
Lawrence Berkeley National Laboratory
LBL Publications

Title

Efficient Active Message RMA in GASNet Using a Target-Side Reassembly Protocol (Extended
Abstract)

Permalink

https://escholarship.org/uc/item/7c89j1x1

Authors

Hargrove, P
Bonachea, Dan

Publication Date

2019-11-17

DOI

10.25344/S4PC7M

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7c89j1x1
https://escholarship.org
http://www.cdlib.org/

©2019 U.C. Regents through LBNL 1 2019 IEEE/ACM Parallel Applications Workshop,

Alternatives To MPI (PAW-ATM’19)

Efficient Active Message RMA in GASNet
Using a Target-Side Reassembly Protocol

Extended Abstract
Paul H. Hargrove and Dan Bonachea

Computational Research Division, Lawrence Berkeley National Laboratory
Berkeley, CA 94720, USA

gasnet-staff@lbl.gov

Abstract—GASNet is a portable, open-source, high-
performance communication library designed to
efficiently support the networking requirements of PGAS
runtime systems and other alternative models on future
exascale machines. This paper investigates strategies for
efficient implementation of GASNet’s “AM Long” API
that couples an RMA (Remote Memory Access) transfer
with an Active Message (AM) delivery.

We discuss several network-level protocols for AM
Long and propose a new target-side reassembly protocol.
We present a microbenchmark evaluation on the Cray
XC Aries network hardware. The target-side reassembly
protocol on this network improves AM Long end-to-end
latency by up to 33%, and the effective bandwidth by up
to 49%, while also enabling asynchronous source
completion that drastically reduces injection overheads.

 The improved AM Long implementation for Aries is
available in GASNet-EX release v2019.9.0 and later.

Keywords—Active Messages, RMA, GASNet, PGAS, HPC,
Networking, Supercomputing

I. INTRODUCTION

Active Messages (AM) [8] is a communication paradigm
often used to implement higher-level communication
protocols in HPC networking. In essence, AM is a restricted
form of Remote Procedure Call (RPC), where an initiating
process sends a point-to-point message to a target process.
Upon arrival the AM triggers execution of a piece of handler
code, described in the message, which incorporates the
payload into the ongoing computation at the target and
possibly generates a response message. AM protocols
usually impose semantic restrictions which are chosen to
improve efficiency of implementation, while still providing
the generality needed to build higher-level protocols.

One popular and portable implementation of Active
Messages is provided as part the GASNet (Global Address
Space Networking) communication layer [4][9]. GASNet has
a proven track record of enabling high performance across
many interconnects and supporting a wide range of
applications and high-level programming abstractions.
Notable GASNet clients include: Berkeley UPC [7][11],
UPC++ [2], the Legion Programming System [3] and Cray
Chapel [6]. Under funding from the Exascale Computing
Project (ECP) we are designing and implementing

GASNet-EX [5], a second-generation GASNet API, which is
focused on exascale requirements and incorporates over 15
years of lessons-learned. GASNet-EX includes a backwards-
compatibility layer that allows it to transparently support
clients using the legacy GASNet interfaces.

GASNet’s AM design is based on Berkeley Active
Messages [10] and exposes a strict point-to-point
request/reply semantic, with no other communication
permitted in handlers. AM’s may carry a limited payload that
is either delivered into an anonymous buffer (which is
recycled upon handler exit), or into a client-owned location
specified by the initiator. GASNet refers to the latter
operation as AM Long, and it is semantically analogous to an
RMA Put operation that runs a handler after delivery of the
payload. The initiating process is notified only of local
completion, the point in time when the payload’s source
buffer is safe to modify. Separate AM Long operations may
be reordered in the network, but the implementation must
ensure each payload is delivered before executing the
corresponding handler. In HPC networks, AM Longs of
sufficient size are usually most efficiently implemented
using a zero-copy RDMA (Remote Direct Memory Access)
for the payload transfer and a separate message for the AM
envelope (which carries handler arguments and metadata).

This paper investigates implementation of the GASNet
AM Long semantics on the Cray Aries network in Cray XC
systems [1]. The uGNI communication layer on Cray Aries
provides RDMA Put semantics with completion notification
at the initiator and target, and even allows the RMA to
deliver a few bits of out-of-band data. Aries notably lacks
point-to-point ordered delivery semantics in the highest-
performance mode that uses dispersive routing to maximize
bandwidth. Consequently, one cannot rely upon wire-level
delivery ordering to ensure the RDMA transfer is complete
before the envelope message arrival triggers handler
execution.

We discuss several AM Long protocol options, and
evaluate two implementations: (1) a protocol that stalls the
initiator for global completion of the RMA Put before
injection of the AM envelope, and (2) a target-side
reassembly protocol that pipelines injection of the RMA Put
and AM envelope, using matching logic at the target to
enforce correct ordering. These protocols generalize to
implementation of AM Long semantics on other RDMA-
based HPC networks with similar properties.

©2019 U.C. Regents through LBNL 2 2019 IEEE/ACM Parallel Applications Workshop,

Alternatives To MPI (PAW-ATM’19)

II. PROTOCOL OPTIONS

Relevant measures of efficiency in implementing AM Long
include not only standard benchmarks such as "ping-pong
latency" and "flood bandwidth", but also metrics like the
overhead (CPU time spent within the library) of message
injection and the sensitivity to attentiveness. A good
algorithm should spend as little time in message injection as
practical without deferring necessary work to later library
calls to make progress (the frequency of which we called
attentiveness). Since time spent stalled at injection, or
between multiple phases of progress, is time not spent
communicating, improving these measures correlates well
with improvement to the latency and bandwidth benchmarks.
Additionally, prompt signaling of local completion at the
initiator is desired to allow the client to reuse the source
buffer. With these metrics in mind, this section describes
four different algorithms.

On ordered networks, implementation of AM Long can be as
simple as injection of independent transfers for the two
elements; with the assurance that the arrival of the second is
both necessary and sufficient to allow the target to run the
appropriate AM handler. This approach has low overhead, is
insensitive to initiator attentiveness, and can provide timely
signaling of local completion. However, while uGNI
supports an in-order delivery mode, its use disables use of
the multiple paths inherent in the Aries network. While it is
a good choice on some networks, we do not consider this
approach appropriate on Aries due to the associated
reduction in performance (bandwidth and latency) of large
payload transfers.

While Aries does not provide desirable means for ordering
transfers, it is possible for the AM Long implementation to
enforce the necessary semantics by using a class of protocols
we call initiator chaining, which has synchronous and
asynchronous variants. The synchronous variant initiates the
payload RMA transfer, and then stalls to await global
completion (the point in time when the RMA transfer is
known to be fully committed to the remote memory system).
Only once the initiator knows the payload transfer is
complete does it send the envelope. Prior to the work
described here, GASNet’s aries-conduit (through release
v2019.6.0) used synchronous initiator chaining, also referred
to as put-sync-send. The asynchronous variant of initiator
chaining returns after injecting the payload, and enqueues the
envelope to be sent by the progress engine at some point
after global completion of the RMA. These variants share
the property that the transfer of payload and envelope cannot
be pipelined. While the asynchronous variant does permit
overlap of other communication, it is a poor candidate for
overlap of computation, which may reduce the attentiveness
of the injector and thus delay injection of the envelope.

A notable feature of AM Long is that the initiator knows the
addresses for both the source and destination of the payload
transfer. While other algorithms use this to perform an RMA
Put from the initiator, one can alternatively send both
addresses in the envelope and initiate an RMA Get from the
target. In such a rendezvous get algorithm, the initiator
overhead is minimal (injecting only an envelope). However,

the need for the target to receive the envelope and initiate a
Get for the payload significantly increases the latency of
isolated messages (as in a ping-pong benchmark) and leads
to a delay in signaling of source buffer completion at the
initiator. These delays equal a network round trip time in the
best case. In the worst case, inattentive targets not only
lengthen these delays, but can also consume resources at the
injector, leading to head-of-line blocking. For these reasons,
we do not consider rendezvous get to be a desirable protocol
where alternatives are available.

A fourth protocol and the subject of this work is what we
refer to as target-side reassembly. This algorithm has the
initiator inject the envelope and payload transfers back-to-
back without concern for what order they arrive at the target.
At the target, the payload and envelope are matched (as
described below) and the AM handler runs only when both
elements have arrived. Relative to initiator chaining, one
expects back-to-back injection to reduce latency and increase
bandwidth. The overhead of injection is less than the
synchronous variant of initiator chaining, and comparable to
that of the asynchronous variant (including the payload and
envelope injections separated in time). Use of an appropriate
RMA Put protocol for the payload allows use of multiple
paths through the network and provides for timely signaling
of local completion at the initiator.

The key to the viability of target-side reassembly for AM
Long is the ability for the target to match the envelope and
payload to ensure the AM handler is run only after both
elements are present. It is generally safe to assume that the
mechanism chosen for transfer of the envelope can carry any
additional metadata required for matching (although in Aries
we leverage an existing header field). The potentially more
difficult concern is conveyance of matching metadata within
the RMA payload transfer. At a minimum, the target must
receive some notification (as through a uGNI completion
queue) that the payload has arrived, and it must be sufficient
to identify the source rank. To eliminate idle time in the
protocol, additional bits of metadata are desirable in the
target notification to distinguish multiple AM Longs arriving
pipelined from the same initiator (potentially out of order).
It is the challenge of providing this additional metadata
through the Cray uGNI API that has deferred
implementation until now.

III. TARGET-SIDE REASSEMBLY OVER CRAY UGNI

As mentioned above, the key challenge faced in this work
was to transfer a few bits of additional metadata together
with an RMA payload transfer. There are two candidate
mechanisms in the uGNI API. One is put-with-sync-flag in
which a single API call transfers two payloads to distinct
addresses with an in-order guarantee, but with several
restrictions. The most significant restriction is a limit on
payloads to 1MB or less, which we considered unacceptable.
The other option is the 32-bit field known as the instance ID,
which is a part of the target-side completion queue event.
Normally this field simply contains the source rank.
However, the initiator is permitted to dynamically modify
the contents of this field. Since support for 232 processes is
unrealistic for multiple reasons, we have dedicated some of

©2019 U.C. Regents through LBNL 3 2019 IEEE/ACM Parallel Applications Workshop,

Alternatives To MPI (PAW-ATM’19)

the upper bits to carry a “nonce” used for the reassembly.
An encoding scheme (beyond the scope of this extended
abstract) is chosen for the nonce that ensures the matching
envelope and payload events are uniquely distinguishable
from other unrelated events that may concurrently be present
in the same completion queue.

At the target, the progress engine processes completion
queue events for the arrivals of AM Long payloads and
envelopes. A simple chained-bucket hash table is used to
match the second arrival to the first, and the AM handler
executes only when a match is found (and the entry removed
from the hash table). This matching occurs within the scope
of an existing mutex-protected critical section, and thus did
not require any additional synchronization for thread-safety.

The nonce value must be unique per source from at least the
time the AM is injected into the network until the matching
is complete. Realistically, the lifetime extends until the
(possibly implicit) AM Reply from target to initiator arrives,
allowing the initiator to recycle the nonce value. The
scheme for buffer management in aries-conduit already had
an identifier meeting the requirements for use as a nonce,
including lifetime and fitting in the available bits. Therefore,
no additional logic was required to manage the nonce, no
additional space was required in the envelope, and no
additional communication was required to retire a nonce
value.

IV. PERFORMANCE EVALUATION

This section reports briefly on the improvement in
performance obtained by replacing the put-sync-send
protocol with the target-side reassembly protocol in the
GASNet implementation of AM Long for Aries. Three
metrics are presented: bandwidth, latency, and overhead.
Measurements were taken on NERSC’s Cori Phase II, a Cray
XC with 1.4GHz Xeon Phi CPUs. The relatively slow CPUs
of this platform accentuate the cost of added matching logic
at the target, meaning that other XC systems with more
powerful CPUs may exhibit even larger improvements. The
reader is referred to the Reproducibility Appendix for
additional information regarding the system and
experimental methodology.

Figure 1 shows the bandwidth of the two protocols as
measured by a round-trip ping-pong (Request + Reply) test,
as well as their ratio (dotted blue series). The largest
improvement is a 49% increase at a 4KiB payload size.
Measurements of other patterns including one-way and
bidirectional flood patterns are qualitatively similar.

Inverting the bandwidth data for the ping-pong pattern in
Figure 1 yields a measure of roundtrip AM Long latency,
shown in Figure 2. With a 4KiB payload, the latency is
reduced from 13.0us for put-sync-send to just 8.7us for
target-side reassembly (a 33% reduction). As the payload
size increases as high as 1MiB the latency reduction varies in
the range 3.7us to 6.1us.

Figure 1. AM Long Ping-Pong Bandwidth Comparison

 Figure 3. AM Long Injection Overhead Comparison

Figure 2. AM Long Roundtrip Latency Comparison

©2019 U.C. Regents through LBNL 4 2019 IEEE/ACM Parallel Applications Workshop,

Alternatives To MPI (PAW-ATM’19)

Because put-sync-send stalls AM Long injection until global
RMA completion, it did not provide for asynchronous
signaling of local completion. However, target-side
reassembly is well suited to implementation of asynchronous
local completion. Figure 3 shows the injection overhead of
the two protocols, at three payload sizes, as the queue depth
(number of semantically overlapped operations) is varied for
the case of implicit-handle signaling of local completion.
The stall for global RMA completion dominates the
overhead of put-sync-send, and thus all three corresponding
series (solid lines) are essentially flat. However, target-side
reassembly (dashed lines) shows greatly improved (nearly
constant) injection overhead until encountering flow control
back-pressure, at which point the overhead rises relative to
shallower queue depths, while remaining uniformly better
than the put-sync-send protocol for the same payload size.

V. CONCLUSIONS

We’ve discussed several network-level protocols for AM
Long and proposed a new target-side reassembly protocol
that allows pipelining of an RMA payload transfer with the
AM envelope message on unordered network stacks, using
CPU-based matching logic at the target to enforce AM
Long’s payload delivery semantics. The protocol does not
rely upon properties unique to Cray Aries or the uGNI API,
and should generalize to other networks that allow RMA Put
to deliver a few bits of out-of-band data to the target, via a
completion queue, completion call-back, or similar.

Microbenchmark evaluation on the Cray XC Aries
network hardware demonstrates the target-side reassembly
protocol on this network improves AM Long end-to-end
latency relative to put-sync-send by up to 33%, and the
effective bandwidth by up to 49%, while also enabling
asynchronous source completion that drastically reduces
injection overheads.

The improved target-side reassembly protocol is
deployed as the default AM Long implementation for aries-
conduit in GASNet-EX release v2019.9.0 and later. Future
work may investigate deploying this AM Long protocol for
additional networks sharing similar properties.

ACKNOWLEDGMENTS

This research was funded in part by the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of
the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

This research used resources of the National Energy
Research Scientific Computing Center, a DOE Office of
Science User Facility supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231.

REFERENCES

[1] Alverson, B., Froese, E., Kaplan, L., Roweth, D., “Cray XC
Series Network”. Cray White Paper WP-Aries01-1112, 2012.
cray.com/sites/default/files/resources/CrayXCNetwork.pdf

[2] Bachan, J., Baden, S. B., Hofmeyr, S., Jacquelin, M., Kamil, A.,
Bonachea, D., Hargrove, P. H., Ahmed, H., "UPC++: A High-
Performance Communication Framework for Asynchronous
Computation". 33rd IEEE International Parallel & Distributed
Processing Symposium (IPDPS), 2019. doi:10.25344/S4V88H

[3] Bauer, M., Treichler, S., Slaughter, E., Aiken, A., “Legion:
Expressing Locality and Independence with Logical Regions”.
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis
(SC), 2012. doi:10.1109/SC.2012.71

[4] Bonachea, D., Hargrove, P.H., “GASNet Specification, v1.8.1”.
Lawrence Berkeley National Laboratory Technical Report
(LBNL-2001064), 2017. doi:10.2172/1398512

[5] Bonachea D., Hargrove, P.H., “GASNet-EX: A High-
Performance, Portable Communication Library for Exascale”.
Lawrence Berkeley National Laboratory Technical Report
(LBNL-2001174). Languages and Compilers for Parallel
Computing (LCPC), 2018. doi:10.25344/S4QP4W

[6] Callahan, D., Chamberlain, B.L., Zima, H.P., “The Cascade High
Productivity Language”. International Workshop on High-Level
Parallel Programming Models and Supportive Environments
(HIPS), 2004. doi:10.1109/HIPS.2004.10002

[7] Chen, W., Bonachea, D., Duell, J., Husband, P., Iancu, C.,
Yelick, K., “A Performance Analysis of the Berkeley UPC
Compiler”. Proceedings of the 17th International Conference on
Supercomputing (ICS), 2003. doi:10.1145/782814.782825

[8] von Eicken, T., Culler, D.E., Goldstein, S.C., Schauser, K.E.,
“Active Messages: a Mechanism for Integrated Communication
and Computation”. Proceedings of the 19th International
Symposium on Computer Architecture (ISCA), 1992.
doi:10.1145/139669.140382

[9] GASNet Web Page https://gasnet.lbl.gov

[10] Mainwaring A, Culler, D., "Active Message Applications
Programming Interface and Communication Subsystem
Organization". U.C. Berkeley EECS Technical Report
UCB/CSD-96-918, 1996. doi:10.25344/S48C7W

[11] UPC Consortium, “UPC Language and Library Specifications,
v1.3”. Lawrence Berkeley National Laboratory Technical Report
(LBNL-6623E), 2013. doi:10.2172/1134233

https://www.cray.com/sites/default/files/resources/CrayXCNetwork.pdf
https://doi.org/10.25344/S4V88H
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.2172/1398512
https://doi.org/10.25344/S4QP4W
https://doi.org/10.1109/HIPS.2004.10002
https://doi.org/10.1145/782814.782825
https://doi.org/10.1145/139669.140382
https://gasnet.lbl.gov/
https://doi.org/10.25344/S48C7W
https://doi.org/10.2172/1134233

©2019 U.C. Regents through LBNL 5 2019 IEEE/ACM Parallel Applications Workshop,

Alternatives To MPI (PAW-ATM’19)

REPRODUCIBILITY APPENDIX

A. Abstract

This Appendix describes the methodology for the PAW-
ATM19 paper: Efficient Active Message RMA in GASNet
Using a Target-Side Reassembly Protocol

B. Test Platform

Experimental results were collected on the following
Cray XC40 system, in which nodes are connected via Cray
Aries network hardware:

NERSC Cori-II
Node: 68-core 1.4 GHz Intel Xeon Phi 7250, 96 GB DDR4
(quad-cache mode)
Compiler: Intel C Compiler, v18.0.1.163
System software: Cray PrgEnv-intel/6.0.4, Cray PE/2.5.15
Batch system: SLURM (srun)

All communication is performed using the GASNet-EX
aries-conduit, with a pre-release version of 2019.9.0. The
put-sync-send series use the AM Long protocol which was
active through release version 2019.6.0, and the target-side
reassembly series use the AM Long protocol which is the
new default behavior starting in release version 2019.9.0.

C. Methodology for Figure 1:
AM Long Ping-Pong Bandwidth Comparison

These results were gathered using the testam
microbenchmark included in the GASNet distribution. The
exact command used for data collection was:

srun –n2 –N2 testam 50000 1048576 G

These arguments request 50,000 iterations with payload
sizes up to 1MiB, and restricts the runs to sub-test “G:
AMLong ping-pong roundtrip ReqRep”. All runs are point-
to-point, using a single process on each of two nodes
connected by the network fabric. These runs report average
latency and bandwidth from a ping-pong test that consists of
one rank sending an AM Long Request of a given size and
the recipient sending an AM Long Reply of the same size.
The first rank waits to receive the Reply before sending its
next Request. This ping-pong exchange is repeated 50,000
times. The test reports the bandwidth at each size as the sum
of the payload size of all the Requests and Replies, divided
by the elapsed time to complete all of the iterations of that
size.

The ping-pong test is performed at the sizes 0 and 1MiB,
and all the powers-of-two in between. Since payloads less
than the 4KiB data point are transferred using a “packed
Long” protocol not described in this paper, the Figure omits
data below 2KiB where the two series are identical. The
2KiB data point is included to confirm the lack of
performance difference at that point.

Because the Cray Aries network shares resources among

distinct jobs, the bandwidth values reported by testam are
too noisy to make a meaningful comparison between just two
runs. Two executables, built from sources differing in the
implementation of AM Long, were run in alternating

sequence, 22 times each. Each data point shown in Figure 1
is a maximum over 22 runs.

D. Methodology for Figure 2:
AM Long Roundtrip Latency Comparison

Figure 2 is an alternate visualization of the same data
from Figure 1. Each data point is the quotient of the payload
size and the corresponding bandwidth from a data point in
Figure 1. Because the results are from a round-trip ping-pong
test, the resulting value represents the average round-trip
latency time for that payload size. The range of payload sizes
shown on the x-axis has been restricted, in order to highlight
the most interesting behavior.

E. Methodology for Figure 3:
AM Long Injection Overhead Comparison

These results were gathered using the testqueue

microbenchmark included in the GASNet distribution. The
exact command used for data collection was:

srun –n2 –N2 testqueue –l –i 1000 256

These arguments request 1,000 iterations, a maximum
queue depth of 256, and restrict the runs to the sub-test for

AM Long (-l) with implicit-handle (-i) signaling of local
completion. All runs are point-to-point, using a single
process on each of two nodes connected by the network
fabric. These runs report “injection overhead”, defined as
the time required to initiate communication without waiting

for its completion. For a given queue depth (d) and payload

size (n), the test measures the time for the first rank to make

d consecutive calls to gex_AM_RequestLong0() with

n-byte payload, and GEX_EVENT_GROUP to request
implicit-handle signaling of local completion. As this is a
test of injection overhead, all communication is completed
outside the timed region; the initiator waits for local

completion, the target waits to have received d AM
Requests, and then both ranks participate in a barrier. This
alternation of timed injection and network quiescence is
repeated multiple times (1,000 for the arguments used) and
the average time for the injection portion is reported.

The test runs the procedure described in the previous
paragraph for queue depth from 1 to 256 and payload sizes
from 0 to 2MiB, using the powers-of-two in the respective
ranges. The data in Figure 3 reports the data from runs of
two executables, built from sources differing in the
implementation of AM Long, run back-to-back in the same
job. Because injection time is relatively insensitive to
interference in the network, results from single runs are used.

Figure 3 reports data for three payload sizes: 4KiB,
64KiB and 1MiB. The data for payload sizes between these
three is qualitatively similar: monotonically non-decreasing
as either size or queue depth increases. Since payloads less
than 4KiB are transferred using a “packed Long” protocol
not described in this paper, the data at such sizes is not
presented.

http://www.nersc.gov/users/computational-systems/cori/configuration/cori-intel-xeon-phi-nodes/

	I. Introduction
	II. Protocol Options
	III. Target-side Reassembly Over Cray uGNI
	IV. Performance Evaluation
	V. Conclusions
	Acknowledgments
	References

	Reproducibility Appendix
	A. Abstract
	B. Test Platform
	C. Methodology for Figure 1: AM Long Ping-Pong Bandwidth Comparison
	D. Methodology for Figure 2: AM Long Roundtrip Latency Comparison
	E. Methodology for Figure 3: AM Long Injection Overhead Comparison

