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Abstract—GASNet is a portable, open-source, high-
performance communication library designed to 
efficiently support the networking requirements of PGAS 
runtime systems and other alternative models on future 
exascale machines. This paper investigates strategies for 
efficient implementation of GASNet’s “AM Long” API 
that couples an RMA (Remote Memory Access) transfer 
with an Active Message (AM) delivery. 

We discuss several network-level protocols for AM 
Long and propose a new target-side reassembly protocol. 
We present a microbenchmark evaluation on the Cray 
XC Aries network hardware. The target-side reassembly 
protocol on this network improves AM Long end-to-end 
latency by up to 33%, and the effective bandwidth by up 
to 49%, while also enabling asynchronous source 
completion that drastically reduces injection overheads. 

  The improved AM Long implementation for Aries is 
available in GASNet-EX release v2019.9.0 and later. 

Keywords—Active Messages, RMA, GASNet, PGAS, HPC, 
Networking, Supercomputing 

I. INTRODUCTION 

Active Messages (AM) [8] is a communication paradigm 
often used to implement higher-level communication 
protocols in HPC networking. In essence, AM is a restricted 
form of Remote Procedure Call (RPC), where an initiating 
process sends a point-to-point message to a target process. 
Upon arrival the AM triggers execution of a piece of handler 
code, described in the message, which incorporates the 
payload into the ongoing computation at the target and 
possibly generates a response message. AM protocols 
usually impose semantic restrictions which are chosen to 
improve efficiency of implementation, while still providing 
the generality needed to build higher-level protocols. 

One popular and portable implementation of Active 
Messages is provided as part the GASNet (Global Address 
Space Networking) communication layer [4][9]. GASNet has 
a proven track record of enabling high performance across 
many interconnects and supporting a wide range of 
applications and high-level programming abstractions.  
Notable GASNet clients include: Berkeley UPC [7][11], 
UPC++ [2], the Legion Programming System [3] and Cray 
Chapel [6].  Under funding from the Exascale Computing 
Project (ECP) we are designing and implementing 

GASNet-EX [5], a second-generation GASNet API, which is 
focused on exascale requirements and incorporates over 15 
years of lessons-learned. GASNet-EX includes a backwards-
compatibility layer that allows it to transparently support 
clients using the legacy GASNet interfaces.   

GASNet’s AM design is based on Berkeley Active 
Messages [10] and exposes a strict point-to-point 
request/reply semantic, with no other communication 
permitted in handlers. AM’s may carry a limited payload that 
is either delivered into an anonymous buffer (which is 
recycled upon handler exit), or into a client-owned location 
specified by the initiator. GASNet refers to the latter 
operation as AM Long, and it is semantically analogous to an 
RMA Put operation that runs a handler after delivery of the 
payload. The initiating process is notified only of local 
completion, the point in time when the payload’s source 
buffer is safe to modify. Separate AM Long operations may 
be reordered in the network, but the implementation must 
ensure each payload is delivered before executing the 
corresponding handler. In HPC networks, AM Longs of 
sufficient size are usually most efficiently implemented 
using a zero-copy RDMA (Remote Direct Memory Access) 
for the payload transfer and a separate message for the AM 
envelope (which carries handler arguments and metadata). 

This paper investigates implementation of the GASNet 
AM Long semantics on the Cray Aries network in Cray XC 
systems [1]. The uGNI communication layer on Cray Aries 
provides RDMA Put semantics with completion notification 
at the initiator and target, and even allows the RMA to 
deliver a few bits of out-of-band data. Aries notably lacks 
point-to-point ordered delivery semantics in the highest-
performance mode that uses dispersive routing to maximize 
bandwidth. Consequently, one cannot rely upon wire-level 
delivery ordering to ensure the RDMA transfer is complete 
before the envelope message arrival triggers handler 
execution. 

We discuss several AM Long protocol options, and 
evaluate two implementations: (1) a protocol that stalls the 
initiator for global completion of the RMA Put before 
injection of the AM envelope, and (2) a target-side 
reassembly protocol that pipelines injection of the RMA Put 
and AM envelope, using matching logic at the target to 
enforce correct ordering. These protocols generalize to 
implementation of AM Long semantics on other RDMA-
based HPC networks with similar properties. 
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II. PROTOCOL OPTIONS 

Relevant measures of efficiency in implementing AM Long 
include not only standard benchmarks such as "ping-pong 
latency" and "flood bandwidth", but also metrics like the 
overhead (CPU time spent within the library) of message 
injection and the sensitivity to attentiveness.  A good 
algorithm should spend as little time in message injection as 
practical without deferring necessary work to later library 
calls to make progress (the frequency of which we called 
attentiveness).  Since time spent stalled at injection, or 
between multiple phases of progress, is time not spent 
communicating, improving these measures correlates well 
with improvement to the latency and bandwidth benchmarks.  
Additionally, prompt signaling of local completion at the 
initiator is desired to allow the client to reuse the source 
buffer.  With these metrics in mind, this section describes 
four different algorithms. 

On ordered networks, implementation of AM Long can be as 
simple as injection of independent transfers for the two 
elements; with the assurance that the arrival of the second is 
both necessary and sufficient to allow the target to run the 
appropriate AM handler.  This approach has low overhead, is 
insensitive to initiator attentiveness, and can provide timely 
signaling of local completion.   However, while uGNI 
supports an in-order delivery mode, its use disables use of 
the multiple paths inherent in the Aries network.  While it is 
a good choice on some networks, we do not consider this 
approach appropriate on Aries due to the associated 
reduction in performance (bandwidth and latency) of large 
payload transfers. 

While Aries does not provide desirable means for ordering 
transfers, it is possible for the AM Long implementation to 
enforce the necessary semantics by using a class of protocols 
we call initiator chaining, which has synchronous and 
asynchronous variants.  The synchronous variant initiates the 
payload RMA transfer, and then stalls to await global 
completion (the point in time when the RMA transfer is 
known to be fully committed to the remote memory system).  
Only once the initiator knows the payload transfer is 
complete does it send the envelope.  Prior to the work 
described here, GASNet’s aries-conduit (through release 
v2019.6.0) used synchronous initiator chaining, also referred 
to as put-sync-send.  The asynchronous variant of initiator 
chaining returns after injecting the payload, and enqueues the 
envelope to be sent by the progress engine at some point 
after global completion of the RMA.  These variants share 
the property that the transfer of payload and envelope cannot 
be pipelined.  While the asynchronous variant does permit 
overlap of other communication, it is a poor candidate for 
overlap of computation, which may reduce the attentiveness 
of the injector and thus delay injection of the envelope. 

A notable feature of AM Long is that the initiator knows the 
addresses for both the source and destination of the payload 
transfer.  While other algorithms use this to perform an RMA 
Put from the initiator, one can alternatively send both 
addresses in the envelope and initiate an RMA Get from the 
target.   In such a rendezvous get algorithm, the initiator 
overhead is minimal (injecting only an envelope).  However, 

the need for the target to receive the envelope and initiate a 
Get for the payload significantly increases the latency of 
isolated messages (as in a ping-pong benchmark) and leads 
to a delay in signaling of source buffer completion at the 
initiator.  These delays equal a network round trip time in the 
best case.  In the worst case, inattentive targets not only 
lengthen these delays, but can also consume resources at the 
injector, leading to head-of-line blocking.  For these reasons, 
we do not consider rendezvous get to be a desirable protocol 
where alternatives are available. 

A fourth protocol and the subject of this work is what we 
refer to as target-side reassembly.  This algorithm has the 
initiator inject the envelope and payload transfers back-to-
back without concern for what order they arrive at the target.  
At the target, the payload and envelope are matched (as 
described below) and the AM handler runs only when both 
elements have arrived.   Relative to initiator chaining, one 
expects back-to-back injection to reduce latency and increase 
bandwidth.  The overhead of injection is less than the 
synchronous variant of initiator chaining, and comparable to 
that of the asynchronous variant (including the payload and 
envelope injections separated in time).  Use of an appropriate 
RMA Put protocol for the payload allows use of multiple 
paths through the network and provides for timely signaling 
of local completion at the initiator. 

The key to the viability of target-side reassembly for AM 
Long is the ability for the target to match the envelope and 
payload to ensure the AM handler is run only after both 
elements are present.  It is generally safe to assume that the 
mechanism chosen for transfer of the envelope can carry any 
additional metadata required for matching (although in Aries 
we leverage an existing header field).  The potentially more 
difficult concern is conveyance of matching metadata within 
the RMA payload transfer.  At a minimum, the target must 
receive some notification (as through a uGNI completion 
queue) that the payload has arrived, and it must be sufficient 
to identify the source rank.  To eliminate idle time in the 
protocol, additional bits of metadata are desirable in the 
target notification to distinguish multiple AM Longs arriving 
pipelined from the same initiator (potentially out of order).  
It is the challenge of providing this additional metadata 
through the Cray uGNI API that has deferred 
implementation until now. 

III. TARGET-SIDE REASSEMBLY OVER CRAY UGNI 

As mentioned above, the key challenge faced in this work 
was to transfer a few bits of additional metadata together 
with an RMA payload transfer.  There are two candidate 
mechanisms in the uGNI API.  One is put-with-sync-flag in 
which a single API call transfers two payloads to distinct 
addresses with an in-order guarantee, but with several 
restrictions.  The most significant restriction is a limit on 
payloads to 1MB or less, which we considered unacceptable.  
The other option is the 32-bit field known as the instance ID, 
which is a part of the target-side completion queue event.  
Normally this field simply contains the source rank. 
However, the initiator is permitted to dynamically modify 
the contents of this field.  Since support for 232 processes is 
unrealistic for multiple reasons, we have dedicated some of 
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the upper bits to carry a “nonce” used for the reassembly.  
An encoding scheme (beyond the scope of this extended 
abstract) is chosen for the nonce that ensures the matching 
envelope and payload events are uniquely distinguishable 
from other unrelated events that may concurrently be present 
in the same completion queue. 

At the target, the progress engine processes completion 
queue events for the arrivals of AM Long payloads and 
envelopes.  A simple chained-bucket hash table is used to 
match the second arrival to the first, and the AM handler 
executes only when a match is found (and the entry removed 
from the hash table).  This matching occurs within the scope 
of an existing mutex-protected critical section, and thus did 
not require any additional synchronization for thread-safety.  

The nonce value must be unique per source from at least the 
time the AM is injected into the network until the matching 
is complete.  Realistically, the lifetime extends until the 
(possibly implicit) AM Reply from target to initiator arrives, 
allowing the initiator to recycle the nonce value.  The 
scheme for buffer management in aries-conduit already had 
an identifier meeting the requirements for use as a nonce, 
including lifetime and fitting in the available bits.  Therefore, 
no additional logic was required to manage the nonce, no 
additional space was required in the envelope, and no 
additional communication was required to retire a nonce 
value. 

IV. PERFORMANCE EVALUATION 

This section reports briefly on the improvement in 
performance obtained by replacing the put-sync-send 
protocol with the target-side reassembly protocol in the 
GASNet implementation of AM Long for Aries.  Three 
metrics are presented: bandwidth, latency, and overhead.  
Measurements were taken on NERSC’s Cori Phase II, a Cray 
XC with 1.4GHz Xeon Phi CPUs.  The relatively slow CPUs 
of this platform accentuate the cost of added matching logic 
at the target, meaning that other XC systems with more 
powerful CPUs may exhibit even larger improvements.  The 
reader is referred to the Reproducibility Appendix for 
additional information regarding the system and 
experimental methodology. 

Figure 1 shows the bandwidth of the two protocols as 
measured by a round-trip ping-pong (Request + Reply) test, 
as well as their ratio (dotted blue series).  The largest 
improvement is a 49% increase at a 4KiB payload size.  
Measurements of other patterns including one-way and 
bidirectional flood patterns are qualitatively similar. 

Inverting the bandwidth data for the ping-pong pattern in 
Figure 1 yields a measure of roundtrip AM Long latency, 
shown in Figure 2. With a 4KiB payload, the latency is 
reduced from 13.0us for put-sync-send to just 8.7us for 
target-side reassembly (a 33% reduction).  As the payload 
size increases as high as 1MiB the latency reduction varies in 
the range 3.7us to 6.1us. 

 
Figure 1. AM Long Ping-Pong Bandwidth Comparison 

 
             Figure 3. AM Long Injection Overhead Comparison 

 
Figure 2. AM Long Roundtrip Latency Comparison 
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Because put-sync-send stalls AM Long injection until global 
RMA completion, it did not provide for asynchronous 
signaling of local completion.  However, target-side 
reassembly is well suited to implementation of asynchronous 
local completion.   Figure 3 shows the injection overhead of 
the two protocols, at three payload sizes, as the queue depth 
(number of semantically overlapped operations) is varied for 
the case of implicit-handle signaling of local completion.  
The stall for global RMA completion dominates the 
overhead of put-sync-send, and thus all three corresponding 
series (solid lines) are essentially flat.  However, target-side 
reassembly (dashed lines) shows greatly improved (nearly 
constant) injection overhead until encountering flow control 
back-pressure, at which point the overhead rises relative to 
shallower queue depths, while remaining uniformly better 
than the put-sync-send protocol for the same payload size. 

V. CONCLUSIONS 

We’ve discussed several network-level protocols for AM 
Long and proposed a new target-side reassembly protocol 
that allows pipelining of an RMA payload transfer with the 
AM envelope message on unordered network stacks, using 
CPU-based matching logic at the target to enforce AM 
Long’s payload delivery semantics. The protocol does not 
rely upon properties unique to Cray Aries or the uGNI API, 
and should generalize to other networks that allow RMA Put 
to deliver a few bits of out-of-band data to the target, via a 
completion queue, completion call-back, or similar. 

Microbenchmark evaluation on the Cray XC Aries 
network hardware demonstrates the target-side reassembly 
protocol on this network improves AM Long end-to-end 
latency relative to put-sync-send by up to 33%, and the 
effective bandwidth by up to 49%, while also enabling 
asynchronous source completion that drastically reduces 
injection overheads. 

The improved target-side reassembly protocol is 
deployed as the default AM Long implementation for aries-
conduit in GASNet-EX release v2019.9.0 and later. Future 
work may investigate deploying this AM Long protocol for 
additional networks sharing similar properties. 
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REPRODUCIBILITY APPENDIX 

A. Abstract 

This Appendix describes the methodology for the PAW-
ATM19 paper: Efficient Active Message RMA in GASNet 
Using a Target-Side Reassembly Protocol 

B. Test Platform 

Experimental results were collected on the following 
Cray XC40 system, in which nodes are connected via Cray 
Aries network hardware: 

NERSC Cori-II 
Node: 68-core 1.4 GHz Intel Xeon Phi 7250, 96 GB DDR4 
(quad-cache mode) 
Compiler: Intel C Compiler, v18.0.1.163  
System software: Cray PrgEnv-intel/6.0.4, Cray PE/2.5.15 
Batch system: SLURM (srun) 

All communication is performed using the GASNet-EX 
aries-conduit, with a pre-release version of 2019.9.0. The 
put-sync-send series use the AM Long protocol which was 
active through release version 2019.6.0, and the target-side 
reassembly series use the AM Long protocol which is the 
new default behavior starting in release version 2019.9.0. 

C. Methodology for Figure 1:  
AM Long Ping-Pong Bandwidth Comparison 

These results were gathered using the testam 
microbenchmark included in the GASNet distribution.  The 
exact command used for data collection was: 

srun –n2 –N2 testam 50000 1048576 G  

These arguments request 50,000 iterations with payload 
sizes up to 1MiB, and restricts the runs to sub-test “G: 
AMLong ping-pong roundtrip ReqRep”.  All runs are point-
to-point, using a single process on each of two nodes 
connected by the network fabric.  These runs report average 
latency and bandwidth from a ping-pong test that consists of 
one rank sending an AM Long Request of a given size and 
the recipient sending an AM Long Reply of the same size.  
The first rank waits to receive the Reply before sending its 
next Request.  This ping-pong exchange is repeated 50,000 
times.  The test reports the bandwidth at each size as the sum 
of the payload size of all the Requests and Replies, divided 
by the elapsed time to complete all of the iterations of that 
size. 

The ping-pong test is performed at the sizes 0 and 1MiB, 
and all the powers-of-two in between.  Since payloads less 
than the 4KiB data point are transferred using a “packed 
Long” protocol not described in this paper, the Figure omits 
data below 2KiB where the two series are identical.  The 
2KiB data point is included to confirm the lack of 
performance difference at that point. 

Because the Cray Aries network shares resources among 

distinct jobs, the bandwidth values reported by testam are 
too noisy to make a meaningful comparison between just two 
runs.  Two executables, built from sources differing in the 
implementation of AM Long, were run in alternating 

sequence, 22 times each.  Each data point shown in Figure 1 
is a maximum over 22 runs. 

D. Methodology for Figure 2:  
AM Long Roundtrip Latency Comparison 

Figure 2 is an alternate visualization of the same data 
from Figure 1. Each data point is the quotient of the payload 
size and the corresponding bandwidth from a data point in 
Figure 1. Because the results are from a round-trip ping-pong 
test, the resulting value represents the average round-trip 
latency time for that payload size. The range of payload sizes 
shown on the x-axis has been restricted, in order to highlight 
the most interesting behavior. 

E. Methodology for Figure 3:  
AM Long Injection Overhead Comparison 

These results were gathered using the testqueue 

microbenchmark included in the GASNet distribution.  The 
exact command used for data collection was: 

srun –n2 –N2 testqueue –l –i 1000 256 

These arguments request 1,000 iterations, a maximum 
queue depth of 256, and restrict the runs to the sub-test for 

AM Long (-l) with implicit-handle (-i) signaling of local 
completion.  All runs are point-to-point, using a single 
process on each of two nodes connected by the network 
fabric.  These runs report “injection overhead”, defined as 
the time required to initiate communication without waiting 

for its completion.  For a given queue depth (d) and payload 

size (n), the test measures the time for the first rank to make 

d consecutive calls to gex_AM_RequestLong0() with 

n-byte payload, and GEX_EVENT_GROUP to request 
implicit-handle signaling of local completion.  As this is a 
test of injection overhead, all communication is completed 
outside the timed region; the initiator waits for local 

completion, the target waits to have received d AM 
Requests, and then both ranks participate in a barrier.  This 
alternation of timed injection and network quiescence is 
repeated multiple times (1,000 for the arguments used) and 
the average time for the injection portion is reported. 

The test runs the procedure described in the previous 
paragraph for queue depth from 1 to 256 and payload sizes 
from 0 to 2MiB, using the powers-of-two in the respective 
ranges.  The data in Figure 3 reports the data from runs of 
two executables, built from sources differing in the 
implementation of AM Long, run back-to-back in the same 
job.  Because injection time is relatively insensitive to 
interference in the network, results from single runs are used. 

Figure 3 reports data for three payload sizes: 4KiB, 
64KiB and 1MiB.  The data for payload sizes between these 
three is qualitatively similar: monotonically non-decreasing 
as either size or queue depth increases.  Since payloads less 
than 4KiB are transferred using a “packed Long” protocol 
not described in this paper, the data at such sizes is not 
presented. 

 

http://www.nersc.gov/users/computational-systems/cori/configuration/cori-intel-xeon-phi-nodes/
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