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Abstract 

Research in simulations and their educational efficacy has had 
mixed success in the educational and cognitive sciences.  
There are challenges in understanding the complex nature of 
simulations, critical points of learner interactivity with 
computer simulations, and appropriate methods for testing 
and discovering potential benefits.  The current research 
investigated learning from AutoTutor, an intelligent tutoring 
system, that interacts with learners in natural language and 
that launches embedded interactive 3-D simulations for 
tutoring conceptual physics.  An experiment on college 
students shed light on conditions that promote learning, with 
results that hopefully will scale up in diverse educational 
settings with learning technologies.   
 
Keywords: intelligent tutoring systems, simulations 
 

Introduction 
Researchers have recently developed interactive simulation 
environments with the hopes that they provide benefits 
similar to real world experiences and that they allow for 
exploration in a broad landscape of hypothetical situations. 
Although simulations might have an intuitive appeal, 
research has provided conflicting results regarding their 
pedagogical effectiveness.  Some studies have shown that 
simulations are an effective means of teaching (Brant, 
Hooper, & Sugrue, 1991; Carlsen & Andre, 1992; 
Goldstone & Son, 2005; Kinzie, Strauss, & Foss, 1993; 
Stockburger, 1982) while others have shown little or no 
positive results (Rieber & Wayne, 1992; Schlechter, 
Bessemer, & Kolosh, 1992).  These conflicting results may 
in part be due to various methodological flaws: lack of 
appropriate control conditions, difficulty of subject matter, 
poor experimental design, and varying levels of user 
control. 
   Thomas and Hooper (1991) reported that the effects of 
simulations are typically not revealed through direct tests of 

knowledge, but rather they can be found through tests of 
transfer and application.  This may help to explain some of 
the large discrepancies between simulation studies.  There 
are currently no standard methods for testing simulation 
effectiveness, which causes problems when trying to 
generalize or interpret results.   
   Some lines of research have focused on systematic 
differences between simulations.  Goldstone and Son (2005) 
reported that the content representation within simulations 
had a significant impact on simulation effectiveness for 
learning science principles.  They manipulated the level of 
content abstraction, as well as the order of presentation, 
while students attempted to learn the concept of competitive 
specialization.  Ultimately they found that simulations were 
most effective when they started as relatively concrete 
representations of real world scenarios and faded into more 
abstract/idealized simulations where principles and concepts 
were emphasized.  This progression led to the best 
performance during training, as well as the most robust 
transfer of the underlying scientific principles. 
   Many of the simulation environments incorporate some 
form of practice, where the users can take control and 
change objects in the simulations however they see fit.  This 
approach allows users to regulate their own learning and 
adapt their actions to their unique conceptual understanding.  
One down side to this is that research on self-regulated 
learning (Azevedo & Cromley, 2004) has shown that 
students do not spontaneously engage in appropriate meta-
cognitive strategies to track their progress during learning.  
However, when students are introduced to these effective 
learning strategies, their subsequent performance increases.  
This may explain why several simulation environments 
have failed:  students do not know the proper learning 
strategies. 
   Some researchers have tried to counteract this naivety of 
student learning by incorporating forms of learning guides 
into their technology. Rivers and Vockell (1987) compared 
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a variety of simulations which allowed users to openly 
practice with the environments, but differed on the level of 
guidance provided.  This research consisted of fifteen 
different simulations which were categorized into two 
groups: guided and unguided.  The researchers found an 
overall positive effect for those students who received 
guidance during the simulation environments.  These 
results, along with the research in self-regulated learning, 
seem to suggest that some form of guidance may be 
necessary to help students utilize simulations effectively. 
   The present research was conducted on interactive 
simulations embedded in an intelligent tutoring system 
called AutoTutor, which will be described below.  
AutoTutor helps students learn by holding a conversation in 
natural language. The subject matter was conceptual physics 
on Newton’s laws of motion.  AutoTutor launches 
interactive simulations whenever students express 
misconceptions or miss critical physics principles while 
solving conceptual physics problems (example problem: 
“Suppose a runner is running in a straight line at constant 
speed. He throws a pumpkin straight up. Where will it land? 
Explain.”)  These simulation environments allow users to 
practice openly on 3-D micro-worlds of entities in motion, 
but they also include dialog scaffolding with natural 
language that captures intelligent pedagogy.  This initiative 
was designed to synthesize previous research from 
simulation environments with self-regulated learning 
strategies.  The simulations, as well as the dialog, include 
misconception identification and remediation techniques.  
The purpose of the current analysis was to examine student 
performance within the new environments and to explore  
possible relations between users’ actions and learning 
outcomes. 

AutoTutor 
AutoTutor is a natural language Intelligent Tutoring System 
(ITS) that has proven to be effective at producing learning 
gains (Graesser, Lu, Jackson, Mitchell, Ventura, Olney, & 
Louwerse, 2004; Jackson, Ventura, Chewle, Graesser, & 
TRG, 2004).  The computational underpinnings of the 
AutoTutor system have been previously reported in a 
variety of outlets (Graesser, Chipman, Haynes, & Olney, 
2005; Graesser, Lu et al., 2004; Graesser, VanLehn, Rose, 
Jordan, & Harter, 2001; Graesser, Wiemer-Hastings, 
Weimer-Hastings, Kreuz, & TRG, 1999), so only a brief 
overview of relevant components is presented. 
   The pedagogical strategies implemented within AutoTutor 
are based on several decades of research on human-to-
human tutoring and reflect the pedagogical strategies of 
scaffolding for student-centered constructivist learning.   At 
the beginning of each problem, AutoTutor poses a seed 
question to the student, the student provides an answer 
(about a paragraph is required for a complete answer), and 
AutoTutor pumps the student to supply more information.  
For the remainder of the problem, AutoTutor engages the 
student in natural language conversation and attempts to 
cover all the missing “problem-specific principles” (we call 
them expectations) from the student’s original answer.  

Once a problem has all expectations covered, AutoTutor 
moves on and presents the next problem seed question (or 
exits the session).  While covering the expectations, 
AutoTutor also attempts to recognize student 
misconceptions and corrects these when they are 
manifested.   
   AutoTutor is personified as an animated agent with speech 
synthesis.  Each conversational turn for AutoTutor is 
spoken, via the speech engine, as well as posted as text in a 
dialog history box.  The animated agent makes use of lip 
synchronization, along with conversationally appropriate 
pedagogical gestures which range from focusing attention to 
various parts of the screen to incorporating emotions for 
feedback purposes.  Below is an excerpt from an actual 
student dialog, with inserted dialog move identifiers in 
parentheses and brackets. 
 
AutoTutor (SEED QUESTION):   When a car without 

headrests on the seats is struck from behind, the 
passengers often suffer neck injuries. Why do 
passengers get neck injuries in this situation?   

Student:  The passenger experiences a backward 
acceleration, while the car moves forward. 

AutoTutor (PUMP):   And can you add to that?  
Student:  This is because the passenger experiences a force 

opposite in direction to the force on the car. 
AutoTutor (POSITIVE FEEDBACK):   Um, yes, correct!   
AutoTutor (HINT):   When the neck provides a large force, 

what within the neck would get damaged?      
Student:  the spine 
AutoTutor (NEUTRAL NEGATIVE FEEDBACK): umm   
AutoTutor (PROMPT):  I think you can get this.  Damage 

within the neck will occur in the ligaments and the 
. . . . . ? [spoken with rising intonation and 
accompanied with a prompting hand gesture] 

Student:  muscles 
AutoTutor (POSITIVE FEEDBACK):   Brilliant!   
AutoTutor (PROMPT RESPONSE):  ligaments and the 

muscles. 
AutoTutor (DIALOG ADVANCER):  Let’s keep going.  
 
Why/AutoTutor uses LSA as the backbone for representing 
world knowledge about conceptual physics, or any other 
subject matter that is tutored (Graesser, P. Wiemer-
Hastings, K. Wiemer-Hastings, Harter, Person, & TRG, 
2000).  LSA is a high-dimensional, statistical technique that, 
among other things, measures the conceptual similarity of 
any two pieces of text, such as a word, sentence, paragraph, 
or lengthier document (Landauer, Foltz, & Laham, 1998).    
Why/AutoTutor  uses  LSA  to  perform conceptual pattern 
matching operations when we compare student 
contributions to expected good answers and to anticipated 
misconceptions.   An expectation is considered covered if 
the student’s contributions end up matching the expectation 
by some LSA threshold of overlap.   Similarly, a 
misconception is considered present if the student’s input 
matches the misconception by some LSA threshold. 
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AutoTutor 3-D 
   AutoTutor 3-D is the newest version of the AutoTutor 
system.  It has the same pedagogical algorithms as previous 
versions, but the current version adds 3-D micro-worlds 
with interactive simulation.  Previous research has already 
shown that the AutoTutor architecture is an effective 
learning environment when compared to ecological controls, 
such as reading a textbook for an equivalent amount of time 
(Graesser, Lu et al., 2004; Jackson et al., 2004).  The current 
research examines the role of a new component, interactive 
simulation, in promoting learning of physics concepts.   
 
Simulations The simulations contained in AutoTutor 3-D 
are aligned with each of the problems covered during the 
session.  When a student is struggling through a problem, 
AutoTutor may decide to launch one of the relevant 
simulations (sometimes triggered after a series of incorrect 
statements made by the student and sometimes triggered by 
missing important principles).  When a simulation is 
launched, the animated agent moves to the top-left corner of 
the interface and several windows fade into view (see Figure 
1 for a screen shot).   
 

 
 

Figure 1:  Screen shot of an AutoTutor 3-D Simulation. 
 
   The first time a simulation loads, AutoTutor provides the 
student with an introduction to the new interface, along with 
a very brief description and question concerning the 
simulation scenario.  On subsequent launches, AutoTutor 
only provides the brief statement and question of what may 
be involved in the current simulation scenario.  Multiple 
simulations may be launched within a problem, each of 
which may focus on a particular physics principle or 
misconception.  All principles and misconceptions have 
been inserted into AutoTutor using conversational phrasing. 
For example, one of the physics principles contained in 
AutoTutor is stated as, “After an object is dropped or 
thrown, the only force acting on it is gravity”, while an 
example misconception would be, “Heavier objects fall 
faster”. 

   After a simulation has loaded, AutoTutor asks a question 
and poses a challenge to the user.  The challenges are 
designed to require the user to manipulate variables in order 
to either confirm or falsify a hypothesis that they create.  
The user may make any changes they desire, and then click 
the start button to set the effect of the parameter 
combinations on the 3-D micro-world in motion.   
   Within each problem, the simulation environment appears 
to remain the same each time it is loaded (the interface and 
parameter controls are constant), although the corresponding 
simulation dialog adapts to emphasize the current principle 
being discussed.  Between the different physics problems, 
the simulation parameter components change to fit the 
scenario.  For example, consider our example problem 
mentioned before where a runner in motion throws a 
pumpkin straight up and asks where it will land.  In this 
simulation we include a runner and the pumpkin while we 
provide parameters that change the horizontal velocity of 
the runner, the mass of the pumpkin, the magnitude of 
gravity, etc. Another simulation involves a plane trying to 
drop a packet onto a target and asks if the packet will hit the 
target. The simulation for this scenario includes the plane, 
the packet, and the target, while providing parameters that 
change the horizontal velocity of the plane, the magnitude 
of gravity, the location of the target, mass of the packet, air 
resistance, etc.  Between these problems the interface layout 
and design remains consistent, but the parameter labels 
change appropriately. 
   Each simulation has a set of parameters, each of which 
were judged (by physics experts) as being relevant or 
irrelevant.  Relevant parameters are those which directly 
relate to the key concepts and principles for the problem.  
One example may be manipulating the parameter for 
horizontal velocity of a runner before he throws an object up 
in the air (showing that horizontal and vertical velocities are 
independent).  Irrelevant parameters do not directly pertain 
to the principles, but may relate to a common 
misconception.  For example, an irrelevant parameter, in a 
falling body problem, would be mass (as it relates to a 
misconception that heavier objects fall faster). 
  Overall, the simulation environments were designed to 
foster self-regulated and discovery learning.  During active 
use of the simulations, AutoTutor takes a relatively hands-
off approach, allowing the user to take most of the control.  
Users are allowed to practice with the simulations as many 
times as desired, and at times AutoTutor may make a 
suggestion or ask if the user would like to continue with the 
tutoring session.  For each simulation AutoTutor holds a 
short dialog with the users and ultimately asks for them to 
verbally explain what actually occurred (using physics 
terms).  The dialog during simulations was designed to 
scaffold the student’s conceptual knowledge of the 
simulation, and progress through varying levels of 
specificity and deeper levels of processing. At the 
culmination of each simulation dialog, AutoTutor provides 
an ideal answer/summary of the simulation topic.  Not all 
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principles are explicitly addressed by AutoTutor, but all 
principles are at least indirectly covered during the session. 

Current Experiment 
We conducted an experiment that included 42 
undergraduate students interacting with AutoTutor 3-D at 
the University of Memphis or Rhodes College.  Some of the 
previous studies with AutoTutor involved students enrolled 
in physics classes.  However this study, and other recent 
studies have incorporated physics novices.  So, participants 
were recruited from subject pools at the various institutions 
and questioned about previous physics courses.  All 
participants completed pretest, training, and posttest phases. 
   Pretests consisted of 26 multiple choice questions on 
conceptual physics that were pulled from, or similar to, the 
Force Concept Inventory (FCI).  The FCI is a well-known 
and accepted test for assessing conceptual physics 
knowledge (Hestenes, Wells, & Swackhamer, 1992).  These 
questions provide very short scenarios and require the 
student to apply their knowledge and select the correct 
solution. 
   The training phase consisted of working with AutoTutor 
3-D through 4 conceptual physics problems.  Training 
sessions typically lasted from an hour to an hour-and-a-half. 
   Immediately following the training sessions participants 
completed the posttest.  The posttest also consisted of a 26 
item multiple choice test similar to the FCI, which was 
counterbalanced with the pretest.  Both the pretests and the 
posttests were administered independent from the 
AutoTutor program. 

Results and Discussion 
This was the first study conducted with AutoTutor 3-D, so 
we were primarily interested in analyzing the actions taken 
by the users along with any corresponding learning. Each 
manipulation of a simulation was logged into a database and 
later extracted for analysis.  Analyses have been performed 
at the manipulation and at the problem units of analysis, 
however this study focuses on specific data patterns of 
students as a unit of analysis.   
   We selected two primary measures which were predicted 
to positively correlate with student learning: total number of 
simulations and the relevance of manipulations.  It was 
expected that practice with more simulations would lead to 
higher learning outcomes.  Therefore, the total number of 
simulations was selected for comparison with the learning 
indices.  It was also hypothesized that those students who 
manipulated more relevant parameters would have a better 
understanding of the underlying conceptual principles and 
would therefore exhibit higher learning outcomes.  Thus, the 
average manipulated parameter relevance was computed for 
each student and was compared to the learning measures.  
Although these analyses are correlational, they are relevant 
at this stage of simulation research which has produced a 
large number of null effects.  If there are significant 
correlations, then we can turn to dissecting the precise 
causes of learning. 
   Four learning indices were included in the current study.  
Both the pretest and posttest proportions were included as 

independent variables (i.e., proportion of questions that 
were answered correctly).  A learning gains measure was 
computed by subtracting the pretest proportions from the 
posttest proportions.  This is typically seen as a simple 
difference score that is often biased towards low ability 
students, as they have more ground to cover and 
consequently have higher gains scores.  A fourth variable 
was computed which tries to account for this bias by 
computing a proportional gain.  This particular variable is 
referred to as a proportional learning gain score and is 
computed with the following equation [(posttest proportion 
– pretest proportion) / (1 – pretest proportion)].  The 
denominator calculates the amount of gain required to make 
a perfect score, while the numerator calculates the amount 
of actual gain for each student.  The computed fraction then 
represents the proportional gain attained with less bias 
towards low pretest participants. 

Correlation Results 
Initial inspection of the data revealed that several 
participants did not receive any simulations and that some 
participants who actually received simulations did not 
interact with the system much, making very few 
manipulations.  These two groups of students (no 
simulations and few manipulations) did not truly participate 
with the simulations, and therefore would not be expected to 
glean any significant learning from the experience.  To 
account for this, the current analysis included only those 
participants who made at least ten total manipulations 
(across all four problems).  Those students who made less 
than ten manipulations and who were excluded from these 
results did not significantly differ on pretest scores from 
those who remained in the following analyses. 
   Table 1 shows the results from the correlational analysis. 

 
Table 1:  Correlations with outcome measures for students 

with more than 10 manipulations (n=25).   
 

Simulation 
Parameter 

Pretest Posttest Learning 
Gains 

Propor
tional 
gain  

Scores 
Total number of 
simulations 
launched 

-.047 
(.82) 

.299 
(.15) 

.420* 
(.04) 

.508* 
(.01) 

Parameter 
relevance 

.145 
(.49) 

.530* 
(.01) 

.440* 
(.03) 

.466* 
(.02) 

* = significant for two-tailed test 
 
   Table 1 shows that participants’ prior knowledge did not 
significantly relate to the number of simulations or their 
selection of relevant parameters.  So it appears that students 
who already possessed a conceptual understanding did not 
necessarily make better selections for relevant parameters.  
The students who ended up manipulating relevant 
parameters and those who received more practice with the 
simulations benefited the most from the experience.  This is 
evidenced by the significant correlations between the 
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simulation variables and the posttest proportions, learning 
gains, and proportional gain scores. 

Regression Results 
We further examined those students who participated with 
the simulations by computing regression equations that 
predict posttest performance using the various simulation 
parameters. 
   Regression analyses were conducted to determine if the 
total number of simulations and the relevance of the 
manipulations could significantly predict posttest 
performance.  Previous studies with AutoTutor in 
conceptual physics have found that pretest scores were often 
the largest significant predictor of posttest performance, so 
this variable was inserted first into the regression equation.  
We wanted to see if the two simulation variables would add 
any significant predictive power above and beyond the 
pretest.  A series of analyses revealed that the pretest 
proportion and the mean parameter relevance were the only 
two consistently significant predictors in the regression 
equations, r2=.665, p=.002.  Table 2 shows the 
corresponding coefficients from the regression equation. 
    

Table 2:  Regression coefficients for posttest performance 
 

Predictor Variable Standardized 
Beta  

Sig. 

Pretest Proportion .647 .00 
Parameter Relevance .366 .01 
Total number of Simulations .205 .12 

 
As with previous studies, the pretest scores account for a 
large portion of the posttest variance.  In this case it also 
appears that the relevance of manipulations can help to 
predict how well students will perform at posttest.   

Conclusions and Future Directions 
Results from the previous section have led us to believe that 
not all students utilize simulations equally.  As with any 
self-regulated learning experiences, the degree of learning 
primarily lies within the hands of the student.  In this case, 
the level of interaction was left up to the students, and the 
results indicate that those who utilized the situation 
effectively experienced more gains.  This means that future 
work will need to be more active in helping engage the 
students with the simulations, and may need to include a 
brief introduction to the appropriate learning strategies 
(Azevedo & Cromley, 2004). 
   It appears that the mere presence of simulations (i.e., 
grounding the situation) does not help students’ conceptual 
knowledge, and therefore simulation conditions as a whole 
should not necessarily be treated equally.  The actions of 
each user should be taken into account, as they allow for a 
better representation of what the simulation environments 
can provide. 
  Unfortunately, no cause and effect relations can be directly 
attributed here, but this analysis does provide another 

important step toward determining what factors are 
important when interacting with simulations.  Hopefully 
work with other systems will begin to provide similar in-
depth analyses which dissect simulation interactions, and 
allow for specific comparisons between systems.  Future 
work with AutoTutor 3-D will continue to explore users’ 
actions within simulation environments, and will be likely 
to incorporate previous results into new system designs and 
experimental manipulations.  This precursory research helps 
to further define the complex landscape of simulation 
environments and helps to integrate a new line of research 
into an established technology. 
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