expected.

Finally, we have the approximation of the solution in the thermal equilibrium

region:

uI(x) ∼
√∫∞

x dsQ(s)
Q(x) Kν

(
λ

∫ ∞

x
dsQ(s)

)
,

(λ → ∞), x ≪ x+

ν =

0 w/o res/thresh
α

2(1+α) w/ res/thresh
. (2.3.27)
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Figure 2.4: The leading order term λS0(x) compared to the next to leading order term
S2(x) /λ. The shaded region corresponds to where 1 ≥ λS0 ≥ S2/λ. This shaded region
also represents the extension of the region of validity over standard WKB. The vertical
dotted line indicates the location of what will eventually be defined as the freeze-out
temperature.

2.3.2 Post freeze-out region (Region III)

In the post-freeze out region, approximate (2.3.2) by taking the limit x → ∞

while holding λ constant. Neglecting the first term at leading order in (2.3.2) (which is

exponentially suppressed as x → ∞), the differential equation becomes

u′′ ∼ P (x)u , (x → ∞) (2.3.28)

Recalling the definition of P (x) (2.3.5b), we see that (2.3.28) can be solved exactly,

yielding

uIII(x) ∼ 1√
f(x)

[
c1 − c2

∫ ∞

x
f(s) ds

]
, (x → ∞). (2.3.29)
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The arbitrary integration constants c1 and c2 cannot be determined because the bound-

ary condition at x = 0 lies outside the region of validity of this approximation.

To obtain the higher order corrections to (2.3.29) we construct a series solution

of the form

uIII(x) ∼
∞∑

k=0
uIII

k (x) e−2(1+α)kx, (x → ∞). (2.3.30)

The solution for uIII
1 (x) can be obtained directly (and in closed form) using the method

of variation of parameters. For the sake of clarity we retain only the largest component:

uIII
1 (x) ∼ λ2 F 2(x)

4(1 + α)
√
f(x)

[
c1 − c2

∫ ∞

x
f(s) ds

]
,

(x → ∞). (2.3.31)

As was the case in the thermal equilibrium region, we require the higher order correc-

tions to be negligible compared to the leading order result in order to claim a valid

asymptotic approximation. This requirement then defines an estimate of the lower

bound on the region of validity of the post-freeze-out approximation. We again obtain

a transcendental definition of the lower bound estimate x−:

λQ(x−) = 1. (2.3.32)

Like the estimate of the upper bound of region I, x− is O(ln(λ)).

Our final approximation of the solution in the post-freeze-out region is

uIII(x) ∼ 1√
f(x)

[
c1 − c2

∫ ∞

x
f(s) ds

]
,

(x → ∞), x ≫ x−. (2.3.33)
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Inserting (2.3.33) into (2.3.1) and taking the limit x → ∞ yields the relic abundance

Y∞ ≡ lim
x→∞

Y (x) ,

= c2
λc1

.

(2.3.34)

In section 2.4 we will approximate the coefficients c1 and c2.

2.3.3 Freeze-out region (Region II)

Comparing x− to x+ it is easy to see that there exists an overlap region where

the thermal equilibrium and post-freeze-out approximations are both valid. Therefore,

we can (and will) determine the constants c1 and c2 order by order by asymptotically

matching the region I solution to the region III solution. However, it proves advanta-

geous to construct an approximation in the overlap region in order to guide the asymp-

totic matching. We will define a freeze-out temperature xf ∈ (x−, x+) with which we

can organize the asymptotic limits. Because this xf is order ln(λ) it is itself a large

parameter if λ is large. We then construct a series solution in the overlap region by

assuming

uII(t) ∼
∞∑

k=0

uII
k (t)
xk

f
, (xf → ∞), (2.3.35)

where t ≡ x − xf . The relic abundance will not depend on the precise definition of

xf , but in order to obtain numerical values one must specify it explicitly. For now, we

define the freeze-out temperature xf to occur when

λQ(xf) = O(1), (xf → ∞), (2.3.36)

so that the series representation (2.3.35) begins with an order 1 constant. Alternative

definitions would require the leading order term to vanish in some cases (depending on
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the asymptotic form of the thermally averaged cross section in the overlap region), and

our choice avoids this inconvenience.

Next we expand the differential equation (2.3.6) around xf using

Q(xf + t) ∼Q(xf) e−(1+α)t, (xf → ∞), (2.3.37a)

P (xf + t) ∼P (xf) , (xf → ∞), (2.3.37b)

for any finite t to yield

d2 u(t)
dt2 ∼

[
λ2Q2(xf) e−2(1+α)t + P (xf)

]
u(t) ,

(xf → ∞). (2.3.38)

The solutions are linear combinations of modified Bessel functions. However, it is usually

the case that we should not retain the P (xf) term. If the annihilation cross section does

not vanish at threshold then P (xf) is at most of order O
(
x−2

f

)
. We can enforce this

distinction by allowing for two cases: α ≪ 1/√xf and α ≳ 1/√xf . The leading order

solution is then

uII
0 (t) = b1Kν

(
Λfe

−(1+α)t
)

+ b2 Iν

(
Λfe

−(1+α)t
)
, (2.3.39)

where Λf ≡ λQ(xf) /(1 + α) and

ν =


0 α ≪ 1√

xf√
P(xf)

1+α = α
2(1+α) α ≳ 1√

xf

(2.3.40)

Note the exact agreement of the parameter ν as derived in section 2.3.1.

The leading order matching between region I and II is obvious:

b1 = 1√
1 + α

, (2.3.41a)

b2 =0. (2.3.41b)
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Because our choice of the freeze out temperature xf lies near the lower bound of the over-

lap region we must also take t → ∞. The solution in the overlap region is then approx-

imately linear if α ≪ 1/√xf or a sum of exponential terms exp(αt/2) and exp(−αt/2)

if α ≳ 1√
xf . One could have chosen to define the freeze-out condition differently, and

the behavior of the solution in the overlap region would be identical, but we could not

have written it in such a simple way.

What we have learned is that, if we neglect α, the constant term and the term

proportional to t must be considered the same order. Similarly, if α is not neglected,

the exponential terms should also be considered the same order.

2.4 Asymptotic Matching

With asymptotic approximations in hand for the thermal-equilibrium region

and post-freeze-out region we now asymptotically match the solutions in the region

where both approximations are valid. We will utilize the following approximations of

S0(x):

S0(xf + t) ∼ Q(xf) e−(1+α)t
∞∑

j=0

j∑
k=0

[(1 + α)t]k

k!(1 + α)j+1
1

F (xf)
dj F (x)

dxj

∣∣∣∣∣
x=xf

, (xf → ∞),

(2.4.1a)

S′
0(xf + t) ∼ −Q(xf) e−(1+α)t

∞∑
j=0

tj

j!
1

F (xf)
dj F (x)

dxj

∣∣∣∣∣
x=xf

, (xf → ∞). (2.4.1b)

These can be found by taking the Taylor expansion of dj F (x)
/
dxj around xf + t in

(2.3.17). These representations are convenient because the sum over j yields a series

in increasing powers of 1/xf . We split the matching procedure into three categories:
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leading order assuming α = 0, next to leading order assuming α = 0, and leading order

for general α. Because our choice for the freeze-out condition is near the lower bound

of the overlap region there will not be a true leading order matching condition for the

α = 0 case. What we label as leading order is in fact next to leading order, and what

we have labeled as next to leading order is actually next to next to leading order.

2.4.1 Leading Order

Assuming that α is either large enough that resonance and threshold effects

are negligible in the overlap region or that α is of order 1/xf or smaller we shift the

dependent variable by x ≡ xf + t. In region I we retain only the leading order terms in

(2.4.1a) and (2.4.1b).

uI(t) ∼ C + t, (xf → ∞), (2.4.2)

Where

C ≡ − ln
(
λQ(xf)

2

)
− γ, (2.4.3)

is an order 1 constant and γ is the Euler-Mascheroni constant. To obtain this approxi-

mation we have taken the limit t → ∞ and used the small argument expansion of the

modified Bessel function (with ν = 0). In addition, there are terms that are exponen-

tially suppressed at large t, but these can be neglected at leading order. Similarly, in

region III we have

uIII(t) ∼ 1√
f(xf)

[
c1 − c2

∫ ∞

xf
f(s) ds+ c2 f(xf) t

]
, (xf → ∞). (2.4.4)

It may seem odd that the linear term in t is retained, because it is down by one power

of xf compared to the second constant term. However, as we learned in Section 2.3.3,
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the constant term and the term proportional to t must be considered the same order.

Large terms will cancel between the c1 term and c2 term, so that overall the constant

term is of the same order as the term linear in t. It is then simple to determine the

constants c1 and c2.

c1 ∼ 1√
f(xf)

[∫ ∞

xf
f(s) ds+ C f(xf)

]
, (xf → ∞), (2.4.5a)

c2 ∼ 1√
f(xf)

, (xf → ∞). (2.4.5b)

Inserting these approximations into our expression for the relic abundance yields our

leading order approximation:

Y∞ ∼ 1
λ
∫∞

xf
f(s) ds+ Cλf(xf)

, (xf → ∞). (2.4.6)

So far we have derived the leading order asymptotic approximation of the relic

abundance without specifying an exact value for xf . In fact, these results do not depend

strongly on the precise value of xf . Allow xf → xf + ε, where ε ≪ xf . Under this shift

Q(xf) → Q(xf) e−ε
(

1 + O
(
ε

xf

))
(2.4.7a)

C → C + ε+ O
(
ε

xf

)
(2.4.7b)

The ratio of the region III coefficients then transforms as

c1
c2

→
∫ ∞

xf+ε
f(s) ds+ (C + ε) f(xf)

=
∫ ∞

xf
f(s) ds+ C f(xf) ,

(2.4.8)

which shows that the relic abundance is invariant under a small shift of the freeze-out

temperature up to O
(
ε2/x2

f
)
.
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2.4.2 Next to Leading Order

At next to leading order we retain terms up to 1/xf and t/xf , but continue to

drop terms like 1/x2
f and exp(−t). The approximations in each region become:

uI(t) ∼ α1 + β1t, (xf → ∞). (2.4.9)

uIII(t) ∼ α3 + β3t, (xf → ∞). (2.4.10)

Where the coefficients are

α1 ≡
[
1 + 1

2
F ′(xf)
F (xf)

]
C − F ′(xf)

F (xf)
, (2.4.11a)

β1 ≡1 − 1
2
F ′(xf)
F (xf)

, (2.4.11b)

α3 ≡ 1√
f(xf)

[
c1 − c2

∫ ∞

xf
f(s) ds

]
, (2.4.11c)

β3 ≡c2

√
f(xf) − 1

2
f ′(xf)
f(xf)

α3 (2.4.11d)

Note the lack of a t2 term in the region III solution, it has cancelled exactly. After a

little algebra one can simultaneously solve for the coefficients c1 and c2.

c1 ∼ 1√
f(xf)

{[
1 + C

2
f ′(xf)
f(xf)

− 1
2
F ′(xf)
F (xf)

] ∫ ∞

xf
f(s) ds+ f(xf)

[
C + 1

2
F ′(xf)
F (xf)

(C − 2)
]}
,

(2.4.12a)

c2 ∼ 1√
f(xf)

[
1 + C

2
f ′(xf)
f(xf)

− 1
2
F ′(xf)
F (xf)

]
. (2.4.12b)

Y∞ ∼ 1
λ

{∫ ∞

xf
f(s) ds+ C f(xf) − C2

2 f ′(xf) + (C − 1) f(xf)
F ′(xf)
F (xf)

}−1

, (xf → ∞).

(2.4.13)
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We again check to ensure that the relic abundance does not depend strongly on the

exact choice of freeze-out temperature. Shifting xf → xf + ε, retaining the O
(
ϵ2/x2

f
)

term, and using

C → C + ϵ− ϵ
F ′(xf)
F (xf)

+ O
(
ε2

x2
f

)
, (2.4.14)

we find that the O(ϵ/xf), O
(
ϵ/x2

f
)
, and O

(
ϵ2/x2

f
)

all cancel identically in the relic

abundance. Therefore, we make the convenient choice for the freeze-out temperature of

C = 1. This choice defines the numerical value of the freeze-out temperature by

λQ(xf) = 2e−γ−1. (2.4.15)

The third term in (2.4.13) then vanishes identically, and the remaining three terms

match exactly to

∫ ∞

xf−1
f(s) ds ∼

∫ ∞

xf
f(s) ds+ f(xf) − 1

2 f
′(xf) ,

(xf → ∞). (2.4.16)

It is then a straightforward numerical exercise to determine the relic abundance up

to order 1/x3
f . One simply determines the freeze-out temperature using (2.4.15) and

then integrates the thermally averaged cross section (with the appropriate cosmological

factors) from xf − 1 to infinity.

This result is very similar to those in the literature, with some seemingly minor

but important corrections. Writing

f(x) ∼ x−n−2
∞∑

k=0
fkx

−k, f0 = 1, (x → ∞), (2.4.17)
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the relic abundance can be written

Y∞ ∼ (n+ 1)xn+1
f

λ

[
1 + Υ1

xf
+ Υ2

x2
f

] , (xf → ∞), (2.4.18)

with

Υ1 ≡(n+ 1)(n+ 2) + f1
(n+ 2) (2.4.19a)

Υ2 ≡(n+ 1)(n+ 2)(n+ 3) + 2(n+ 3)f1 + 2f2
2(n+ 3) (2.4.19b)

Dropping all but the first term in the denominator yields a result of the same form as in

[74], but with a different choice for the freeze-out temperature. However, the 1/xf term

is what guarantees that the result does not depend strongly on the choice of freeze-out

temperature. The error then depends linearly on the choice of xf , which indicates that

the approximation is, strictly speaking, invalid.

Keeping the 1/xf corrections in (2.4.18) reproduces the results of [76] after

correcting for mistakes in their analysis (see Appendix B.2). This gives us confidence

that boundary-layer-analysis can be used to construct approximate solutions to other

Boltzmann equations.

2.4.3 Including Resonance and Threshold Effects

We next assume that the thermally averaged cross section is exponentially

decaying at leading order, with the coefficient in the exponent, α, being much larger

than 1/xf . In order to accommodate the additional Boltzmann suppression we write

f(x) ∼ g(x) e−αx, (x → ∞). (2.4.20)
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Much like F (x) we assume we have factored out all the exponential behavior so that

g(x) has a valid asymptotic approximation in powers of 1/x as x → ∞. We will again

shift the dependent variable to x = xf + t, and to further approximate the region III

solution we split the integral into two parts,

∫ ∞

xf+t
f(s) ds ∼

∫ ∞

xf
f(s) ds−

∫ xf+t

xf
f(s) ds . (2.4.21)

It is necessary to split the integral because in general the thermally averaged cross

section will not be well approximated by this exponential behavior if x is sufficiently

large for any finite set of parameters. We therefore leave the first integral to be evaluated

numerically. The second integral can be evaluated to all orders assuming g(x) is a

slowing varying function over the range of integration.

∫ xf+t

xf
f(s) ds ∼

∞∑
k=0

e−αxf

αk+1 γ(k + 1, αt) g(n)(xf) , (2.4.22)

where g(n)(xf) ≡ d g(x)/dx |x=xf
and γ(x, z) is the lower incomplete gamma function,

γ(s, z) :=
∫ z

0
xs−1e−x dx . (2.4.23)

Each term in the series is suppressed by 1/(αxf) if α is large. If α is small the incomplete

gamma function goes like (αt)k+1, which cancels all the factors of α in the denominator.

In either case we can further approximate the region III solution by retaining only the

first term in the series (2.4.22):

uIII(xf + t) ∼ 1√
f(xf)

[
θ−

α (xf) e
αt
2 − θ+

α (xf) e− αt
2
]

(2.4.24)
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where the constants are,

θ−
α (xf) ≡c1 − c2

∫ ∞

xf
f(s) ds+ c2

α
f(xf) , (2.4.25a)

θ+
α (xf) ≡ c2

α
√
f(xf)

. (2.4.25b)

Similarly, the region I approximation becomes

uI(t) ∼ 1√
1 + α

Kν

(
λQ(xf) e−(1+α)t

1 + α

)
, (xf → ∞), (2.4.26)

where ν is defined by (2.3.23). We note that, for any value of α, the order of the Bessel

function ν ∈
[
0, 1

2

]
, we therefore let t → ∞ and use the small argument expansion of

the Bessel function for non integral orders.

uI(t) ∼ Bα

[
η−

α (xf) eαt/2 − η+
α (xf) e−αt/2

]
, (xf → ∞), (2.4.27)

where the constants are

Bα(xf) ≡ π

2
√

1 + α sin
(

απ
2(1+α)

) (2.4.28a)

η+
α (xf) ≡ 1

Γ
(

2+3α
2+2α

)( λQ(xf)
2(1 + α)

) α
2(1+α)

(2.4.28b)

η−
α (xf) ≡ 1

Γ
(

2+α
2+2α

)( λQ(xf)
2(1 + α)

)− α
2(1+α)

(2.4.28c)

Both solutions exhibit the exact same exponential behavior. The coefficients c1 and c2

are easily found:

c1 ∼c2

{∫ ∞

xf
f(s) ds− f(xf)

α

[
1 − η−(xf)

η+(xf)

]}
, (2.4.29a)

c2 ∼αBα η
+
α (xf)√

f(xf)
, (xf → ∞). (2.4.29b)
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To simplify the notation and computational determination of the relic abun-

dance we next define the parameter

δx := 1
α

ln
(
η−

α (xf)
η+

α (xf)

)
. (2.4.30)

This parameter has the following asymptotic behavior:

δx ∼1 + 1
24

(
ψ(2)(1) − 12

)
α2, (α → 0), (2.4.31a)

δx ∼1 + γ − ln(2) + ln(α)
α

, (α → ∞), (2.4.31b)

where ψ(m)(z) is the polygamma function of order m. Using this parameter we may

write the relic abundance as

Y∞ ∼
[
λ

∫ ∞

xf−δx
f(s) ds

]−1
, (xf → ∞). (2.4.32)

The result (2.4.32) is valid for all values of α, and in the limit α → 0 reproduces

the results of the previous section. It is correct up to 1/x2
f corrections for general α and

up to 1/x3
f corrections when α ≪ 1/xf .

2.5 Results

We have determined an asymptotic approximation of the relic abundance in

the limit that the number density of the particle species is very nearly its thermal

equilibrium value until T ≪ m, where m is the mass of the particle. We define the

freeze-out condition as

√
π

45
mMpl g

1/2
∗,eff(xf)
x2

f
⟨σvMøl⟩Yeq(xf) = 2e−1−γ . (2.5.1)
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The asymptotic approximation of the relic abundance is

Y∞ ∼
√

45√
πmMpl

∫ ∞

xf−δx

g
1/2
∗,eff(s)
s2 ⟨σvMøl⟩ ds

−1

, (xf → ∞), (2.5.2)

where the shift in the integration range δx is given by

δx = 1
α

ln

Γ
(

2+3α
2+2α

)
Γ
(

2+α
2+2α

)
+ 1 + γ + ln(1 + α)

1 + α
. (2.5.3)

In order to apply this approximation one must supply α as an input. If, as is usually

the case, the thermally averaged cross section behaves like some power of 1/x near xf

then one should set α = 0, i.e. δx = 1. On the other hand, if the leading order behavior

near xf of the annihilation cross section has an exponential character, i.e.

⟨σvMøl⟩ ∼ xβe−αx,

then one should use the coefficient in the exponent, α, to determine δx from (2.5.3).

We have provided the most common expressions for α in (2.2.8b), and in Appendix B.1

we derive a method to numerically calculate α for more complicated models:

α ∼ − 1
xf

d2

d ln(x)2 ln(⟨σvMøl⟩)
∣∣∣∣∣
x=xf

, (xf → ∞). (2.5.4)

For models with only one stable relic one can often combine the Boltzmann equations

for each particle species into a single equation that takes the form of (2.1.6), simply

replacing the annihilation cross section σ with an effective annihilation cross section σeff

(for example see [78]). Our analysis then also applies to such models, including those

with coannihilation, by making the same replacement σ → σeff in (2.5.4).

In order to estimate the fitness of our results we next compare our approxima-

tion to a numerical determination of the relic density using a benchmark model, which

we now outline.
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2.5.1 Benchmark Model

The benchmark model we will use is a simple extension of the SM in which

we add a massive vector boson which kinetically mixes with the SM photon and a DM

fermion. The Lagrangian is given by:

L = LSM + Lkin + Lint (2.5.5a)

Lkin = −1
4VµνV

µν + 1
2MV VµV

µ + χ (i�∂ −mχ)χ (2.5.5b)

Lint = ϵ

2BµνV
µν + gVµχγ

µχ (2.5.5c)

where Vµ is the new massive vector boson (with mass MV ), χ is the DM Dirac fermion

(with mass mχ) and Bµ is the hyper-charge gauge boson. We take the χ− V coupling

g to be O(1) and the kinetic mixing parameter ϵ ≪ 1. The V -B mass matrix can be

diagonalized by shifting Bµ → Bµ + ϵVµ and neglecting terms of O
(
ϵ2
)
. After shifting

the hyper-charge gauge boson, the vector mediator obtains interactions with the hyper-

charge current:

Lint ⊃ ϵg′Jµ
Y Vµ

= g′ϵVµ

(∑
i

Qiψiγ
µψ +

∑
i

ψ
L
i γ

µT3ψ
L
i

)
(2.5.6)

where the first sum runs over all SM fermions ψi, the second over left-handed fermions

ψL
i , and T3 is essentially the third Pauli matrix T3 = σ3/2.

The thermally averaged 2 → 2 annihilation cross section for χ̄χ → any for

large x is given by

⟨σvMøl⟩ ∼
∫ ∞

2
dzK (x, z)

∑
X
σχ̄χ→X(mχz) , (2.5.7)
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Figure 2.5: Feynman diagrams showing all possible 2 → 2 annihilation channels for DM
in the benchmark model.

where the thermal kernel K (x, z) is

K (x, z) ≡ x

4K2
2 (x)

z2
(
z2 − 4

)
K1(xz) . (2.5.8)

In the above expressions, z is the center-of-mass energy divided by the DM mass (z ≡

√
s/mχ). In Fig. 2.5 we give all possible final states.

There are three interesting regions in parameters space for this model:

1. mχ > MV : The DM is heavier than the vector mediator. There are neither

thresholds nor any resonances. The dominant process is simply χ̄χ → V V . All

other processes are negligible (assuming ϵ is small).

2. MV /2 < mχ < MV : The DM is lighter than the vector but heavier than half the

vector mass. At large temperatures we will pass through a threshold in which,

due to finite temperature, the final state χ̄χ → V V opens up. For smaller tem-

peratures, this final state becomes Boltzmann suppressed.

3. mχ < MV /2: The DM is lighter than half the vector mass. At large temper-

atures, we will pass through both a resonance (z = mV /mχ) and a threshold

(z = 2mV /mχ).

In Fig. 2.6 we show the magnitude of the relative error between a numerical

76



10−2

10−4

10−6R
el
.

D
iff

er
en

ce α = 0

α 6= 0

10−6

10−9

10−12

Y
∞

R
eso

n
an

ce

χ
χ̄
→
V
V

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

mχ/mV

25

15x
f.

o.

Figure 2.6: The asymptotic approximation of the thermal relic abundance compared to
numerical results using a benchmark model. Top: The magnitude of the relative error
between the asymptotic approximation and numerical results. Middle: The thermal
relic abundance. Bottom: the freeze-out temperature. We set MV = 1 TeV, g = 1,
ϵ = 10−3, and vary the mass of the DM particle from mχ = 100GeV − 2 TeV. One can
see the affect of the resonance and χχ̄ → V V threshold from the rise in the power law
(α = 0) approximation near mχ/MV = 0.5 and mχ/MV = 1.

determination of the thermal relic density and the asymptotic approximations derived

here using

Ωχh
2 = 2.744 × 108 mχ

GeVY∞. (2.5.9)

The numerical results were obtained using the high-fidelity, order-switching, implicit

RADAU integrator [79] taken from the author’s website2. We recast the Boltzmann
2We use a slightly modified version of the C++ code from: https://unige.ch/~hairer/software.
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equation into a logarithmic form in order to work with numbers of O(1 − 10):

dW
d ln(x) = −

√
π

45
mMpl
x

g
1/2
∗,eff ⟨σvMøl⟩

(
eW − e2Weq−W

)
, (2.5.10)

with W = ln(Y ) (and Weq = ln(Yeq)). The integration was performed over the interval

x = 1 to x = 5 × 104, beginning the integration with W (x = 1) = Weq(x = 1) and

maintaining a local error of O
(
10−10) (and a global error O

(
10−9)). In order to reduce

roundoff error we employ long double (80 bit floating point) precision arithmetic.

We vary the DM mass while keeping all other parameters fixed. Because

resonance effects may be important for some values of the mass ratio we compare results

using α = 0 for all masses and the value of α obtained from (2.2.8b). With the exception

of resonance and theshold effects, not accounted for in the α = 0 approximation, as xf

becomes larger the relative error decreases, as is expected from the asymptotic nature

of the approximation.

2.6 Conclusion

We have shown, using this benchmark model, that our results satisfy the re-

quirements of an asymptotic approximation. The controlling parameter is xf , and as

xf becomes large the relative error approaches 0. As well, our approximation yields

outstanding results, giving sub percent relative errors for all parameters investigated.

This is comparable or greatly exceeds the current measurement uncertainty of the Hub-

ble parameter of roughly a percent or more [80–86]. The asymptotic approximation of

the thermal relic density typically takes orders of magnitudes less time to compute than

html.
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numerically integrating (2.1.6), making scans over models with large numbers of param-

eters more feasible. For the choices of parameters shown we typically have λ ≈ 1014,

this results from weak scale cross sections but is already quite large. If one is inter-

ested in strongly interacting massive particles (SIMPs), or models with very large cross

sections in general, (2.1.6) becomes exceptionally stiff, making numerical integration

prohibitively difficult and quite unstable if not completely impossible. Reduction of or-

der problems can also lead to overly optimistic error approximations, with no indication

that anything is amiss. Our results do not suffer from such difficulties.

Having an analytic expression for the thermal relic density is useful in its own

right, for instance in large N Yang-Mills models one may be interested in the ana-

lytic behavior of thermal relic density as one takes the number of colors N to infinity.

This behavior can be found from (2.5.2) easily, but numerical methods must rely on

extrapolation. All that is required to implement our results are standard cosmological

parameters and the thermally averaged cross section as inputs, and a simple quadrature

routine. The end user is not bound by the limitations of external software, thus mak-

ing analysis of models that do not adhere to the typical requirements of prepackaged

programs such as Lorentz invariance possible.

In addition, our method constitutes a global asymptotic approximation to the

solution of a problem with an infinite order turning point. In fact, this procedure can

be used to construct approximations to an entire class of problems of the form:

d2u

dx2 −
[
λ2 F 2(x) e−2x + P (x)

]
u = 0. (2.6.1)

We have shown that the uniform WKB ansatz (2.3.9) allows one to extend the region
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of validity of the small x approximation sufficiently close to the turning point at x = ∞

such that one can asymptotically match to the large x approximation. This has a large

range of physics applications, including quantum mechanical scattering with a Yukawa

type potential.

Our particular program could possibly generalize to a larger set of Boltzmann

equations, but because our results rely on using a uniform WKB approximation we can

only apply our procedure to systems that can be linearized. However, one could apply

boundary-layer-analysis to obtain valid results for a multitude of Boltzmann equations.
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Chapter 3

Lowest Dimensional Portals to SU(N)

Exotics

3.1 Introduction

In the Standard Model of particle physics, matter fields are spin-1/2 Dirac

fermions. Strong nuclear interactions are highly successfully modeled by an unbroken

local gauge symmetry with gauge group SU(3). Matter fields that are strongly inter-

acting belong to the fundamental (3) representation of SU(3), while their antimatter

counterparts to the antifundamental (3̄) representation of SU(3). In terms of Dynkin

labels, strongly interacting matter fields belong to the (1,0) representation, and anti-

matter, strongly interacting fields to the (0,1) representation of SU(3). The spin-1,

massless force carriers, “gluons”, belong to the adjoint (8) representation, the (1,1).

Grand unification schemes, where two or more of the Standard Model gauge

groups arise from symmetry breaking, at some very high energy scale, of larger “unified”
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gauge groups, have a similar structure. For instance, in Pati-Salam models based on

SU(4)×SU(2)L ×SU(2)R or SU(4)×SU(2)L ×SU(2)R/Z2 [87], matter fermions charged

under strong interactions are accommodated in the fundamental representations 4 ∼=

(1, 0, 0) and 4̄ ∼= (0, 0, 1), with additional exotic states in the 6 ∼= (0, 1, 0) representation;

in Georgi-Glashow SU(5) grand unified theories [88] matter fermions are accommodated

in the 5 ∼= (1, 0, 0, 0), 10 ∼= (0, 1, 0, 0), and their conjugate representations 5̄ and 1̄0; in

SU(6), Standard Model matter fermions are accommodated in the 6 ∼= (1, 0, 0, 0, 0) and

15 ∼= (0, 1, 0, 0, 0) and their conjugate representations 6̄ and 1̄5, with possible additional

beyond-the-Standard-Model matter fermions in the 20 ∼= (0, 0, 1, 0, 0) (see e.g. [89] and

[90]).

In constructing beyond-the-Standard-Model theories, new exotic states (by

“exotic” state we indicate a physical state belonging to any representation of SU(N)

different from the fundamental representation(s) and the adjoint representation) are

assigned charges, or representations, under the Standard Model gauge groups (or under

grand unified gauge groups as the case may be). If these exotic states belong to non-

trivial gauge group representations it is of paramount importance for phenomenology to

establish which interaction terms are allowed by gauge invariance to exist in the model’s

Lagrangian. Such interaction terms, of course, may not be renormalizable. If they

are not, it is implicitly assumed that some high-scale physics is effectively integrated

out, yielding the higher dimensional operators. In either case, the most important

operators at low energies are those with the lowest mass dimension. In this study, we

are precisely interested in which arrangement of matter fields and force mediators (in

the adjoint representation) are needed to produce the lowest mass dimension gauge-
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invariant operator between any given new exotic state and Standard Model fields. We

refer to any operator containing both the field corresponding to the exotic state and

Standard Model fields as a “portal”, in that such operator would mediate interactions

between the exotic states and the Standard Model, acting, as such, as a “portal” to new

physics. Such terminology is common in particle physics, see e.g. [91–93].

In a non-perturbative regime, the question we address can be recast as the

question of which arrangements of “quarks”, “antiquarks” and “gluons” are needed to

dress a given exotic state into a gauge-singlet, color-less combination: thus the question

can be recast, borrowing the notion of “valence gluon” [94, 95], as what is the smallest

SU(N) color-less bound state (see the recent study [96]).

From a group theoretic standpoint, we can reformulate the question as: given

a gauge group SU(N) and a new exotic state, X, belonging to some irreducible represen-

tation (irrep) of SU(N), what is the most economical (in the sense of mass dimension of

the corresponding operator) tensor product of fundamental and adjoint representations

of SU(N) that contains the trivial representation? Since matter fermions have higher

mass dimension than spin-1 force carriers in the adjoint representation, one seeks to

minimize the number of matter fermions. Since it is necessarily the case that a tensor

product containing the trivial representation has vanishing N -ality, it is then obvious

that the solution includes a single tensor product with the one fundamental representa-

tion Qi that takes the product X ⊗Qi to N -ality equal to zero, with as many copies k

of the adjoint representation GN as needed for the product X ⊗Qi ⊗G⊗k
N to eventually

contain the trivial representation.

Technically, the intricacy of this problem lies in decomposing the k-fold tensor
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product of adjoint representations into a direct sum of irreps of SU(N). While some

general results are known, for example in the context of the Littlewood-Richardson rule

(see e.g. [97]), we are not aware of any general result on the product of several copies of

the adjoint representation. Here, we provide first, in the following section 3.2, a visually

simple, algorithmic approach for building the gauge invariant operator, given the N -

ality zero combination X⊗Qi, and provide examples and complete formulae for SU(N)

with N = 3, 4, 5. We then discuss in sec. 3.3 the problem of what is the minimal k

such that 1 ⊂ X ⊗ G⊗kmin
N , or, equivalently, X∗ ⊂ G⊗kmin

N . The full problem of finding

the minimal k such that 1 ⊂ X ⊗ Qi ⊗ G⊗kmin
N is then solved in sec. 3.3.2. Because,

especially for large N and large-dimensional representations for the exotic field X, the

calculation is rather complicated, we describe in sec. 3.4 a python code, tessellation,

which we make publicly available, to perform the needed calculations. We collect in

two appendices the needed mathematical details, and a short user’s manual for the

tessellation code.

3.2 An algorithmic approach for building the gauge invari-

ant operator

In this section, we present an algorithmic approach to finding the minimum

number of copies, kmin, of the adjoint representation, GN , needed such that the product

with a representation with vanishing N -ality contains the trivial representation; we

believe this discussion will provide an intuitive understanding of the problem. We

explicitly solve through N = 4, outline considerations for extending to N > 4, and
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present formulae for N = 3, 4, 5 in Table 3.1. We also outline some considerations for

arbitrary representations with non-zero N -ality before proceeding to a full solution in

the following Sec. 3.3.

We begin by taking the tensor product of X with a single copy of the adjoint

representation (see e.g. Ref. [98] for a general discussion of Young tableaux in the

context of tensor products of group representations). We write the Dynkin label for X

as (p1, p2, . . . , pN−1). The adjoint representation has Dynkin label GN
∼= (1, 0, . . . , 0, 1),

and is composed of N boxes: two in the first row and one in each of the following

N − 2 rows. The result of the tensor product is a direct sum of irreps, each with

a unique tableau. Illustrated in Fig. 3.1 are several examples for the case of N =

4. The allowed configurations include placing one box on each row of X (including

the bottom, or N th, row which is assumed to initially have no boxes), or placing two

boxes on the same row of X and one box on all but one of the remaining rows. The

former possibility simply lengthens every row by one, effectively mapping X to itself

((p1, ..., pN−1) → (p1, ..., pN−1)), and thus adds a copy of the adjoint representation

without getting closer to a representation containing the trivial representation. We

will, therefore, only consider steps which add two boxes to one of the rows. Among

these possibilities it is also never useful to add two boxes to the top row; in fact, the

best step we can take is to add two boxes to the lowest row possible while maintaining

rows which reduce in length from top to bottom. This allows us to complete at least

one column and minimizes the steps needed to complete additional columns (see also

the following sec. 3.3 for a formal proof of this statement).

In the best case scenario, the number of steps needed will simply be the number
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Figure 3.1: Representations resulting from the tensor product of the representation
(2,1,1) of SU(4) with the adjoint representation of SU(4), (1,0,1), whose Young tableaux
boxes are labeled by the letters a, b and c.

of boxes required to “fill in” the tableau for X. If the tableau for X has t boxes, where

t =
N−1∑
j=1

jpj , (3.2.1)

then the number of boxes in the resulting rectangle that just fits X will be the length

of the first row of X times N :

Area = N
N−1∑
j=1

pj . (3.2.2)

Thus, the number of boxes needed to complete a rectangle is this area, less the number

of boxes in X:

t∗ := Area − t,

=
N−1∑
j=1

(N − j)pj .

(3.2.3)

This t∗ corresponds to the number of boxes in the dual representation to X. Because

the tableau for the adjoint representation has N boxes, the optimistic minimum number
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of steps is

kopt := t∗

N
,

= 1
N

N−1∑
j=1

(N − j)pj .

(3.2.4)

The true minimum number of steps required will always be equal to or exceed this

optimistic minimum (kmin ≥ kopt).

We now state the algorithm as a theorem:

Theorem 3.2.1. Consider an irrep, X, of SU(N), with Dynkin label (p1, p2, . . . , pN ).

If
N∑

j=1
jpj = 0 mod N, (3.2.5)

and N ≤ 4, we can always take the tensor product of this X with kmin copies of the

adjoint representation, where

kmin =



1
N

N−1∑
j=1

(N − j)pj p1 ≥
N−1∑
j=2

(N − j)pj ,

2
N

N−1∑
j=1

(N − j)pj − p1 p1 <
N−1∑
j=2

(N − j)pj ,

(3.2.6)

to arrive at the trivial representation. The algorithm proceeds in three stages:

(1) Take pN−1 steps (i.e. tensor products with the adjoint representation), adding

two boxes to the bottom row and one box to every row except the top, reducing

(p1, p2, . . . , pN−1) to (p1 − pN−1, p2, . . . , 0).

(2) While p1 > 0, iteratively place two boxes on the next to lowest row followed by the

lowest row until pN−2 = pN−1 = 0 after 2pN−2 steps; then follow a similar process

of 3pN−3 steps to reduce to pN−3 = pN−2 = pN−1 = 0, etc. The total steps taken
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from the starting representation is pN−1 + 2pN−2 + 3pN−3 + . . . and the value of

first Dynkin label is now p1 − pN−1 − 2pN−2 − 3pN−3 − . . ..

(3) (conditional) If p1 = 0, add a box to row 1 increasing p1 to one and reducing p2

by one. Add the other N − 1 boxes on the lowest rows possible, reducing the value

of the largest non-zero Dynkin label, pi, by one.

Proof. Starting from an initial representation with N -ality equal to zero, or which we

have brought to N -ality of zero by taking the tensor product of X with the appropriate

fundamental representation (see sec. 3.3.2), we ask what is the minimum number copies

of the adjoint representation, kmin, required to get to a direct sum of irreps that includes

the trivial representation, effectively, and visually, constructing a rectangular tableau

from X and kmin copies of GN . Each stage of the algorithm is composed of multiple

steps. At each step we will take the tensor product with an additional copy of the adjoint

representation. The total number of steps needed to arrive at the trivial representation

is then equal to kmin.

We take advantage of the fact that the adjoint representation is self dual.

It is convenient to choose, as the starting point, whichever of (p1, p2, . . . , pN−1) or

(pN−1, pN−2, . . . , p1) ensures p1 ≥ pN−1. In step 1, we take the tensor product of

X and GN once, placing two boxes on the bottom row and one box on each row except

the top row. The ordering with p1 ≥ pN−1 ensures that this results in a valid tableau

unless p1 = pN−1 = 0. What happens in the case of p1 = 0 is described later. This step

has the effect of reducing both p1 and pN−1 by one while leaving the other pi unchanged,

(p1, p2, . . . , pN−1) → (p1 − 1, p2, . . . , pN−1 − 1) (see Fig. 3.2a). We can then repeat this
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process pN−1 times until pN−1 = 0 (see Fig. 3.2b). This concludes the first stage of the

algorithm.

With pN−1 = 0, the next step must add two boxes to row N − 1 to ensure

that it is longer than row N . Assuming our new p1 (equal to p1 − pN−1) is greater than

zero, we will also add one box each to the other rows except the top row. This step

reduces p1 by one, reduces pN−2 by one, and increases pN−1 to one (see Fig. 3.2c). In

the following step we can again add two boxes to the bottom row, reducing pN−1 again

to zero, reducing p1 by one, and leaving the other pi unchanged (see Fig. 3.2d). Thus

it takes two steps to reduce pN−2 by one and have pN−1 = 0. This set of two steps

may be repeated, while the first term p1 is greater than zero, until pN−2 = pN−1 = 0

after 2pN−2 additional steps. At this point the lowest row on which we can place two

boxes is N − 2, which reduces the size of pN−3. Reducing pN−3 by one and returning to

pN−2 = pN−1 = 0 requires a set of three steps as we iteratively increase pN−2 and pN−1

to one and then bring them back to zero (i.e. we add two boxes first to row pN−2, then

to row pN−1, and finally to pN ). Thus we conclude the second stage of the algorithm.

How this process concludes depends on whether the starting value of p1 is

equal to, greater than, or less than
∑N−1

j=2 (N − j)pj . We consider each of these in turn.

If p1 =
∑N−1

j=2 (N − j)pj then we reduce p1 to zero just as all of the other pi go to zero.

Here we form a complete rectangle (trivial representation) in the optimistic minimum

number of steps, given the number of missing boxes in the starting state compared to a

rectangle of height N and length
∑N−1

j=1 pj .
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1

1

1 1

(a)

1 2

1 2

1 1 2 2

(b)

1 2 3

1 2 3 3

1 1 2 2 3

(c)

1 2 3 4

1 2 3 3 4

1 1 2 2 3 4 4

(d)

Figure 3.2: An example for N = 4 of a representation, here (4,1,2), which can be
completed in the minimum possible number of steps.

kmin =
N−1∑
j=2

(N − j)pj , if p1 =
N−1∑
j=2

(N − j)pj . (3.2.7)

1 1 2 3

1 2 2 3

1 2 3 3

1 2

1 3

2 3

1 1 2 2 3 3

Figure 3.3: Examples for N = 4 of the symmetric representations, (4,0,0) and (0,0,4),
which can be completed in the same number of steps.

If p1 >
∑N−1

j=2 (N − j)pj , we again complete the rectangle (i.e. get to a prod-

uct of representations containing the trivial representation) in the optimistic minimum

number of steps. This situation implies that we can bring all of the pi with i > 1 to

zero with some of the length of p1 remaining. In this case, the remainder of p1, which

we shall call p′
1, is necessarily a multiple of N given the starting condition of N -ality
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zero. Writing p′
1 = jN , presently we have a state of the form (jN, 0, . . . , 0). This rep-

resentation can be reduced to the trivial representation in (N − 1)j steps (see e.g. the

left panel of Fig. 3.3). The total number of steps from the initial representation in this

case is

kmin =
N−1∑
j=2

(N − j)pj + N − 1
N

p1 −
N−1∑
j=2

(N − j)pj

,
= 1
N

N−1∑
j=1

(N − j)pj , if p1 >
N−1∑
j=2

(N − j)pj .

(3.2.8)

If p1 <
∑N−1

j=2 (N − j)pj , then the p1 term reaches zero before all of the other

rows are zero. This situation requires that we expand beyond the bounds of our initial

rectangle and take more than the optimistic minimum number of steps. Given the

reordering we did in the beginning, we know that pN−1 is either zero or one at this

point. In the step after the first term reaches zero, we add one box to the first row,

increasing p1 to one and reducing p2 by one (see Fig. 3.4). The rest of this stage looks

just like the previous ones we have taken; if pN−1 = 1, this term is reduced to zero

and if it is not, the first non-zero term is reduced by one. The following step starts

with p1 = 1 and proceeds just like our previous steps reducing p1 back to zero. Thus

the effect of adding steps beyond the optimistic minimum (adding columns on to our

rectangle) is to reduce p2 by one and add two steps above the optimistic minimum for

each extra column. We can then proceed as before, reducing each of the pi in turn with

the difference that when we get to reducing the p2 term its value will be p2 − Nextra,

where Nextra is the number of extra columns. This concludes the third stage.

The total number of steps taken, assuming p2 − Nextra is greater than zero
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until the final step, is then

kmin = (N − 2)(p2 −Nextra) +
N−1∑
j=3

(N − j)pj

= 1
N

N−1∑
j=1

(N − j)pj +Nextra,

if p1 <
N−1∑
j=2

(N − j)pj .

(3.2.9)

Solving for the number of extra columns,

Nextra = 1
N

N−1∑
j=2

(N − j)pj − p1, (3.2.10)

and substituting (3.2.10) into (3.2.9) then gives

kmin = N − 2
N

p1 + 2
N

N−1∑
j=2

(N − j)pj

= 2
N

N−1∑
j=1

(N − j)pj − p1

if p1 <
N−1∑
j=2

(N − j)pj , p2 ≥ 1
2

N−1∑
j=3

(N − j)pj − p1

.
(3.2.11)

The total number of steps in this case is twice the optimistic minimum minus

p1, with p1 being the number of steps we can take before adding extra columns. The

condition on the size of p2 comes from finding the value of p2 such that it just reaches

zero when the other pj all reach zero. In this case, kmin =
∑N−1

j=3 (N − i)pj . At this

point, we have fully solved for N ≤ 4, since for N = 4, p3 = pN−1 ≤ p1 by virtue of our

starting representation and the condition on p2 is always satisfied.

For N ≥ 5, there is the possibility that we arrive at a representation with zeros

in the first two (or more) terms while the other pj remain non-zero, e.g. (0, 0, p′
3, p

′
4).

An easy method to see the number of steps remaining in this case is to consider the
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1

1

1

1 1

1 3

2 4

1 2 2 3 4

1 2 3 3 4

1 1 2 3 4 4

Figure 3.4: Example for N = 5 of a representation, here (0,3,0,1), for which completion
requires expanding beyond the original length.

“symmetric” case, e.g. (p′
4, p

′
3, 0, 0), which will require the same number of steps to

reduce (see Fig. 3.3 for one example). Here we know that p′
N−1 is either 0 or 1 again by

virtue of having started with p1 ≥ pN−1. This means our “symmetric” representation

automatically has p1 <
∑N−1

j=2 (N − j)pj and the solution is given by Eqn. 3.2.11. The

total number of steps taken is then the sum of the number of steps to get from an

initial state (p1, p2, . . . , pN−1) to (0, 0, p′
3, . . . , p

′
N−1) plus the number of steps to reduce

(p′
N−1, . . . , p

′
3, 0, 0).

Explicit formulae for kmin for N = 3, 4, 5 are given in Table 3.1. For N = 6,

there is the possibility of arriving at representations with three leading zeros (0, 0, 0, p′
4, p

′
5)

or of the form (0, 0, p′
3, 0, 0). The former can again be solved through symmetry. In the

latter case, because N -ality is zero p′
3 = iN/(N − 3) = 2i, for N = 6 and where i is

a positive integer. To reduce from here (N − 3)i = 3i steps are needed. For N > 6,

additional cases emerge, and we seek a fully general solution in the next section.

The following section also presents a general solution for non-zero N -ality.

Here we discuss a few general considerations for this case. For a general representation

X with N -ality equal to t, we can bring the initial representation to N -ality of zero

in one step by adding a fundamental representation of N − t boxes. Adding these
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N case (1) case (2) case (3)

3 2p1 + p2
3 − −

4 3p1 + 2p2 + p3
4

2p1 + 4p2 + 2p3
4 −

5 4p1 + 3p2 + 2p3 + p4
5

3p1 + 6p2 + 4p3 + 2p4
5

2p1 + 4p2 + 6p3 + 3p4
5

Table 3.1: Minimum number of steps, kmin, for a state with N -ality of zero and p1 ≥
pN−1. For a state with pN−1 > p1, the number of steps is that of the symmetric state
(pN−1, pN−2, . . . , p1). The columns correspond to the three possible cases:

case (1)
∑N−1

j=2 (N − j)pj ;
case (2) p1 <

∑N−1
j=2 (N − j)pj and p2 ≥ 1

2
∑N−1

j=3 (N − j)pj − 1
2p1;

case (3) p1 <
∑N−1

j=2 (N − j)pj and p2 <
1
2
∑N−1

j=3 (N − j)pj − 1
2p1

boxes to the lowest rows possible (while maintaining rows of decreasing length) will

result in the representation which will then fill most efficiently (see Fig 3.5). If the

term pt ̸= 0, boxes are added to the rows below row t and pt is reduced by one. The

resulting N -ality zero representation will be (p1, . . . , pt − 1, . . . , pN−1). What happens

if pt = 0 depends on if the surrounding terms are also zero, but in general one of the

zero terms increases to one while the non-zero terms above and below decrease by one.

For example, if pt = 0 and pt+1, pt−1 ̸= 0, then the resulting N -ality zero representation

will be (p1, . . . , pt−1 − 1, 0, pt+1 − 1, . . . , pN−1).

3.3 Solution for General N

In the previous section we saw that the algorithmic procedure bifurcates at

various stages depending on the particular irrep X that we start with. In general, as

one proceeds through the algorithm there will be N−1 branch points between the initial
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irrep and the trivial representation. As the gauge group parameter N becomes large

the number of cases quickly becomes unmanageable, making a general solution elusive.

In this section we take a different approach, motivated by the observation that

X∗ ⊂ G⊗k
N =⇒ 1 ⊂ X ⊗ G⊗k

N , (3.3.1)

where X∗ is the dual representation to X. Therefore, we first decompose the tensor

product of k copies of the adjoint representation into a direct sum of irreps of SU(N).

Then, given any X with vanishing N -ality we will show that there exists a minimum

k = kmin such that X∗ ⊂ G⊗kmin
N . We then extend our analysis to cases when X does not

have vanishing N -ality. This is accomplished by including an additional matter field,

Qi, in the tensor product, where the index i denotes the ith fundamental representation.

This index will be fixed by requiring X ⊗Qi have vanishing N -ality. The vector space

X ⊗ Qi further decomposes into a direct sum of irreps, with each subvector space

generally resulting in a different value of kmin. We conclude this section by developing

an algorithmic procedure for determining the optimum irrep in X ⊗ Qi that leads to

the smallest value of kmin such that

1 ⊂ X ⊗Qi ⊗ G⊗kmin
N , (3.3.2)

still holds.

3.3.1 Adjoint Product Decomposition

We need decompose the k-fold tensor product of the adjoint representation of

SU(N) into a direct sum of irreps of SU(N). We will start with one irrep that is easily
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found, and then build the remaining irreps from this one. The choice of starting point

is made with the following Lemma:

Lemma 3.3.1. The highest weight of the highest irrep, Λ̄, of G⊗k
N is

Λ̄ := kλ̄ = (k, 0, . . . , 0︸ ︷︷ ︸
N−3

, k), (3.3.3)

where λ̄ is the Dynkin label (highest weight) of GN .

Proof. Denote the weights of GN by λi, with λ1 ≡ λ̄ and i ∈
{
1, 2, . . . , N2 − 1

}
. Since

λ̄ is the highest weight of GN ,

λ̄ ≻ µ, ∀µ ∈ {λ2, λ3, . . . , λN2−1}. (3.3.4)

where ⪰ constitutes a partial ordering of the weights. Every other weight of GN can be

constructed from λ̄ by removing some number of positive roots:

λi = λ̄− θijkα
jk, θijk ∈ R+, αjk ∈ ∆+, (3.3.5)

where ∆+ is the set of all positive roots of SU(N), and the θijk cannot all vanish (except

when i = 1). Every weight of G⊗k
N can be written

Λi = ξj
i λj , ξj

i ∈ N0,
N2−1∑
j=1

ξj
i = k. (3.3.6)

Substituting (3.3.5) into (3.3.6) then gives

Λi = kλ̄−
N2−1∑
j=2

ξj
i θjklα

kl. (3.3.7)

But then

kλ̄− Λi =
N2−1∑
j=2

ξj
i θjklα

kl. (3.3.8)
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Defining Λ̄ ≡ Λ1 := kλ̄ we then see that

N2−1∑
j=2

ξj
i θjkl ∈ R+ =⇒ Λ̄ ≻ Λi, ∀i > 1. (3.3.9)

Therefore, Λ̄ is the highest weight of G⊗k
N .

We cannot take the tensor product of any arbitrary X with some number

of copies of the adjoint representation and expect to find the trivial representation.

Intuitively, the tableau for X needs to have some integer multiple of N number of boxes

in order for this to work (since the tableau for GN has N boxes). This is the vanishing

N -ality condition, which we state more formally in the following Theorem:

Theorem 3.3.2. For a given irrep, X, of SU(N), with Dynkin label (p1, p2, . . . , pN−1)

the following holds:

N−1∑
j=1

jpj = 0 mod N =⇒ ∃k ∈ N | 1 ⊂ X ⊗ G⊗k
N . (3.3.10)

Proof. The weight Λ̄ belongs to one and only one irrep in G⊗k
N , which we denote VΛ̄.

To VΛ̄ we associate the tableau

VΛ̄
∼=

N
−

1

k k

(3.3.11)

From Lemma 3.3.1 every other irrep has an associated tableau with fewer boxes in the

first row. Therefore, to generate the other irreps in G⊗k
N we move boxes from the top

rows of VΛ̄ to lower rows, and require that the resulting tableau remain valid (i.e. the

number of boxes in each row are weakly decreasing). For example, with k = 3 and
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N = 4 we can do the following moving only one box:

⋆

⋆

†

⋆/†

More generally, consider moving ijk boxes from row j to row k with j < k. To this

procedure we associate a totally antisymmetric N ×N matrix:

M =



0 i12 i13 . . . i1N

−i12 0 i23 . . . i2N

−i13 −i23 0 . . . i3N

...
...

... . . . ...
−i1N −i2N −i3N . . . 0


. (3.3.12)

The number of boxes removed from row j is

mj :=
N∑

n=1
Mjn. (3.3.13)

The Dynkin label of the resulting irrep is then given by taking Λ̄ and for each row j

subtracting the mj boxes removed from that row and adding the mj+1 boxes removed

from the row below it. We write this as a correction vector ∆p, giving Λ̄ − ∆p as the

Dynkin label of the resulting irrep.

∆pjk := mj −mk (3.3.14a)

∆pj ≡ ∆pj j+1 = mj −mj+1 (3.3.14b)

∆p ≡ (∆p1,∆p2, . . . ,∆pN−1). (3.3.14c)

It is not immediately obvious that every Λ̄ − ∆p corresponds to an irrep in

the decomposition of G⊗k
N . We reserve a proof of this for Appendix C.2, since it is a
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little involved. Essentially, there is enough freedom in placing the boxes of the tableau

that one can always construct the irreps such that they don’t vanish from symmetry or

antisymmetry. In other words, the multiplicity of every irrep with highest weight Λ̄−∆p

in the direct sum decomposition of G⊗k
N is nonzero, which follows from Theorem C.2.3.

The mj and ∆p obey the following identities:

N∑
j=1

mj = 0, (3.3.15a)

N−1∑
j=n

∆pj = mn −mN , (3.3.15b)

N−1∑
j=1

j∆pj = −NmN , (3.3.15c)

n∑
j=1

mj ≥ 0 ∀n ≤ N, (3.3.15d)

The antisymmetry of M gives (3.3.15a) and (3.3.15d), (3.3.15b) follows from the defini-

tion of the ∆pj , and (3.3.15c) follows from (3.3.15a) and (3.3.15b). There are additional

identities, but they will not be needed. Because G⊗k
N is self dual X∗ ⊂ G⊗k

N ⇐⇒ X ⊂

G⊗k
N , which will save us from having to take the conjugate of X in (3.3.1). Equating

the Dynkin label of X with Λ̄ − ∆p we see that

X ⊂ G⊗k
N =⇒ pj = δ1

j k + δN−1
j k − ∆pj , (3.3.16)

for some ∆p. Using (3.3.15c) we find that

N−1∑
j=1

jpj = N(k +mN ). (3.3.17)

Because mN and k are integral, the r.h.s. of (3.3.17) is an integer multiple of N .
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Corollary 3.3.2.1. For a given irrep, X, of SU(N), with Dynkin label (p1, p2, . . . , pN−1),

and
N−1∑
j=1

jpj = 0 mod N,

1 ⊂ X ⊗ G⊗k
N if and only if

∀n ∈ N | 1 ≤ n ≤ N − 1: k ≥ N − n

N

N−1∑
j=1

jpj −
N−1∑

j=n+1
(j − n)pj . (3.3.18)

Proof. Construct the correction vector ∆p as in Theorem (3.3.2). Sum over the pj from

n ≤ j ≤ N − 1 and use (3.3.15b) to solve for the mj :

mn = mN +
N−1∑
j=n

(
δ1

j + δN−1
j

)
k −

N−1∑
j=n

pj , n < N,

mN = 1
N

N−1∑
j=1

jpj − k.

(3.3.19)

Substituting these values of mj into (3.3.15d) then finishes the proof.

We now have the final result for the case when X has vanishing N -ality:

Theorem 3.3.3. Given an irrep, X, of SU(N), with Dynkin label (p1, p2, . . . , pN−1),

and
N−1∑
j=1

jpj = 0 mod N,

define

kn := n

N

N−1∑
j=1

jpj −
n∑

j=1
(n− j)pN−j . (3.3.20)

Then the quantity

kmin := max {k1, k2, . . . , kN−1}, (3.3.21)

obeys

∀k ∈ N | 1 ⊂ X ⊗ G⊗k
N , kmin ≤ k (3.3.22)
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Proof. Choose k such that 1 ⊂ X ⊗ G⊗k
N . From Corollary 3.3.2.1

∀n ∈ N | 1 ≤ n ≤ N − 1, k ≥ kn.

Next, assume k < kmin. But then, because kmin = max {k1, k2, . . . , kN−1}, there exists

a kn such that k < kn, a contradiction.

3.3.2 Including Matter Fields

We next include an additional matter field in the tensor product

X ⊗Qi ⊗ G⊗k
N ,

where X is some field in an arbitrary representation of SU(N), GN is again a gauge

field in the adjoint representation, and Qi is a matter field in the

dim(Qi) = N !
i!(N − i)! , 1 ≤ i ≤ N − 1, (3.3.23)

representation. The Dynkin label for Qi is

Qi
∼= (0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
N−i−1

),

∼= i

(3.3.24)

If the irrep X has highest weight p then the highest weight of the highest irrep in the

tensor product X ⊗Qi is

(p1, . . . , pi−1, pi + 1, pi+1, . . . , pN−1).
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Only one irrep in the tensor product can have this weight in its weight space. The

other irreps can again be built using a similar procedure to the previous section. Begin

with the Dynkin label for the highest irrep above and move boxes to lower rows in

all possible ways, keeping the vertical ordering of the boxes intact. The Dynkin label,

f = (f1, f2, . . . , fN−1), for every irrep Vf ⊂ X ⊗Qi then takes the following form:

f1 = p1 + δi
1 − 2i12 + i23

fj = pj + δi
j + ij−1 j − 2ij j+1 + ij+1 j+2,

fN−1 = pN−1 + δi
N−1 − 2iN−1 N + iN−2 N−1,

(3.3.25)

where the non-negative integers ijk correspond to moving ijk boxes from row j to row

k. Again, we compact this procedure into an N ×N matrix:

M :=



0 i12 0 0 . . . 0
−i12 0 i23 0 . . . 0

...
...

...
...

...
−ii−1 i 0 ii i+1 0

0 −ii i+1 1 ii+1 i+2
...

...
...

... . . . ...
0 . . . . . . 0 −iN−1 N 1



. (3.3.26)

Then, as in the previous section, define

mj :=
N∑

k=1
Mjk, (3.3.27a)

∆pj := mj −mj+1. (3.3.27b)

The Dynkin labels for the resulting irreps are then

fj = pj − ∆pj . (3.3.28)

We now have the following lemma:
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Lemma 3.3.4. For a given irrep, X, of SU(N), with Dynkin label (p1, p2, . . . , pN−1),

∃k ∈ N | 1 ⊂ X ⊗Qi ⊗ G⊗k
N ⇐⇒ i = N −

N−1∑
j=1

jpj mod N

 (3.3.29)

Proof. From Theorem (3.3.2):

∃k ∈ N | 1 ⊂ Vf ⊗ G⊗k
N ⇐⇒

N−1∑
j=1

jfj = 0 mod N. (3.3.30)

Using (3.3.25) we find

N−1∑
j=1

jfj =
N−1∑
j=1

jpj + i+N(1 − iN−1 N ). (3.3.31)

The last quantity on the r.h.s. is already an integer multiple of N and can be dropped.

Therefore, we require
N−1∑
j=1

jpj + i = 0 mod N. (3.3.32)

This, and the condition that 1 ≤ i ≤ N , then gives the result.

For every subvector space of X ⊗ Qi, with i determined from Lemma 3.3.4,

we can apply Theorem 3.3.3 to find a kmin. This gives a kmin for every unique set of

fj (for every irrep V ⊂ X ⊗ Qi). There will exist at least one set of fj that gives the

smallest kmin, but to determine which set we must consider the restrictions on the irreps

in X ⊗Qi.

Lemma 3.3.5. Consider an irrep, X, of SU(N) with Dynkin label (p1, p2, . . . , pN−1),

and the ith fundamental representation, Qi, of SU(N). Then every irrep Vf ⊂ X ⊗ Qi

has a Dynkin label (f1, f2, . . . , fN−1), with fj = pj −mj +mj+1 subject to the following

conditions:
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1)
N−1∑
j=k

pj − iN−1 N ≤
N−1∑
j=k

fj ≤ 1 − iN−1 N +
N−1∑
j=k

pj , (3.3.33)

where iN−1 N ∈ {0, 1}.

2)

0 ≤ mj ≤ 1. (3.3.34)

3)
N∑

j=1
mj = N − i. (3.3.35)

4)

mj −mj+1 ≤ pj . (3.3.36)

Proof. Because Qi corresponds to an antisymmetric combination of fundamental indi-

cies1 (for i > 1) we can place no more than a single box in each row. As well, we can

move at most one box to the very bottom of the tableau (and remove the completed

column). This implies iN−1 N = 0 or 1, which in turn implies mN = 0 or 1. If no boxes

are moved to the bottom of the tableau, i.e. iN−1 N = 0, then every row can have, at

most, one more box than the same row in the original tableau for X. In addition, every

row must have at least as many boxes than the same row in X. If iN−1 N = 1 then

we eliminate the completed column, thus shortening each row by one box. In this case

every row can contain no more boxes than the same row in X and no fewer than one

less than the number of boxes in the same row in X. The length of row k in the tableau
1This irrep is generated by the Schur functor S(1,...,1)V = ∧(1,...,1)V , where V = CN , hence the

antisymmetry.
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of X is
N−1∑
j=k

pj ,

while the length of row k in the tableau of Vf is

N−1∑
j=k

fj .

Thus, leaving iN−1 N arbitrary yields the first condition. Then inserting (3.3.28) into

(3.3.33) gives the second condition, summing over all of the mj gives the third condition,

and finally, requiring all of the fj ≥ 0 gives the last condition.

We now have the final result:

Theorem 3.3.6. Consider an arbitrary irrep, X ̸= 1, of SU(N) with Dynkin label

(p1, p2, . . . , pN−1), and the ith fundamental representation, Qi, of SU(N). Define the

set

L := {l ∈ {1, 2, . . . , N − 1} | pl ̸= 0} ∪ {0, N}. (3.3.37)

Then the integers

ℓ1 := max {l ∈ L | l ≤ N − i}, (3.3.38)

ℓ2 := min {l ∈ L | l > ℓ1}, (3.3.39)

define an irrep Vf ⊂ X ⊗Qi, with Dynkin label (f1, f2, . . . , fN−1), where

fj = pj − δℓ1
j + δi−N+ℓ1−ℓ2

j − δℓ2
j . (3.3.40)
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For this irrep Vf , defining

kn(f) := n

N

N−1∑
j=1

jpj −
n∑

j=1
(n− j)pN−j − (N − n)i

N

−
N−n−1∑

j=0
(N − n− j)

(
δℓ1

j − δi−N+ℓ1+ℓ2
j + δℓ2

j

)
, (3.3.41)

the minimum number of copies of the adjoint representation such that 1 ⊂ Vf ⊗G⊗kmin(f)
N

is

kmin(f) = max {kn(f) | 1 ≤ n ≤ N − 1}. (3.3.42)

Then, for any other Vλ ⊂ X ⊗Qi, the following holds:

kmin(f) ≤ kmin(λ). (3.3.43)

Proof. For any irrep Vλ ⊂ X ⊗ Qi, indexed by its Dynkin label λ, we may use Theo-

rem 3.3.3 to determine a kmin(λ). The first step is to calculate all of the kn for each

λ:

kn(λ) = n

N

N−1∑
j=1

jλj −
n∑

j=1
(n− j)λN−j ,

where we have made the dependence on λ explicit. Using Lemma 3.3.4 and Lemma 3.3.5

we can construct every Vλ by writing λj = pj −mj(λ) +mj+1(λ), which then gives

kn(λ) = n

N

N−1∑
j=1

jpj −
n∑

j=1
(n− j)pN−j +

N∑
j=N−n+1

mj(λ) − (N − i)n
N

. (3.3.44)

For any fixed n the λ dependence factors in only through the term

En(λ) ≡
N∑

j=N−n+1
mj(λ). (3.3.45)

Then choose any two arbitrary irreps, Vλ1 and Vλ2 , and suppose kmin(λ2) ≥ kmin(λ1).
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If this is not the case then simply switch λ1 and λ2. It is obvious that

∃n1 ∈ {1, 2, . . . , N − 1} | kmin(λ1) = kn1(λ1), (3.3.46a)

∃n2 ∈ {1, 2, . . . , N − 1} | kmin(λ2) = kn2(λ2). (3.3.46b)

Generally, it will not be the case that n1 = n2. However, this then implies kn2(λ2) ≥

kn1(λ1). But, from Theorem 3.3.3 it must be that kn1(λ1) ≥ kn(λ1) for any n, and in

particular this holds for n = n2. Therefore

kn2(λ2) ≥ kn1(λ1) =⇒ En2(λ2) ≥ En2(λ1). (3.3.47)

Since this is true for arbitrary λ1 and λ2 it is true for all λ1 and λ2, and the implication

becomes if and only if.

En2(λ2) ≥ En2(λ1) =⇒ kmin(λ1) ≤ kmin(λ2). (3.3.48)

We therefore search for an irrep Vf ⊂ X ⊗Qi such that (3.3.48) holds for arbitrary n:

∀n ∈ {1, . . . , N − 1} : ∀λ ∈ NN−1 | Vλ ⊂ X ⊗Qi,

En(f) ≤ En(λ). (3.3.49)

This implies Enf
(f) ≤ Enf

(λ), where nf is such that kmin(f) = knf
(f), which in turn

implies

kmin(f) ≤ kmin(λ), (3.3.50)

for arbitrary Vλ ⊂ X ⊗Qi.

Take n = 1, then

E1(λ) = mN (λ). (3.3.51)
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If such a Vf exists in X ⊗Qi, such that mN (f) = 0, then E2(f) ≤ E2(λ) for any other

Vλ for which mN (λ) ̸= 0. This is obvious because

E2(f) = mN−1(f)

E2(λ) = mN−1(λ) +mN (λ).

A similar argument holds for any Vf such that mN−1(f) = mN (f) = 0. We can continue

in this manner until finding a Vf such that

mN−i+1(f) = mN−i+2(f) = . . . = mN (f) = 0,

m1(f) = m2(f) = . . . = mN−i(f) = 1,

(3.3.52)

where the second line is implied from (3.3.35) of Lemma 3.3.5. Such a Vf satisfies

En(f) ≤ En(λ) for all n and all Vλ. However, we cannot guarantee that such a Vf

exists. In particular, condition (3.3.36) of Lemma 3.3.5 gives the necessary condition:

mN−i(f) −mN−i+1(f) = 1 =⇒ pN−i ≥ 1, (3.3.53)

which is clearly only a special case. We can make this more intuitive by introducing a

vector for the mj :

m̄ := (1, . . . , 1︸ ︷︷ ︸
N−i

, 0, . . . , 0︸ ︷︷ ︸
i

). (3.3.54)

If pN−i = 0 then we simply permute the entries of m̄ until a vector is found that satisfies

all of the conditions of Lemma 3.3.5. For instance, after one permutation we arrive at

(1, . . . , 1, 1︸ ︷︷ ︸
N−i

, 0, 0, . . . , 0︸ ︷︷ ︸
i

) → (1, . . . , 1︸ ︷︷ ︸
N−i−1

, 0, 1, 0, . . . , 0︸ ︷︷ ︸
i−1

),

(the permuted entries have been highlighted in red for clarity) which requires pN−i−1 > 0

and pN−i+1 > 0. Start with the first condition: if pN−i−1 = 0 then we permute once

108



more and check pN−i−2. If pN−i−2 > 0 we stop, if not we continue, until we find the

first l ≤ N − i such that pl ̸= 0. This gives the definition of ℓ1, and we arrive at

m̄ → (1, . . . , 1︸ ︷︷ ︸
ℓ1

, 0, 1, . . ., 1︸ ︷︷ ︸
N−i−ℓ1

, 0, . . . , 0︸ ︷︷ ︸
i−1

).

Next we check the second condition on pN−i+1. If pN−i+1 > 0 we are finished, but if

not we must continue permuting the entries of m̄:

(1, . . . , 1︸ ︷︷ ︸
ℓ1

, 0, 1, . . . , 1, 1︸ ︷︷ ︸
N−i−ℓ1

, 0, 0, . . . , 0︸ ︷︷ ︸
i−1

)

↓

(1, . . . , 1︸ ︷︷ ︸
ℓ1

, 0, 1, . . . , 1︸ ︷︷ ︸
N−i−ℓ1−1

, 0,1, 0, . . . , 0︸ ︷︷ ︸
i−2

).

This requires pN−i > 0 and pN−i+2 > 0. But we already know that all of the pl = 0 for

ℓ1 < l ≤ N − i, so we obviously must continue permuting until the second “0” is pushed

up to the first “0”:

m̄ → (1, . . . , 1︸ ︷︷ ︸
ℓ1

, 0, 0, 1, . . ., 1︸ ︷︷ ︸
N−i−ℓ1

, 0, . . . , 0︸ ︷︷ ︸
i−2

).

We then continue to check if pℓ > 0, where ℓ > N − i. If so we are finished, if not

we move another “0” through all of the N − i − ℓ1 “1”s, until a non zero pℓ is found.

Clearly, this process terminates at the smallest value of ℓ, which is greater than N − i,

and for which pℓ > 0, which gives the definition of ℓ2. Such ℓ1 and ℓ2 may not exist (for

example, if pj = 0 for j > N − i). This can be resolved by embedding the irrep X in a

larger space:

X̃ ∼= (p̃0, p̃1, . . . , p̃N−1, p̃N ),

∼= (1, p1, . . . , pN−1︸ ︷︷ ︸
X

, 1).
(3.3.55)
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The set L can then be constructed as

L = {l | p̃l ̸= 0}, (3.3.56)

and we similarly extend fj → f̃j and mj → m̃j , where fj = f̃j for 1 ≤ j ≤ N − 1 and

mj = m̃j for 1 ≤ j ≤ N . Note that Lemma 3.3.5 does not apply to f̃0, f̃N , m̃0, and

m̃N+1, but it does apply to all the other f̃j and m̃j .

The process concludes when we arrive at the vector

m(f) = (
ℓ2︷ ︸︸ ︷

1, . . . , 1︸ ︷︷ ︸
ℓ1

, 0, . . . , 0︸ ︷︷ ︸
ℓ2−N+i

, 1, . . . , 1︸ ︷︷ ︸
N−i−ℓ1

, 0, . . . , 0︸ ︷︷ ︸
N−ℓ2

). (3.3.57)

This configuration places as many “1”s near the front of the vector and as many “0”s

at the end of the vector as possible. Because ∄ℓ ∈ L | ℓ > ℓ1 ∧ ℓ < ℓ2, between index

ℓ1 + 1 and ℓ2 there cannot exist a sequence of a “1” followed by a “0”. The only other

options are to move the “0”s from the end of the vector forward, move the “1”s at the

front of the vector backward, or a combination of the two. We then have

En(f) =



0 n ≤ N − ℓ2

n−N + ℓ2 N − ℓ2 < n ≤ 2N − ℓ1 − ℓ2 − i

N − i− ℓ1 2N − ℓ1 − ℓ2 − i < n ≤ N − ℓ1

n− i N − ℓ1 < n

, (3.3.58)

and by construction it is guaranteed that En(f) ≤ En(λ) for all n and any other irrep

Vλ ⊂ X ⊗ Qi. This process, in fact, corresponds to moving as many of the i boxes

coming from the tableau of Qi to the bottom of the tableau of X as possible. Four

examples have been given in Fig. 3.5.

From (3.3.57) we can directly read off the entries of the correction vector in

the extended space:

∆p̃j = δℓ1
j − δi−N+ℓ1+ℓ2

j + δℓ2
j − δN

j , (3.3.59)
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where j runs from 0 to N . The Dynkin labels (again in the extended space) are

f̃j = p̃j − ∆p̃j , (3.3.60)

Note that if ℓ1 = N − i the second and third term on the r.h.s. of (3.3.59) cancel. This

is because ℓ2 becomes irrelevant in this case since all of the i boxes can be placed below

row ℓ1, creating a complete column. If ℓ2 = N it may not be possible to complete a

column, and the last two terms on the r.h.s. of (3.3.59) cancel as expected.

Restricting j to values greater than 0 and less than N gives

fj = f̃j , 1 ≤ j ≤ N − 1, (3.3.61)

which yields the first result (3.3.40). We can then substitute (3.3.40) directly into

(3.3.20), yielding

kn = n

N

N−1∑
j=1

jpj −
n∑

j=1
(n− j)pN−j

− n

N

N−1∑
j=1

j
(
δℓ1

j − δi−N+ℓ1+ℓ2
j + δℓ2

j − δN
j

)

+
n∑

j=1
(n− j)

(
δℓ1

N−j − δi−N+ℓ1+ℓ2
N−j + δℓ2

N−j − δN
N−j

)
. (3.3.62)

This can be simplified using

N−1∑
j=1

j
(
δℓ1

j − δi−N+ℓ1+ℓ2
j + δℓ2

j − δN
j

)

+Nδℓ1
N −Nδi−N+ℓ1+ℓ2

N +Nδℓ2
N −N

=
N∑

j=0
j
(
δℓ1

j − δi−N+ℓ1+ℓ2
j + δℓ2

j − δN
j

)
= −i, (3.3.63)
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and

n∑
j=1

(n− j)
(
δℓ1

N−j − δi−N+ℓ1+ℓ2
N−j + δℓ2

N−j − δN
N−j

)

+ nδℓ1
N − nδi−N+ℓ1+ℓ2

N + nδℓ2
N − n

= −i

+
N∑

j=n+1
(n− j)

(
δℓ1

N−j − δi−N+ℓ1+ℓ2
N−j + δℓ2

N−j − δN
N−j

)
(3.3.64)

After this simplification we have the result.

(1, 3, 0, 0, 1, 1)

`1 = 1

`2 = 4

(1, 0, 2, 1, 0, 1)

`1 = 2

`2 = 3

(1, 0, 0, 1, 1, 1)

`1 = 0

`2 = 3

(1, 1, 3, 0, 0, 1)

`1 = 2

`2 = 5

Figure 3.5: Four examples for determining the optimum irrep in X⊗Qi with N = 5 and
i = 3. Shown in red is the original irrep X, embedded inside the larger space X̃. The
dotted boxes show the placement of boxes that guarantees the smallest possible kmin.
From left to right, the resulting minimum number of copies of the adjoint representation
are kmin = 2, 2, 1, and 3.

Especially for large N , evaluating Eq. (3.3.42) becomes computationally in-
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tensive and highly non-trivial. We therefore built and made publicly available the

tessellation python code. We describe how to install and use the code in App. C.3.

3.4 The lowest dimensional portals

Consider an exotic species belonging to an irreducible representation X of

SU(N). Assume that the quantum field associated with X has mass-dimension dX , and

that matter fields have mass-dimension dq (for instance dq = 3/2 for fermions, such

as quarks or antiquarks) and that gauge-mediator fields in the adjoint representation

have mass dimensions dg (for instance, dg = 1 for gluons). We are interested in gauge-

invariant “portal” operators, with the structure

Oj = cj

Λnj
X

(
N−1∏
i=1

Q
nQi
i

)
gng , (3.4.1)

where Qi represents the quantum field corresponding to one of the N − 1 fundamental

representations of SU(N), with Dynkin label

Qi
∼= (0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
N−i−1

),

and where g is the quantum field corresponding to the gauge boson of SU(N), with

Dynkin label (1,0,. . . ,0,1). Note that we assume 4 space-time dimensions, so the mass

dimensions of the operator in Eq. (3.4.1) must equal 4, and we assume that Λ has mass

dimension 1, as customary. Also, we assume that the spin of X is such that Oj respects

Poincaré invariance.

Here, we seek the lowest possible value of nj such that the operator in Eq. (3.4.1)

is gauge invariant, i.e. the lowest dimensional “portal” for X. Notice that the condi-
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tion that the operator be gauge invariant is equivalent to the condition that the tensor

product of the representations is such that

1 ⊂ X ⊗
N−1⊗
i=1

Q
⊗nQi
i ⊗G

⊗ng

N . (3.4.2)

The results above address precisely this question: given the N -ality of X, say t, ni = 0

∀i if t = 0, and nQN−t
= 1, ni = 0 ∀i ̸= N − t for t ̸= 0, while ng = kmin with kmin given

in Eq. (3.3.42). As a result, we find

4 = −nj + dX + dq + kmindg

⇓

nj = dX + dq + kmindg − 4.

(3.4.3)

For instance, let’s consider the QCD case in the Standard Model, with gauge group

SU(3); let’s assume X ∼= (p, q), thus t = (p+ 2q) mod 3. We have the following cases:

(i) t = 0: this implies nQi = 0 (i = 1, 2),

kmin =
{

p+2q
3 p ≤ q

2p+q
3 p ≥ q

,

and nj = dX + kmindg − 4.

(ii) t = 1: this implies nQ1 = 0, nQ2 = 1,

kmin =
{

p+2q−1
3 p− 1 ≤ q

2p+q−2
3 p− 1 ≥ q

,

and nj = dX + dq + kmindg − 4.

(iii) t = 3: this implies nQ1 = 1, nQ2 = 0,

kmin =
{

p+2q−2
3 p ≤ q − 1

2p+q−1
3 p ≥ q − 1

,

and nj = dX + dq + kmindg − 4.
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Similar cases for N > 3 and a different matter content can be readily computed utilizing

the companion tessellation code.

3.5 Summary and conclusions

In this study we have entertained the question of which is the lowest-possible

mass dimension of SU(N) gauge invariant operators that contain an exotic new state in a

given representation X of SU(N). We showed that to address this question one needs to

find which is the smallest tensor product of the adjoint representation that contains the

representation X. We fully solved this question, and built a numerical code that solves

this problem for any N . We then solved the original question, pointing out that one

needs to first take the tensor product of X with one of the fundamental representations

of SU(N) to obtain a representation with vanishing N -ality, and then find the minimal

number of copies of the adjoint representation that contains that product. We gave

explicit formulae for any N , and explicit results for the mass dimension of the lowest-

dimensional portal for the case of SU(3) of QCD. Our results are relevant for several

areas of particle phenomenology which seek new physics beyond the Standard Model:

the numerical tool tessellation is also per se relevant in the context of group theory.
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Chapter 4

Functional Determinants in Quantum

Field Theory

4.1 Introduction

In many physical applications one is tasked with calculating the determinant

of an operator, which we denote as τ , that acts on some Hilbert space H. This situation

arises in many branches of physics and mathematics, but in particular we encounter

functional determinants in relativistic quantum field theories (for instant false vacuum

decay rates[39–41], sphaleron transitions[35, 36, 99–101], and Casimir energies[102]).

In these contexts functional determinants are the formal result of Gaussian integrals

around a classical background in the path integral formulation.

We focus our attention on a subclass of elliptic operators, which take the most

general form as

τf :=
[
−gµν∇V

µ∇V
ν + E

]
f, (4.1.1)
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where f is a section of a vector or spinor bundle V over a manifold M, ∇V
µ is the

coordinate representation of the connection on V, gµν is the metric on the manifold,

and E is an endomorphism on V. To be less precise, the first term is the Laplacian in

d dimensions, including the possibility of a manifold with curvature. E is some finite

dimensional matrix function on the manifold M. We will take the dimension of V to

be n.

The subclass of elliptic operators that we will consider are those operators

where the vector or spinor bundle V is over flat Euclidean space, i.e. the manifold

M = Rd with Euclidean metric. Throughout this paper we will say that an f ∈ V is

an element of some vector space V if every component of f is an element of V . For

instance, we say that f is a vector in the space of square integrable functions over some

interval I ⊆ R with Borel measure µ as f ∈ L2(I, dµ) if

∀i ∈ {1, . . . , n} | fi ∈ L2(I, dµ) , (4.1.2)

where the fi are the coefficient functions of f in some basis of V.

Definition 1. We define the differential operator τ as

τf :=
[
−∇2 +M2 + V (x)

]
f, f ∈ D(τ) ⊆ L2

(
Rd,ddx

)
, x ∈ Rd, (4.1.3)

where M2 is a constant n× n mass matrix (which we will assume is real and diagonal)

and V (x) is a n× n matrix function.

The maximal domain of definition of τ is

D(τ) :=
{
f ∈ L2

(
Rd,ddx

)
| f ∈ AC

(
Rd
)
,∀i ∈ {1, . . . , d} : ∂f

∂xi
∈ AC

(
Rd
)
,

τf ∈ L2
(
Rd, ddx

)}
, (4.1.4)
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where AC(M) is the set of absolutely continuous functions on the manifold M.

We further assume that the matrix potential is spherically symmetric, i.e.

V (x) = V (r), where the Euclidean radius is r =
√
xixi (Einstein summation of repeated

indices is assumed). The problem can then be reduced to an infinite number of 1-

dimensional problems by separation of variables. In spherical coordinates the operator

is given by

τu =
[
− 1
rd−1

∂

∂r
rd−1 ∂

∂r
− 1
r2 ∆Sd−1 +M2 + V (r)

]
u, (4.1.5)

where ∆Sd−1 is the Laplace-Beltrami operator on the (d− 1)-sphere Sd−1. Requiring

period boundary conditions on Sd−1 then implies that every u ∈ D(τ) has a valid

representation as

u(x) =
∞∑

l=0

∑
α

Y α
l (Ω)ul(r) , (4.1.6)

where Ω ∈ Sd−1 and the Y α
l (Ω) are the hyperspherical harmonic functions labeled by

the multiindex α and the angular momentum quantum number l. The hyperspherical

harmonics are the eigenfunctions of the Laplace-Beltrami operator, with eigenvalue

∆Sd−1 Y α
l (Ω) = −l(l + d− 2)Y α

l (Ω) . (4.1.7)

We then introduce a set of operators indexed by l from

τu =
∞∑

l=0

∑
α

Y α
l (Ω) τl ul(r) . (4.1.8)

We then consider the radial coefficient functions ul(r) to be elements of the Hilbert

space

Definition 2.

H ≡ L2
(
(0,∞), rd−1 dr

)
, ⟨f, g⟩ :=

∫ ∞

0
f †(r) g(r) rd−1 dr . (4.1.9)
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Definition 3. The 1-dimensional radial operators over the interval I = (0,∞) are

defined as

D(τl) :=
{
f ∈ H | f, rd−1f ′ ∈ AC(I) , τlf ∈ H

}
, (4.1.10)

D
(
τ free

l

)
:=
{
f ∈ H | f, rd−1f ′ ∈ AC(I) , τ free

l f ∈ H
}
, (4.1.11)

τlf :=
[
− 1
rd−1

∂

∂r
rd−1 ∂

∂r
+ l(l + d− 2)

r2 +M2 + V (r)
]
f, f ∈ D(τl) , (4.1.12)

τ free
l f :=

[
− 1
rd−1

∂

∂r
rd−1 ∂

∂r
+ l(l + d− 2)

r2 +M2
]
f, f ∈ D

(
τ free

l

)
.

(4.1.13)

The ratio of functional determinants in d-dimensions can then be decomposed

into a product of 1-dimensional functional determinants

det(τ)
det(τ free) =

∞∏
l=0

[
det(τl)

det
(
τ free

l

)]deg(d,l)

, (4.1.14)

where the degeneracy factor,

deg(d, l) ≡


1 l = 0
(2l + d− 2)(l + d− 3)!

(d− 2)!l! l > 0
, (4.1.15)

gives the dimension of the subspace spanned by the hyperspherical harmonic functions

Y α
l (Ω).

We have introduce the free operator τ free
l , which is determined from τl by

setting V (r) = 0. In order to avoid additional diverges we also make the following

hypothesis on the matrix potential function:

Hypothesis H1. On the interval I = (0,∞)

• V (r) = V †(r),
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• V (r) ∈ L1
loc

(
I, rd−1 dr

)
,

• V (r) ∈ L1
loc(I, dr),

where † in this context is complex conjugate transpose and L1
loc(I, dµ) is the space of

functions which are Lebesgue integrable on arbitrary compact subintervals of I.

In particular, (H1) supposes that V (r) has the small r asymptotic behavior

V (r) ∼ V0r
−1+ϵ0 , (r → 0), (4.1.16)

for some ϵ0 > 0 and arbitrary constant matrix V0. In addition, it is also true that

V (r) ∼ V∞r
−d−ϵ∞ , (r → ∞), (4.1.17)

again, for some ϵ∞ > 0 and arbitrary constant matrix V∞.

It is necessary to consider the free operator in physical problems because free

energy functionals are always relative (ignoring gravity). However, it is also necessary

from a mathematical perspective because self adjoint extensions of the operators defined

by (4.1.12) usually have a spectrum with a continuous component. Hypothesis 1 ensures

that the essential spectrum of the free operator is identical to that of τl, so that if we

consider the ratio of functional determinants det(τl)/det
(
τ free

l

)
the essential spectrum

cancels and we can consider only the discrete component of the spectrum.

In Section 4.2 we introduce the concept of Gel’fand-Yaglom formulas for func-

tional determinants and motivate their use in physical and mathematical applications.

In Section 4.3 we introduce the principal solutions of Reid, which are privileged matrix

solutions of the same differential operators τl and τ free
l . Using these principal matrix

solutions we show in Section 4.4 that a self adjoint extension of τ exists, and its domain
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is given by those f ∈ H that obey Friedrichs boundary condtions (we explicitly give these

boundary conditions in terms of the principal solutions). Once we have constructed a

self adjoint extension we introduce the zeta function of τ , ζ(s|τ), via a contour integral

in Section 4.6. The zeta function provides a rigorous mathematical definition of the

determinant of τ , however this contour integral representation needs to be analytically

continued to the region near s = 0. In Section 4.7 we perform this analytic continua-

tion to s = 0 in dimensions d = 2, 3, and 4, yielding UV finite results. We have found

zeta function regularization to be simpler and more efficient than other approaches, but

many physicists are more familiar with dimensional regularization, so we also provide

an explicit dictionary between the different regularization schemes. In Section 4.8 we

consider the (common) case that zero modes exist, and give a general and very simple

prescription for defining the functional determinant with zero modes removed. Finally

in Section 4.9 we give some concluding remarks.

Additionally, we derive in Appendix D.1 the asymptotic behavior of the Jost

matrix function in detail, which could be useful for an extension of our formula to dimen-

sions greater that 4. In Appendix D.2 we provide some comments and recommendations

on the use of our formula in numerical analysis.

A brute force method of determining the ratio of functional determinants

det(τ)/det
(
τ free

)
is to numerically calculate the eigenvalues of τf = λf and τ freef = λf ,

subject to some appropriate boundary conditions. Boundary value problems are notori-

ously difficult to solve numerically, and this method suffers from many issues including

the computational difficulty of solving for a huge number of eigenvalues and loss of

precision due to using finite precision floating point types when taking the product of
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these eigenvalues. In Section 4.2 we show a more efficient method is to replace the

boundary value problem with a much easier to solve initial value problem. Our results

are summarized in the following theorem.

Theorem 4.1.1. Define the n × n matrix function Tl(r) as the solution to the matrix

differential equation

d2Tl

dr2 +
[
d− 1
r

+ 2
[
U free

0,l (r)
]−1 d

dr U
free
0,l (r)

]dTl

dr −
[
U free

0,l (r)
]−1

V (r)U free
0,l (r)Tl = 0,

(4.1.18)

subject to the initial conditions

Tl(0) = 1,
dTl(r)

dr

∣∣∣∣
r=0

= 0,

where 1 is the n× n identity matrix, 0 is an n× n matrix of zeros, and U free
0,l (r) is the

principal matrix solution of the free differential equation

τ free
l U free

0,l = 0,

given by [
U free

0,l (r)
]i

j
= 2ν Γ(ν + 1) r

2−d
2 m−ν

i Iν(mir) δi
j ,

where ν is

ν ≡ 2l + d− 2
2 ,

the masses mi are the positive roots of the eigenvalues of the squared mass matrix M2,

[
M2

]i
j

= m2
i δ

i
j ,

and Iν(z) is the modified Bessel function of the first kind.
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Supposing that (H1) is satisified, the renormalized logarithm of the ratio of

functional determinants of the operators τ and τ free, defined by (4.1.3), is then given by

ln
( det(τ)

det(τ free)

)∣∣∣∣
d=2

= tr[ln(T0(∞))] +
∞∑

l=1
2 tr

[
ln(Tl(∞)) − 1

2l

∫ ∞

0
V (r) r dr

]

+
∫ ∞

0
tr[V (r)]

[
ln
(
µr

2

)
+ γ

]
r dr .

(4.1.19)

ln
( det(τ)

det(τ free)

)∣∣∣∣
d=3

=
∞∑

l=0
(2l + 1) tr

[
ln(Tl(∞)) − 1

2l + 1

∫ ∞

0
V (r) r dr

]
. (4.1.20)

ln
( det(τ)

det(τ free)

)∣∣∣∣
d=4

=
∞∑

l=0
(l + 1)2tr

[
ln(Tl(∞)) − 1

2(l + 1)

∫ ∞

0
V (r) r dr

+ 1
8(l + 1)3

∫ ∞

0
V (r)

[
V (r) + 2M2

]
r3 dr

]

− 1
8

∫ ∞

0
tr
[
V (r)

[
V (r) + 2M2

]][
ln
(
µr

2

)
+ γ + 1

]
r3 dr .

(4.1.21)

In the above, tr is a finite dimensional trace over matrices, µ is an arbitrary renormal-

ization scale, γ is Euler’s constant, the differential operator τ is defined by (4.1.3), and

τ free is obtained from τ by setting V (r) = 0.

In Theorem 4.1.1 we have assumed that there are no zero modes. If zero modes

exist in some partial wave component with angular momentum quantum number l then

the term tr[ln(Tl(∞))] should be modified according to Section 4.8.

4.2 Gel’fand-Yaglom Formulas

Consider a flat d-dimensional Euclidean manifold M, and the action

S[Φ] = −1
2

∫
M

ddxΦ(x) [□E − V (x)] Φ(x) , (4.2.1)
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which describes a single scalar field Φ in the presence of a background potential V (x).

We could also consider the action associated with a fermionic field Ψ

S[Ψ, Ψ̄] = i

∫
M

ddx Ψ̄(x)
[
γi∇i + im

]
Ψ(x) , (4.2.2)

in a background electromagnetic field A that enters via minimal coupling into the co-

variant derivative ∇i = ∂i + ieAi.

In the Euclidean path-integral formalism all of the information about the phys-

ical system is contained in the functional integral

Z[V ] =
∫

DΦ e−S[Φ], (4.2.3)

Z[A] =
∫

DΨ DΨ̄ e−S[Ψ,Ψ̄]. (4.2.4)

These functional integrals are not well defined however, even with the Euclidean sig-

nature in the exponent. There is an infinite normalization that we have neglected.

This infinite normalization is formally removed by instead considering Z[V ] /Z[0] or

Z[A] /Z[0]. If the manifold where Minkowski the situation is even worse, since the

weight in the path integral becomes eiS , and the integrand rapidly oscillates for large

values of S. For this reason we choose to begin with the Euclidean signature, and

analytically continue to Minkowski space in the end, if needed.

Because the action is quadratic in the fields we can, at least formally, perform

the Gaussian integral over the fields:

ln(Z[V ]) = −1
2 ln

(
det
[
(−□E + V )/µ2

])
, (4.2.5)

ln(Z[A]) = 1
2 ln

(
det
[(

−□E + ieσjkFjk +m2
)
/µ2

])
, (4.2.6)
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where µ is an arbitrary parameter with dimensions of mass and

σjk = 1
4
[
γj , γk

]
,

Fjk = ∂iAj − ∂jAk.

We have not attempted to make this particularly rigorous, the Gaussian integration

performed above is done by analogy to the finite dimensional case, discretizing the

manifold M and integrating over a finite number of field points Φ(xi). After performing

an arbitrary number of integrations we then take the continuum limit to arrive at the

result, neglecting any overall infinite normalization. A more rigorous definition will be

provided in Section 4.6.

In interacting theories no analytic results exist (except for special cases such

as Conformal Field Theories (CFT) in d = 2 dimensions). In this case we approximate

the partition functional using Laplace’s method. We reintroduce ℏ

Z[ℏ, V ] =
∫

DΦ e− 1
ℏS[Φ], (4.2.7)

Z[ℏ, A] =
∫

DΨ DΨ̄ e− 1
ℏS[Ψ,Ψ̄], (4.2.8)

and approximate the functional integral in the limit ℏ → 0. Expanding around the

stationary points of the action, and then performing the Gaussian integration around

the classical configuration yields

ln(Z[ℏ, V ]) ∼ −1
ℏ
S[Φcl] − 1

2 ln
(
det
[
τ/µ2

])
, (ℏ → 0), (4.2.9)

ln(Z[ℏ, A]) ∼ −1
ℏ
S[Ψcl, Ψ̄cl] + 1

2 ln
(
det
[
τ/µ2

])
, (ℏ → 0), (4.2.10)

where τ is the operator that results from a functional Taylor series of the action about

125



U
(φ
,T

)
−
U
(φ

−
,T

)
φ

A
B

C

D

E

Figure 4.1: The effective potential U(ϕ, T ) corresponding to a first order phase transition
(adapted from [43, Linde 1983]). The horizontal axis has been shifted so the origin
corresponds to ϕ = ϕ−. (A) 0 < T < Tc (at the point Tc there appears the minimum
at ϕ = ϕ−); (B) Tc < T < T0; (C) T = T0; (D) T0 < T < Tc1 (at the point Tc1 the
minimum at ϕ ̸= ϕ− disappears; (E) Tc1 < T .

its stationary points:

S[Φcl + δΦ] ∼ S[Φcl] + 1
2

∫
M

ddx δΦ(x) τ δΦ(x) , (δΦ → 0),

(4.2.11)

S[Ψcl + δΨ, Ψ̄cl + δΨ̄] ∼ S[Ψcl, Ψ̄cl] + 1
2

∫
M

ddx δΨ̄(x) τ δΨ(x) ,
(
δΨ, δΨ̄ → 0

)
.

(4.2.12)

To give a concrete example we consider the theory of a single scalar field ϕ at

finite temperature. The action is given by, in the imaginary time formalism,

Sd[β, ϕ] =
∫ β

0

∫
Rd−1

dt dd−1x

[
1
2

(
∂ϕ

∂t

)2
+ 1

2(∇ϕ)2 + U(ϕ, β)
]
. (4.2.13)

In the above U(ϕ, β) is the finite temperature effective potential. We assume that the

behavior of the effective potential corresponds to a first order phase transition (shown

schematically in Figure 4.1), so that at a temperature T0 there exist two degenerate

minima U(ϕ−, β0) = U(ϕ+, β0).
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As the temperature decreases below T0 the vacuum at ϕ = ϕ− becomes

metastable, and the system decays to the true vacuum at ϕ+ (this process happens

very slowly near T0 however, so the phase transition actually occurs at a temperature

slightly less than T0 and there is a potential for the vacuum to supercool). The insta-

bility of the false vacuum corresponds to an imaginary component of the free energy

F = − 1
β

ln(Z[β]), (4.2.14)

where β = 1/T is the inverse temperature. If the first order phase transition temperature

is much higher than the ground state energy of the system than thermal fluctuations

dominate over quantum fluctuations, and the system decays via thermal nucleation of

bubbles of true vacuum. The rate at which the phase transition occurs is proportional

to the imaginary component of the free action[42]

Γ = βω−
π

Im(F ), (4.2.15)

where ω− is the frequency associated with the unstable mode. Further assuming that

the characteristic size of the bubbles of true vacuum are much larger than β the partition

functional can be estimated by a saddle point approximation. Technically, one should

sum over all saddles in this approximation, but in practice one only needs to include the

leading order saddles with minimum action, since higher order saddles will be exponen-

tially suppressed. The trivial saddle (ϕcl(x) = ϕ−) is removed by normalization, and

the next to leading order saddle must be a function only of the radial distance from the

center of the bubble (time dependent and rotationally inhomogeneous configurations

are not disallowed, but will necessarily have larger actions). The action corresponding
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to a critical-sized bubble or droplet is then dimensionally reduced to (ϕ̄(t,x) = ϕ̄(r))

Sd[β, ϕ̄] = β

∫
Rd−1

dd−1x

[1
2
(
∇ϕ̄
)2

+ U
(
ϕ̄, β

)]

= βSd−1[β, ϕ̄].

(4.2.16)

Expanding the free energy to leading order in exponentially small corrections then yields

the relativistic rate for thermal nucleation per unit time per unit volume[42, 43]:

Γ ∼ ω−
π

(
βSd−1

2π

) d−1
2

det′
(
−∇2 + U ′′

(
ϕ̄, β

))
det(−∇2 + U ′′(ϕ−, β))


−1/2

e−βSd−1 , (βSd−1 → ∞).

(4.2.17)

The factors of Sd−1 arise from integrating over the coordinates of the center of bubble,

and the prime on the functional determinant signifies that zero modes have been re-

moved. The determinant ratio is almost never evaluated because it would have to be

done numerically. Instead, one often finds in the literature the approximation

Γ = T de−Sd−1/T or Γ = T d
c e

−Sd−1/T ,

but strictly speaking this is incorrect. First, the determinant prefactor can be orders

of magnitude different than 1, so it is a numerically poor approximation. Second, the

determinant ratio needs to be included in order for the approximation to be controlled,

otherwise the relative difference between the full nonperturbative rate and the approx-

imation does not tend to 0 in the limit that the critical-sized bubble tends to infinite

radius.

The observable of interest is the temperature at which the first order phase

transition actually occurs. This is done by comparing the thermal nucleation rate to the

age of the universe. At the point that the nucleation rate exceeds the age of the universe
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more than one critical-sized bubble will likely have appeared, and at this point the phase

transition occurs, with the radius of the bubble of true vacuum quickly increasing at

nearly the speed of light.

The previous calculation is also relevant to the question of baryogenesis. Elec-

troweak sphalerons tend to annihilate any baryon excess inside the bubbles of true

vacuum, so one attempts to calculate the rate of sphaleron transitions at temperatures

large compared to MW , but small compared to MW /αW (where MW is the W -boson

mass and αW is the weak nuclear coupling constant). The calculation of the sphaleron

rate is nearly identical to the thermal nucleation rate calculation, since both are topo-

logical quantum field theory effects. The sphaleron rate per unit space time volume is

given as[35, 36, 99–101]

Γ ∼ ω−
2πN e−Ecl/Tκ, (Ecl/T → ∞), (4.2.18)

where ω− is again the absolute value of the eigenvalue of the unstable mode, the prefactor

N includes the integration over collective coordinates of the sphaleron origin, Ecl is

the classical sphaleron energy, and the factor κ is a ratio of functional determinants

resulting from the Gaussian integration over thermal fluctuations about the sphaleron

configuration

κ = Im

det
(
∆0

FP
)

det′
(
∆S

GF

)
det
(
∆S

FP
)

det
(
∆0

GF
)
−1/2

. (4.2.19)

Here, ∆ represents a quadratic fluctuation operator obtained by expanding the gauge-

fixed (GF) action and the Faddeev-Popov (FP) action evaluated around the sphaleron

(S) and the vacuum (0), respectively. The functional determinant det′
(
∆S

GF

)
contains
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a negative eigenvalue due to the instability of the sphaleron, so

[
det′

(
∆S

GF

)]−1/2
= i

ω−
(positive quantity)−1/2, (4.2.20)

so that κ is nonzero and the factors of ω− cancel.

In analyzing the rates of both false vacuum decay and sphaleron transitions

we observe the need to determine ratios of functional determinants. The most naive

approach would be to assume that the spectra of these operators consists entirely of

discrete eigenvalues (which is technically incorrect) and attempt to calculate each eigen-

value explicitly, then take the product of all these eigenvalues after regularization and

normalization. This was the approach used in early calculations of the Standard Model

electroweak sphaleron rate, using 35 CPU hours of vectorized computations on a Cray-2

supercomputer for a single parameter point[99]. Although modern computers have ad-

vanced significantly since the first sphaleron rates were calculated (a second generation

iPad has nearly equivalent computational power to a Cray-2 supercomputer[103]), this

is still an extremely computationally intensive task.

On could also put the theory on a lattice, and compute the partition functional

directly. This has the added benefit of including more than just the one loop approxi-

mations. However, lattice computations are exceedingly difficult, and usually requires

access to limited computational resources.

For some special cases alternatives to the brute force methods described pre-

viously exist. For theories of a single scalar field in one dimension Gel’fand and Yaglom

discovered that the functional determinant of some operators can be expressed simply
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by a single solution of an initial value problem[104]

det
(
− d2

dx2 +m2 + V (x)
)

det
(
− d2

dx2 +m2
) = lim

x→x0

ϕ(x)
ϕfree(x) , (4.2.21)

where ϕ(x) and ϕfree(x) are solutions of[
− d2

dx2 +m2 + V (x)
]
ϕ = 0, ϕ(0) = 0, ϕ′(0) = 1, (4.2.22)

[
− d2

dx2 +m2
]
ϕfree = 0, ϕfree(0) = 0, ϕfree′(0) = 1, (4.2.23)

and we have assumed the system is constrained to the interval I = [0, x0] (or I = [0,∞)

if there is no boundary). In arriving at the above formula one must assume Dirichlet

boundary conditions on the eigenfunctions of the respective operators[
− d2

dx2 +m2 + V (x)
]
ψn = λnψn, ψn(0) = 0, ψn(x0) = 0, (4.2.24)

[
− d2

dx2 +m2
]
ψfree

n = λnψ
free
n , ψfree

n (0) = 0, ψfree
n (x0) = 0. (4.2.25)

In higher dimensions a similar formula holds, if we assume the potential function pos-

sesses a rotational symmetry. In this case we can use separation of variables to write

det
(
−∇2 +m2 + V (r)

)
det(−∇2 +m2) =

∞∏
l=0

[
det
(
Ml +m2)

det
(
Mfree

l +m2)
]deg(d,l)

, (4.2.26)

where

Mlψ :=
[
− d2

dr2 − d− 1
r

d
dr + l(l + d− 2)

r2 + V (r)
]
ψ, (4.2.27)

Mfree
l ψfree :=

[
− d2

dr2 − d− 1
r

d
dr + l(l + d− 2)

r2

]
ψfree, (4.2.28)

and deg(d, l) is a degeneracy factor that counts the number of duplicate eigenvalues in

the partial wave mode l. The partial wave determinants are now one dimensional, so we
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may hope that we can apply the Gel’fand-Yaglom for each l, and then take the product

of those results raised to the power of the appropriate degeneracy factor.

A problem immediately arises though, because the operators Ml and Mfree
l

are singular at the origin for d > 1. This is a regular singular point of the differential

equation, so it is easily describe by the theory of Frobenius. However, we cannot apply

the same boundary conditions that we could in the d = 1 case. For instance, choose

l = 0 and approximate the solutions of

[
M0 +m2

]
ϕ = 0, (4.2.29)

[
Mfree

0 +m2
]
ϕfree = 0, (4.2.30)

as r → 0. Assuming the potential function V (r) is regular at r = 0 the linearly

independent solutions have the following small r asymptotic behavior

ϕ(r) ∼ c1, c2 ln(r), (r → 0), (4.2.31)

for some constants c1 and c2. Therefore, no nontrivial solution exists with Dirichlet

boundary conditions. The question then becomes: What boundary conditions should

one impose for such a radial operator? The answer is more subtle than it initially

appears, and it is worked out carefully in Section 4.3 and Section 4.4. It turns out that

for this simple one field case the correct boundary conditions can be inferred from the

results of scattering theory to be

ϕl(r) ∼ ϕfree
l (r) ∼ rl, (r → 0). (4.2.32)

A second problem also arises in attempting to use the Gel’fand-Yaglom formula

in dimensions d > 1: the product over l in (4.2.26) diverges. One then needs to regulate
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and renormalize the product of determinants in some way. Dunne and Min[105] applied

the heat kernel method with dimensional regularization and an angular momentum

cutoff to renormalize the logarithm of the ratio of determinants for the case of d = 4 in

the study of false vacuum decay at zero temperature. Zeta function regularization was

used in the work of Dunne and Kirsten[106] to obtain explicit finite results in d = 2,

d = 3, and d = 4, which would be suitable for finite temperature calculations using

dimensional reduction.

Except for a small number of cases where exact results are known, there does

not exist a general Gel’fand-Yaglom formula that incorporates the matrix structure nec-

essary for multiple interacting scalar fields, gauge fields, or fermionic fields. Attempting

to construct a formula directly from the path integral is prohibitively difficult, so we

employ a mathematically rigorous method based on spectral theory.

The first step towards arriving at a general Gel’fand-Yaglom formula is to

refine what we actually mean by a functional determinant. If the operator of interested

was defined on a finite dimensional Hilbert space, then the determinant would simply

be the product of a finite number of eigenvalues. The logarithm of the determinant

would then be a sum,

ln(det(τ)) =
∑

i

ln(λi).

We can generalize this to the infinite dimensional (separable) Hilbert space by consid-

ering the resolvent set of a densely defined closed operator A

Definition 4 (Resolvent Set).

ρ(A) :=
{
z ∈ C | (A− z)−1 ∈ L(H)

}
, (4.2.33)
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where L(H) is the set of bounded linear operators on H. Essentially, z ∈ ρ(A) if and

only if (A− z) : D(A) → H is bijective and its inverse is bounded. We give this inverse

a special name, the resolvent of A.

Definition 5 (Resolvent).

RA : ρ(A) → L(H)

z 7→ (A− z)−1.

(4.2.34)

The complement of the resolvent set is the spectrum of A.

Definition 6 (Spectrum).

σ(A) := C \ ρ(A) . (4.2.35)

This definition of the spectrum is the generalization we are looking for, since

in the finite dimensional case we can alternatively write

ln(det(τ)) =
∑

λ∈σ(τ)
ln(λ).

There remain two difficulties with the above interpretation of the determinant of an

operator. The first is that the spectrum generally consists of more than discrete eigen-

values. The second is that, even when the spectrum does consist of only discrete eigen-

values, the sum does not converge. A still more general interpretation, for the case

where σ(τ) ⊆ R, would be

ln(det(τ)) =
∫

R
ln(λ) dµ(λ) , (4.2.36)

where µ(λ) is some finite Borel measure with support only on the spectrum of τ , i.e.

µ(R \ σ(τ)) = 0. The integral is still divergent in most cases, so we instead introduce

the zeta function of a self-adjoint operator A
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Definition 7 (Zeta Function).

ζ(s|A) =
∫

R
λ−s dµA(λ) . (4.2.37)

Here, µA(λ) is the spectral measure of A. We then define the determinant of an operator

in relation to its zeta function.

Definition 8 (Functional Determinant). Suppose that A is a self adjoint operator with

D(A) ⊆ H and spectral measure µA. The logarithm of the determinant of A is related

to the zeta function of A by

ln(det(A)) := − ζ ′(0|A) . (4.2.38)

This zeta function will turn out to be a meromorphic function on the complex plane,

and its derivative at zero is finite.

The determinant of an operator τ is then constructed in two steps: we first

need to find a self-adjoint extension of τ , and then we need to determine the spectrum

of this self-adjoint extension. Therefore, we need to determine the domain of the adjoint

of τ , which is equivalent to specifying the boundary conditions such that τ∗ = τ . In

Section 4.4 we remind the reader of a famous result of Friedrichs: for a symmetric

operator bounded from below, a self-adjoint extension exists, and the domain of this

extension is given by those f ∈ H that satisfy Friedrichs boundary conditions. The

Friedrichs boundary conditions are given explicitly in terms of the principal solutions

of τf = zf . Once the self-adjoint extension is known we can construct the discrete

component of the spectrum, also by utilizing the principal solutions. Therefore, we

dedicate the next section to a thorough investigation of the principal solutions.
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4.3 Principal Solutions

For sufficiently simple cases the relation between functional determinants of

operators and particular solutions of those operators is well established. For radial op-

erators (i.e. those operators in d-dimensions where symmetry arguments allow one to

reduce the problem to 1-dimension) that act on scalar fields results are well known[106].

These results follow from a particular choice of boundary conditions, choosing the do-

main of the operator to be contained in the set of square integrable functions that are

arbitrarily close to the “regular” solutions near the origin. The origin in such problems

is a regular singular point of the differential equation, so there always exists at least

one solution of Frobenius type, which behaves as some positive power of r as r → 0.

This choice is often motivated by a “physical” argument, i.e. that the physical fields

should be bounded near the origin. Of course, in quantum mechanics the field values

themselves are not observable, so such physical arguments lack a certain robustness.

Even in the case of the nonrelativistic hydrogen atom, governed by the Schrödinger

equation, there exist vectors in the Hilbert space that diverge logarithmically as r → 0,

that cannot be excluded by requiring square integrability. The true reason such states

are excluded is because they do not belong to the domain of the Friedrichs extension

of the hydrogen operator, which is the only self adjoint extension in this case. The

spectrum of the operator depends crucially on the choice of boundary conditions, which

is equivalent to specifying the domain of the operator. We will find that a self-adjoint

extension exists, and the domain of the extended operator contains those square inte-

grable functions that are arbitrarily close to the principal solutions of the differential

136



equation, which have been investigated thoroughly by Ried[107, 108].

We begin by collecting some results and definitions[108]. Consider the second

order linear differential system, on an interval I ⊆ R,

d
dx

[
R(x) du

dx +Q(x)u
]

−
[
Q†(x) du

dx + P (x)u
]

= 0, x ∈ I, (4.3.1)

where u is a n-dimensional vector function, and R, Q, and P are n×n matrix functions

satisfying the following hypothesis

Hypothesis H2. On the interval I, the n× n matrix functions

• R(x), P (x) are hermitian,

• R(x) is nonsingular,

• R−1(x), R−1(x)Q(x), and P (x) −Q†(x)R−1(x)Q(x) are locally (Lebesgue) inte-

grable on I.

We introduce the canonical variable vector functions as

u(x) , v(x) ≡ R(x) du(x)
dx +Q(x)u(x) . (4.3.2)

This transforms the second order system into a first order system

L[y](x) := J
dy
dx + A (x) y = 0, (4.3.3)

where

y(x) =

u(x)

v(x)

, J ≡
0 −1
1 0

, A (x) ≡

 C(x) −A†(x)

−A(x) −B(x)

, (4.3.4)
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and

A(x) ≡ −R−1(x)Q(x) , B(x) ≡ R−1(x) , C(x) ≡ P (x) −Q†(x)R−1(x)Q(x) .

(4.3.5)

We refer to (4.3.3) as a Hamiltonian system. It is easily shown that whenever R, P ,

and Q satisfy (H2), the following hypothesis is also satisfied.

Hypothesis H3. On the interval I the n× n matrix functions

• B(x) and C(x) are Hermitian, and

• A(x), B(x), and C(x) are locally (Lebesgue) integrable on I.

Given (H3), we can assert a further hypothesis for the matrix function A (x).

Hypothesis H4. On the interval I the 2n × 2n matrix function A (x) is Hermitian

and locally (Lebesgue) integrable.

It then follows from well know existence theorems that, given n-dimensional

constant vectors u0 and v0, a unique solution exists such that u(x0) = u0 and v(x0) = v0

for arbitrary x0 ∈ I. There are 2n linearly independent solutions of (4.3.1), and if we

take any two solutions

y1(x) =

u1(x)

v1(x)

, y2(x) =

u2(x)

v2(x)

, (4.3.6)

the sesquilinear form

{y1, y2}(x) ≡ y†
2(x) J y1(x) = v†

2(x)u1(x) − u†
2(x) v1(x) , (4.3.7)

is independent of x in I. If the value of this constant is 0 we say that these solutions,

y1 and y2, are (mutually) conjoined.
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Corresponding to the vector Hamiltonian system (4.3.3) we can construct a

matrix Hamiltonian system

L[Y ](x) := J
dY
dx + A (x)Y = 0, (4.3.3M)

where Y is a 2n× r matrix function on I. There is a matrix function analog of (4.3.7)

for solutions of (4.3.3M). Given

Y1(x) ≡

U1(x)

V1(x)

, Y2(x) ≡

U2(x)

V2(x)

, (4.3.8)

such that Y1(x) and Y2(x) are 2n× r1 and 2n× r2 matrix solutions of (4.3.3M) respec-

tively, the matrix quantity

{Y1, Y2}(x) ≡ Y †
2 (x) J Y1(x) = V †

2 (x)U1(x) − U †
2(x)V1(x) , (4.3.9)

is a r2 × r1 constant valued matrix function on I. If Y is a 2n × r matrix solution of

(4.3.3M) whose columns are linearly independent solutions of (4.3.3), with {Y, Y } = 0,

these solutions form a basis for a conjoined family of solutions of dimension r, consisting

of the set of all solutions of (4.3.3) which are linear combinations of these column vectors.

If Y is a 2n × n matrix solution of (4.3.3M), whose columns form a n-dimensional

conjoined family of solutions of (4.3.3), then we refer to Y (x) as a conjoined basis for

(4.3.3). The maximum dimension of a conjoined family of solutions of (4.3.3) is n, and

any conjoined family of solutions of dimension r < n is contained in a conjoined basis

for (4.3.3M)[108, Lemma 3.1, pp. 260].

Definition 9 (Conjugate Points). Two distinct points, x1 and x2, of the interval I

are said to be (mutually) conjugate with respect to (4.3.3) if there exists a solution

y(x) = (u(x) ; v(x)) of this system with u(x) ̸= 0 on the subinterval I0 with endpoints
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x1 and x2, while u(x1) = u(x2) = 0. If no two distinct points of a subinterval I0 ⊆ I are

conjugate with respect to (4.3.3), then this equation is said to be disconjugate on I0.

This notion of conjugacy and conjugate points provides an oscillation criterion

for the solutions of (4.3.3), and is essential for the construction of the principal solutions.

We also have equivalent statements summarized in the following theorem.

Theorem 4.3.1 (Reid[108, Theorem 6.3, pp. 284]). If [a, b] ⊂ I, and B(x) ≥ 0 for x

a.e. on I, then the following conditions are equivalent:

• (4.3.3) is disconjugate on [a, b];

• there is no point on (a, b] conjugate to x = a;

• there is no point on [a, b) conjugate to x = b;

• there exists a conjoined basis Y (x) = (U(x) ;V (x)) of (4.3.3) with U(x) nonsin-

gular on the closed interval [a, b].

We can now state an existence theorem of constructive type for the principal

solutions of Reid. We will assume that I = (a0, b0), −∞ ≤ a0 < b0 ≤ ∞, is an open

subset of the real line. We will also assume that (4.3.3) is identically normal, as this

will always be the case for differential operators that we consider.

Theorem 4.3.2 (Reid[108, Theorem 11.3, pp. 331]). Suppose that hypothesis (H4) holds

for (4.3.3) on I = (a0, b0), while on this interval the system is identically normal and

B(x) ≥ 0 for x a.e. on I, and that there is a subinterval I0 = (a0, c0) on which (4.3.3)

is disconjugate. For s and a distinct values on I0, let Ysa(x) = (Usa(x) ;Vsa(x)) be the
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solution of (4.3.3M) satisfying the boundary conditions

Usa(s) = 1, Usa(a) = 0. (4.3.10)

Then

Ysa0(x) =

Usa0(x)

Vsa0(x)

 := lim
a→a0

Ysa(x) , (4.3.11)

exists and is a principal solution of (4.3.3M) at a0, with Usa0(x) nonsingular on I0; in

particular Ysa0(x) is a conjoined basis for (4.3.3) on I0, and

Yca0(x) = Ysa0(x)Uca0(x) , (4.3.12)

for (s, c, x) ∈ I0 × I0 × I0.

The principal solutions generalize some properties of the “small” and “large”

solutions of the scalar differential equation that are well known from scattering theory.

In particular, the principal solutions are, in a sense, unique. That is, if Y0(x) is a

principal solution of (4.3.3M), the most general form for the principal solutions are[108,

pp. 329]

Y (x) = Y0(x)K, (4.3.13)

where K is a nonsingular n× n matrix. Other important properties are summarized in

the following theorem:

Theorem 4.3.3 (Reid[108, Theorem 11.4(c), pp. 334]). Suppose the hypotheses of The-

orem 4.3.2 are satisfied. If Y0(x) = (U0(x) ;V0(x)) is a principal solution of (4.3.3M)

at a0, then for a 2n× n-dimensional solution Y2(x) = (U2(x) ;V2(x)) of the system the

n× n constant matrix {Y0, Y2} is nonsingular if and only if U2(x) is nonsingular for x

on some subinterval (a0, c2) and [U2(x)]−1 U0(x) → 0 as x → a0.
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Contained in Theorem 4.3.3 is an important observation, that if Y0(x) =

(U0(x) ;V0(x)) is a principal solution of (4.3.3M) at a0, and Y (x) = (U(x) ;V (x)) is

any other 2n × n-dimensional solution of (4.3.3M) such that {Y0, Y } is nonsingular,

then it is necessarily the case that

lim
x→a0

[U(x)]−1 U0(x) = 0. (4.3.14)

It is in this sense that Y0(x) is the “smallest” possible solution of (4.3.3M).

The radial operators of interest are obtained from (4.3.1) by choosing I =

(0,∞) and

R(x) = rd−1, Q(x) = Q†(x) = 0, P (x) = rd−1
[
l(l + d− 2)

r2 +M2 − z + V (r)
]
.

(4.3.15)

Hypothesis (H2) is then satisfied provided M2 and V (r) are Hermitian and z is real.

Hypothesis (H4) is then immediately implied.

Theorem 4.3.4. For the second order differential system

(τl − z)u := −r1−d ∂

∂r
rd−1∂u

∂r
+
[
l(l + d− 2)

r2 +M2 − z + V (r)
]
u = 0, (4.3.16)

there is a conjoined basis that is principal at r = 0.

Proof. Written in standard form (expanding the derivative terms) the differential equa-

tion becomes

(τl − z)u = −∂2u

∂r2 − d− 1
r

∂u

∂r
+
[
l(l + d− 2)

r2 +M2 − z + V (r)
]
u = 0. (4.3.17)

Using Hypothesis (H1) and expanding around r = 0 it is then clear that a solution of

Frobenius type exists, and the leading order term is

u(r) ∼ r
2−d

2 r± 2l+d−2
2 ei, (r → 0), (4.3.18)
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where ei is generally an arbitrary constant vector in Cn, but for convenience we will

always take it to be one of the standard unit vectors in Rn. The solution with a negative

sign in the exponent is not always well defined, one will typically need to include log

terms as well. However, the existence of even one solution of Frobenius type is sufficient,

since every other solution can be constructed by taking derivatives of the Frobenius

solution with respect to the indicial exponent[75]. Therefore, for sufficiently small r,

every solution can be approximated by a function of the form

u(r) ∼ ln(r)βrαei, (r → 0). (4.3.19)

Then defining an interval I0 = [0, r0), and taking r0 sufficiently small, there can be at

most one point in I0 where u(r) = 0. This immediately implies that the differential

equation (τl − z)u = 0 is disconjugate near r = 0. Hence, for z ∈ R so that hypothe-

sis (H4) holds, Theorem 4.3.2 applies, and a principal solution exists near r = 0.

The solutions of
(
τ free

l − z
)
u = 0 are easily found. We construct two conjoined

bases, first introducing

ν ≡ 2l + d− 2
2 , ki ≡

√
z −m2

i . (4.3.20)

The free solutions are then

[
U free

0,l (r; z)
]i

j
= 2ν Γ(ν + 1) r

2−d
2 k−ν

i Jν(kir) δi
j , (4.3.21)

[
U free

∞,l (r; z)
]i

j
= iπ

2ν+1 Γ(ν + 1)r
2−d

2 kν
i H

(1)
ν (kir) δi

j , (4.3.22)

where Jν(z) is the Bessel function of the first kind and H
(1)
ν (z) is the Hankel function

of the first kind. The choice of normalization is partly for convenience, but the factors

143



of kν
i and k−ν

i will actually be essential when we analytically continue the zeta function

for the operators.

Further defining

V free
0,l (r; z) ≡ rd−1 ∂

∂r
U free

0,l (r; z) , V free
∞,l (r; z) ≡ rd−1 ∂

∂r
U free

∞,l (r; z) , (4.3.23)

and

Y free
0,l (r; z) =

U
free
0,l (r; z)

V free
0,l (r; z)

, Y free
∞,l (r; z) =

U
free
∞,l (r; z)

V free
∞,l (r; z)

, (4.3.24)

it is trivial to show that

{
Y free

∞,l , Y
free

0,l

}
= 1,

{
Y free

0,l , Y free
0,l

}
= 0,

{
Y free

∞,l , Y
free

∞,l

}
= 0. (4.3.25)

Furthermore,

lim
r→0

[
U free

∞,l (r; z)
]−1

U free
0,l (r; z) = 0. (4.3.26)

We see that the matrix solution U free
0,l (r; z) is a principal solution at r = 0, because the

principal solution is unique (up to post multiplication by a nonsingular matrix). Note

that the above properties are independent of the angular momentum eigenvalue l, the

dimension d, and the spectral parameter z (provided z ∈ R).

Next, we use the free solutions to construct the principal solutions of (τl−z)u =

0. We define two conjoined bases by

U0,l(r; z) ∼ U free
0,l (r; z) , (r → 0), (4.3.27)

U∞,l(r; z) ∼ U free
∞,l (r; z) , (r → 0). (4.3.28)

The existence of these solutions follows immediately from Hypothesis (H1). The con-

joined basis U0,l(r; z) is uniquely defined by (4.3.27), but U∞,l(r; z) is not uniquely
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defined by (4.3.28). We could add to U∞,l(r; z) a factor of U0,l(r; z) Ω, with Ω an ar-

bitrary n × n matrix, and (4.3.28) will be left unchanged, since U free
∞,l (r; z) generally

diverges as r → 0.

Defining, in a similar fashion as for the free equation,

V0,l(r; z) ≡ rd−1 ∂

∂r
U0,l(r; z) , V∞,l(r; z) ≡ rd−1 ∂

∂r
U∞,l(r; z) , (4.3.29)

and

Y0,l(r; z) =

U0,l(r; z)

V0,l(r; z)

, Y∞,l(r; z) =

U∞,l(r; z)

V∞,l(r; z)

, (4.3.30)

we can use the fact that (4.3.9) is independent of r to show that

{Y∞,l, Y0,l} = 1, {Y0,l, Y0,l} = 0, {Y∞,l, Y∞,l} = 0, (4.3.31)

by simply choosing r to be arbitrarily small and using (4.3.27), (4.3.28), and (4.3.25).

Applying the same arguments as in the free case we can show that U0,l(r; z) is the

principal solution of (τl − z)u = 0 at r = 0.

So far we have only constructed the leading order approximation of the princi-

pal solutions of (τl − z)u = 0 at r = 0 using the principal solutions of
(
τ free

l − z
)
u = 0

at r = 0. For clarity we state the differential equations obeyed by these solutions:[
− 1
rd−1

∂

∂r
rd−1 ∂

∂r
+ l(l + d− 2)

r2 +M2 + V (r)
]
U0,l(r; z) = z U0,l(r; z) , (4.3.32)

[
− 1
rd−1

∂

∂r
rd−1 ∂

∂r
+ l(l + d− 2)

r2 +M2
]
U free

0,l (r; z) = z U free
0,l (r; z) (4.3.33)

In order to construct higher order approximations of U0,l(r; z) we represent the solutions

as a Volterra integral equation

U0,l(r; z) = U free
0,l (r; z) +

∫ r

0
Kl(r, t; z)U0,l(t; z) dt , (4.3.34)
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where the kernel, K(r, t; z), is a solution of the free matrix equation

[
− 1
rd−1

∂

∂r
rd−1 ∂

∂r
+ l(l + d− 2)

r2 +M2
]
K(r, t; z) = z K(r, t; z) , (4.3.35)

with boundary conditions

K(r, r; z) = 0, ∂

∂r
K(r, t; z)

∣∣∣∣
t=r

= V (r) . (4.3.36)

Because there exists some r0 ∈ (0,∞) for which (4.3.33) is disconjugate on I0 = (0, r0),

the principal solution U free
0,l (r; z) is nonsingular on this interval (this holds for all l and

z). Therefore, the kernel is a solution of (4.3.33) on the interval I0 if and only if[108,

Theorem 3.1, pp. 261]

Kl(r, t; z) = U free
0,l (r; z)

{
A(t; z) +

∫ r

0

[
U free

0,l (s; z)
]−1

s1−d
[[
U free

0,l (s; z)
]†]−1

dsB(t; z)
}
,

(4.3.37)

for some matrix functions A(t; z) and B(t; z). Using the first boundary condition in

(4.3.36) we find

A(t; z) = −
∫ t

0

[
U free

0,l (s; z)
]−1

s1−d
[[
U free

0,l (s; z)
]†]−1

dsB(t; z) . (4.3.38)

Using the second boundary condition in (4.3.36) we find

B(t; z) =
[
U free

0,l (t; z)
]†
V (t) td−1. (4.3.39)

The general solution for the kernel is then

K(r, t; z) = U free
0,l (r; z)

∫ r

t

[[
U free

0,l (s; z)
]†
U free

0,l (s; z)
]−1

s1−d ds
[
U free

0,l (t; z)
]†
V (t) td−1.

(4.3.40)
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We evaluate the integrals in (4.3.40) by making use of the first relation of

(4.3.25), written as

rd−1
[(

∂

∂r

[
U free

0,l (r; z)
]†)

U free
∞,l (r; z) −

[
U free

0,l (r; z)
]† ( ∂

∂r
U free

∞,l (r; z)
)]

= 1. (4.3.41)

Insert (4.3.41) inside the integral in (4.3.40) and integrate by parts. Then using

(
∂

∂r

[
U free

0,l (r; z)
]†)

U free
0,l (r; z) −

[
U free

0,l (r; z)
]† ( ∂

∂r
U free

0,l (r; z)
)

= 0, (4.3.42)

the remaining integrals cancel and we are left with only the boundary terms.

K(r, t; z) = −U free
∞,l (r; z)

[
U free

0,l (t; z)
]†
V (t) td−1

U free
0,l (r; z)

[
U free

0,l (t; z)
]−1

U free
∞,l (t; z)

[
U free

0,l (t; z)
]†
V (t) td−1 (4.3.43)

This can be further simplified by noting that for all z ∈ R the principal solutions of the

free equation near r = 0 are real valued. This follows from

Jν(ikr) = eiπν/2 Iν(kr) .

The factor of exp(iπν/2) cancels exactly with a similar term coming from the prefactor

k−ν
i in (4.3.21). Furthermore the free solutions commute since they are diagonal. This

leaves us with

K(r, t; z) =
[
U free

0,l (r; z)U free
∞,l (t; z) − U free

∞,l (r; z)U free
0,l (t; z)

]
V (t) td−1. (4.3.44)

We can then write the Volterra integral equation for the interacting solutions as

U0,l(r; z) = U free
0,l (r; z)

[
1+

∫ r

0
U free

∞,l (t; z)V (t)U0,l(t; z) td−1 dt
]

− U free
∞,l (r; z)

∫ r

0
U free

0,l (t; z)V (t)U0,l(t; z) td−1 dt . (4.3.45)
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We conclude this section with an important observation. First we remind the

reader of the kernel of an operator (also null space):

Definition 10 (Kernel).

Kern(A− z) = {f ∈ D(A) | (A− z)f = 0}. (4.3.46)

A z ∈ σ(A) is an eigenvalue if and only if Kern(A− z) ̸= ∅. Additionally, every regular

solution of (4.3.16) can be written as

fl(r; z) = U0,l(r; z) ζ, (4.3.47)

for some constant nonzero n-dimensional vector ζ. If we then assume that z is an

eigenvalue, and that fl(r; z) ∈ Kern(τl − z), it then must be the case that

fl(r; z) ∼ U free
∞,l (r; z) ξ, (r → ∞), (4.3.48)

for some constant nonzero n-dimensional vector ξ (this follows from (H1)). If this were

not the case then fl(r; z) would not be square integrable, since U free
0,l (r; z) is not locally

Lebesgue integrable on (r,∞) for any z. However, U free
∞,l (r; z) does have locally Lebesgue

integrable components on (r,∞) if z < m2
i for some i. To see this we use the analytic

continuation properties of the Hankel functions:

Kν(z) = π

2 i
ν+1H(1)

ν (iz) , −π < arg(z) ≤ π

2 . (4.3.49)

We then have

[
U free

∞,l (r; z)
]i

i
= 1

2ν Γ(ν + 1)r
2−d

2
(
m2

i − z
)ν/2

Kν

(√
m2

i − zr

)
, if z < m2

i . (4.3.50)

Then, taking the large r behavior of the principal solutions

U0,l(r; z) ∼ U free
0,l (r; z)Fl(z) + U free

∞,l (r; z)F
†
l (z) , (r → ∞), (4.3.51)
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for some arbitrary n × n matrices Fl(z) and F †
l (z) (again, this follows from (H1)), we

immediately see that Fl(z) ζ = 0. Since ζ is nonzero by assumption it must then be the

case that the constant matrix Fl(z) is not full rank, i.e. det(Fl(z)) = 0. In the next

section we show that

f ∈ Kern(τ − z) =⇒ f = U0,l(r; z) ζ, (4.3.52)

for some nonzero ζ. This would immediately imply that det(Fl(z)) = 0 holds only if z

is an eigenvalue. Before we can utilize this result we must first construct a self-adjoint

extension of τ .

4.4 Friedrichs Extension

From the spectral theorem[109, Theorem 3.6, pp. 109] the spectrum of a self-

adjoint operator A is σ(A) ⊆ R. The difficulty in constructing the spectrum of the

operator typically lies in identifying a self-adjoint extension of the operator (if one

exists at all). It is usually simple enough to construct a symmetric operator,

Definition 11 (Symmetric).

⟨ϕ,Aψ⟩ = ⟨Aϕ,ψ⟩ , ∀ϕ, ψ ∈ D(A) , (4.4.1)

where D(A) ⊆ H is the domain of A, i.e. the set of vectors in H on which A is defined

to act. For finite dimensional Hilbert spaces the operator A is necessarily self-adjoint

if it is symmetric, but for the infinite dimensional Hilbert space this no longer holds in

general. If A is a differential operator acting on some L2 space then a suitable choice of

boundary conditions easily yields a symmetric operator, which is almost always shown
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by an integration by parts procedure. The choice of boundary conditions is equivalent

to choosing the domain of A.

Definition 12 (Adjoint). If A is a densely defined linear operator the adjoint operator

is defined as

D(A∗) =
{
ψ ∈ H | ∃ψ̃ ∈ H : ⟨ψ,Aϕ⟩ = ⟨ψ̃, ϕ⟩,∀ϕ ∈ D(A)

}
,

A∗ψ = ψ̃.

(4.4.2)

In this sense the adjoint A∗ is the maximal symmetric extension of A. If

A = A∗ then we refer to A as self-adjoint. Except for a very small number of special

cases constructing the adjoint is highly nontrivial. If A is symmetric then it is always

the case that D(A) ⊆ D(A∗), that is the adjoint A∗ is an extension of A, which we

write as A ⊆ A∗. Even if one has labored extensively to somehow construct the adjoint,

it may be that no self-adjoint extension exists, or that there are an infinite number of

self-adjoint extensions.

Because it is often very difficult, if not entirely impossible, to construct the

adjoint of an operator several theorems have been developed in order to avoid having

to construct the adjoint altogether. For example, if one is lucky it may happen that the

closure of the operator, A ≡ A∗∗, is self-adjoint, in which case we refer to A as essentially

self-adjoint. If A is essentially self-adjoint than A is the unique self-adjoint extension

of A, and it is usually (though maybe counterintuitively) much easier to construct the

closure A than it is to construct the adjoint A∗.

In every case the problem comes down to choosing the domain of A. The naive

choice of boundary conditions is almost always too restrictive, which yields a symmetric
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operator whose domain is smaller than the domain of its adjoint. For any symmetric

densely defined linear operator A which is bounded below, Friedrichs[110] constructed a

self-adjoint extension AF that preserves the lower bound of A. Fortunately, in physical

problems it is almost always the case that the operator A is bounded from below. This

is just the statement that there exists a stable ground state. If no stable ground state

exists than any system could decay to a state with lower energy, which in turn could

decay to another lower energy state ad infinitum. This should clearly be avoided for

physical systems.

Definition 13 (Semi-bounded/bounded from below). We say that a symmetric oper-

ator A is semi-bounded, respectively, bounded from below, if there exists a γ ∈ R such

that

⟨ψ,Aψ⟩ ≥ γ∥ψ∥2, ∀ψ ∈ D(A) . (4.4.3)

We will write A ≥ γ for short. The special case of a densely defined operator

which is semi-bounded (respectively bounded from below) by 0 is called nonnegative

(respectively positive). In this case ⟨ψ,Aψ⟩ ≥ 0 (respectively > for ψ ̸= 0) for all

ψ ∈ D(A), and we can introduce a map

⟨·, ·⟩A : D(A) × D(A) → C

(ϕ, ψ) 7→ ⟨ϕ, (A+ 1)ψ⟩ , A ≥ 0,

(4.4.4)

The map (4.4.4) is a scalar product, hence we might adopt the norm, ∥ψ∥A := [⟨ψ,ψ⟩A]1/2,

defined on a suitable subvector space of H. Take HA ⊆ H to be the completion of D(A)

with respect to the scalar product (4.4.4). A Cauchy sequence (ψn) in D(A) is then also
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a Cauchy sequence in H, because

∥ψ∥2
A = ⟨ψ,Aψ⟩ + ∥ψ∥2 =⇒ ∥ψ∥ ≤ ∥ψ∥A, if A ≥ 0. (4.4.5)

We can then identify the limit in HA with the limit of (ψn) regarded as a sequence in

H. This observation allows us to extend the domain of the quadratic form of A to all

ψ ∈ HA,

qA(ψ) = ⟨ψ,ψ⟩A − ∥ψ∥2, ψ ∈ Q(A) = HA. (4.4.6)

The set Q(A) is often called the form domain of A.

Clearly, if A is semi-bounded (respectively bounded) from below by γ, then

the operator A − γ is nonnegative (respectively positive). In the general case we can

then define

⟨·, ·⟩A−γ : D(A) × D(A) → C

(ϕ, ψ) 7→ ⟨ϕ, (A+ 1 − γ)ψ⟩ , A ≥ γ,

(4.4.7)

and similarly take HA−γ as the completion of D(A) with respect to ⟨·, ·⟩A−γ , and the

quadratic form

qA(ψ) = ⟨ψ,ψ⟩A−γ − (1 − γ)∥ψ∥2, ψ ∈ HA−γ . (4.4.8)

The quadratic form qA(ψ), extended to the full form domain Q(A), is often called an

“energy” norm.

The Friedrichs extension is then given by the following theorem.

Theorem 4.4.1 (Friedrichs Extension[109], Theorem 2.13, pp. 80). Let A be a symmet-

ric operator which is bounded from below by γ. Then there is a self-adjoint extension

AFψ = A∗ψ, D(AF ) = D(A∗) ∩ HA−γ , (4.4.9)
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which is also bounded from below by γ. Moreover, AF is the only self-adjoint extension

with D(AF ) ⊆ HA−γ.

In the following lemma take ACloc(I) to be the set of complex functions that

are absolutely continuous on arbitrary compact subintervals of I, and ACc(I) to be

those functions in ACloc(I) with compact support on I.

Lemma 4.4.2. Consider the partial wave operators defined by (4.1.12) and (4.1.13).

The operators defined by

D(A) = D(τl) ∩ ACc(0,∞) , Af = τlf, f ∈ D(A) , (4.4.10)

D
(
Afree

)
= D

(
τ free

l

)
∩ ACc(0,∞) , Afreef = τ free

l f, f ∈ D
(
Afree

)
, (4.4.11)

are symmetric.

Proof. The proof follows easily using integration by parts. We show the proof only for

τl since the proof for τ free
l is identical.

⟨f,Ag⟩ =
∫ ∞

0
f †(r)

[
− 1
rd−1

d
dr r

d−1 d
dr + l(l + d− 2)

r2 +M2 + V (r)
]
g(r) rd−1 dr ,

f, g ∈ D(A) . (4.4.12)

M2 and V (r) are Hermitian by assumption, so we have

⟨f,Ag⟩ = −
∫ ∞

0
f †(r) d

dr r
d−1 d g(r)

dr dr

+
∫ ∞

0

{[
l(l + d− 2)

r2 +M2 + V (r)
]
f(r)

}†
g(r) rd−1 dr . (4.4.13)
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Then, since rd−1 g′(r) ∈ AC(0,∞), we can integrate by parts:

−
∫ ∞

0
f †(r) d

dr r
d−1 d g(r)

dr dr = − f †(r) rd−1 d g(r)
dr

∣∣∣∣∞
0

+
∫ ∞

0

d f †(r)
dr rd−1 d g(r)

dr dr . (4.4.14)

As well, g ∈ AC(0,∞), so we can integrate by parts a second time.

−
∫ ∞

0
f †(r) d

dr r
d−1 d g(r)

dr dr = − f †(r) rd−1 d g(r)
dr

∣∣∣∣∞
0

+ d f †(r)
dr rd−1 g(r)

∣∣∣∣∣
∞

0

−
∫ ∞

0

[ d
dr r

d−1 d f(r)
dr

]†
g(r) dr . (4.4.15)

Then, because f, g ∈ D(A) have compact support, the boundary terms vanish, leaving

us with

−
∫ ∞

0
f †(r) d

dr r
d−1 d g(r)

dr dr = −
∫ ∞

0

[ 1
rd−1

d
dr r

d−1 d f(r)
dr

]†
g(r) rd−1 dr . (4.4.16)

The result is then

⟨f,Ag⟩ =
∫ ∞

0

{[
− 1
rd−1

d
dr r

d−1 d
dr + l(l + d− 2)

r2 +M2 + V (r)
]
f(r)

}†
g(r) rd−1 dr

= ⟨Af, g⟩ .

(4.4.17)

From τl and τ free
l Lemma 4.4.2 shows we can define the symmetric operators A

and Afree. If it can be shown that these symmetric operators are bounded from below

then we can invoke Theorem 4.4.1 to show that a self-adjoint extension exists. It might

be tempting to use a variational principal to look for the minimum of ⟨ψ,Aψ⟩, but this

generally fails. Suppose for a moment that there exists a z0 ∈ R, with z0 < 0, such that
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Kern(A− z0) ̸= ∅. Then it would be the case that ∃ψ0 ∈ Kern(A− z0) : Aψ0 = z0ψ0,

and ⟨ψ0, Aψ0⟩ = z0∥ψ0∥2. However, we could also consider any other ψ ∈ D(A) with

ψ = cψ0, for any c ∈ C. Obviously this ψ would also be in Kern(A− z0), so ⟨ψ,Aψ⟩ =

z∥c∥2∥ψ0∥2. We could then take c to have norm greater than 1, and since z0 is negative

⟨ψ,Aψ⟩ < ⟨ψ0, Aψ0⟩ , (4.4.18)

for arbitrary c with ∥c∥ > 1. Therefore, ⟨ψ,Aψ⟩ cannot be bounded below if there are

any negative eigenvalues, and any minimum of ⟨ψ,Aψ⟩ could only be local.

This situation can be avoided if we scale out the norm and instead consider

⟨ψ,Aψ⟩ /∥ψ∥2. It would then be the case that

⟨ψ1, Aψ1⟩
∥ψ1∥2 = ⟨ψ2, Aψ2⟩

∥ψ2∥2 if ψ1 = cψ2 for any c ∈ C. (4.4.19)

We could then consider minimizing ⟨ψ,Aψ⟩ on the subset of D(A) for which ∥ψ∥ = 1.

Lemma 4.4.3. Take A and Afree to be the symmetric operators as in Lemma 4.4.2.

Then Afree is bounded below, and A is bounded from below if (H1) holds. More specifi-

cally,

∃z0 ∈ R : (Kern(A− z0) ̸= ∅ ∧ ∀z ∈ R : z < z0 =⇒ Kern(A− z) = ∅) =⇒ A ≥ z0.

(4.4.20)

That is, if there exists a lowest real eigenvalue then A is bounded from below by this

lowest eigenvalue.

Proof. For the free operator we have

〈
ψ,Afreeψ

〉
=
∫ ∞

0
ψ†(r)

[
− 1
rd−1

d
dr r

d−1 d
dr + l(l + d− 2)

r2 +M2
]
ψ(r) rd−1 dr .

(4.4.21)
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Using integration by parts this becomes

〈
ψ,Afreeψ

〉
=
∫ ∞

0

dψ†(r)
dr

dψ(r)
dr rd−1 dr

+
∫ ∞

0
ψ†(r)

[
l(l + d− 2)

r2 +M2
]
ψ(r) rd−1 dr . (4.4.22)

Every term in the above is positive for all l ≥ 0 and d > 0, so Afree ≥ 0, at least.

The operator A looks identical, except for the potential matrix V (r), hence we

need only to check that

⟨ψ, V ψ⟩ =
∫ ∞

0
ψ†(r)V (r)ψ(r) rd−1 dr

is bounded from below. We can consider only those ψ ∈ D(A) such that ∥ψ∥ = 1, since

⟨ψ1, Aψ1⟩ ≥ γ∥ψ1∥2 =⇒ ⟨ψ2, Aψ2⟩ ≥ γ∥ψ2∥2, if ψ1 = cψ2 (4.4.23)

for any fixed γ and nonzero c ∈ C. Take as example the simple function ψi ∈ D(A) with

components

ψj
i (r) =

√
d

(bd − ad) χ(a,b)(r) δ
j
i , (4.4.24)

where χΩ is the characteristic function on a subset Ω, i.e.

χΩ(c) =
{

1 if c ∈ Ω
0 else

. (4.4.25)

Then

⟨ψi, V ψi⟩ = d

bd − ad

∫ b

a
Vii(r) rd−1 dr . (4.4.26)

This quantity is finite for an arbitrary interval (a, b), since from (H1)

∣∣∣∣∣
∫ b

a
V (r) rd−1 dr

∣∣∣∣∣ ≤
∫ b

a
|V (r)|rd−1 dr < ∞, (4.4.27)
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where the expression above holds component-wise. This continues to hold for arbitrary

simple functions ψ with ∥ψ∥ = 1. Since the simple functions are dense in H we have,

∀ψ ∈ D(A) : ∥ψ∥ = 1 =⇒ |⟨ψ, V ψ⟩| < ∞. (4.4.28)

Next, we look for a minimum of the functional ⟨ψ,Aψ⟩ with the constraint

∥ψ∥ = 1. Enforce the constraint with a Lagrange multiplier by defining the action

integral

S[ψ, z] := ⟨ψ,Aψ⟩ − z
(
∥ψ∥2 − 1

)
. (4.4.29)

S[ψ, z] = ⟨ψ,Aψ⟩ if ψ has norm 1. Taking the variation with respect to ψ and z, and

setting the variation to 0 yields

(A− z0)ψ0 = 0, ∥ψ0∥2 = 1. (4.4.30)

Thus, if a minimum exists then Kern(A− z0) is nonempty and S[ψ0, z0] = z0. ⟨ψ,Aψ⟩

is then bounded from below by the smallest eigenvalue.

From Theorem 4.4.1, if a symmetric densely defined linear operator A is

bounded below then a self-adjoint extension exists. However, as previously stated, con-

structing the adjoint A∗ (not to mention the form domain HA−γ) is highly nontrivial in

most cases. The domain of linear differential operators are uniquely determined by spec-

ifying boundary conditions, but Theorem 4.4.1 makes no explicit reference to boundary

conditions. The question is then: what are the boundary conditions associated to the

Friedrichs extension of a linear differential operator?

For a special class of regular Sturm-Liouville operators Friedrichs answered

this question[111], showing that the domain of the Friedrichs extension corresponds to

157



imposing Dirichlet boundary conditions at the endpoints. This result was extended to all

regular Sturm-Liouville operators[112] (with minimal restrictions on the coefficients and

weight function) and for classical and quasi-differential operators of even order[113, 114].

The connection between the principal solutions of Reid and the Friedrichs

extension is first seen by considering the case where the endpoints are regular. In

this case Theorem 4.3.2 gives precisely those solutions which vanish at the boundary,

corresponding to Dirichlet boundary conditions. Consider the linear differential operator

τf := 1
r(x)

[
− d

dx p(x) df
dx + q(x)

]
, f, pf ′ ∈ AC(a, b) , (4.4.31)

on an arbitrary open interval I = (a, b) ⊆ R. The appropriate Hilbert space is

H = L2((a, b), r dx) , ⟨f, g⟩ =
∫ b

a
f †(x) r(x) g(x) dx . (4.4.32)

We also require

Hypothesis H5. The following hold a.e. on I:

(i) p−1 ∈ L1
loc(I, dx), is positive;

(ii) q ∈ L1
loc(I, dx), is real-valued;

(iii) r ∈ L1
loc(I, dx), is positive.

Definition 14 (Regular). If a is finite and if p−1, q, r ∈ L1((a, c), dx) for some c ∈ I,

then the Sturm-Liouville equation (4.4.31) is called regular at a. Similarly for b. If it is

regular at both a and b, it is called regular.

The maximal domain of definition for τ in L2(I, r dx) is given by

D(τ) =
{
f ∈ L2(I, r dx) | f, pf ′ ∈ AC(a, b) , τf ∈ L2(I, r dx)

}
. (4.4.33)
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If τ is regular and bounded from below then, from our previous discussion, the Friedrichs

extension is given by

D(AF ) = {u ∈ D(τ) | u(a) = u(b) = 0},

AFu = τu, u ∈ D(AF ) .

(4.4.34)

Since τ is regular, the equation (τ − z)u = 0 is disconjugate at both endpoints

for z ∈ R, hence a principal solution exists near both endpoints. The principal solutions

are uniquely defined (up to an overall multiplicative constant) as

(τ − z)ua = 0, ua(a) = 0, p(a)u′
a(a) = 1, (4.4.35)

(τ − z)ub = 0, ub(b) = 0, p(b)u′
b(b) = 1. (4.4.36)

Further defining

ya(x) =

ua(x)

va(x)

, va(x) = p(x) d
dx ua(x) , (4.4.37)

yb(x) =

ub(x)

vb(x)

, vb(x) = p(x) d
dx ub(x) , (4.4.38)

as the associated solutions of the first order equation, we see that for any y(x) =

(u(x) ; v(x)) such that v(x) is everywhere finite

{y, ya} (a) = 0 =⇒ u(a) = 0, (4.4.39)

{y, yb} (b) = 0 =⇒ u(b) = 0. (4.4.40)
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The Friedrichs extension is therefore equivalently defined by

D(AF ) =
{
u ∈ D(τ) | y(x) = (u(x) ; v(x)), v(x) = p(x)u′(x) ,

{y, ya} (a) = 0, {y, yb} (b) = 0} ,

AFu = τu, u ∈ D(AF ) .
(4.4.41)

In fact Rellich[115] and Niessen & Zettl[116] showed that (4.4.41) continues to hold

even when τ is singular at one or both endpoints, provided τ is bounded below and

(τ − z)u = 0 is disconjugate near both endpoints for all z ∈ R.

Generalizing to the case of n coupled second order differential equations we

have similar results, due to an analysis by Marletta & Zettl[117].

Definition 15 (Quasi-derivatives). Let I = (a, b), −∞ ≤ a < b ≤ ∞ be an open subset

of the real line and let m = 2n be an even positive integer. Suppose pij ∈ L1
loc(I, dx) for

i, j = 0, 1, . . . , n, (i, j) ̸= (n, n) and p−1
nn ∈ L1

loc(I, dx). Assume moreover that pij = pji.

The quasi-derivatives f [r] are defined as

(i) f [r] := drf

dxr
, r = 0, 1, . . . , n− 1;

(ii) f [n] :=
n∑

j=0
pnj

djf

dxj
;

(iii) f [n+r] := − d
dxf

[n+r−1] +
n∑

j=0
pn−r,j

djf

dxj
, r = 1, 2, . . . , n.

We consider very general quasi-differential operators of the form

Amaxf := 1
r(x)f

[2n], f [r] ∈ ACloc(I), r = 0, 1, . . . , n− 1. (4.4.42)

where r(x) ∈ L1
loc(I, dx) is a weight function and ACloc(I) denotes the set of all complex-

valued functions which are absolutely continuous on arbitrary compact subintervals of
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I. We further assume r > 0 a.e. on I. For sufficiently smooth coefficient functions pij

this operator can also be written as

Amaxf = 1
r(x)

n∑
i=0

(−1)i di

dxi


n∑

j=0
pij(x) djf

dxj

. (4.4.43)

The maximal domain of definition of the operator (4.4.42) is

D(Amax) =
{
f ∈ L2(I, r dx) |

∀r ∈ {0, 1, . . . , 2n− 1} : f [r] ∈ ACloc(I), Amaxf ∈ L2(I, r dx)
}
.

(4.4.44)

We want to obtain a symmetric operator and hence we choose

Af = Amaxf, D(A) = D(Amax) ∩ ACc(I). (4.4.45)

Next, we consider the expression

Af = λf, λ ∈ R, (4.4.46)

which is a differential equation of order 2n. In order to consider the principal solutions

of this expression we fix a value of λ = λ̂ and consider the endpoint x = b.

Hypothesis H6. There exists a µ ∈ R, with µ > λ̂, and d < b such that the differential

equation Af = µf is disconjugate on (d, b).

Remark. If the differential equation Af = µf is disconjugate on some interval, then

so is Af = λf on the same interval for any λ < µ.

Theorem 4.4.4 (Marletta & Zettl[117], Theorem 12). Suppose that for the operator

A defined by (4.4.45), (H6) holds and that x = a is a regular point of the differential

equation Af = µf . Then the domain of the Friedrichs extension AF over I = (a, b) is
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given by

D(AF ) =
{
y ∈ D(Amax) | u(a) = 0,∀k ∈ {1, . . . , n} :

{
y, y

(k)
b

}
(b) = 0

}
, (4.4.47)

where y(k)
b (x) is the kth principal solution of Amaxy = µy.

Similar results hold if a is a singular point, provided the differential equation

τf = λf is disconjugate at a. The general case is then clear: for a singular endpoint

(say a) we replace Dirichlet boundary conditions with Friedrichs boundary conditions:

u(a) = 0 →
{
y, y(k)

a

}
(a) = 0. (4.4.48)

For our radial operators defined by (4.1.12) and (4.1.13) there is no boundary

at r = ∞ at which to apply boundary conditions, so there are no conditions to enforce

there except square integrability. We can now explicitly construct self adjoint operators

from τl and τ free
l .

Theorem 4.4.5. Given the partial wave operators τl and τ free
l on the interval I =

(0,∞), defined by (4.1.12), (4.1.13), the Friedrichs self-adjoint extensions are given by

D(AF ) =
{
f ∈ D(τl) | ∀k ∈ {1, . . . , n} :

{
y, y

(k)
0,l

}
(0) = 0

}
,

AF f = τlf, f ∈ D(τl) ,

(4.4.49a)

D
(
Afree

F

)
=
{
f ∈ D

(
τ free

l

)
| ∀k ∈ {1, . . . , n} :

{
y, y

free(k)
0,l

}
(0) = 0

}

Afree
F f = τ free

l f, f ∈ D
(
τ free

l

)
,

(4.4.49b)

where the vectors y are constructed from

y(r) =

 f(r)

rd−1 df(r)
dr

, (4.4.50)
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and the principal solutions y(k)
0,l (r; z) and yfree(k)

0,l (r; z) are given by

y
(k)
0,l (r; z) =

u
(k)
0,l (r; z)

v
(k)
0,l (r; z)

, y
free(k)
0,l (r; z) =

u
free(k)
0,l (r; z)

v
free(k)
0,l (r; z)

 (4.4.51a)

u
(k)
0,l (r; z) = U0,l(r; z) ek, v

(k)
0,l (r; z) = rd−1 du(k)

0,l (r; z)
dr , (4.4.51b)

u
free(k)
0,l (r; z) = U free

0,l (r; z) ek, v
free(k)
0,l (r; z) = rd−1 dufree(k)

0,l (r; z)
dr , (4.4.51c)

and ek is the kth unit vector of Rn.

Proof. Using Lemma 4.4.2 we can construct the symmetric operators A and Afree.

Lemma 4.4.3 shows that these operators are bounded below, and hence from Theo-

rem 4.4.1 a self-adjoint extension exists. In Section 4.3 we showed that the linear

differential systems (τl − z)f = 0 and
(
τ free

l − z
)
f = 0 are disconjugate at r = 0 for

arbitrary l and z. Hence, from Theorem 4.3.2 a principal solution exists at r = 0, and

we constructed these principal solutions in Section 4.3. Finally, Theorem 4.4.4 applies

since (H6) holds and a 2n-order linear differential system is equivalent to some first

order linear differential system.

From now on we substitute τl and τ free
l for the Friedrichs extensions AF and

Afree
F of Theorem 4.4.5. Since we explicitly know the domain of the self-adjoint operators

we can derive (at least formally) the spectrum. The discrete spectrum of any self-adjoint

operator A, σd(A), is the set of all eigenvalues which are isolated points of the spectrum

and whose corresponding eigenspace is finite dimensional. The complement of the dis-

crete spectrum is the essential spectrum, σess(A) = σ(A) \ σd(A), which consists of all

accumulation points of the spectrum plus all isolated eigenvalues of infinite multiplicity.
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Theorem 4.4.6. Take τl and τ free
l to be the Friedrichs realizations of the partial wave

radial operators, and m2 to be the smallest eigenvalue of the squared mass matrix

m2 = min
{
m2

i , . . . ,m
2
n

}
. (4.4.52)

The essential spectrum of τl and τ free
l are given by

σess(τl) = σess
(
τ free

l

)
= [m2,∞). (4.4.53)

The discrete spectrum of τl is given by those λ ∈ R such that ∀i ∈ {1, . . . , n} : λ < m2
i ,

and

lim
R→∞

det
([
U free

0,l (R;λ)
]−1

U0,l(R;λ)
)

= 0. (4.4.54)

The discrete spectrum of τ free
l is empty.

Proof. The spectrum of the free operator is easy enough to construct, since we know

the exact solutions of
(
τ free

l − z
)
f = 0 for all z. For z ∈ ρ

(
τ free

)
(
τ free

l − z
)−1

g = U free
∞,l (r; z)

∫ r

0

[
U free

0,l (t; z)
]†
g(t) td−1 dt

+ U free
0,l (r; z)

∫ ∞

r

[
U free

0,l (t; z)
]−1

U free
∞,l (t; z)

[
U free

0,l (t; z)
]†
g(t) td−1 dt . (4.4.55)

If z is such that the free solutions have components that are purely oscillatory then the

resolvent will be unbounded. Otherwise the resolvent is bounded, so

σ
(
τ free

l

)
= [m2,∞). (4.4.56)

The Kern
(
τ free

l − z
)

= ∅ for all z, which shows that σd
(
τ free

l

)
= ∅ since the discrete

spectrum is a subset of the eigenvalues. The spectrum of the free operator then consists

only of the essential spectrum.
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From Weyl’s theorem (given in the next section as Theorem 4.6.1) and (H1) we

have σess(τl) = σess
(
τ free

l

)
. Since the essential spectrum of both operators is identical

we need only consider those eigenvalues of (τl − λ)f = 0 for which λ < m2. But for

z < m2 every solution of (τl − z)f = 0 is either an exponentially growing or decaying

function. Writing the asymptotic behavior of the principal solutions for large r,

U0,l(r; z) ∼ U free
0,l (r; z)Fl(z) + U free

∞,l (r; z)F
†
l (z) , (r → ∞),

and since U free
∞,l (r; z) has only exponentially decaying components for z < m2, the limit

lim
R→∞

[
U free

0,l (R; z)
]−1

U0,l(R; z) = Fl(z) , (4.4.57)

exists and defines the Jost matrix function Fl(z). If λ < m2 is an eigenvalue then there

must exist some ζ ∈ Rn such that

Fl(λ) ζ = 0. (4.4.58)

This immediately implies that det(Fl(λ)) = 0 if U0,l(r;λ) ζ ∈ D(τl).

The multiplicity, α, of the eigenvalue λ is given by the limiting behavior of

det(Fl(z)) ∼ (z − λ)αc, (z → λ), (4.4.59)

for some nonzero constant c. If there exists only one ζ ∈ Rn such that Fl(λ) ζ = 0, then

in some basis one and only one column of Fl(λ) vanishes, so det(Fl(z)) ∼ (z − λ)c as

z → λ. If there exist two linearly independent vectors ζ1, ζ2 ∈ Rn such that Fl(λ) ζ1 =

Fl(λ) ζ2 = 0, then it must be the case that, in some basis, two columns of Fl(z) vanish.

Each column must vanish linearly, so det(Fl(z)) ∼ (z − λ)2c as (z → λ). Continuing in

this manner we see that the multiplicity α is equal to the number of linearly independent
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ζi ∈ Rn such that Fl(λ) ζi = 0. Since there can be no more than n linearly independent

vectors in Rn the multiplicity is bounded by n. Therefore, since λ is an eigenvalue with

finite multiplicity it is in the discrete spectrum of τl.

Finally, because the determinant is a continuous function of R we can pull the

limit outside the determinant,

det(Fl(z)) = det
(

lim
R→∞

[
U free

0,l (R; z)
]−1

U0,l(R; z)
)

= lim
R→∞

det
([
U free

0,l (R; z)
]−1

U0,l(R; z)
)
.

(4.4.60)

Replacing z with an eigenvalue λ then proves the theorem.

The results of Theorem 4.4.6 can then be used to show that the function

d
dz ln(det(Fl(z))) ∼ α

z − λ
, (z → λ), (4.4.61)

has simple poles in the complex z plane at the λ ∈ σd(τl). In Section 4.6 we use this

fact to construct the zeta functions of τ and τ free via contour integration. The resulting

sum over the angular momentum quantum number l is divergent for dimensions d > 1,

so this sum needs to be regulated and renormalized. To preform this regularization and

renormalization we need to know the asymptotic behavior of the Jost matrix function

at large values of l and z, to which we dedicate the next section.

4.5 Jost Matrix Function

The condition for convergence of the zeta function comes from the large l

behavior of the Jost matrix function (bear in mind that our definition of the Jost matrix

function is slightly different from what is usually called the Jost function in scattering
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theory). For z real and smaller than any of the masses in the squared mass matrix M2

the free solutions are real and either grow or decay exponentially as r → ∞. In this

case

Fl(z) = lim
r→∞

[
U free

0,l (r; z)
]−1

U0,l(r; z) .

Using the Volterra integral equation for U0,l(r; z) (4.3.45) we can write this as

Fl(z) ≡ 1+
∫ ∞

0
U free

∞,l (t; z)V (t)U0,l(t; z) td−1 dt . (4.5.1)

The above expression is only valid for Re(z) smaller than the smallest mass in the

squared mass matrix M2. If z exceeds this value then there is an extra term (which we

dropped when taking the large r limit). The large l behavior can be found in several

ways. One method is to directly use radial WKB to approximate U0,l(r; z) in the limit

l → ∞, ki → ∞, holding ki/l fixed. One needs to generalize radial WKB to the case

where the principal solutions are matrix valued (this is often referred to as a phase

integral approximation)[118]. The radial WKB procedure is not too difficult, but for

values of the spectral parameter z such that z > m2
i there will be turning points and

one needs to asymptotically match the solutions across the turning points. A more

straightforward procedure is to simply observe that the physical optics approximation

neglects the potential matrix entirely, so it must be the case that

U0,l(r; z) ∼ U free
0,l (r; z) + O

(1
l

)
, (l → ∞, ki → ∞). (4.5.2)

This of course is simply the first iteration of the Volterra integral equation (4.3.45).

Hence, further iterations of (4.3.45) must produce terms that are higher order in 1/l.

In order to illustrate this we first proceed with the calculation by keeping only
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the leading term. In this case the Jost matrix function is approximated by

Fl(z) ∼ 1+
∫ ∞

0
U free

∞,l (t; z)V (t)U free
0,l (t; z) td−1 dt , (l → ∞, ki → ∞). (4.5.3)

Taking the logarithm and summing the diagonal elements then yields

tr[ln(Fl(z))] ∼
∫ ∞

0
tr
[
U free

∞,l (t; z)V (t)U free
0,l (t; z)

]
td−1 dt , (l → ∞, ki → ∞). (4.5.4)

(4.5.4) can then be approximated further using the uniform asymptotic expansion of

the modified Bessel functions:

Iν(νz) ∼ eνη

(2πν)1/2(1 + z2)1/4

∞∑
k=0

Wk(p) ν−k, (ν → ∞), (4.5.5a)

Kν(νz) ∼
(
π

2ν

)1/2 e−νη

(1 + z2)1/4

∞∑
k=0

(−1)k Wk(p) ν−k, (ν → ∞), (4.5.5b)

where

η ≡
(
1 + z2

)1/2
+ ln(z) − ln[1 +

(
1 + z2

)1/2
], p ≡

(
1 + z2

)−1/2
, (4.5.6)

and

Wk+1(p) = 1
2p

2
(
1 − p2

)
W ′

k(p) + 1
8

∫ p

0

(
1 − 5t2

)
Wk(t) dt , W0(p) = 1. (4.5.7)

Retaining only the leading order terms in (4.5.5) we then have

[
U free

0,l (t; z)U free
∞,l (t; z)

]
ij

∼ t2−d 1
2ν

(
1 + k2

i t
2

ν2

)−1/2

δij , (ν → ∞, ki → ∞). (4.5.8)

The leading order approximation of the trace of the logarithm of the Jost Matrix function

is then

tr[ln(Fl(z))] ∼ 1
2ν

N∑
i=1

∫ ∞

0
Vii(t)

(
1 + k2

i t
2

ν2

)−1/2

t dt , (ν → ∞, ki → ∞). (4.5.9)
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Note that this holds in arbitrary dimensions d, and for arbitrarily many coupled equa-

tions N . Thus, the sum
∞∑

l=0
deg(l, d) tr[ln(Fl(0))],

converges only for d ≤ 1.

Going to higher order becomes tedious, but not technically difficult. The

calculation of the higher order terms is carried out in Appendix D.1.

In dimensions d ≤ 4 we will require no more than the following terms:

U0,l(r; z) ∼ U free
0,l (r; z) + U free

0,l (r; z)
∫ r

0
U free

∞,l

(
r′; z

)
V
(
r′)U free

0,l

(
r′; z

)
r′d−1 dr′

− U free
∞,l (r; z)

∫ r

0
U free

0,l

(
r′; z

)
V
(
r′)U free

0,l

(
r′; z

)
r′d−1 dr′ . (4.5.10)

We then have

tr(ln(Fl(z))) ∼
∫ ∞

0
tr
[
U free

∞,l (r; z)V (r)U free
0,l (r; z)

]
rd−1 dr

−
∫ ∞

0

∫ r

0
tr
[
U free

∞,l (r; z)V (r)U free
∞,l (r; z)U free

0,l

(
r′; z

)
V
(
r′)U free

0,l

(
r′; z

)]
r′d−1 dr′ rd−1 dr

(4.5.11)

In arriving at the above expression we have canceled two terms when expanding the

logarithm of a matrix

ln(1+ ϵA) ∼ ϵA− 1
2ϵ

2A2, (ϵ → 0).

Using the uniform asymptotic expansion of the modified Bessel functions we determine
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the first two non vanishing terms.

tr(ln(Fl(z))) ∼ 1
2ν

n∑
i=1

∫ ∞

0

Vii(r) r dr[
1 + k2

i r2

ν2

]1/2

+ 1
16ν3

n∑
i=1

∫ ∞

0

1 − 6
1 + k2

i r2

ν2

+ 5[
1 + k2

i r2

ν2

]2

 Vii(r) r dr[
1 + k2

i r2

ν2

]3/2

− 1
4ν3

n∑
i,j=1

∫ ∞

0

Vij(r)Vji(r) r3 dr[
1 + k2

i r2

ν2

][
1 + k2

j r2

ν2

]1/2
+
[
1 + k2

j r2

ν2

][
1 + k2

i r2

ν2

]1/2 ,

(ν → ∞, ki → ∞, ki/ν fixed) (4.5.12)

For most cases this expansion is sufficient to renormalize the determinant ratio. If one

is interested in dimensions d > 4 additional terms should be retained. This is a tedious,

but straightforward exercise.

4.6 Zeta Function Approach

For a symmetric operator A on a N -dimensional Hilbert space we define the

zeta function as

ζ(s|A) :=
N∑

i=1
λ−s

i , (4.6.1)

where {λi} are the eigenvalues of the operator. The zeta function is related to the

determinant via

ln(det(A)) = − ζ ′(0|A) , (4.6.2)

where the prime denotes the derivative with respect to s. More generally, if A is a self-

adjoint operator on a separable Hilbert space we may formally define the zeta function
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as

ζ(s|A) := tr
(
A−s), (4.6.3)

where tr(·) in this context may include a functional trace over the Hilbert space. This

definition holds for A an invertible elliptic operator of order greater than zero[119].

Provided A−s is trace class, the functional trace can be written as

tr
(
A−s) =

∞∑
i=1

〈
ϕi, A

−sϕi
〉
, (4.6.4)

where {ϕi} is some orthornormal basis on the Hilbert space and ⟨·, ·⟩ is the inner product

on the Hilbert space. This definition of the trace is finite for Re(s) sufficiently large,

and is independent of the choice of basis. Hence if the spectrum of the operator A is

purely discrete the basis can be chosen to be the normalized eigenfunctions of A, and

we have

ζ(s|A) =
∞∑

i=0
λ−s

i . (4.6.5)

The determinat is then the product of the eigenvalues

det(A) = exp
(
− ζ ′(0|A)

)
=

∞∏
i=1

λi,

as expected (note that some of the λi may be identical). The eigenvalues will have the

same mass dimension as the operator A, so the determinant defined in this way will

have some (formally infinite) normalization that depends on the physical units. We can

remove this dependence on the units by considering the dimensionless operator A/µ2,

where µ is some arbitrary mass scale. From the formal definition of the zeta function

we see that

ζ
(
s|A/µ2

)
= µ2s tr

(
A−s) = µ2s ζ(s|A) . (4.6.6)
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The dimensionless functional determinant then becomes

ln
(
det
(
A/µ2

))
= − ln

(
µ2
)
ζ(0|A) − ζ ′(0|A) . (4.6.7)

The factor of ζ(0|A) will diverge with the volume of the system, but this divergence will

cancel when we compare this determinant with the determinant of the corresponding

free operator. We therefore include the factor of µ2 in the determinants, but work with

the zeta function ζ(s|A) as in (4.6.7).

If the spectrum of A is not purely discrete (4.6.5) needs to be generalized to

include the entire spectrum. To this end we can invoke the spectral theorem to write

A−s =
∫

R
λ−s dPA(λ) , (4.6.8)

where PA(Ω) is the unique projection valued measure associated to the operator A.

Taking the trace then gives

ζ(s|A) =
∞∑

i=1

∫
R
λ−s dµϕi

(λ) , (4.6.9)

where, again, {ϕi} is any orthonormal basis, and the measure µϕi
(λ) can be recon-

structed from the resolvant operator, RA(z) = (A− z)−1, by the Stieltjes inversion

formula:

µϕi
(λ) = lim

δ↓0
lim
ϵ↓0

1
π

∫ λ+δ

−∞
Im(⟨ϕi, RA(t+ iϵ)ϕi⟩) dt . (4.6.10)

Consider multiplication operators on L2(R, dµ), with dµ a finite Borel measure.

The set of all growth points,

σ(µ) = {λ ∈ R | µ((λ− ϵ, λ+ ϵ)) > 0 for all ϵ > 0}, (4.6.11)

is the spectrum of µ. Thinking of A as multiplication by λ in L2(R,dµ), i.e.

Af(λ) = λ f(λ) , D(A) =
{
f ∈ L2(R,dµ) | λ f(λ) ∈ L2(R, dµ)

}
, (4.6.12)
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the spectrum of A is simply the spectrum of µ, that is[109, Theorem 3.7, pp. 110]:

σ(A) = σ(µ) . (4.6.13)

The zeta function then takes the most general possible form for self-adjoint

operators as

ζ(s|A) =
∫

R
λ−s dµ(λ) . (4.6.14)

The spectrum of A is equivalently given as

σ(A) = {λ ∈ R | µ((λ− ϵ, λ+ ϵ)) > 0 for all ϵ > 0}

= {λ ∈ R | PA((λ− ϵ, λ+ ϵ)) ̸= 0 for all ϵ > 0}.

(4.6.15)

The task is then to construct the measure µ(Ω). In fact, we will not need to construct

the entire measure, but only the part of the measure that has support on the discrete

spectrum. First we define

σd(A) = {λ ∈ σp(A) | rank(PA((λ− ϵ, λ+ ϵ))) < ∞ for some ϵ > 0}, (4.6.16)

and

σess(A) = {λ ∈ R | rank(PA((λ− ϵ, λ+ ϵ))) = ∞ for all ϵ > 0}. (4.6.17)

We then have a theorem due to Weyl:

Theorem 4.6.1 (Teschl[109], Theorem 6.19, pp. 171). Denote by C(H) the closure of

the set of all finite rank operators in L(H) (referred to as the set of compact operators).

Then suppose that A and B are self-adjoint operators. If

RA(z) −RB(z) ∈ C(H) , (4.6.18)
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for one z ∈ ρ(A) ∩ ρ(B), then

σess(A) = σess(B) . (4.6.19)

Comparing the interacting and free operators,

τl = τ free
l + V (r) . (4.6.20)

From Theorem 4.6.1 and Hypothesis (H1), we then have

σess(τl) = σess
(
τ free

l

)
. (4.6.21)

The difference between the zeta functions ζ(s|τl) and ζ
(
s|τ free

l

)
can therefore depend

only on the discrete spectrum of the operators. This immediately implies that

ζ(s|τl) − ζ
(
s|τ free

l

)
=

∑
λi∈σd(τl)

αiλ
−s
i , (4.6.22)

where αi is the multiplicity of the ith eigenvalue. Using the Cauchy integral formula we

can write

αiλ
−s
i = 1

2πi

∮
Ci

αiz
−s

z − λi
dz , (4.6.23)

where the contour Ci encloses the eigenvalue λi. From the previous section we recognize

the asymptotic behavior of the Jost matrix function near an eigenvalue

d
dz ln(det(Fl(z))) ∼ αi

z − λi
, (z → λi),

so we can equivalently write the contour integral as

αiλ
−s
i = 1

2πi

∮
Ci

z−s d
dz ln(det(Fl(z))) dz , (4.6.24)

where it is to be understood that the contour Ci encloses only the eigenvalue λi. Sum-

ming over all eigenvalues then yields

ζ(s|τl) − ζ
(
s|τ free

l

)
= 1

2πi

∮
C
z−s d

dz ln(det(Fl(z))) dz , (4.6.25)
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z-plane

Figure 4.2: The contour C. Locations of eigenvalues are indicated by small circles on
the positive z axis.

where the contour C encloses all eigenvalues on the positive real axis, and is shown in

Figure 4.2 (we assume for now that there are no zero or negative eigenvalues).

In order to determine the full functional determinant ratio

ln
[

det
(
τ/µ2)

det(τ free/µ2)

]
=

∞∑
l=0

deg(d, l) ln
[

det
(
τl/µ

2)
det
(
τ free

l /µ2)
]
, (4.6.26)

we consider the zeta functions

ζ(s|τ) =
∞∑

l=0
deg(d, l) ζ(s|τl) , (4.6.27)

ζ
(
s|τ free

)
:=

∞∑
l=0

deg(d, l) ζ
(
s|τ free

l

)
. (4.6.28)

Using the contour integral representation of the zeta functions we then have

ζ(s|τ) − ζ
(
s|τ free

)
=

∞∑
l=0

deg(d, l) 1
2πi

∮
C
z−s d

dz ln(det(Fl(z))) dz . (4.6.29)

It is well known[102, pp. 12] (originally due to Weyl[120], but it is in German) that

this representation of the zeta functions converges only for Re(s) > d/2. We are of
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z-plane

Figure 4.3: Deformed contour C.

z-plane

Figure 4.4: Deformed contour C with neg-
ative eigenvalue shifted off of the negative
real axis.

course interested in the region around s = 0, so we need to analytically continue this

expression.

We first deform the contour so that it encompasses the negative real z-axis.

At this point we need to worry about any 0 or negative eigenvalues, since those would

make it impossible for us to deform the contour in such a way that it includes the

origin. For zero eigenvalues we can shift the spectrum by some small parameter ϵ > 0:

Fl(z) → Fl(z − ϵ). The zero eigenvalues are then placed at ϵ, and we can deform the

contour and take ϵ → 0 in the end (an algorithmic procedure for doing this is given

in Section 4.8). If there is a negative eigenvalue at z = −ω2 than one would shift

Fl(z) → Fl(z − iϵ), so that the contour can pass between the negative real axis and the

negative mode (now at ω2 + iϵ).

Assuming there are no zero or negative eigenvalues we then proceed to shift

the contour so that it passes just above the negative real z-axis, circles around the

origin, and then passes just below the negative real z-axis as shown in Figure 4.3 and
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Figure 4.4. The integration is done by including a small imaginary piece to z:

above cut :
∫ 0

−∞
(x+ iϵ)−s d

dx ln(det(Fl(x+ iϵ))) dx , (4.6.30)

below cut :
∫ −∞

0
(x− iϵ)−s d

dx ln(det(Fl(x− iϵ))) dx (4.6.31)

We then make a change of variables to x ≡ −λ, and being careful with the terms

lim
ϵ→0

(−λ+ iϵ)−s = λ−se−iπs, lim
ϵ→0

(−λ− iϵ)−s = λ−seiπs,

yields

ζ(s|τ) − ζ
(
s|τ free

)
=

∞∑
l=0

deg(d, l) sin(πs)
π

∫ ∞

0
λ−s d

dλ ln(det(Fl(−λ))) dλ . (4.6.32)

If we assumed that this representation converged for s = 0 we could take the

derivative with respect to s to find

ζ ′(0|τ) − ζ ′
(
0|τ free

)
= −

∞∑
l=0

deg(d, l) ln(det(Fl(0))).

This is the Gel’fand-Yaglom result for d = 1. Unfortunately this result is divergent for

d > 1, because the large l behavior of the Jost matrix function does not approach the

identity matrix quickly enough. In the next section we show that the large l behavior

of the Jost matrix function is Fl(z) ∼ 1+ O
(

1
l

)
. In order to regulate the zeta functions

we then add and subtract the asymptotic behavior of the Jost matrix functions

ζ(s|τ) − ζ
(
s|τ free

)
= ζfinite(s) + ζasymp(s) , (4.6.33)
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where

ζfinite(s) ≡
∞∑

l=0
deg(d, l) sin(πs)

π

∫ ∞

0
λ−s d

dλ tr
[
ln(Fl(−λ)) − ln

(
F asymp

l (−λ)
)]

dλ

(4.6.34)

ζasymp(s) ≡
∞∑

l=0
deg(d, l) sin(πs)

π

∫ ∞

0
λ−s d

dλ tr
[
ln
(
F asymp

l (−λ)
)]

dλ . (4.6.35)

This adding and subtracting of the asymptotic behavior of the Jost matrix function

is valid, since for sufficiently large s the series converges. We can then define the

asymptotic Jost matrix function so that the series ζfinite(s) converges for s = 0. The

term ζasymp(s) is then analytically continued to s = 0 using the Riemann zeta function,

which has a unique analytic continuation.

One very satisfying aspect of this regularization scheme is that there are no

counter terms. This is in contrast to other regularization schemes in QFT, which usually

require the addition of formally divergent counter terms to cancel the divergences coming

from perturbation theory. One may argue that the counter terms in zeta function

regularization have simply been swept into the Riemann zeta function (an implicit

subtraction scheme), which to some extent is true. However, because the Riemann zeta

function has a unique analytic continuation to the complex plane we see that these

divergent counter terms are in fact relics of our representation of the propagator (the

divergent sum over l in ζ(s|τ) and ζ
(
s|τ free

)
).

Most physicists are probably more familiar with dimensional regularization or

a cutoff regularization scheme, which are most often used in scattering problems. For

this reason we begin the next section with a brief review of regularization schemes,

and how to translate between different schemes. The reader can then use our results,
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derived using zeta function regularization, and easily translate them to their favorite

regularization scheme quite easily.

4.7 Regularization and Renormalization

4.7.1 Introduction

There are several methods to regulate and renormalize the functional determi-

nant of a self-adjoint operator. A particularly useful class of regularization techniques

go by the name generalized proper-time, or Schwinger, regularizations.

ln(det(A))(ϵ) = −
∫ ∞

0
dt t−1 gϵ(t) tr

[
e−tA

]
, (4.7.1)

where gϵ(t) is a suitable regularizing function used to control the small t (ultraviolet)

divergences of tr
[
e−tA

]
. The quantity tr

[
e−tA

]
is referred to as the global heat kernel,

and is often written with respect to its local counterpart

K(t|A) ≡ tr
[
e−tA

]

=
∫

M
dx tr[K(x, x; t|A)].

(4.7.2)

The local heat kernel K(x, x′; t|A) is the fundamental solution of the heat equation[102]

(
∂

∂t
+A

)
K
(
x, x′; t|A

)
= 0, (4.7.3)

BK
(
x, x′; t|A

) ∣∣∣∣
x∈∂M

= 0, (4.7.4)

lim
t→0

K
(
x, x′; t|A

)
= δ

(
x, x′) . (4.7.5)

For A a strongly elliptic second-order differential operator on a smooth compact Rie-

mannian manifold with a smooth boundary and local boundary conditions the global
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heat kernel has the following asymptotic expansion[102]

K(t|A) ∼
∞∑

n=0
Kn(A) t

n−d
2 , (t → 0). (4.7.6)

This small t behavior generically results in divergences that must be regulated in order

to construct a meaningful quantity for the functional determinant. To see this we break

the integral into two parts:

∫ ∞

0
dt t−1K(t|A) =

∫ 1

0
dt t−1K(t|A) +

∫ ∞

1
dt t−1K(t|A) . (4.7.7)

The integral over small values of t then results in

∫ 1

0
dt t−1K(t|A) ∼

∫ 1

0
dt

∞∑
n=0

Kn(A) t
n−d−2

2 , (t → 0). (4.7.8)

Interchanging the order of summation and integration the integral is divergent for all d >

0. A commonly used trick is to let d → d− 2ϵ, and evaluate the integral for sufficiently

large ϵ where the integral is convergent, then analytically continue to ϵ → 0 at the end.

This is clearly equivalent to choosing a regulator gϵ(t) = tϵ in (4.7.1), which defines

the analytic regularization scheme (more commonly referred to in perturbation theory

as dimensional regularization, or more briefly dim reg). This regularization scheme

generically leads to the well known 1/ϵ poles of perturbation theory. These divergences

are then subtracted by introducing local counter terms with the same divergence but of

opposite sign.

For A a nonnegative operator we use the Mellin transform of A−s,

A−s = 1
Γ(s)

∫ ∞

0
dt ts−1e−tA, (4.7.9)

to write the zeta function of the operator as

ζ(s|A) = 1
Γ(s)

∫ ∞

0
dt ts−1 tr

[
e−tA

]
. (4.7.10)
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We should also include a scale parameter µ with mass dimension 1, so that the argument

of the exponent in the global heat kernel is dimensionless (we make the same substitution

in (4.7.1)).

ζ
(
s|A/µ2

)
= 1

Γ(s)

∫ ∞

0
dt ts−1 tr

[
e−tµ−2A

]

= µ2s

Γ(s)

∫ ∞

0
dxxs−1 tr

[
e−xA

]

= µ2s ζ(s|A) .

(4.7.11)

This integral representation of the zeta function is also valid only for Re(s) > d/2,

which follows immediately from the small t asymptotic expansion of the global heat

kernel (4.7.6). However, what is now a standard argument[119] leads to a meromorphic

extension of the zeta function for all complex s:

Γ(s) ζ(s|A) =
∞∑

n=0

Kn(A)
s+ n−d

2
+ J(s) , (4.7.12)

where J(s) is a purely analytic function of s. The zeta function is then finite at s = 0,

and its value is

ζ(0|A) = Kd(A) . (4.7.13)

The derivative of the zeta function at s = 0 then also exists and is finite.

Choosing analytic regularization in (4.7.1), i.e. gϵ(t) = tϵ, we then have

ln
(
det
(
A/µ2

))
(ϵ) = − Γ(ϵ) ζ

(
ϵ|A/µ2

)

∼ −
(1
ϵ

− γ + 2 ln(µ)
)
ζ(0|A) − ζ ′(0|A) , (ϵ → 0).

(4.7.14)

The 1/ϵ term is the familiar logarithmic divergence that occurs in the renormalization

of perturbation theory, and which is removed by introducing local counter terms.
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Another important subclass of regularization schemes are those for which the

regularization function gϵ(t) admits a Mellin transform:

ĝϵ(s) =
∫ ∞

0
dt ts−1 gϵ(t) , (4.7.15)

gϵ(t) = 1
2πi

∫ c+i∞

c−i∞
ds t−s ĝϵ(s) . (4.7.16)

One can then write (4.7.1) as a complex integral involving ĝϵ(s) and the Mellin transform

of tr
[
e−tA

]
.

ln
(
det
(
A/µ2

))
(ϵ) = − 1

2πi

∫ c+i∞

c−i∞
ds ĝϵ(−s)µ2s Γ(s) ζ(s|A) . (4.7.17)

Of these the most common is the ultraviolet cutoff regularization scheme, defined by

gϵ(t) = Θ(t− ϵ). After a small amount of work one finds poles of the form ln(ϵ), ϵ−1, . . . , ϵ−d/2,

which correspond to the higher divergences in perturbation theory when regulating the

theory with a ultraviolet cutoff, e.g. Pauli-Villars. We will not make use of these

regularization schemes, as they are less common then analytic regularization.

Perhaps the most natural regularization scheme makes important use of the

observation that the zeta function is analytic in a neigborhood of s = 0. The choice of

regulator

gϵ(t) = d
dϵ

tϵ

Γ(ϵ) , (4.7.18)

defines the zeta function regularization scheme. With this choice we find

ln
(
det
(
A/µ2

))
(ϵ) = −

∫ ∞

0
dt t−1 d

dϵ
tϵ

Γ(ϵ) tr
[
e−tµ−2A

]

= − d
dϵ ζ

(
ϵ|A/µ2

)

∼ − ζ ′(0|A) − ln
(
µ2
)
ζ(0|A) , (ϵ → 0).

(4.7.19)
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Comparing the zeta function regularization scheme to the analytic regularization scheme

we see that

[
ln
(
det
(
A/µ2

))
(ϵ)
]

zeta
−
[
ln
(
det
(
A/µ2

))
(ϵ)
]

analytic
∼
(1
ϵ

− γ

)
ζ(0|A) , (ϵ → 0).

(4.7.20)

The remaining terms vanish in the limit ϵ → 0. We can then easily translate between

the zeta function regularization scheme and the analytic regularization scheme by in-

troducing local counter terms of the form

δSct =
(1
ϵ

− γ

)
ζ(0|A) . (4.7.21)

In perturbation theory this corresponds to a modified minimal subtraction scheme with

dimensional regularization. The relation to other subtraction schemes is then imme-

diate, since these differ only by including additional finite contributions to (4.7.21).

One recovers the MS scheme by letting m2
zeta = µ2

MSe
γ and the MS scheme by letting

µ2
zeta = 4πµ2

MS.

4.7.2 Zeta Function Regularization

Having included sufficiently many terms in the asymptotic expansion of the

Jost matrix function the zeta function ζfinite(s) is convergent in the neighborhood of

s = 0. The remaining term, ζasymp(s), is determined by reduction to Riemann zeta
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functions. The asymptotic Jost matrix function is defined as (in dimensions d ≤ 4)

ln
(
det
(
F asymp

l (−λ)
))

= 1
2ν

n∑
i=1

∫ ∞

0

Vii(r) r dr[
1 + k2

i r2

ν2

]1/2

+ 1
16ν3

n∑
i=1

∫ ∞

0

1 − 6
1 + k2

i r2

ν2

+ 5[
1 + k2

i r2

ν2

]2

 Vii(r) r dr[
1 + k2

i r2

ν2

]3/2

− 1
4ν3

n∑
i,j=1

∫ ∞

0

Vij(r)Vji(r) r3 dr[
1 + k2

i r2

ν2

][
1 + k2

j r2

ν2

]1/2
+
[
1 + k2

j r2

ν2

][
1 + k2

i r2

ν2

]1/2 , (4.7.22)

where ki ≡
√
λ+m2

i . For each term in the sums we compute the integrals over λ by

first making a change of variables to k =
√
λ+m2

i and using

∫ ∞

m

(
k2 −m2

)−s d
dk

[
1 + k2r2

ν2

]−p/2

dk =
sΓ(−s) Γ

(p
2 + s

)
Γ
(p

2
) r2s

ν2s
[
1 + m2r2

ν2

] p
2 +s

.

(4.7.23)

We organize the calculation into several pieces, as it is going to get rather complicated.

The last term in (4.7.22) needs to be massaged a little before we can perform the

integration over λ. Choose i and j such that mi ̸= mj , we then have

Vij(r)Vji(r)[
1 + k2

i r2

ν2

][
1 + k2

j r2

ν2

]1/2
+
[
1 + k2

j r2

ν2

][
1 + k2

i r2

ν2

]1/2

= Vij(r)Vji(r)[
1 + k2

i r2

ν2

]1/2[
1 + k2

j r2

ν2

]1/2
1[

1 + k2
i r2

ν2

]1/2
+
[
1 + k2

j r2

ν2

]1/2

= ν2 Vij(r)Vji(r)[
1 + k2

i r2

ν2

]1/2[
1 + k2

j r2

ν2

]1/2

[
1 + k2

i r2

ν2

]1/2
−
[
1 + k2

j r2

ν2

]1/2

(
m2

i −m2
j

)
r2

= ν2 Vij(r)Vji(r)(
m2

i −m2
j

)
r2
[
1 + k2

j r2

ν2

]1/2 − ν2 Vij(r)Vji(r)(
m2

i −m2
j

)
r2
[
1 + k2

i r2

ν2

]1/2

(4.7.24)
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When performing the sum over i and j these terms simply add together. Then denote the

set σ = {(i, j) | mi = mj} and its complement σ̄ = {(i, j) | i ∈ {1, . . . , n}, j ∈ {1, . . . , n}}\

σ. We then write (4.7.22) as

ln
(
det
(
F asymp

l (−λ)
))

= 1
2ν

n∑
i=1

∫ ∞

0

Vii(r) r dr[
1 + k2

i r2

ν2

]1/2

+ 1
16ν3

n∑
i=1

∫ ∞

0

1 − 6
1 + k2

i r2

ν2

+ 5[
1 + k2

i r2

ν2

]2

 Vii(r) r dr[
1 + k2

i r2

ν2

]3/2

− 1
8ν3

∑
(i,j)∈σ

∫ ∞

0

Vij(r)Vji(r) r3 dr[
1 + k2

i r2

ν2

]3/2 ,

− 1
2ν

∑
(i,j)∈σ̄

∫ ∞

0

Vij(r)Vji(r) r dr(
m2

i −m2
j

)[
1 + k2

j r2

ν2

]1/2 , (4.7.25)

The integrals over λ can then be done:

∫ ∞

mi

(
k2

i −m2
i

)−s d
dki

[
1 + k2

i r
2

ν2

]−1/2

= 1√
π

sΓ(−s) Γ
(
s+ 1

2

)
[
1 + m2

i r2

ν2

]s+ 1
2

(
r

ν

)2s

, (4.7.26a)

∫ ∞

mi

(
k2

i −m2
i

)−s d
dki

[
1 + k2

i r
2

ν2

]−3/2

= 2√
π

sΓ(−s) Γ
(
s+ 3

2

)
[
1 + m2

i r2

ν2

]s+ 3
2

(
r

ν

)2s

, (4.7.26b)

∫ ∞

mi

(
k2

i −m2
i

)−s d
dki

[
1 + k2

i r
2

ν2

]−5/2

= 4
3
√
π

sΓ(−s) Γ
(
s+ 5

2

)
[
1 + m2

i r2

ν2

]s+ 5
2

(
r

ν

)2s

, (4.7.26c)

∫ ∞

mi

(
k2

i −m2
i

)−s d
dki

[
1 + k2

i r
2

ν2

]−7/2

= 8
15

√
π

sΓ(−s) Γ
(
s+ 7

2

)
[
1 + m2

i r2

ν2

]s+ 7
2

(
r

ν

)2s

. (4.7.26d)
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The resulting expression for ζasymp(s) is

ζasymp(s) =
∞∑

l=0
deg(d, l) sin(πs)

π

∫ ∞

0
λ−s d

dλ tr
[
ln
(
F asymp

l (−λ)
)]

dλ

=
sin(πs)sΓ(−s) Γ

(
s+ 1

2

)
2π3/2

∞∑
l=0

deg(d, l)
ν2s+1

n∑
i=1

∫ ∞

0

Vii(r) r2s+1 dr[
1 + m2

i r2

ν2

]s+ 1
2

+
sin(πs)sΓ(−s) Γ

(
s+ 3

2

)
8π3/2

∞∑
l=0

deg(d, l)
ν2s+3

n∑
i=1

∫ ∞

0

Vii(r) r2s+1 dr[
1 + m2

i r2

ν2

]s+ 3
2

−
sin(πs)sΓ(−s) Γ

(
s+ 5

2

)
2π3/2

∞∑
l=0

deg(d, l)
ν2s+3

n∑
i=1

∫ ∞

0

Vii(r) r2s+1 dr[
1 + m2

i r2

ν2

]s+ 5
2

+
sin(πs)sΓ(−s) Γ

(
s+ 7

2

)
6π3/2

∞∑
l=0

deg(d, l)
ν2s+3

n∑
i=1

∫ ∞

0

Vii(r) r2s+1 dr[
1 + m2

i r2

ν2

]s+ 7
2

−
sin(πs)sΓ(−s) Γ

(
s+ 3

2

)
4π3/2

∞∑
l=0

deg(d, l)
ν2s+3

∑
(i,j)∈σ

∫ ∞

0

|Vij(r)|2r2s+3 dr[
1 + m2

i r2

ν2

]s+ 3
2

−
sin(πs)sΓ(−s) Γ

(
s+ 1

2

)
2π3/2

∞∑
l=0

deg(d, l)
ν2s+1

∑
(i,j)∈σ̄

∫ ∞

0

|Vij(r)|2r2s+1 dr(
m2

i −m2
j

)[
1 + m2

j r2

ν2

]s+ 1
2

(4.7.27)

Taking s to be sufficiently large so that the sums converge we can interchange

the order of summation and integration. We do this in a similar fashion as how we

have regulated the convergent part of the zeta function, by simultaneously adding and

subtracting the large l behavior. It is convenient to first introduce some notation:

ΣN,p
i (s, r) ≡

∞∑
l=0

deg(d, l)
ν2s+2N+1

[
1 + m2

i r
2

ν2

]−s−p− 1
2
, (4.7.28)

Ap(s, r) ≡
sin(πs)sΓ(−s) Γ

(
s+ p+ 1

2

)
π3/2 r2s. (4.7.29)
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Contained in these functions is all of the s dependence of the asymptotic zeta function.

The asymptotic zeta function can then be written in a slightly more compact form:

ζasymp(s) = 1
2

n∑
i=1

∫ ∞

0
Vii(r)A0(s, r) Σ0,0

i (s, r) r dr

+ 1
8

n∑
i=1

∫ ∞

0
Vii(r)A1(s, r) Σ1,1

i (s, r) r dr

− 1
2

n∑
i=1

∫ ∞

0
Vii(r)A2(s, r) Σ1,2

i (s, r) r dr

+ 1
6

n∑
i=1

∫ ∞

0
Vii(r)A3(s, r) Σ1,3

i (s, r) r dr

− 1
4
∑

(i,j)∈σ

∫ ∞

0
|Vij(r)|2A1(s, r) Σ1,1

i (s, r) r3 dr

+ 1
2
∑

(i,j)∈σ̄

∫ ∞

0

|Vij(r)|2

m2
i −m2

j

A0(s, r) Σ0,0
i (s, r) r dr .

(4.7.30)

Renormalizing the sum over l will depend on the dimension d, which we do by

explicitly setting d = 2, 3, 4:

d = 2:

The degeneracy factor is 1 if l = 0 and 2 if l > 0 and the order parameter ν = l. When

subtracting the asymptotic expansion of the Jost matrix function we do not include the

l = 0 term, essentially setting F asymp
0 (−λ) = 1. Only the N = p = 0 sum needs to be
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analytically continued.

Σ0,0
i (s, r) =

∞∑
l=1

2
l2s+1

(1 + m2
i r

2

l2

)−s− 1
2

− 1

+ 2 ζR (2s+ 1) , (4.7.31a)

Σ1,1
i (s, r) =

∞∑
l=1

2
l2s+3

[
1 + m2

i r
2

l2

]−s− 3
2
, (4.7.31b)

Σ1,2
i (s, r) =

∞∑
l=1

2
l2s+3

[
1 + m2

i r
2

l2

]−s− 5
2
, (4.7.31c)

Σ1,3
i (s, r) =

∞∑
l=1

2
l2s+3

[
1 + m2

i r
2

l2

]−s− 7
2
. (4.7.31d)

d = 3:

The degeneracy factor is 2l+ 1 and the order parameter ν = l+ 1
2 . Again, we only need

to analytically continue the N = p = 0 sum.

Σ0,0
i (s, r) =

∞∑
l=0

2l + 1(
l + 1

2

)2s+1


1 + m2

i r
2(

l + 1
2

)2


−s− 1

2

− 1

+ 2
(
22s − 1

)
ζR (2s) ,

(4.7.32a)

Σ1,1
i (s, r) =

∞∑
l=0

2l + 1(
l + 1

2

)2s+3

1 + m2
i r

2(
l + 1

2

)2


−s− 3

2

, (4.7.32b)

Σ1,2
i (s, r) =

∞∑
l=0

2l + 1(
l + 1

2

)2s+3

1 + m2
i r

2(
l + 1

2

)2


−s− 5

2

, (4.7.32c)

Σ1,3
i (s, r) =

∞∑
l=0

2l + 1(
l + 1

2

)2s+3

1 + m2
i r

2(
l + 1

2

)2


−s− 7

2

. (4.7.32d)

d = 4:

The degeneracy factor is (l + 1)2 and the order parameter ν = l + 1. In this case every
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sum needs to be analytically continued. There will be a great deal of cancellation in

the end though.

Σ0,0
i (s, r) =

∞∑
l=0

(l + 1)2

(l + 1)2s+1

(1 + m2
i r

2

(l + 1)2

)−s− 1
2

− 1 +
(
s+ 1

2

) m2
i r

2

(l + 1)2


+ ζR (2s− 1) −

(
s+ 1

2

)
m2

i r
2 ζR (2s+ 1) ,

(4.7.33a)

Σ1,1
i (s, r) =

∞∑
l=0

(l + 1)2

(l + 1)2s+3

(1 + m2
i r

2

ν2

)−s− 3
2

− 1

+ ζR (2s+ 1) , (4.7.33b)

Σ1,2
i (s, r) =

∞∑
l=0

(l + 1)2

(l + 1)2s+3

(1 + m2
i r

2

ν2

)−s− 5
2

− 1

+ ζR (2s+ 1) , (4.7.33c)

Σ1,3
i (s, r) =

∞∑
l=0

(l + 1)2

(l + 1)2s+3

(1 + m2
i r

2

ν2

)−s− 7
2

− 1

+ ζR (2s+ 1) . (4.7.33d)

The remaining sums over l are all convergent and finite as s → 0 for all d ≤ 4.

The prefactor term has the asymptotic behavior

Ap(s, r) ∼ −
Γ
(
p+ 1

2

)
√
π

s, (s → 0). (4.7.34)

Therefore, it is sufficient set s = 0 everywhere in ΣN,p
i (s, r) except the terms containing

factors of ζR (2s+ 1), because this Riemann zeta function has a pole as s → 0:

ζR (2s+ 1) ∼ 1
2s + γ, (s → 0). (4.7.35)

It is convenient to factor off this pole term with

ΣN,p
i (s, r) = ΣN,p

pole,i(s, r) + ΣN,p
f,i (s, r) . (4.7.36)

The factored sums are then given by

d = 2:

Σ0,0
pole,i(s, r) = 1

s
, Σ1,1

pole,i(s, r) = Σ1,2
pole,i(s, r) = Σ1,3

pole,i(s, r) = 0, (4.7.37)
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Σ0,0
f,i (s, r) =

∞∑
l=1

2
l2s+1

(1 + m2
i r

2

l2

)−s− 1
2

− 1

+ 2 ζR (2s+ 1) − 1
s
, (4.7.38a)

Σ1,1
f,i (s, r) =

∞∑
l=1

2
l2s+3

[
1 + m2

i r
2

l2

]−s− 3
2
, (4.7.38b)

Σ1,2
f,i (s, r) =

∞∑
l=1

2
l2s+3

[
1 + m2

i r
2

l2

]−s− 5
2
, (4.7.38c)

Σ1,3
f,i (s, r) =

∞∑
l=1

2
l2s+3

[
1 + m2

i r
2

l2

]−s− 7
2
. (4.7.38d)

d = 3:

Σ0,0
pole,i(s, r) = Σ1,1

pole,i(s, r) = Σ1,2
pole,i(s, r) = Σ1,3

pole,i(s, r) = 0, (4.7.39)

Σ0,0
f,i (s, r) =

∞∑
l=0

2l + 1(
l + 1

2

)2s+1


1 + m2

i r
2(

l + 1
2

)2


−s− 1

2

− 1

+ 2
(
22s − 1

)
ζR (2s) ,

(4.7.40a)

Σ1,1
f,i (s, r) =

∞∑
l=0

2l + 1(
l + 1

2

)2s+3

1 + m2
i r

2(
l + 1

2

)2


−s− 3

2

, (4.7.40b)

Σ1,2
f,i (s, r) =

∞∑
l=0

2l + 1(
l + 1

2

)2s+3

1 + m2
i r

2(
l + 1

2

)2


−s− 5

2

, (4.7.40c)

Σ1,3
f,i (s, r) =

∞∑
l=0

2l + 1(
l + 1

2

)2s+3

1 + m2
i r

2(
l + 1

2

)2


−s− 7

2

. (4.7.40d)

d = 4:

Σ0,0
pole,i(s, r) = −m2

i r
2

4s , Σ1,1
pole,i(s, r) = Σ1,2

pole,i(s, r) = Σ1,3
pole,i(s, r) = 1

2s, (4.7.41)
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Σ0,0
f,i (s, r) =

∞∑
l=0

(l + 1)2

(l + 1)2s+1

(1 + m2
i r

2

(l + 1)2

)−s− 1
2

− 1 +
(
s+ 1

2

)
+ m2

i r
2

(l + 1)2


+ ζR (2s− 1) −

(
s+ 1

2

)
m2

i r
2 ζR (2s+ 1) + m2

i r
2

4s ,

(4.7.42a)

Σ1,1
f,i (s, r) =

∞∑
l=0

(l + 1)2

(l + 1)2s+3

(1 + m2
i r

2

ν2

)−s− 3
2

− 1

+ ζR (2s+ 1) − 1
2s, (4.7.42b)

Σ1,2
f,i (s, r) =

∞∑
l=0

(l + 1)2

(l + 1)2s+3

(1 + m2
i r

2

ν2

)−s− 5
2

− 1

+ ζR (2s+ 1) − 1
2s, (4.7.42c)

Σ1,3
f,i (s, r) =

∞∑
l=0

(l + 1)2

(l + 1)2s+3

(1 + m2
i r

2

ν2

)−s− 7
2

− 1

+ ζR (2s+ 1) − 1
2s. (4.7.42d)

By construction, the sum over l in ζfinite(s) converges for s = 0. Because of

the sin(πs) prefactor we then have ζfinite(0) = 0. The contribution to the renormalized

zeta function then comes entirely from ζasymp(0), which itself comes only from the pole

terms. Expanding the prefactor to one higher order

Ap(s, r) ∼ −
Γ
(
p+ 1

2

)
s

√
π

[
1 +

(
ln
(
r2
)

+H
p− 1

2

)
s

]
, (s → 0), (4.7.43)

where HN is the N th harmonic number. We then have

Ap(r, s) ΣN,p
f,i (r, s) ∼ −

Γ
(
p+ 1

2

)
√
π

sΣN,p
f,i (r, 0) , (s → 0). (4.7.44)

This holds in any dimension d.

Next we calculate the pole terms for d = 2, 3, 4:
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d = 2:

A0(s, r) Σ0,0
pole,i(s, r) ∼ −1 − 2 ln

(
r

2

)
s, (s → 0), (4.7.45a)

A1(s, r) Σ1,1
pole,i(s, r) = 0, (4.7.45b)

A2(s, r) Σ1,2
pole,i(s, r) = 0, (4.7.45c)

A3(s, r) Σ1,3
pole,i(s, r) = 0. (4.7.45d)

d = 3:

Ap(s, r) ΣN,p
pole,i(s, r) = 0. (4.7.46)

d = 4:

A0(s, r) Σ0,0
pole,i(s, r) ∼ m2

i r
2

4

[
1 + 2 ln

(
r

2

)
s

]
, (4.7.47a)

A1(s, r) Σ1,1
pole,i(s, r) ∼ −1

4

[
1 + 2

(
ln
(
r

2

)
+ 1

)
s

]
, (4.7.47b)

A2(s, r) Σ1,2
pole,i(s, r) ∼ −3

8

[
1 + 2

(
ln
(
r

2

)
+ 4

3

)
s

]
, (4.7.47c)

A3(s, r) Σ1,3
pole,i(s, r) ∼ −15

16

[
1 + 2

(
ln
(
r

2

)
+ 23

15

)
s

]
, (4.7.47d)

Finally, for d = 2, 3, 4 we substitute the small s asymptotic behavior ofAp(s, r) ΣN,p
i (s, r)

into (4.7.30).
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d = 2:

ζasymp(s) ∼ −1
2

n∑
i=1

∫ ∞

0
Vii(r) r dr − s

∞∑
i=1

∫ ∞

0
Vii(r)

[
γ + ln

(
r

2

)]
r dr

− s
n∑

i=1

∫ ∞

0
Vii(r)

∞∑
l=1

1
l

(1 + m2
i r

2

l2

)− 1
2

− 1

r dr

− s

8

n∑
i=1

∫ ∞

0
Vii(r)

∞∑
l=1

1
l3

[
1 + m2

i r
2

l2

]− 3
2
r dr

+ 3s
4

n∑
i=1

∫ ∞

0
Vii(r)

∞∑
l=1

1
l3

[
1 + m2

i r
2

l2

]− 5
2
r dr

− 5s
8

n∑
i=1

∫ ∞

0
Vii(r)

∞∑
l=1

1
l3

[
1 + m2

i r
2

l2

]− 7
2
r dr

+ s

4
∑

(i,j)∈σ

∫ ∞

0
|Vij(r)|2

∞∑
l=1

1
l3

[
1 + m2

i r
2

l2

]− 3
2
r3 dr

− s
∑

(i,j)∈σ̄

∫ ∞

0

|Vij(r)|2

m2
i −m2

j

∞∑
l=1

1
l

(1 + m2
i r

2

l2

)− 1
2

− 1

r dr .

(4.7.48)
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d = 3:

ζasymp(s) ∼ −s
n∑

i=1

∫ ∞

0
Vii(r)

∞∑
l=0


1 + m2

i r
2(

l + 1
2

)2


− 1

2

− 1

r dr

− s

8

n∑
i=1

∫ ∞

0
Vii(r)

∞∑
l=0

1(
l + 1

2

)2

1 + m2
i r

2(
l + 1

2

)2


− 3

2

r dr

+ 3s
4

n∑
i=1

∫ ∞

0
Vii(r)

∞∑
l=0

1(
l + 1

2

)2

1 + m2
i r

2(
l + 1

2

)2


− 5

2

r dr

− 5s
8

n∑
i=1

∫ ∞

0
Vii(r)

∞∑
l=0

1(
l + 1

2

)2

1 + m2
i r

2(
l + 1

2

)2


− 7

2

r dr

+ s

4
∑

(i,j)∈σ

∫ ∞

0
|Vij(r)|2

∞∑
l=0

1(
l + 1

2

)2

1 + m2
i r

2(
l + 1

2

)2


− 3

2

r3 dr

− s
∑

(i,j)∈σ̄

∫ ∞

0

|Vij(r)|2

m2
i −m2

j

∞∑
l=0


1 + m2

i r
2(

l + 1
2

)2


− 1

2

− 1

r dr .

(4.7.49)
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d = 4:

ζasymp(s) ∼ 1
8

n∑
i=1

∫ ∞

0
Vii(r)m2

i r
3 dr + 1

16

n∑
i,j=1

∫ ∞
|Vij(r)|2r3 dr

+ s

4

∞∑
i=1

∫ ∞

0
Vii(r)m2

i

[
1 + γ + ln

(
r

2

)]
r3 dr

+ s

8

n∑
i,j=1

∫ ∞

0
|Vij(r)|2

[
1 + γ + ln

(
r

2

)]
r3 dr ,

− s

2

∞∑
i=1

∫ ∞

0
Vii(r)

∞∑
l=0

(l + 1)

(1 + m2
i r

2

(l + 1)2

)− 1
2

− 1 + m2
i r

2

2(l + 1)2

r dr

− s

16

n∑
i=1

∫ ∞

0
Vii(r)

∞∑
l=0

1
l + 1

(1 + m2
i r

2

(l + 1)2

)− 3
2

− 1

r dr

+ 3s
8

n∑
i=1

∫ ∞

0
Vii(r)

∞∑
l=0

1
l + 1

(1 + m2
i r

2

(l + 1)2

)− 5
2

− 1

r dr

− 5s
16

n∑
i=1

∫ ∞

0
Vii(r)

∞∑
l=0

1
l + 1

(1 + m2
i r

2

(l + 1)2

)− 7
2

− 1

r dr

+ s

8
∑

(i,j)∈σ

∫ ∞

0
|Vij(r)|2

∞∑
l=0

1
l + 1

(1 + m2
i r

2

(l + 1)2

)− 3
2

− 1

r3 dr

− s

2
∑

(i,j)∈σ̄

∫ ∞

0

|Vij(r)|2

m2
i −m2

j

∞∑
l=0

(l + 1)

(1 + m2
i r

2

(l + 1)2

)− 1
2

− 1 + m2
i r

2

2(l + 1)2

r dr

(4.7.50)

We then have the results

ζ(0|τ) − ζ
(
0|τ free

) ∣∣∣∣
d=2

= −1
2

∫ ∞

0
tr[V (r)]r dr , (4.7.51)

ζ(0|τ) − ζ
(
0|τ free

) ∣∣∣∣
d=3

= 0, (4.7.52)

ζ(0|τ) − ζ
(
0|τ free

) ∣∣∣∣
d=4

= 1
16

∫ ∞

0
tr
[
V 2(r) + 2V (r)M2

]
r3 dr . (4.7.53)
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The derivatives are also easily calculated. We first note that because ζfinite(s) is regular

at s = 0 we immediately have

ζ ′
finite(0) =

∞∑
l=0

deg(d, l)
∫ ∞

0

d
dλ tr

[
ln(Fl(−λ)) − ln

(
F asymp

l (−λ)
)]

dλ

= −
∞∑

l=0
deg(d, l) tr

[
ln(Fl(0)) − ln

(
F asymp

l (0)
)]
.

(4.7.54)

We then see that, in ζ ′
finite(0), every term coming from tr

[
ln
(
F asymp

l (0)
)]

cancels

with an identical term in ζ ′
asymp(0). After cancelling all of these terms we have the result

for the derivative of the zeta functions:

d = 2:

ζ ′(0|τ) − ζ ′
(
0|τ free

)
= − tr[ln(F0(0))] − 2

∞∑
l=1

tr
[
ln(Fl(0)) − 1

2l

∫ ∞

0
V (r) r dr

]

−
∫ ∞

0
tr[V (r)]

[
γ + ln

(
r

2

)]
r dr . (4.7.55)

d = 3:

ζ ′(0|τ) − ζ ′
(
0|τ free

)
= −

∞∑
l=0

(2l + 1) tr

ln(Fl(0)) − 1
2
(
l + 1

2

) ∫ ∞

0
V (r) r dr

. (4.7.56)

d = 4:

ζ ′(0|τ) − ζ ′
(
0|τ free

)
= −

∞∑
l=0

(l + 1)2tr
[

ln(Fl(0)) − 1
2(l + 1)

∫ ∞

0
V (r) r dr

+ 1
8(l + 1)3

∫ ∞

0
V (r)

[
V (r) + 2M2

]
r3 dr

]

+ 1
8

∫ ∞

0
tr
[
V 2(r) +M2 V (r)

][
1 + γ + ln

(
r

2

)]
r3 dr . (4.7.57)

Finally, combining the above expressions with the renormalization involving

ζasymp(0) yields the results in Theorem 4.1.1. We also note that since

Fl(z) = lim
r→∞

[
U free

0,l (r; z)
]−1

U0,l(r; z) ,
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we can just as easily define

Tl(r; z) ≡
[
U free

0,l (r; z)
]−1

U0,l(r; z) , (4.7.58)

and then have

Fl(z) = lim
r→∞

Tl(r; z) . (4.7.59)

Setting z = 0, it is not difficult to show that this matrix function Tl(r) obeys (4.1.18).

Because both U free
0,l (r) and U0,l(r) grow exponentially fast as r → ∞, it is better to

numerically solve for Tl(r), rather than the principal solutions U0,l(r). The proof of

Theorem 4.1.1 is now complete.

4.8 Zero Modes

In many physical applications the functional determinant contains zero modes.

Specifically, for some angular momentum quantum number the unregulated functional

determinant

det(τl)
det
(
τ free

l

) = 0.

For instance, in vacuum-to-vacuum transition amplitude calculations such as bubble nu-

cleation rates, sphaleron rates, and instanton tunnelling amplitudes, zero modes occur

due to the background field configuration breaking translation invariance. These zero

modes are not eigenvalues of the Hamiltonian of the quantum system, instead they are

artifacts that result from fixing the coordinate system when solving for the background

configuration. When expanding the classical action around a soliton or soliton-like back-

ground configuration we typically choose the soliton to be centered at the origin. In the
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path integral formulation of QFT however, we are instructed to (functionally) integrate

over all field configurations, so we must also integrate over the collective coordinates

that defines the center of soliton. This integration over collective coordinates results in

a prefactor in the transition rate proportional to some power of the classical action, and

formally removes the zero modes (we have indicated the removal of zero modes in the

functional determinant with a prime).

A naive application of our Gel’fand-Yaglom formula still results in zero modes

for the above mentioned scenarios, because constructing the matrix potential V (r) nec-

essarily involves fixing the center of the soliton-like background configuration. We there-

fore must remove these zero modes by hand, and we devote this section to developing a

general procedure for doing so in arbitrary dimensions d and coupled equations n.

First, we note that for the case being considered the manifold M = Rd, and

the degeneracy of the l = 1 partial wave is

deg(1, d) =

0 d = 1

d d > 1
. (4.8.1)

With the exception of the d = 1 case (where exact analytic results can be determined

anyways) the degeneracy of the partial wave components exactly matches the number

of broken symmetries of a soliton-like background (d broken symmetries from broken

translation invariance in d dimensions). Therefore, in most cases the l = 1 partial wave

component of the functional determinant saturates the number of broken symmetries.

Translated into our Gel’fand-Yaglom formalism this corresponds to the Jost matrix

function

Fl(0) = lim
R→∞

Tl(R)
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having one, and only one, column of zeros in some basis. In this case it is obvious that

shifting the differential operator by some small factor k2 results in

det
(
τl + k2)

det
(
τ free

l + k2) ∼ k2 det′(τl)
det
(
τ free

l

) , (
k2 → 0

)
. (4.8.2)

This simply shifts the eigenvalue of the zero mode to −k2. If more than one zero mode

exists in the lth partial wave component than one simply expands around small k2 until

a nonvanishing term is found. For us, we will assume there is only one zero mode

(multiplied by the degeneracy factor of the lth partial wave). Taylor expanding our

Gel’fand-Yaglom formula around small k2 then yields

det
(
τl + k2)

det
(
τ free

l + k2) ∼ lim
R→∞

det(Tl(R)) + k2 d
dk2 det

(
Tl

(
R; −k2

))∣∣∣∣
k2→0

,
(
k2 → 0

)
.

(4.8.3)

We can then use Jacobi’s formula for the derivative of a finite dimensional determinant

d
dt det(A(t)) = tr

[
adj(A(t)) dA(t)

dt

]
, (4.8.4)

and the definition of the matrix function Tl(r; z),

Tl(r; z) =
[
U free

0,l (r; z)
]−1

U0,l(r; z) ,

to write the asymptotic behavior of the zero mode determinant as

det
(
τl + k2)

det
(
τ free

l + k2) ∼ lim
R→∞

k2 1
det
(
U free

0,l (R)
)

× tr
[
adj(U0,l(R)) d

dk2 U0,l

(
R; −k2

)]∣∣∣∣
k2=0

,
(
k2 → 0

)
. (4.8.5)

Here, adj(M) is the adjugate matrix of the matrix M and we have ignored the derivatives

of U free
0,l

(
R; −k2) because they vanish. We then use a Volterra integral representation of
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the interacting solutions to expand around small k2:

U0,l

(
r; −k2

)
= U0,l(r)

×
[
1+ k2

∫ r

0

∫ r

t

[
U †

0,l(s)U0,l(s)
]−1

U †
0,l(t)U0,l

(
t; −k2

)
s1−dtd−1 ds dt

]
, (4.8.6)

which is valid because U0,l(r) is a principal solution near r = 0 (note that this integral

representation of the solution differs from that of (4.3.45), specifically there is no refer-

ence to the free solutions or the matrix potential V (r)). This can be solved iteratively

for small k2, taking only the leading order and next to leading order terms yields

U0,l

(
r; −k2

)
∼ U0,l(r)

×
[
1+ k2

∫ r

0

∫ r

t

[
U †

0,l(s)U0,l(s)
]−1

U †
0,l(t)U0,l(t) s1−dtd−1 dsdt

]
,
(
k2 → 0

)
. (4.8.7)

We can then approximate the determinant ratio for small k2 as

det
(
τl + k2)

det
(
τ free

l + k2) ∼ lim
R→∞

k2 det(U0,l(R))
det
(
U free

0,l (R)
)

× tr
[∫ R

0

∫ R

t

[
U †

0,l(s)U0,l(s)
]−1

U †
0,l(t)U0,l(t) s1−dtd−1 ds dt

]
,
(
k2 → 0

)
. (4.8.8)

We see that the small k2 behavior of the determinant ratio is a modified version of the

k2 = 0 determinant ratio. Since we have assumed that this partial wave component has

a zero mode, the prefactor term

lim
R→∞

det(U0,l(R))
det
(
U free

0,l (R)
) = 0.

The trace term in (4.8.8) must then contain a piece that diverges as R → ∞ that

balances the decay of the k2 = 0 determinant ratio. To simplify the integral in (4.8.8) we
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use the matrix identities (4.3.31). After a substantial amount of algebra, and dropping

terms that vanish, we find

det
(
τl + k2)

det
(
τ free

l + k2) ∼ −k2 lim
R→∞

tr
[
adj(U0,l(R))U∞,l(R)

∫ R
0 U †

0,l(t)U0,l(t) td−1 dt
]

det
(
U free

0,l (R)
) ,

(
k2 → 0

)
. (4.8.9)

In order to proceed we must specify the components of U0,l(r) which satisfy

the Friedrichs boundary conditions. We construct a complete set of vector solutions as

f
(i)
l (r) := U0,l(r) ζi, f̄

(i)
l (r) := U∞,l(r) ζi, (4.8.10)

where the ζi form a complete basis on Cn. Without loss of generality we can assume

that the ζi are real and orthonormal:

⟨ζi, ζj⟩ = ζ†
i ζj = δi

j . (4.8.11)

We then further assume that

f
(1)
l (r) = U0,l(r) ζ1

is the only solution that satisfies the Friedrichs boundary conditions. This solution is

easily found by using standard numerical methods to solve the boundary value problem

[
−r1−d ∂

∂r
rd−1 ∂

∂r
+ l(l + d− 2)

r2 +M2 + V (r)
]
f

(1)
l (r) = 0. (4.8.12)

The unit vector ζ1 is then determined uniquely by

ζ1 = lim
r→0

r−l f
(1)
l (r) . (4.8.13)

The remaining ζi can then be constructed arbitrarily, with the requirement that ⟨ζi, ζj⟩ =

δi
j .

201



We then expand the trace term in (4.8.9) in this ζ-basis:

tr
[
adj(U0,l(r))U∞,l(r)

∫ r

0
U †

0,l(t)U0,l(t) td−1 dt
]

=
n∑

i=1

n∑
j=1

ζ†
i adj(U0,l(r))U∞,l(r) ζj

∫ r

0
ζ†

j U
†
0,l(t)U0,l(t) ζit

d−1 dt . (4.8.14)

This can be rewritten in terms of the vector solutions f (i)
l (r) and f̄

(i)
l (r)

tr
[
adj(U0,l(r))U∞,l(r)

∫ r

0
U †

0,l(t)U0,l(t) td−1 dt
]

=
n∑

i=1

n∑
j=1

ζ†
i adj(U0,l(r)) f̄

(j)
l (r)

∫ r

0
f

(j)†
l (t) f (i)

l (t) td−1 dt . (4.8.15)

Because of the factor of det
(
U free

0,l (R)
)

in the denominator of (4.8.9), which diverges in

the limit that R → ∞, we only need to keep the terms that diverge in the large r limit

in (4.8.15). The only term in the sum that satisfies this requirement is the i = j = 1

term, therefore

det
(
τl + k2)

det
(
τ free

l + k2) ∼ −k2 lim
R→∞

ζ†
1adj(U0,l(R)) f̄ (1)

l (R)
∫ R

0 f
(1)†
l (t) f (1)

l (t) td−1 dt
det
(
U free

0,l (R)
) ,

(
k2 → 0

)
. (4.8.16)

We can further simplify this by introducing a new matrix function H+
l (r) through

H+
l (r) ζ1 := f̄

(1)
l (r) , H+

l (r) ζi := f
(i)
l (r) , i ̸= 1. (4.8.17)

This matrix function has a simple interpretation: its columns in the ζ-basis are just the

columns of U0,l(r), with the first column replaced by f̄ (1)
l (r) (in U0,l(r) the first column

in the ζ-basis is the zero mode solution f (1)
l (r)). The adjugate term can then be written

(this is a simple relationship found from the definition of the adjugate matrix)

ζ†
1adj(U0,l(r)) f̄

(1)
l (r) = det

(
H+

l (r)
)
. (4.8.18)
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The asymptotic behavior of this matrix function is immediately apparent:

H+
l (r) ∼ U free

0,l (r)H+
l , (r → ∞), (4.8.19)

where the constant matrix H+
l is guaranteed to be nonsingular, since by assumption

the zero mode solution f
(1)
l (r) is not contained in H+

l (r) and the columns of H+
l (r)

are linearly independent. The zero mode determinant ratio has now been simplified

substantially to

det
(
τl + k2)

det
(
τ free

l + k2) ∼ −k2 lim
R→∞

det
(
H+

l (R)
)

det
(
U free

0,l (R)
) ∫ R

0
f

(1)†
l (t) f (1)

l (t) td−1 dt ,
(
k2 → 0

)
.

(4.8.20)

The determinant ratio with zero modes removed then follows immediately from (4.8.2):

det′(τl)
det
(
τ free

l

) = − det
(
H

+
l

) ∫ ∞

0
f

(1)†
l (r) f (1)

l (r) rd−1 dr . (4.8.21)

We still need to determine the constant matrix H+
l , which fortunately is not

difficult given the zero mode solution f
(1)
l (r) and the matrix solution Tl(r), which we

assume have been determined numerically or by some other means. We begin by con-

structing an orthogonal matrix Ω from the unit vectors ζi:

e†
i Ωej = [ζj ]i, (4.8.22)

where the ei are the standard unit vectors on Rn:

[ei]j = δij . (4.8.23)

In plain language the columns of Ω in the e-basis are simply the units vectors ζi. We
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can then write two matrix solutions (written in block diagonal notation)

H+
l (r) = U0,l(r) Ω

0
1

Ω⊺ + U∞,l(r) Ω
1

0

Ω⊺
, (4.8.24a)

H−
l (r) = U0,l(r) Ω

1
0

Ω⊺ + U∞,l(r) Ω
0

1

Ω⊺
, (4.8.24b)

where H+
l (r) is the same matrix function we have already introduced.

Theorem 4.8.1. The large r asymptotic behavior of the matrix solutions H+
l (r) and

H−
l (r) is given by

H+
l (r) ∼ U free

0,l (r)H+
l , (r → ∞), (4.8.25)

H−
l (r) ∼ U free

∞,l (r)H−
l , (r → ∞), (4.8.26)

for some nonsingular matrices H+
l and H−

l .

Proof. From (4.3.31) we have

ζ†
i {Y∞,l, Y0,l}ζj = rd−1

[
∂f (i)†

∂r
f̄

(j)
l − f

(i)†
l

∂f̄ (j)

∂r

]
= δij . (4.8.27)

For i ̸= 1 the vector solutions f
(i)
l (r) are regular at r = 0, but cannot be square

integrable, since by assumption f
(1)
l (r) is the only zero mode. These solutions must

then have the asymptotic behavior

f
(i)
l (r) ∼ U free

0,l (r; z) ai, i ̸= 1, (r → ∞), (4.8.28)

for some constant nonvanishing vectors ai. The complementary vector solution to the

zero mode has to be some linear combination of the free solutions as r → ∞:

f̄
(1)
l (r) ∼ U free

0,l (r) b1 + U free
∞,l (r) c1, (r → ∞). (4.8.29)
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The zero mode must have asymptotic behavior

f
(1)
l (r) ∼ U free

∞,l (r) a1, (r → ∞), (4.8.30)

since this solution is square integrable by assumption. But then (4.8.27) shows that

a†
1b1 = −1, (4.8.31)

so b1 cannot vanish. Then, from (4.8.24a)

f̄
(1)
l (r) = H+

l (r) ζ1, f
(i)
l (r) = H+

l (r) ζi, i ̸= 1, (4.8.32)

we have the following asyptotic behavior for H+
l (r):

H+
l (r) ζ1 ∼ U free

0,l (r) b1, H+
l (r) ζi ∼ U free

0,l (r) ai, i ̸= 1, (4.8.33)

Because the unit vectors ζi form a complete basis this shows that H+
l must be nonsin-

gular, since neither b1 nor any of the ai can be zero for i ̸= 1.

Defining the 2n× n first order system matrix solutions Y +
l (r) and Y −

l (r) as

Y +
l (r) :=

 H+
l (r)

rd−1 ∂
∂r H

+
l (r)

, (4.8.34a)

Y −
l (r) :=

 H−
l (r)

rd−1 ∂
∂r H

−
l (r)

, (4.8.34b)

we have the constant matrix

{
Y +

l , Y −
l

}
= rd−1

[
∂H−†

l

∂r
H+

l −H−†
l

∂H+
l

∂r

]
= Ω

1
−1

Ω⊺
. (4.8.35)

The matrix solution H−
l (r) must be some linear combination of the free solutions as

r → ∞:

H−
l (r) ∼ U free

0,l (r)A+ U free
∞,l (r)H−

l , (r → ∞). (4.8.36)
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But then taking the limit r → ∞ of (4.8.35) shows that

H
−†
l H

+
l = Ω

−1
1

Ω⊺
. (4.8.37)

Since H+
l has already been shown to be nonsingular we can invert it to give

H
−†
l = Ω

−1
1

Ω⊺
[
H

+
l

]−1
. (4.8.38)

Taking the determinant of H−
l then completes the proof, since

det
(
H

−†
l

)
= det

(
Ω
−1

1

Ω⊺
[
H

+
l

]−1
)

= − 1
det
(
H

+
l

) ̸= 0. (4.8.39)

We can now explicitly construct the ratio of determinants with the zero modes

removed. To do so we introduce a new set of vectors from the results of Theorem 4.8.1:

ξi := H
+
l ζi, ξ̄i := H

−
l ζi. (4.8.40)

These ξi also form a complete basis on Rn, since

n∑
i=1

ξiξ
†
i = H

+
l

n∑
i=1

ζiζ
†
iH

+†
l = H

+
l H

+†
l . (4.8.41)

From Theorem 4.8.1 we have det
(
H

+
l

)
̸= 0, so

det
(
ξiξ

†
i

)
̸= 0, (4.8.42)

therefore the n× n constant matrix ξiξ
†
i must be full rank, immediately implying that

the ξi are all linearly independent. If we can determine these vectors we will immediately

have the result, since

det
(
H

+
l

)
= det

(
Ω⊺
H

+
l Ω
)
, (4.8.43)
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and the components of this transformed matrix are

[
Ω⊺
H

+
l Ω
]

ij
= e†

i Ω
⊺
H

+
l Ωej = ζ†

i ξj . (4.8.44)

Assuming we have already solved for the matrix solution Tl(r) a numerically

stable way of determining the ξi comes from

ξi = lim
r→∞

Tl(r) ζi, i ̸= 1. (4.8.45)

However, we cannot determine ξ1 in this manner since

lim
r→∞

Tl(r) ζ1 = lim
r→∞

[
U free

0,l (r)
]−1

U0,l(r) ζ1 = lim
r→∞

[
U free

0,l (r)
]−1

U free
∞,l (r) ξ̄1 = 0. (4.8.46)

Instead, we can determine ξ̄1 and hope that we can determine ξ1 from this knowledge.

In this case it is better to first numerically solve for the zero mode f (1)
l (r), and then use

ξ̄1 = lim
r→∞

[
U free

∞,l (r)
]−1

f
(1)
l (r) . (4.8.47)

Then, from (4.8.35) we have the following relationship:

ξ̄†
i ξj =

−1 if i = j = 1

δij else
. (4.8.48)

We can then write ξ1 as

ξ1 = − ξ̄1∥∥∥ξ̄1
∥∥∥2 + v⊥, (4.8.49)

where v⊥ is some vector in Rn such that ξ̄†
1v⊥ = 0. But since the ξi form a complete

basis this vector v⊥ can be written as

v⊥ =
n∑

i=1
ciξi. (4.8.50)
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Then again using (4.8.48) it is trivial to show the ci = 0 for all i. The full set of vectors

is then

ξ1 = − ξ̄1∥∥∥ξ̄1
∥∥∥2 , (4.8.51a)

ξi lim
r→∞

Tl(r) ζi, i ̸= 1. (4.8.51b)

We state the final result in the following theorem:

Theorem 4.8.2. Assume that there exists one solution of τlu = 0 that obeys the

Friedrichs boundary conditions in the lth partial wave expansion. The ratio of func-

tional determinants for this mode with zero mode removed is given by

det′(τl)
det
(
τ free

l

) = − det
(
H

+
l

) ∫ ∞

0
f

(1)†
l (r) f (1)

l (r) rd−1 dr , (4.8.52)

where f (1)
l (r) is the square integrable solution of

τl f
(1)
l (r) = 0,

which obeys the Friedrichs boundary conditions and the constant matrix H+
l has com-

ponents equal to [
Ω⊺
H

+
l Ω
]i

j
= ζ†

i ξj .

The orthonormal unit vectors ζi are constructed from the zero mode solution by

ζ1 = lim
r→0

r−l f
(1)
l (r) ,

ζ†
i ζj = δij ,

which further defines the orthogonal transformation matrix Ω through

Ωi
j = [ζj ]i.
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Finally, the vectors ξi are constructed from

ξ̄1 = lim
r→∞

[
U free

∞,l (r)
]−1

f
(1)
l (r) ,

ξ1 = − ξ̄1∥∥∥ξ̄1
∥∥∥2 ,

ξi = lim
r→∞

Tl(r) ζi, i ̸= 1,

where Tl(r) is the matrix solution of

d2Tl

dr2 +
[
d− 1
r

+ 2
[
U free

0,l (r)
]−1 dU free

0,l (r)
dr

]
dTl

dr −
[
U free

0,l (r)
]−1

V (r)U free
0,l (r)Tl = 0,

Tl(0) = 1,
dTl(r)

dr

∣∣∣∣
r=0

= 0

4.9 Conclusion

Our results are summarized in Theorem 4.1.1, with an additional algorithm

for removing zero modes given by Theorem 4.8.2. Our results generalize some special

cases previously found for functional determinants of radial operators[104–106]. What

has been derived is a Gel’fand-Yaglom formula for spherically symmetric matrix elliptic

operators in 2, 3, and 4 dimensions. We have regulated and renormalized the theory us-

ing zeta function regularization, and given a translation to other regularization schemes

(most notably dimensional regularization) in Section 4.7.

Our results are important because they allow one to calculate functional de-

terminants for field theories with arbitrarily many interacting particles. The matrix

structure of the operators considered also allows one to calculate functional determi-

nants of fermionic operators, of which we are aware of no other general results (excepting

cases where the background potential matrix function takes a simple analytic form, e.g.
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the BPST instanton[37]). The brute force method of numerically calculating the entire

spectrum of eigenvalues is extremely computationally intensive, and can suffer greatly

from rounding errors. Our method effectively skips this step, by computing the product

of all of the eigenvalues without having to directly compute any eigenvalues.

Areas where this research may be of use are in vacuum-to-vacuum transition

amplitude calculations, such as bubble nucleation and sphaleron rates. Our results could

also be used to determine one-loop approximations of Casimir energies, for instance the

mass energy of a soliton configuration.

Future work could be directed towards extending these results to the case

where one or more of the particles in the theory is massless. In this case there are

infrared divergences that also need to be regulated. It would also not be too difficult to

derive similar results in dimensions greater than 4, but this may be somewhat tedious.

Finally, the sums over the angular momentum quantum number l are convergent, but

only barely. The partial sums converge like 1/l2 for d = 2, 4 and 1/l for d = 3. To

achieve very precise results one needs to calculate an unreasonably large number of

terms. In theory, one can accelerate the convergence using standard techniques (such

as Richardson extrapolation), but we have found from numerical experiments this can

be unstable. Using Richardson extrapolation one needs to calculate each term to much

higher precision than one ultimately desires, since the cancellation of the higher order

corrections fails if the error is dominated by precision losses.
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Closing remarks
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A group of villagers heard that a strange animal, called an elephant, had been

brought to the town in the night, but none of them were aware of its shape and

form. Out of curiosity, they said: “We must inspect and know it by touch, as this

night is too dark for us to see”. So, they sought it out, and when they found it they

groped about it. The first person, whose hand landed on the trunk, said, “This

being is like a thick snake”. For another one whose hand reached its ear, it seemed

like a kind of fan. As for another person, whose hand was upon its leg, said, the

elephant is a pillar like a tree-trunk. The person who placed their hand upon its side

said the elephant, “is a wall”. Another who felt its tail, described it as a rope. The

last felt its tusk, stating the elephant is that which is hard, smooth and like a spear.

The results presented in this thesis may seem at times disjoint, and to be

fair, they are in some regards. This has been more of a collection of different research

projects, rather than a single line of reasoning with a logical beginning and end. The

final Chapter 4 was originally intended as the first step in a more ambitious project:

to calculate the sphaleron rate in BSM scenarios. The aim was to provide constraints

on models using the observed baryon excess, since sphalerons tend to push the universe

towards B + L = 0. The sphaleron rate cannot be too large in the broken symmetry

phase, otherwise the excess baryons are converted into antileptons, thus providing a

new phenomenological tool for BSM searches. Even with the development of the the

Gel’fand-Yaglom formalism in Chapter 4, this is a difficult computational task. The

sphaleron configuration is a solution of a nonlinear boundary value problem, and can

only be known numerically. I developed a set of numerical tools to determine this

sphaleron profile, which were successful, but unfortunately took a great deal of time. I

would like to continue this research, which at this point is technically feasible as all of the

necessary tools have been developed and tested. It is now simply a matter of application
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and execution (I say simply here, but this is meant only in the theoretical sense. In

practice this would still be very difficult and require a great amount of computational

resources and time).

There is also the question of first order phase transitions and baryogenesis,

which Chapter 4 is also meant to provide tools for. An extension of the scalar sector

of the SM is one avenue of generating the observed baryon excess. The SM alone is

incapable of generating a baryon excess because the large mass of the Higgs results

in a smooth transition from the unbroken phase to the broken phase. There is no

latent heat released during this transition, and consequently it happens at near thermal

equilibrium. Any process that generates a net increase in baryon number is countered

by a similar process that reduces the overall baryon number, since thermal equilibrium

implies that the baryon chemical potential and antibaryon chemical potentials are equal

and opposite, and thus these processes occur at equal rates. Augmenting the scalar

sector of the SM could fix this by introducing additional intermediate vacuum states,

such that a first order phase transition occurs during some epoch between the end of

inflation and our current matter dominated epoch.

A major difficulty in applying the results of Chapter 4 is that the sum over

angular momentum modes is barely convergent. Convergence acceleration techniques,

such as Richardson extrapolation, can be used to arrive at a more precise result while

calculating fewer terms. However, after some numerical experiments I found these

convergence acceleration techniques to be unstable and prone to error, likely due to

the finite precision of floating point types and compounded rounding errors. Future

work could be directed towards making the numerical determination of the angular
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momentum modes more stable, or simply calculating higher order corrections to the

Jost matrix function (an outline for this procedure is given in Appendix D.1.1).

Chapter 1 outlined some heuristic arguments in favor of a nonperturbative

approach to scattering with large numbers of particles. Whether such a scenario has

any implications for phenomenology has yet to be truly determined, but what we can

say for certain is that the first few terms of the asymptotic expansion in small coupling

are not representative of the physical scattering process. In regions of space-time where

many wavepackets overlap the dominant contribution to the path integral is shifted

significantly away from the free field configuration. This might suggest that a systematic

analysis of scattering with large numbers of particles is more akin to a dilute instanton

gas calculation than it is to a perturbative scattering amplitude calculation. This is

purely speculative, but it would be interesting to know if a more rigorous treatment can

be done.

My hope is that the research I have presented in this thesis is (1) of practical

importance to the physics community, either as a set of tools for phenomenological

searches, or to better understand the structure of quantum field theory, (2) useful for

the development of new theories, and (3) interesting. A major goal in physics, since

the days of Newton, has been to unify the disparate sub-fields into a grand unified

theory. Progress towards this goal has been made incrementally over the past 400

years, punctuated by periods of rapid advancement between intervals where the field

seems to languish, not dead, but instead writhing, twisted and knotted, grasping for

something that might lead us out and onto the next horizon. It is true that these

phases of accelerated expansion usually occur on the heels of some new development in
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experimental physics, either new evidence or a novel technique or tool; but is equally

true that advancements in pure and applied mathematics has allowed us to understand,

construct, or actually use our theories.

I would argue that progress in science is the result of a combination of several

ingredients, including observations, mathematical structure, and methods of analysis.

In hindsight it is easy to see which essential component was missing before the last great

thrust of scientific endeavour, but it is much more difficult for us to see what we do not

already know. There are some problems, such as baryogenesis and dark matter, that I

feel might be solved by extending the particle content of the standard model, buoyed by

ever more precise data from astronomy and particle detectors. There are others, such

as quantum gravity, the heirarchy problem, and the Yang-Mills mass gap that I suspect

will require advances in theory and mathematical methods.

Critically, these unresolved questions are not independent of one another.

Progress towards answering any one may result in progress towards answering another.

I have enjoyed working on several projects that are not, or at least don’t immediately

seem, directly related. In this regard I am especially interested in applying nonpertur-

bative methods as they apply to resurgence in the context of quantum field theories.

This is a relatively recent development, and I am interested to see what comes out of

it. In any case, I feel optimistic. Perhaps soon, a passing light might briefly illuminate

the connective tissue between two ideas we thought were extraneous, and allow us to

form a better picture of the whole.
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Appendix A

Behavior of Cross Sections for Large
Numbers of Particles

A.1 Diagram Counting
In the case of λϕ4 theory we have the generating function, in 0 dimensions:

Z(λ, j) := 1√
2π

∫ ∞

−∞
dϕ exp

(
−1

2ϕ
2 − λ

4ϕ
4 + jϕ

)
, (A.1.1)

where we have set m = 1 for simplicity and included an external source term. Expanded
to order λn, the generating function simply counts the number of graphs (defined as the
number of Wick contractions) at each order. For general λ, this can be studied as an
ordinary integral.

The generating function for graphs with N external legs is then

Z(N)(λ) := dN

djN
Z(λ, j)

∣∣∣∣∣
j=0

,

= 1√
2π

∫ ∞

−∞
dϕϕN exp

(
−1

2ϕ
2 − λ

4ϕ
4
)
.

(A.1.2)

This integral vanishes for odd N , so we let N ≡ 2n so that we may consider only the
non zero components. One can expand around small λ. After exchanging the order of
integration and summation we find:

Z(2n)(λ) ∼ 1√
2π

∞∑
k=0

(−1)k 22k+n+1/2 Γ
(
2k + n+ 1

2

)
k!

(
λ

4

)k

, (λ → 0) ,

∼
∞∑

k=0

(−1)k (4k + 2n− 1)!!
k!

(
λ

4

)k

, (λ → 0) .

(A.1.3)

The total number of graphs at each order k is the absolute value of each coefficient after
factoring out the k! in the denominator:

η2n,k = (4k + 2n− 1)!!. (A.1.4)
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The integral (A.1.2) can be expressed as a sum of modified Bessel functions.
The rapid growth of the coefficients means the series is asymptotic, with a radius of
convergence of 0. We are interested, in particular, in the subset of these graphs which
are fully connected. One may wonder if removing the vacuum and disconnected graphs
might reduce the factorial growth of the coefficients in (A.1.3). The connected diagram
generating function is related to the full generating function via

W (λ, j) := − ln
(
Z(λ, j)
Z(λ, 0)

)
. (A.1.5)

To determine the behavior of W at leading order we employ the Schwinger-Dyson equa-
tions (reintroducing ℏ as a loop counting parameter).[

−ℏ
d
dj − λℏ3 d3

dj3 + j

]
Z(λ, j) = 0. (A.1.6)

Substituting (A.1.5) into (A.1.6):

dW (λ, j)
dj +λ

(dW (λ, j)
dj

)3
−3λℏdW (λ, j)

dj
d2W (λ, j)

dj2 +λℏ2 d3W (λ, j)
dj3 +j = 0. (A.1.7)

Taking ℏ → 0 in (A.1.7) results in the loop expansion of Feynman diagrams. The
leading order (or tree-level) term, W0, is the solution of a simple cubic equation. The
real root is easily solved for using Cardano’s formula for depressed cubics. One then
integrates the cubic equation and applies the boundary condition W (0) = 0. Expanding
the solution for j → 0 yields an asymptotic series whose coefficients give the number of
connected graphs at tree-level with 2n external legs:

W0(λ, j) =
∞∑

n=0

(−1)n 4n−1 Γ(3n− 2)
Γ(2n+ 1) Γ(n)

(
λ

4

)n−1
j2n − 1

6λ. (A.1.8)

We can compare this with the corresponding behavior of Z(2n)(λ). The tree-level con-
nected graphs arise at order

k = n− 1. (A.1.9)

Calculating the coefficient of Z(2n)(λ) at this order by inserting (A.1.9) into (A.1.4) we
find that (reverting to N = 2n),

zn−1 ∼ N ! ∼ dNW0
djN

∣∣∣∣∣
j=0

, (N → ∞), (A.1.10)

where Z(2n)(λ) =
∑
zk(λ/4)k. As we noted in the text, the similarities in the behavior

of the full and connected Green’s functions are expected for large N .
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Appendix B

Asymptotic Analysis of the Boltzmann
Equation for Dark Matter Relic
Abundance

B.1 Numerical Determination of α

To aid in the application of our approximation in cases where the thermally
averaged cross section is quite complicated (as in the case of coannihilations) we present
in this appendix a simple and straightforward method of computing the relic density
with little knowledge of the analytic behavior of the thermally averaged cross section.
For large x we will assume the asymptotic form for the thermally averaged cross section:

⟨σvMøl⟩ ∼ xβe−αx ln(x)γ , (x → ∞). (B.1.1)

The arbitrary coefficients α, β, and γ are generally domain dependent. Without precise
knowledge of the analytic behavior of the thermally averaged cross section it may be
difficult to know these parameters a priori, so we give a brief explanation of how to
estimate them from a numerical analysis of the thermally averaged cross section. We
are really only interested in the coefficient α in the vacinity of freeze-out, the other
coefficients are automatically taken into account in our analysis. Hence we calculate

d2

d ln(x)2 ln(⟨σvMøl⟩) = −αx− γ

ln(x)2 , (x → ∞). (B.1.2)

For large x the second term on the right is negligible, provided α is not identically 0.
We can therefore approximate α in the freeze-out region via

α ∼ − 1
xf

d2

d ln(x)2 ln(⟨σvMøl⟩)
∣∣∣∣∣
x=xf

, (xf → ∞). (B.1.3)

Figure B.1 illustrates this numerical procedure for determining α. The lower
plot shows the coefficient of the exponent behaves much like a step function for large
x, with a large negative spike where the coefficient in the exponent transitions. Using
(B.1.3) we find α ≑ 0.3549. Because the exponential behavior is due to the Boltzmann
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Figure B.1: Numerical determination of α using the benchmark model in Section 2.5
with MV = 1 TeV, mχ = 850 GeV, g = 1, and ϵ = 10−3. The freeze-out temperature
xf ≑ 21.2132 is indicated by a vertical line. The top plot shows the thermally averaged
cross section, while the bottom plot shows (B.1.3) evaluated at x.

suppressed χχ → V V annihilation channel, (2.2.8b) gives α = 2(MV −mχ)/mχ ≑
0.3529.

Determining α in this way only requires a numerical knowledge of the thermally
averaged cross section, where the derivatives can be evaluated by finite differences (or
a similar method). In addition, this definition selects the appropriate domain for the
estimation of α. However, if xf is very near a domain boundary (the negative spike in the
lower plot of Figure B.1), where the leading order behavior of ⟨σvMøl⟩ is transitioning,
this estimate will likely fail.

B.2 Boundary Layer Analysis
In this appendix we elaborate on some comments we make in the main body

of the text concerning the boundary layer analysis in [76]. We will label Region I as the
thermal-equilibrium region, Region II as the freeze-out region, and Region III as the
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post-freeze-out region. The rest of the notation follows that in [76]. Assuming that

f(x) ∼ x−n−2, (x → ∞),

we attempt to approximate the solutions of (2.1.6) in the following form

Y ′(x) = −λx−n−2
[
Y 2(x) − Y 2

eq(x)
]
. (B.2.1)

We begin by deriving the preliminary results in [76]. In the thermal equilibrium
region (I) we approximate the solutions as a series expansion in powers of λ−1.

Y I(x) ∼
∞∑

k=0
λ−k Y I

k (x) , (λ → ∞). (B.2.2)

Solving for the first two terms and applying the boundary condition we get

Y I
0 (x) = Yeq(x) , (B.2.3a)

Y I
1 (x) = −1

2x
n+2 d

dx ln(Yeq(x)). (B.2.3b)

Using the large x approximation of the equilibrium abundance the two leading order
terms have the asymptotic behavior

Y I
0 (x) ∼

√
π

2Ax
3/2e−x, (x → ∞) (B.2.4a)

Y I
1 (x) ∼ xn+2

2 , (x → ∞) (B.2.4b)

Note that our definition of A differs from that in [76] by a factor of
√
π/2. When

the next to leading order term is comparable to the leading order term the asymptotic
approximation fails. We denote this value of x as xf , and define it by the transcendental
equation

xf ∼ ln
(√

2πλA
)

−
(
n+ 1

2

)
ln(xf), (λ → ∞). (B.2.5)

In the post-freeze-out region (III) the solution of (B.2.1) is easily approximated
by dropping the equilibrium abundance. Thus, we place a small parameter ϵ in front of
the equilibrium abundance

Y ′(x) = −λx−n−2
[
Y 2(x) − ϵ Y 2

eq(x)
]
,

and assume a solution in the form of a series in small ϵ.

Y III(x) ∼
∞∑

k=0
Y III

k (x) ϵk, (ϵ → 0). (B.2.6)

The leading order solution is easily found:

Y III
0 (x) = C0(n+ 1)xn+1

(n+ 1)xn+1 − C0λ
. (B.2.7)
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The order ϵ term is slightly more complicated, but it is solvable. We will not need this
solution, but we quote the result for completeness:

Y III
1 (x) ∼ C1x

2n+2

[(n+ 1)xn+1 − C0λ]2

− πλA2

4 x−n+1e−2x, (x → ∞). (B.2.8)

In the freeze-out region (II) we find a new expansion parameter by letting
x ≡ xf + κX, where κ represents the width of the boundary region and should vanish
as λ → ∞. Assuming xf is itself quite large we can approximate (B.2.1) by

1
κ

dY II

dX ∼ − λx−n−2
f(

1 + κX
xf

)n+2

[(
Y II
)2

− x2n+4
f
4λ2 e−2κX

]
, (B.2.9)

where we have used the definition of xf to simplify the second term on the right. Dom-
inant balance is achieved by letting κ = xn+2

f /λ. The second term on the right is of
order κ2, and can be ignored at leading order. We then assume a series solution of the
form

Y II(X) ∼
∞∑

k=0
Y II

k (X)κk, (κ → 0). (B.2.10)

The first two terms are easily found

Y II
0 (X) = 1

D0 +X
, (B.2.11a)

Y II
1 (X) = 1

(D0 +X)2

[
D1 + (n+ 1)X2

2xf(D0 +X)

]
(B.2.11b)

where D0 and D1 are arbitrary integration constants.
In order to asymptotically match the region I and region II solutions we expand

the region I solution around x = xf + κX, letting xf → ∞, X → −∞, κ → 0, and
κX → 0, keeping only the leading order term.

Y I(X) ∼ Y I
0 (xf + κX) + 1

λ
Y I

1 (xf + κX)

∼ κ

2 e
−κX + κ

2 ,

∼ κ, (κ → 0).

(B.2.12)

We have retained only the first two terms in the large λ expansion, but as is noted in
[76], every term in the region I approximation is order κ near x = xf .

Y I
k (x) ∼ (−1)kx

2kn+k+3
2 e(k−1)x

2(k+1)/2π(k−1)/2Ak−1 αk, (x → ∞), (B.2.13)

222



where the αk satisfy the recursion relation

αk+1 = (k − 1)αk − 1
2

k∑
j=1

αjαk−j+1, α0 = 1. (B.2.14)

Evaluating this near xf yields

Y I
k (xf)λ−k = κ

2 (−1)kαk, (xf → ∞). (B.2.15)

So in order to construct a highly precise approximation one must perform a resummation
of every term in this series (which is divergent). Using Borel summation we find that
we should replace κ in (B.2.12) with cκ, where c ≑ 0.68995 is a numerical correction.
For simplicity we will not make this replacement.

It is clear that (B.2.12) cannot be asymptotically matched onto the region
II solution (B.2.11a) for finite D0 as is done in [76], because (B.2.12) and (B.2.11a)
behave quite differently for large X. Therefore, we must choose D0 = ∞. We then
have Y II

0 = 0, which seems to imply that Y II
1 is also vanishing. However, we can freely

choose D1 = DD2
0 so that Y II

1 = D when setting D0 = ∞. The region II solution is
then approximated by

Y II(X) ∼ κD, (κ → 0). (B.2.16)

We now have an exact asymptotic match to the region I solution by letting D = 1 (or
D = c if we include the numerical correction).

Next, approximating the region III solution with κ → 0, X → ∞, κX → 0 we
find

Y III(X) ∼ 1
1

C0
− λx−n−1

f
n+1 +X

, (κ → 0). (B.2.17)

This does not appear to match to the region II solution. However, we know from
matching regions I and II that the solution must be order κ, so we include a factor of κ
in both the numerator and denominator.

Y III(X) ∼ κ
κ

C0
− xf

n+1 + κX
, (κ → 0), (B.2.18)

where we have used κ = xn+2
f /λ. We see that the κX term in the denominator is

negligible compared to the constant term xf/(n+ 1). Therefore, we have

Y III(X) ∼ κ
κ

C0
− xf

n+1
, (κ → 0). (B.2.19)

Solving for C0 by comparing (B.2.16) with D = 1 and (B.2.18) then yields the final
result:

C0 ∼ (n+ 1)κ
n+ 1 + xf

, (κ → 0),

∼ (n+ 1)xn+2
f

λ(n+ 1 + xf)
, (κ → 0).

(B.2.20)
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This is the result often found in the literature. In [76] a spurious factor of 2 is inserted
in the region I approximation, and the asymptotic matching is done at leading order so
that the result comes out correct. However, the solutions cannot be matched at leading
order, since in the limit λ → ∞ the relic abundance should also vanish. One should
also include the higher order corrections to the function f(x), since these will contribute
O(1) terms in the denominator of (B.2.20).
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Appendix C

Lowest Dimensional Portals to SU(N)
Exotics

C.1 Roots, Weights, and Representations
In this appendix we briefly cover some basic concepts in representation theory

and a few common representations of SU(N), stating some necessary definitions.

Definition 16 (Representations of Groups). A representation ρ of a group G is a linear
mapping of the elements of the group to the automorphisms of some vector space V
that preserves the group multiplication.

ρ : G → GL(V ),

g 7→ ρ(g), g ∈ G,

ρ(g) · ρ(h) = ρ(g ◦ h) ∀g, h ∈ G,

(C.1.1)

where ◦ is the multiplication on G and · is the multiplication on GL(V ). If the
representation space V is finite dimensional then · is matrix multiplication between
dim(V ) × dim(V ) matrices.

The fundamental representation of SU(N) is defined by the mapping

ρF : SU(N) → GL(CN ), (C.1.2)

i.e. we choose V = CN . We can then choose a basis {ea} on CN :

ψ = T aea, T a ∈ C,∀ψ ∈ V. (C.1.3)

Definition 17 (Dual Vector Space). The dual vector space to V , which we denote V ∗,
is the vector space consisting of linear functionals of V to the base field of V .

V ∗ : V → K, (C.1.4)

where K is the field underlying the vector space V .
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Definition 18 (Dual Basis of the Dual Space). A choice of basis on V induces a natural
basis on V ∗,

ξ = Taea, Ta ∈ C, ∀ξ ∈ V ∗. (C.1.5)

where the {ea} form the dual basis of the dual space, i.e. eb(ea) = δb
a.

Because V is finite dimensional V ∗ is isomorphic to V as a vector space.

Definition 19. Dual Representation Take G to be a group and ρ to be a representation
of G on the vector space V . Then the dual representation, ρ∗, is a representation of G
on the dual vector space V ∗:

∀g ∈ G, ρ∗(g) = ρ(g−1)⊺, (C.1.6)

where ⊺ denotes the transpose.

We need to make a distinction between dual vector space and dual representa-
tion. For a finite dimensional vector space, V , the dual vector space V ∗ is isomorphic
to V . For representations this is usually not the case, a representation ρ is generally
not isomorphic to its dual, ρ∗.

Definition 20 (Adjoint Representation). The adjoint representation of SU(N), denoted
Ad, is a map from the group into the automorphisms of the associated Lie algebra:

Ad: SU(N) → Aut(su (N))

g 7→ Adg, g ∈ SU(N).
(C.1.7)

The group action on a vector in the adjoint representation is

Adg(η) = gηg−1, η ∈ su(N). (C.1.8)

Because SU(N) is a closed subgroup of the general linear group the above hold for all
g ∈ SU(N) and all η ∈ su(N). Thus, we have the basis for adjoint representation

A = T a
b ea ⊗ eb, A ∈ su(N), T a

b ∈ R, (C.1.9)

with
T a

a = 0. (C.1.10)

We have introduced the tensor product notation, which we now explain. A
tensor is a generalization of the notion of the dual vector space. It is a multilinear
functional that takes some copies of the vector spaces V and V ∗ and maps them to the
base field.

T r
s V : V × . . .× V︸ ︷︷ ︸

r

×V ∗ × . . .× V ∗︸ ︷︷ ︸
s

→ K, (C.1.11)

where K is the base field underlying the vector space V and × is the usual Cartesian
product. With the previous choice of basis we write

T = T a1...ar
b1...bs

ea1 ⊗ . . .⊗ ear ⊗ eb1 ⊗ . . .⊗ ebs ,

T ∈ T r
s V.

(C.1.12)
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For example, v ⊗ u is just a multilinear map. The ⊗ here is not an operation, but just
part of the symbol used to denote the map. However, we can inherit the addition and
scalar multiplication induced by V , making T r

s V a dim(V )r+s vector space over the
field K. It is then clear that the ea1 ⊗ . . . ⊗ ear ⊗ eb1 ⊗ . . . ⊗ eb2 constitutes a basis
on T r

s V . We then can define the abstract tensor product of vector spaces V ⊗W . A
vector ψ ⊗ ξ ∈ V ⊗W is then an equivalence class [(ψ, ξ)] with representative (ψ, ξ),
where ψ ∈ V and ξ ∈ W . Generally the space V ⊗W is much larger than the space
spanned by vectors of the form ψ⊗ ξ, it will also include linear combinations of vectors.
We use the same symbol, ⊗, to represent the tensor product between vector spaces (⊗)
and vectors (⊗), as is common in the literature, because the usage is clear from context.

Definition 21 (Root Vectors). For a complex semisimple Lie algebra g with a Cartan
subalgebra h the root vectors are elements of h∗, i.e. the dual of the Cartan subalgebra.

Definition 22 (Root). A α ∈ h∗ is called a root of g relative to h if α ̸= 0 and there
exists an X ̸= 0 ∈ g such that

[H,X] = α(H)X, ∀H ∈ h. (C.1.13)

The Cartan subalgebra of su (N) has N − 1 generators that commute with all
other elements of the algebra. Hence, h is an N − 1 dimensional vector space over C
(in the complexified version of su (N)). It is, however, somewhat simpler to consider
the generators of h as elements of RN with the restriction that the sum over all N
components vanishes, that is

Hλ = λjej ,
N∑

j=1
λj = 0, (C.1.14)

where the {ej} are the usual orthonormal basis vectors on RN . Since the roots α lie in
the dual space to h, i.e. h∗, we can use the dual basis to write them as

αjk = ej − ek, ej(Hλ) = λj , j ̸= k. (C.1.15)

We then have
[Hλ, Ejk] =

(
λj − λk

)
Ejk, (C.1.16)

where the Ejk are N ×N matrices with a 1 in the (j, k)th position and zeros elsewhere
in the fundamental representation (there is no sum over j and k).

Definition 23 (Simple Roots). The simple roots of the algebra are given by

αj := αj j+1. (C.1.17)

All of the other roots can be constructed by linear combinations of the simple roots.

This root system is known as AN−1, and we will denote the set of all roots
as ∆. The simple roots are also vectors in RN whose components sum to 0 due to
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the isomorphism between a finite dimensional vector space and its dual. This is the
standard basis (sometimes called the orthogonal-basis):

α1 = (1,−1, 0, . . . , 0︸ ︷︷ ︸
N−2

),

αj = (0, . . . , 0︸ ︷︷ ︸
j−1

, 1,−1, 0, . . . , 0︸ ︷︷ ︸
N−j−1

),

αN−1 = (0, . . . , 0︸ ︷︷ ︸
N−2

, 1,−1).

(C.1.18)

The simple roots form a complete basis for the space of vectors in RN−1 whose compo-
nents sum to 0, but they are not orthonormal. We can therefore express any vector in
this space as a linear combination of the simple roots

v ∈ RN−1 = viα
i, vi ∈ R. (C.1.19)

This is referred to as the α-basis.
Definition 24 (Fundamental Weights). The fundamental weights, ωj , are defined by

2
〈
ωj , αk

〉
⟨αk, αk⟩

= δk
j (C.1.20)

where ⟨·, ·⟩ is the usual inner product on RN .
The ωj constitute the ω-basis, or Dynkin-basis.

Definition 25 (Cartan Matrix). We can translate between the α-basis and ω-basis via

αj =
N−1∑
k=1

Aj
kω

k, (C.1.21a)

ωj =
N−1∑
k=1

(
A−1

)j

k
αk, (C.1.21b)

where the Cartan matrix A is

Aj
k =

2
〈
αk, αj

〉
⟨αk, αk⟩

. (C.1.22)

As previously stated, for SU(N) the root system is AN−1, and the Cartan
matrix is

Aj
k =



2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 2 −1
0 0 0 . . . −1 2


. (C.1.23)
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Definition 26 (Coroot). We can make the two basis dual by introducing the coroot
α∨jk:

α∨
jk := 2αjk

⟨αjk, αjk⟩
. (C.1.24)

This then gives 〈
ωj , α∨

k

〉
= δj

k, (C.1.25)

where α∨
j is the coroot associated to the simple root αj .

It then follows that a representation of a Lie algebra is a set of matrices that
satisfy the same commutation relations as the abstract algebra. Each of the matrices
can be labeled by a weight as follows: Let V be a representation of a Lie algebra g over
C and let λ be a linear functional on the Cartan subalgebra h.

Definition 27 (Weight Space). The weight space of V with weight λ is

Vλ := {v ∈ V | ∀H ∈ h, H · v = λ(H)v}. (C.1.26)

Essentially, this generalizes the familiar ladder operators of su (2). As a con-
sequence of the root equation (C.1.13) if v is a weight vector with weight λ

H ·Xv = X ·Hv + [H,X]v

= [λ(H) + α(H)]Xv, ∀H ∈ h.
(C.1.27)

Therefore Xv is either the zero vector or a weight vector with weight λ+ α.

Definition 28 (Algebraically Integral Weights). Denote by h∗
0 the real subspace of the

dual of the Cartan subalgebra h∗ generated by the roots of g. Then an element λ ∈ h0
is said to be algebraically integral if〈

λ, α∨
jk

〉
∈ Z, ∀α∨

jk ∈ h∗
0. (C.1.28)

The coroot α∨
jk can be identified with the H element in the X, Y , H basis of an

sl (2,C)-subalgebra of g. The eigenvalues of α∨
jk in any finite dimensional representation

of g must then be an integer.

Definition 29 (Dominant Weights). For an algebraically integral element λ we can
write its components in the ω-basis

aj =
〈
λ, α∨

j

〉
, (C.1.29)

where the aj are integers for every simple root. The smallest non-zero weights with
aj ≥ 0 are the fundamental weights. We then refer to the aj as the Dynkin labels of
the weight. Therefore, an element λ is algebraically integral if and only if it is expressible
as a combination of the fundamental weights with integer coefficients. A weight is called
dominant if all of the aj ≥ 0.
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Definition 30 (Partial Ordering of Weights). The weights of a representation can be
partially ordered. Consider the positive roots in ∆, denoted ∆+, as the set of all αjk

with j < k. We then partially order the weights as

λ ⪰ µ if λ− µ = θijα
ij , θij ∈ R+, αij ∈ ∆+. (C.1.30)

That is, λ is higher than µ if the difference λ−µ can be written as a linear combination
of positive roots with non-negative real coefficients. A weight λ of a representation V of
an algebra g is then said to be the highest weight if every other weight of V is lower
than λ. The level of a weight is the number of simple roots that must be subtracted
from the highest weight in order to obtain it. The highest level of an irrep is call its
height.

We can now state the following theorem:

Theorem C.1.1. Theorem of the Highest Weight

1. Every irreducible (finite dimensional) representation has a highest weight,

2. the highest weight is always a dominant, algebraically integral element,

3. two irreps with the same highest weight are isomorphic, and

4. every dominant, algebraically integral element is the highest weight of an irrep.

From Theorem C.1.1, the highest weight of an irrep uniquely determines the
representation. When used in the context of a representation (as opposed to an indi-
vidual weight) we use Dynkin label to refer to the Dynkin labels of the highest weight
in the weight space of the representation.

α1

α2

ω1

ω2

Figure C.1: Weight spaces for some irreps of SU(3). Shown are the fundamental (3),
antifundamental (3̄), and adjoint (8) representations in blue, green, and red respectively.

Finally, a finite-dimensional representation V of a semisimple Lie algebra g is
uniquely specified by a set of weights.
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α1

α2

α3

ω1

ω2

ω3

Figure C.2: Weight space of the adjoint representation of SU(4). Vertices indicate
locations of the weights while red arrows indicate the Weyl group orbits.

Definition 31 (Highest-Weight-Module). If V is generated by a v ∈ V that is annihi-
lated by the action of all positive root spaces in g then V is called a highest-weight
module.

It can be shown that every finite-dimensional highest-weight module is irre-
ducible. A representation can then be decomposed into irreps by sorting the weights
into weight spaces that correspond to the irreps. The dimension of a representation is
just the number of weights in its weight space. Several examples of weights spaces are
given in Fig. C.1 and Fig. C.2.

A Young tableau (plural, “tableaux”) of a Ferrers diagram is obtained by plac-
ing the elements of some ordered set into each box of the diagram. The diagram itself
must have rows of weakly decreasing length as traversed from top to bottom, with the
number of boxes overhanging in each row corresponding to the Dynkin label of the irrep.
A standard Young tableau has elements that form an increasing sequence when moving
from left to right in each row and from top to bottom in each column. A semistan-
dard Young tableau has nondecreasing elements along each row and increasing elements
in each column. Young tableaux contain a great deal of information about an irrep.
For instance, the dimension of the irrep can be calculated using the Hook length for-
mula. As well, Young tableaux can be used to decompose a tensor product of two irreps
into a direct sum of irreps. As a consequence of Theorem C.1.1 every Young tableau
corresponds uniquely to an irrep of SU(N), and we make considerable use of this when
deriving the results of Sections 3.2 and 3.3. For more information about Young tableaux
see Ref. [98].
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C.2 Adjoint Product Decomposition
The vector space of the adjoint representation of SU(N) is spanned by the

generators of the algebra of su (n). There are N − 1 zero weights coming from the
N − 1 generators of the Cartan subalgebra, and N(N − 1) weights from the remaining
generators with roots αjk, giving the dimension of the adjoint representation as N2 − 1
since there are N2 − 1 weights. By Theorem C.1.1 there is a unique highest weight,

λ̄ = α1N =
N−1∑
j=1

αj = ω1 + ωN−1, (C.2.1)

which we use to label the adjoint representation. Taking the tensor product of 2 copies
of the adjoint we add all the weights of one copy of the adjoint to every weight of the
second copy. This gives a set of

(
N2 − 1

)(
N2 − 1

)
weights, many of them duplicates,

that must be sorted in order to decompose the tensor product into a direct sum of irreps.
Continuing to take the tensor product k times in total produces

(
N2 − 1

)k weights, and
sorting all of these weights quickly becomes unreasonably tedious. For fixed k it can be
done using Freudenthal’s recursion formula for the multiplicities of the weight λ in the
irrep with highest weight Λ:

(⟨Λ + δ,Λ + δ⟩ − ⟨λ+ δ, λ+ δ⟩)mΛ(λ) = 2
∑

α∈∆+

∑
j≥1

⟨λ+ jα, α⟩mΛ(λ+ jα), (C.2.2)

where ⟨·, ·⟩ is the usual inner product on RN , δ :=
∑N−1

j=1 ωj is the Weyl vector, mΛ(λ)
is the multiplicity of the weight λ in the irrep with highest weight Λ, and the first sum
is over all positive roots of the algebra. If k is left as a free parameter this formula
becomes less useful, so we take a different approach based on Schur-Weyl duality.

The tensor product of any two irreps of SU(N), Vµ and Vν , can be accomplished
in the following way:

Vµ ⊗ Vν
∼=
⊕

λ

cλ
µνVλ, (C.2.3)

where cλ
µν is the multiplicity of the irrep labeled by its highest weight λ in the tensor

product and the sum is taken over all dominant weights λ. The multiplicities are given
by the Littlewood-Richardson rule, which counts the number of Littlewood-Richardson
tableau with skew shape λ/µ and content ν. They appear as the coefficients in the
decomposition of the multiplication of Schur functions

sµsν =
∑

λ

cλ
µνsλ. (C.2.4)

This decomposition follows from the Weyl character formula for representations of a
simple Lie algebra over a complex field[121]. In fact, the multiplicities can be calculated
explicitly, without reference to Littlewood-Richardson tableau:

Theorem C.2.1. Steinberg [121]

cλ
µν =

∑
σ,τ∈SN

det(στ)p(σ(µ+ δ) + τ(ν + δ) − (λ+ 2δ)), (C.2.5)
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where SN is the symmetric group of permutations acting on vectors with N elements,
δ is the Weyl vector, and p(v) is the Kostant partition function.

p(v) =

∣∣∣∣∣∣
nα ∈ RN−1 | v =

∑
α∈∆+

nαα, nα ≥ 0


∣∣∣∣∣∣. (C.2.6)

p(v) counts the number of ways a vector v (weight) can be written as the sum of positive
roots.

In particular, if we let µ and ν be either (1, 0, . . . , 0) or (1, 1, . . . , 1, 0, . . . , 0) we
have Pieri’s formula:

sµhr =
∑

λ

sλ, (C.2.7)

where hr is a complete homogeneous symmetric polynomial and the sum is taken over
all partitions λ obtained from µ by adding r boxes with no boxes in the same column.
We also have the dual Pieri rule

sµer =
∑

λ

sλ, (C.2.8)

where er is an elementary symmetric polynomial and the sum is taken over all partitions
λ obtained from µ by adding r boxes with no boxes in the same row. For these choices
of the partitions µ and ν the Littlewood-Richardson coefficients are either 1 or 0.

Schur-Weyl duality comes from considering the k-fold tensor product of CN .
The action of the symmetric group Sk and the general linear group G = GL(CN )
commute, and as an Sk ×G-module we have the decomposition(

CN
)⊗k ∼=

⊕
λ

Mλ ⊗ SλCN , (C.2.9)

where Mλ is an irrep of SN indexed by the partition λ and the Schur functor SλV is
the image of the Young symmetrizer. The fundamental representation, VF , of SU(N)
is a G-module isomorphic to CN , hence we have

V ⊗k
F

∼=
⊕

λ

V ⊕mλ
λ , (C.2.10)

where mλ ≡ dim(Mλ), and Vλ ≡ SλCN is an irrep of SU(N). The sum is over all
partitions λ of the integer k. In addition, the dual representation to VF , denoted V ∗

F , is
also isomorphic to CN , so we also have

(V ∗
F )⊗k ∼=

⊕
λ

V ⊕mλ
λ∗ , (C.2.11)

where, again, the sum is over all partitions λ of the integer k and λ∗ is the conjugate
partition to λ.
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Theorem C.2.2. The k-fold tensor product of the adjoint representation of SU(N),
GN , decomposes into a direct sum of irreps

G⊗k
N

∼=
⊕

λ

V
mλ(GN )

λ , (C.2.12)

where the sum over λ is over all dominant weights. The multiplicity, mλ(GN ), of the
irrep Vλ in the sum is

mλ(GN ) =
k∑

n=0

∑
µn

∑
νn

(−1)k−n

(
k

n

)
mµnmνnc

λ
µnν∗

n
, (C.2.13)

where the second and third sums are over all partitions µn and νn of the integer n and
ν∗

n is the conjugate partition to νn.

Proof. Using Pieri’s rule we can relate the adjoint representation to the fundamental
and antifundamental representations of SU(N):

VF ⊗ V ∗
F

∼= GN ⊕ 1. (C.2.14)

This then implies

(VF ⊗ V ∗
F )⊗k ∼=

k⊕
n=0

(
k

n

)
G⊗k−n

N , (C.2.15)

where G⊗0
N := 1. We can then simply invert (C.2.15) to solve for G⊗k

N :

G⊗k
N

∼= (VF ⊗ V ∗
F ⊖ 1)⊗k

∼=
k⊕

n=0
(−1)k−n

(
k

n

)
V ⊗n

F ⊗ (V ∗
F )⊗n

∼=
k⊕

n=0
(−1)k−n

(
k

n

)⊕
µn

mµnVµn

⊕
νn

mνnVν∗

∼=
⊕

λ

k⊕
n=0

⊕
µn

⊕
νn

(−1)k−n

(
k

n

)
mµnmνnc

λ
µnν∗

n
Vλ

∼=
⊕

λ

V
⊕mλ(GN )

λ .

(C.2.16)

Theorem C.2.3. The multiplicity of the irrep Vλ ⊂ G⊗k
N is non-vanishing for all dom-

inant λ such that Λ̄ ⪰ λ, where Λ̄ is the highest weight of the highest irrep in G⊗k
N .

λ dominant ∧ Λ̄ ⪰ λ =⇒ mλ(GN ) > 0. (C.2.17)
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Proof. From (C.2.15), we have the following implications

∀n, k ∈ N0 | n ≤ k : Vλ ⊂ G⊗n
N =⇒ Vλ ⊂ (VF ⊗ V ∗

F )⊗k, (C.2.18)

and

∀k ∈ N0 : Vλ ⊂ (VF ⊗ V ∗
F )⊗k =⇒ ∃n ∈ N0 | 0 ≤ n ≤ k : Vλ ⊂ G⊗n

N . (C.2.19)

We then look at the tensor product of two copies of the adjoint:

GN ⊗GN
∼=
⊕

λ

cλ
λ̄λ̄
Vλ, (C.2.20)

where λ̄ = (1, 0, . . . , 0, 1) is the highest weight of GN . Using Theorem C.2.1 we explicitly
calculate the multiplicities

cλ̄
λ̄λ̄

=
{

1 N = 2
2 N > 2

, (C.2.21a)

c0
λ̄λ̄

=1. (C.2.21b)

This shows that GN ⊂ GN ⊗GN and 1 ⊂ GN ⊗GN . Therefore

∀n ∈ N | n > 1, G⊗n−1
N ⊂ G⊗n

N . (C.2.22)

But then from (C.2.19) we find

∀k ∈ N | k > 1, Vλ ⊂ (VF ⊗ V ∗
F )⊗k =⇒ Vλ ⊂ G⊗k

N . (C.2.23)

Computing the tensor product of (VF ⊗ V ∗
F )⊗k directly gives

(VF ⊗ V ∗
F )⊗k =

⊕
µ∈Pk

⊕
ν∈Pk

⊕
λ

mµmνc
λ
µν∗Vλ, (C.2.24)

where Pk is the set of all partitions of the integer k into no more than N parts. There
exists no sufficient conditions for cλ

µν∗ ̸= 0 (although there are necessary conditions,
such as |λ| = |µ| + |ν∗|), so we instead construct the tableaux for the irreps Vλ in steps:

(VF ⊗ V ∗
F )⊗k = (V ∗

F )⊗k ⊗ VF ⊗ . . .⊗ VF︸ ︷︷ ︸
k

=
⊕

ν∈Pk

V ⊕mν
ν∗ ⊗ VF ⊗ . . .⊗ VF︸ ︷︷ ︸

k

(C.2.25)

The multiplicity mν is non-vanishing for all partitions ν, so we can collect all possible
Vν∗ , and then add k boxes in possible ways (there are no symmetry arguments to
consider because each VF is added individually). Begin with a rectangular tableau that
has N rows and k columns. As a partition this is

λ0 := k + k + . . .+ k + k︸ ︷︷ ︸
N

≡ (k, . . . , k︸ ︷︷ ︸
N

), (C.2.26)
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where each component of λ0 corresponds to the number of boxes in that row of the
tableau (in this case they are all k). Then remove k boxes in all possible ways that
results in a valid tableau. Write this partition as λ0 − r, where

r := (r1, r2, . . . , rN−1, rN ), rj ∈ N0, (C.2.27a)

N∑
j=1

rj = k, (C.2.27b)

ri ≤ rj , if i < j. (C.2.27c)

The first condition specifies that k boxes are to be removed, while the second condition
is necessary so that λ0 −r remains a partition (the elements must be weakly decreasing).
Finally, add k boxes in all possible ways and write this partition as λ0 − r + a, where

a := (a1, a2, . . . , aN−1, aN ), aj ∈ N0, (C.2.28a)

N∑
j=1

aj = k, (C.2.28b)

ai − aj ≥ ri − rj , if i < j. (C.2.28c)

Again, the first condition specifies that k boxes are to be added, while the second
condition is necessary so that λ0 − r + a remain a partition. By construction, every
λ that can be written as λ0 − r + a has nonzero multiplicity. Clearly, removing some
number of boxes from a row and then adding the same number of boxes to the same
row is redundant, so this procedure is not unique. We can remove the redundancy by
defining:

η ≡ (η1, η2, . . . , ηk), ηj := aj − rj ∈ Z. (C.2.29)

The components of this vector no longer need to be non-negative, but they satisfy

N∑
j=1

ηj = 0 (C.2.30a)

ηi ≥ ηj , if i < j, (C.2.30b)

|ηj | ≤ k. (C.2.30c)

which are direct consequences of (C.2.27) and (C.2.28). This η is a N component vector,
where the sum of its components vanish, which implies it can be decomposed into a linear
combination of the simple roots αj of SU(N). In particular, we can calculate the Dynkin
labels of λ = λ0 + η: 〈

λ, α∨
j

〉
=
〈
λ0, α

∨
j

〉
+
〈
η, α∨

j

〉
= ηj − ηj+1. (C.2.31)

This immediately leads to the conclusion that all such λ are dominant since ηj ≥ ηj+1.
In addition, since |ηj | ≤ k there is one vector with η1 = k and ηN = −k that is higher

236



than any other λ. Translating to the standard basis

λ = (ηj − ηj+1)
(
A−1

)j

k
αk. (C.2.32)

Then

kα1N − λ =
N−1∑
i=1

[
k − (ηj − ηj+1)

(
A−1

)j

i

]
αi,

=
N−1∑
i=1

θiα
i,

(C.2.33)

where the θi are necessarily non-negative real numbers, which follows from the definition
of the Cartan matrix A. We then have

(C.2.30) =⇒ λ dominant ∧ kα1N ⪰ λ. (C.2.34)

Going in the other direction, if we assume λ can be written as

λ = kα1N − θijα
ij , (C.2.35)

where
θij = 0 if i ≥ j, θij ≥ 0 if i < j, (C.2.36)

then such a vector has Dynkin labels

〈
λ, α∨

j

〉
= kδ1

j + kδN
j+1 +

N∑
i=1

[θi j − θj i]︸ ︷︷ ︸
−mj

−
N∑

i=1
[θi j+1 − θj+1 i]︸ ︷︷ ︸

−mj+1

. (C.2.37)

Requiring each component be a non-negative integer then gives

−mj +mj+1 ∈ N0 (C.2.38a)

m1 − k ≤ m2 (C.2.38b)

mj ≤ mj+1, 1 < j < N − 1, (C.2.38c)

mN−1 − k ≤ mN . (C.2.38d)

It is no restriction to assume the mj are themselves integers, since we can always add a
vector of the form cjω

j , where cj = c ∈ R, and get an identical representation. Setting
j = N ,

mN = −
N∑

i=1
[θiN − θNi] = −

N∑
i=1

θiN , (C.2.39)

implies mN ≤ 0, because the θij are necessarily non-negative. Setting j = 1 yields

m1 = −
N∑

i=1
[θi1 − θ1i] =

N∑
i=1

θ1i, (C.2.40)
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which implies m1 ≥ 0. In addition, we also have

N∑
j=1

mj =
N∑

j=1

N∑
i=1

[θij − θji] = 0. (C.2.41)

Then writing
ηi ≡ −mi + kδ1

i − kδN
i , (C.2.42)

gives λ = (ηj − ηj+1)ωj , where the ηj satisfy (C.2.30). Therefore

λ dominant ∧ kα1N ⪰ λ =⇒ (C.2.30). (C.2.43)

We have then shown the implication in both directions, so together (C.2.34) and (C.2.43)
are

(C.2.30) ⇐⇒ λ dominant ∧ kα1N ⪰ λ, (C.2.44)

and the conditions can be interchanged.
From Lemma 3.3.1 the highest weight of the highest irrep in G⊗k

N is Λ̄ = kα1N .
We then have:

∀λ | λ dominant ∧ Λ̄ ⪰ λ : Vλ ⊂ (VF ⊗ V ∗
F )⊗k. (C.2.45)

But then, from (C.2.23), this implies Vλ ⊂ G⊗k
N , which proves the theorem.

We can then think of the integers mj as the number of boxes removed from
row j of the tableau corresponding to the irrep with highest weight Λ̄. Because the sum
over all mj is zero we clearly never remove any boxes from the tableau (unless we form
a completed column). As well, because the mj are weakly decreasing we can only move
boxes from the upper rows of the tableau to the lower rows.

Theorem C.2.3 immediately leads to two new identities for the Littlewood-
Richardson coefficients, which some may find useful.

Corollary C.2.3.1. For λ a dominant partition of the integer Nk, such that

Λ̄ − λ = θijα
ij , θij ∈ R+, αij ∈ ∆+, (C.2.46)

where Λ̄ is the partition of the integer Nk:

Λ̄ = 2k + k + . . .+ k︸ ︷︷ ︸
N−2

,

≡ kα1N

≡ kω1 + kωN−1,

(C.2.47)

we have ∑
µ∈Pk

∑
ν∈Pk

cµ
λν > 0, (C.2.48)

and
k∑

n=0

∑
µn∈Pn

∑
νn∈Pn

(−1)k−n

(
k

n

)
mµnmνnc

µ
λν > 0. (C.2.49)
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C.3 User Manual for the tessellation code
The code can be easily installed by cloning the repository https://github.

com/jaulbric/Tesselation. Alternatively, the package can be downloaded by issuing
the following commands via a terminal:

bash:

# Get the version of the latest release
version=`curl -s

https://api.github.com/repos/jaulbric/Tesselation/releases/latest \↪→

| grep "tag_name" \
| cut -d ":" -f 2 \
| tr -d " "-\"-,`
# download and untar the package
wget https://github.com/jaulbric/Tesselation/archive/$version.tar.gz \
&& mkdir ~/Tesselation \
&& tar xvfz $version.tar.gz -C ~/Tesselation \
--strip-components 1 && rm $version.tar.gz

csh/tcsh:

# Get the version of the latest release
set version=`curl -s

https://api.github.com/repos/jaulbric/Tesselation/releases/latest \↪→

| grep "tag_name" \
| cut -d ":" -f 2 \
| tr -d " "-\"-,`
# download and untar the package
wget https://github.com/jaulbric/Tesselation/archive/$version.tar.gz \
&& mkdir ~/Tesselation \
&& tar xvfz $version.tar.gz -C ~/Tesselation \
--strip-components 1 && rm $version.tar.gz

Once downloaded the package can be installed with pip install . in the root directory
of the repository (in the above examples ~/Tesselation).

We now give an example of how to use the code by reproducing the results of
Fig. 3.5.

import numpy as np
import tesselation as t

X1 = np.array([3, 0, 0, 1])
X2 = np.array([0, 2, 1, 0])
X3 = np.array([0, 0, 1, 1])
X4 = np.array([1, 3, 0, 0])
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N = 5
i = N - t.Nality(X1) # This is 3 for all cases

idx = 1
for x in [X1, X2, X3, X4]:

l1, l2 = t.l_pair(x, i) # Calculate l1 and l2
fj = t.fj(x) # Calculate the Dynkin label
kmin = t.kmin(x) # Calculate kmin
print("X{0}:".format(idx))
print("l1 = {0}, l2 = {1}".format(l1, l2))
print("f = ({0}, {1}, {2}, {3})".format(*fj))
print("kmin = {0}\n".format(kmin))
idx += 1

The output of the above code is

X1:
l1 = 1, l2 = 4
f = (2, 0, 1, 0)
kmin = 2

X2:
l1 = 2, l2 = 3
f = (0, 1, 1, 0)
kmin = 2

X3:
l1 = 0, l2 = 3
f = (1, 0, 0, 1)
kmin = 1

X4:
l1 = 2, l2 = 5
f = (1, 2, 0, 0)
kmin = 3

There are four helper functions available to the user:

• l_pair(p, i): Takes a Dynkin label (list or numpy.ndarray) and a int as input
and outputs ℓ1 and ℓ2 as described in Section 3.3.1.

• Nality(p): Takes a Dynkin label (list or numpy.ndarray) as an input and
returns the N -ality of the representation, that is

∑N−1
j=0 jpj mod N .

• fj(p): Takes a Dynkin label (list or numpy.ndarray) as an input and returns
the Dynkin label of the irrep in X ⊗Qi that gives the smallest value of kmin.
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• kmin(p): Takes a Dynkin label (list or numpy.ndarray) as an input and returns
the minimum number of copies of the adjoint representation required such that
1 ⊂ X ⊗Qi ⊗G⊗kmin

N .
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Appendix D

Functional Determinants in Quantum
Field Theory

D.1 Jost Matrix Function Asymptotics

D.1.1 Large l

Using the Volterra integral representation of U0,l(r; z) (4.3.45) and the defini-
tion

Tl(r; z) =
[
U free

0,l (r; z)
]−1

U0,l(r; z)

we find a Volterra integral representation of Tl(r; z):

Tl(r; z) = 1+ λ

∫ r

0
U free

∞,l (t; z)V (t)U free
0,l (t; z)Tl(t; z) td−1 dt

− λ
[
U free

0,l (r; z)
]−1

U free
∞,l (r; z)

∫ r

0
U free

0,l (t; z)V (t)U free
0,l (t; z)Tl(t; z) td−1 dt , (D.1.1)

where λ is a power counting parameter that will be set to 1 in the end. We then expand
in powers of λ

Tl(r; z) ∼
∞∑

k=0
T (k)

l (r; z)λk, (λ → 0). (D.1.2)

Solving for each term order by order gives

T (0)
l (r; z) = 1, (D.1.3)

T (k+1)
l (r; z) =

∫ r

0
Ul(r, t; z)V (t)U free

0,l (t; z) T (k)
l (t; z) td−1 dt , (D.1.4)

where

Ul(r, t; z) ≡ U free
∞,l (t; z) −

[
U free

0,l (r; z)
]−1

U free
∞,l (r; z)U free

0,l (t; z) . (D.1.5)
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The first few terms are given explicitly as

T (0)
l (r; z) = 1, (D.1.6)

T (1)
l (r; z) =

∫ r

0
Ul(r, s; z)V (s)U free

0,l (s; z) sd−1 ds , (D.1.7)

T (2)
l (r; z) =

∫ r

0
Ul(r, s; z)V (s)U free

0,l (s; z)

×
∫ s

0
Ul(s, t; z)V (t)U free

0,l (t; z) td−1 dt sd−1 ds .
(D.1.8)

Higher order terms are given by

T (k+1)
l (rk+1; z) =

k∏
j=0

[∫ rj+1

0
Ul(rj+1, rj ; z)V (rj)U free

0,l (rj ; z) rd−1
j drj

]
1. (D.1.9)

The ordering of the terms in (D.1.9) is important since these matrices generally don’t
commute. The convention is that higher terms in the product are prepended on the
left.

Taking the trace of the logarithm of this matrix function then gives

tr[ln(Tl(r; z))] = tr
[
ln
(
1+

∞∑
k=1

T (k)
l (r; z)λk

)]
. (D.1.10)

Because we know that the T (1)
l (r; z) term is order ν−1 this series expansion in powers of

λ is asymptotic in powers of ν−1. We are usually interested in dimensions d ≤ 4, where
we only need to keep terms up to λ2 in order to renormalize the functional determinant.
However, the higher order corrections are useful in order to accelerate the convergence
of the partial wave expansion, so we retain a few extra terms. Expanding the above in
powers of λ we find (we will drop the explicit dependence on l, r, and z here)

tr[ln(Tl(r; z))] ∼ λ tr
[
T (1)

]
+ λ2 tr

[
T (2) − 1

2
(
T (1)

)2
]

+ λ3 tr
[
T (3) − T (1)T (2) + 1

3
(
T (1)

)3
]

+ λ4 tr
[
T (4) − 1

2

((
T (2)

)2
+ 2T (1)T (3)

)
+
(
T (1)

)2
T (2) − 1

4
(
T (1)

)4
]
, (D.1.11)

where we have used the cyclic property of the trace to rearrange a few terms. The Jost
matrix is just the above expression in the limit that r → ∞. Things are going to get a
little messy though, so we introduce some notation:

Ṽ 0
0,l(r; z) := U free

0,l (r; z)V (r)U free
0,l (r; z) , (D.1.12)

Ṽ 0
∞,l(r; z) := U free

0,l (r; z)V (r)U free
∞,l (r; z) , (D.1.13)

Ṽ ∞
0,l (r; z) := U free

∞,l (r; z)V (r)U free
0,l (r; z) , (D.1.14)

Ṽ ∞
∞,l(r; z) := U free

∞,l (r; z)V (r)U free
∞,l (r; z) . (D.1.15)
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Using this notation, we write the first few terms as

lim
R→∞

T (1)
l (r; z) =

∫ ∞

0
Ṽ ∞

0,l (r; z) rd−1 dr . (D.1.16)

lim
R→∞

T (2)
l (r; z) =

∫ ∞

0

∫ r

0
Ṽ ∞

0,l (r; z) Ṽ ∞
0,l (t; z) td−1 dt rd−1 dr

−
∫ ∞

0

∫ r

0
Ṽ ∞

∞,l(r; z) Ṽ 0
0,l(t; z) td−1 dt rd−1 dr

(D.1.17)

lim
R→∞

T (3)
l (r; z) =

∫ ∞

0

∫ r

0

∫ t

0
Ṽ ∞

0,l (r; z) Ṽ ∞
0,l (t; z) Ṽ ∞

0,l (s; z) sd−1 ds td−1 dt rd−1 dr

−
∫ ∞

0

∫ r

0

∫ t

0
Ṽ ∞

0,l (r; z) Ṽ ∞
∞,l(t; z) Ṽ 0

0,l(s; z) sd−1 ds td−1 dt rd−1 dr

−
∫ ∞

0

∫ r

0

∫ t

0
Ṽ ∞

∞,l(r; z) Ṽ 0
0,l(t; z) Ṽ ∞

0,l (s; z) sd−1 ds td−1 dt rd−1 dr

+
∫ ∞

0

∫ r

0

∫ t

0
Ṽ ∞

∞,l(r; z) Ṽ 0
∞,l(t; z) Ṽ 0

0,l(s; z) sd−1 ds td−1 dt rd−1 dr

(D.1.18)

There will be a great deal of cancellation here. For instance, in the λ2 term we have

lim
R→∞

tr
[
T (2)(R; z) − 1

2
(
T (1)(R; z)

)2
]

=
∫ ∞

0

∫ ∞

0
tr
[
Ṽ ∞

0,l (r; z) Ṽ ∞
0,l (s; z)

]
Θ(r − s) sd−1 ds rd−1 dr

−
∫ ∞

0

∫ r

0
tr
[
Ṽ ∞

∞,l(r; z) Ṽ 0
0,l(s; z)

]
sd−1 ds rd−1 dr

− 1
2

∫ ∞

0

∫ ∞

0
tr
[
Ṽ ∞

0,l (r; z) Ṽ ∞
0,l (s; z)

]
rd−1sd−1 dr ds

= −
∫ ∞

0

∫ r

0
tr
[
Ṽ ∞

∞,l(r; z) Ṽ 0
0,l(s; z)

]
sd−1 ds rd−1 dr

(D.1.19)

We have cancelled the first and last integrals by exchanging the integration variables
and using the cyclic property of the trace. Similarly, the λ3 term reduces to

lim
R→∞

tr
[
T (3)(R; z) − T (2)(R; z) T (1)(R; z) + 1

3
(
T (1)(R; z)

)3
]

=
∫ ∞

0

∫ r

0

∫ r

s
tr
[
Ṽ ∞

∞,l(r; z) Ṽ 0
0,l(s; z) Ṽ ∞

0,l (t; z)
]
td−1 dt sd−1 ds rd−1 dr

+
∫ ∞

0

∫ r

0

∫ s

0
tr
[
Ṽ ∞

∞,l(r; z) Ṽ 0
∞,l(s; z) Ṽ 0

0,l(t; z)
]
td−1 dt sd−1 ds rd−1 dr . (D.1.20)
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After deforming the contour integral of the zeta function we integrate over z
from 0 to −∞. Thus, z will always be negative, and the components of these potential
matrices are[

Ṽ 0
0,l(r; −z)

]i
j

= 22ν Γ2(ν + 1) r2−dk−ν
i k−ν

j Iν(kir) Iν(kjr)V i
j (r) , (D.1.21)

[
Ṽ 0

∞,l(r; −z)
]i

j
= r2−dk−ν

i kν
j Iν(kir)Kν(kjr)V i

j (r) , (D.1.22)

[
Ṽ ∞

0,l (r; −z)
]i

j
= r2−dkν

i k
−ν
j Kν(kir) Iν(kjr)V i

j (r) , (D.1.23)

[
Ṽ ∞

∞,l(r; −z)
]i

j
= 1

22ν Γ2(ν + 1)r
2−dkν

i k
ν
j Kν(kir)Kν(kjr)V i

j (r) , (D.1.24)

where ki =
√
m2

i + z. To calculate the order λ term we then evaluate∫ ∞

0
Kν(kir) Iν(kir)V i

i (r) r dr .

To calculate the order λ2 term we evaluate∫ ∞

0

∫ r

0
Kν(kir)Kν(kjr) Iν(kjs) Iν(kis)V i

j (r)V j
i (s) s ds r dr .

To calculate the order λ3 term we evaluate∫ ∞

0

∫ ∞

r

∫ r

0
Kν(kir) Iν(kjr)Kν(kjs)Kν(kls) Iν(klt) Iν(kit)

×
[
V i

j (r)V j
l (s)V l

i (t) + V ∗i
j (r)V ∗j

l (s)V ∗l
i (t)

]
t dt sds r dr

Taking the limit ν → ∞, ki → ∞, while holding ki/ν fixed we can then
approximate the integrals using the uniform asymptotic approximations of the Bessel
functions, and integration by parts. Let

ηi ≡

√
1 + k2

i r
2

ν2 + ln
(
kir

ν

)
− ln

1 +

√
1 + k2

i r
2

ν2

, pi ≡ 1√
1 + k2

i r2

ν2

. (D.1.25)

The uniform asymptotic expansion of the modified Bessel functions is

Iν(νz) ∼ eνη

(2πν)1/2(1 + z2)1/4

∞∑
k=0

Wk(p)
νk

, (ν → ∞), (D.1.26)

Kν(νz) ∼
(
π

2ν

)1/2 e−νη

(1 + z2)1/4

∞∑
k=0

(−1)kWk(p)
νk

, (ν → ∞), (D.1.27)

where the Wk(p) are polynomials in p of degree 3k, with W0(p) = 1 and

Wk+1(p) = 1
2p

2
(
1 − p2

)
W ′

k(p) + 1
8

∫ p

0

(
1 − 5t2

)
Wk(t) dt . (D.1.28)
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We will explicitly calculate only terms up to order ν−3, as this is all that is
needed to renormalize the functional determinant in d = 4 dimensions. Higher order
terms can be calculated, but they quickly become quite tedious. It is not too hard to
show that the λ3 term is in fact order ν−5, so we will not include this term. The leading
order approximation to the λ2 comes from approximating the intergal∫ r

0
Iν(kjs) Iν(kis)V j

i (s) s ds

∼ 1
2πν

∫ r

0

eν(ηj(s)+ηi(s))(
1 + k2

j s2

ν2

)1/4(
1 + k2

i s2

ν2

)1/4 V
j

i (s) sds , (ν → ∞). (D.1.29)

Then writing the exponential term as

eν(ηj(s)+ηi(s)) = s

ν

d
dse

ν(ηj(s)+ηi(s))√
1 + k2

j s2

ν2 +
√

1 + k2
j s2

ν2

, (D.1.30)

The integral is then approximated by∫ r

0
Iν(kjs) Iν(kis)V j

i (s) s ds

∼ 1
2πν2

eν(ηj(r)+ηi(r)) V j
i (r) r2(

1 + k2
j r2

ν2

)1/4(
1 + k2

i r2

ν2

)1/4
[√

1 + k2
j r2

ν2 +
√

1 + k2
j r2

ν2

] , (ν → ∞). (D.1.31)

The leading contribution from the λ2 term is then∫ ∞

0

∫ r

0
Kν(kir)Kν(kjr) Iν(kjs) Iν(kis)V i

j (r)V j
i (s) sds r dr

∼ 1
4ν3

∫ ∞

0

V i
j (r)V j

i (r) r3 dr(
1 + k2

j r2

ν2

)1/2(
1 + k2

i r2

ν2

)1/2
[√

1 + k2
j r2

ν2 +
√

1 + k2
j r2

ν2

] , (ν → ∞).

(D.1.32)

The λ term is even easier to approximate, since the exponential terms cancel immedi-
ately.∫ ∞

0
Kν(kir) Iν(kir)V i

i (r) r dr ∼ 1
2ν

∫ ∞

0

Vii(r) r dr[
1 + k2

i r2

ν2

]1/2

+ 1
16ν3

∫ ∞

0

1 − 6
1 + k2

i r2

ν2

+ 5[
1 + k2

i r2

ν2

]2

 V i
i (r) r dr[

1 + k2
i r2

ν2

]3/2 , (ν → ∞). (D.1.33)
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We then have the large l approximation of the Jost matrix function as

tr[ln(Fl(−z))] ∼ 1
2ν

∫ ∞

0

Vii(r) r dr[
1 + k2

i r2

ν2

]1/2

+ 1
16ν3

∫ ∞

0

1 − 6
1 + k2

i r2

ν2

+ 5[
1 + k2

i r2

ν2

]2

 V i
i (r) r dr[

1 + k2
i r2

ν2

]3/2

+ 1
4ν3

∫ ∞

0

V i
j (r)V j

i (r) r3 dr(
1 + k2

j r2

ν2

)1/2(
1 + k2

i r2

ν2

)1/2
[√

1 + k2
j r2

ν2 +
√

1 + k2
j r2

ν2

] , (ν → ∞),

(D.1.34)

Higher order corrections can be obtained in a similar manner, but because of the integra-
tion by parts procedure used to determine the λ2 term this becomes rather complicated.
At first it would appear that there should be a contribution at the order of ν−4, but
numerical experiments show that this term vanishes.

D.1.2 Small r

The boundary conditions imply that the matrix function Tl(r; z) has a valid
Taylor series expansion at small r:

Tl(r; z) =
∞∑

k=0
Tl,k(z) rk. (D.1.35)

The first two terms are easily found by iterating the integral representation of Tl(r; z);

Tl,0(z) = 1, Tl,1(z) = 0. (D.1.36)

Further expanding the matrix potential as a power series in small r

V (r) ∼ V0 + V1r + V2r
2, (r → 0), (D.1.37)

as well as the free solutions

U free
0,l (r; z) ∼ rl

(
1+ k2 r2

2(2l + d)

)
, (r → 0), (D.1.38a)

[
U free

0,l (r; z)
]−1

∼ r−l

(
1− k2 r2

2(2l + d)

)
, (r → 0), (D.1.38b)

where the matrix k is defined by

ki
j ≡

√
m2

i − zδi
j , (D.1.39)
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we can determine the higher order terms using the differential equation for Tl(r; z). We
retain terms up to r2 and drop all higher order terms, and use

d− 1
r

+ 2
[
U free

0,l (r; z)
]−1 d

dr U
free
0,l (r; z) ∼ 2l + d− 1

r
+ 2k2 r

2l + d
, (D.1.40a)

[
U free

0,l (r; z)
]−1

V (r)U free
0,l (r; z) ∼ V0 + V1r +

{
V2 + 1

2(2l + d)
[
V0, k

2
]}
r2.

(D.1.40b)

We then find the next two terms are

Tl,2(z) = 1
2(2l + d) V (0) , (D.1.41a)

Tl,3(z) = 1
3(2l + d+ 1)

d
dr V (r)

∣∣∣∣
r=0

. (D.1.41b)

D.2 Numerical Solution of Jost Matrix Function
In this appendix we briefly describe a procedure to efficiently find the Jost

matrix function numerically. The differential equation to be solved is (we set z = 0 and
suppress the dependence on z)

d2Tl

dr2 +
(
d− 1
r

+ 2
[
U free

0,l (r)
]−1 dU free

0,l (r)
dr

)
dTl

dr −
[
U free

0,l (r)
]−1

V (r)U free
0,l (r)Tl = 0,

with boundary conditions

Tl(0) = 1,
dTl

dr

∣∣∣∣
r=0

= 0.

Most numerical integration routines require the differential equation be written in first-
order form, so we define

Yl(r) :=


Tl(r)

dTl(r)
dr

, (D.2.1)

and the first order operator

F (r, Yl(r)) := dYl(r)
dr . (D.2.2)

The first order system can then be written as

F (r, Yl(r)) = 1
r
S Yl(r) + f(r, Yl(r)) , Yl(0) =

10
, (D.2.3)

where

S ≡

0 0

0 −(2l + d− 1)1

, (D.2.4)
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and

f(r, Yl(r)) =


0 1[

U free
0,l (r)

]−1
V (r)U free

0,l (r) 2l
r − 2

[
U free

0,l (r)
]−1 dU free

0,l (r)
dr

Yl(r) . (D.2.5)

The boundary conditions imply that the first order system is regular everywhere, but
numerically the singular term results in 0/0 when evaluating r at the origin. In order
to improve the numerical analysis we convert this into an algebraic-differential equation
in the spirit of [122], by treating the origin as a special point. Regularity at the origin
requires

lim
r→0

1
r
S Yl(r) = S Y ′

l (0) . (D.2.6)

Thus, taking the limit r → 0 in (D.2.2) then gives

F (0, Yl(0)) = S F (0, Yl(0)) + f(0, Yl(0)) . (D.2.7)

Because the constant matrix S is singular we cannot invert it. Instead, we employ the
Moore-Penrose inverse:

F (0, Yl(0)) = (1− S)+ f(0, Yl(0)) , (D.2.8)

where

(1− S)+ =

1 0

0 1
2l+d1

. (D.2.9)

We then have

F (0, Yl(0)) =

 0 1

1
2l+d V (0) 0

Yl(0) . (D.2.10)

We can then readily solve the first order system using standard techniques (for instance,
using an explicity Runge-Kutta method), using (D.2.2) for r > 0 and (D.2.10) for r = 0.

When l becomes very large the system can become stiff, resulting in very long
integration times and loss of precision. Implicit integration routines typically require
analytic Jacobians. Here, again, we will run into numerical difficulties using (D.2.2)
when r = 0. The solutions will be found column-wise for the full matrix solution, so we
let Yl(r) implicitly represent a fixed column of the full matrix solution and

[Yl(r)]i ≡ [Yl(r)]ij ,

suppressing the index j, since it will be fixed throughout the calculation. The Jacobian
is given generally by

Jij(r, Yl(r)) = ∂ Fi(r, Yl(r))
∂[Yl(r)]j

. (D.2.11)

For r > 0 this unambiguously gives

Jij(r, Yl(r)) = 1
r
Sij + ∂ fi(r, Yl(r))

∂[Yl(r)]j
, r > 0. (D.2.12)
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When r = 0 however we should instead substitute (D.2.10) into (D.2.11), which yields

J(0, Yl(0)) =

 0 1

1
2l+d V (0) 0

. (D.2.13)

A popular class of stiff integrators are the Rosenbrock diagonally implicit
Runge-Kutta methods. These methods are designed to solve autonomous systems. For
non-autonomous systems one can transform the system to an autonomous one by in-
cluding the independent variable r as an extra entry in the dependent vector Yl(r),
essentially increasing the system size to n + 1. Popular Rosenbrock solvers do this re-
sizing internally, but the user must further supply the integration routine with another
partial derivative:

∂ F (r, Yl(r))
∂r

,

where the components of Yl(r) are treated as independent of r. For r > 0 we again
encounter no difficulties, and using (D.2.2) we find

∂ F (r, Yl(r))
∂r

= − 1
r2S Yl(r) + ∂ f(r, Yl(r))

∂r
, r > 0. (D.2.14)

The above expression cannot be used for r = 0 because it diverges. Instead, we use the
results of Appendix D.1.2 to write

dF (r, Yl(r))
dr ∼


1

2l+d V (0) ei

2
2l+d+1 V

′(0) ei

, (r → 0), (D.2.15)

where ei is the ith unit vector in Rn, which corresponds to solving for the ith column of
Yl(r). We can then write

∂ F (r, Yl(r))
∂r

= dF (r, Yl(r))
dr − J(r, Yl(r))

dYl(r)
dr . (D.2.16)

Taking the r → 0 limit of the above and replacing J(r, Yl(r)) and F (r, Yl(r)) with their
r = 0 definitions yields

∂ F (r, Yl(r))
∂r

∣∣∣∣
r=0

=

 0

2
2l+d+1 V

′(0) ei

. (D.2.17)

Using these definitions at r = 0 then allows one to integrate the first order system over
the entire domain (or at least up to some very large r), which improves the precision
and removes the computational effort of having to choose a suitable starting position.

There is one more simple thing we can do to increase the precision of the
numerical integration routine. When r is very large the free solutions grow exponentially
fast, since they are composed of modified Bessel functions of the first kind. For large r
one should then use exponentially scaled modified Bessel functions:

Ieν(z) := e−z Iν(z) . (D.2.18)
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The exponential growth then either completely cancels, or at least partially cancels, in
the differential equations, reducing the chance of overflow errors. Similarly, when r is
small and l is large the modified Bessel functions rapidly approach 0, which causes 0/0
issues due to the finite precision of floating point representations. This can be alleviated
by using generalized hypergeometric functions:

Iν(z) =
(

z
2
)ν

Γ(ν + 1) F0 1

(
; ν + 1; 1

4z
2
)
. (D.2.19)

The factors of zν then cancel when taking ratios of modified Bessel functions of the
same order. Because the generalized hypergeometric functions tend to 1 as their argu-
ment approaches 0 along the real line the ratios of hypergeometric functions are more
numerically stable than ratios of modified Bessel functions for very small arguments.
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