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Abstract— Human-robot collaboration plays an important role
in intelligent manufacturing. However, the main challenge is how
the robot can make online reactive changes to the plan based
on the observed human behavior to ensure the completion of
user-defined tasks. Such a challenge is further exacerbated if
eye-in-hand manipulation is considered since the local field of
the camera view cannot capture global observations. Different
from existing planning approaches that separate the perception
and planning modules, and make strong assumptions about
perception abilities, we develop a framework of real-time local
reactive planning that enables the robot to quickly adapt its
actions if necessary through its limited perception of surroundings
using an eye-in-hand camera. Specifically, we develop a locally
observable transition system (LOTS) and interpretably express
the task using linear temporal logic (LTL). To improve the
grasping performance using local visual perception, we propose
a high-resolution grasp network (HRG-Net) that achieves state-
of-the-art results on multiple datasets (99.50% in Cornell and
97.50% in Jacquard and 96% in Graspnet-1Billion) for the task.
A physical experiment using a 7DoF Franka Emika Panda robot
demonstrates the effectiveness of the reactive planning framework.

Note to Practitioners—Intelligent manufacturing often requires
the human operator to work collaboratively with the robot in
a shared workspace. Due to possible (assistive or non-assistive)
interference of human operators, it is highly desired that the
robot can perceive human behaviors and react properly to ensure
task accomplishment. Hence, this work is particularly motivated
to develop a reactive planning framework that relies on real-time
local visual perception (i.e., eye-in-hand camera) to quickly react
to its dynamic surroundings and replan its motion when necessary.
In future work, rather than using the observed human behavior,
we will investigate how to predict human intentions to further
improve human-robot collaboration.
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I. INTRODUCTION

COLLABORATIVE robots engage increasingly in various
applications ranging from intelligent manufacturing to

more complex tasks, such as assistive robots in nursing homes
or restaurants, flexible reconfigurable production in intelligent
manufacturing, or even collaborative manipulation in outer
space [1], [2], [3], [4], [5], [6]. In these applications, robots
team up with human operators and work collaboratively in a
shared workspace. To achieve intuitive and seamless human-
robot collaboration, several challenges need to be tackled.
Firstly, unlike conventional simple robotic manipulation tasks
(e.g., point-to-point navigation), practical collaborative tasks
can be complex and often involve a sequence of logically and
temporally structured manipulations. For instance, mechanical
parts have to be picked and installed sequentially by the robot
with the assistance of human operators in the assembly line.
Additionally, the challenge of complex tasks is further exacer-
bated when they are performed in a dynamic and contextually
rich environment. Human behaviors, whether assistive or non-
assistive, can change the surrounding environment. Unexpected
environmental events or human-robot-environment interactions
can also result in a dynamic environment. An example scenario
is shown in Fig. 1. Hence, robots cannot always count on human
teammates to stay on script. The robot must instead perform
the task reactively, i.e., decide on the next action quickly as it
observes the changes in the workspace. Appropriate reactive
behaviors can complement and improve the performance of
collaborative partners.

One common strategy to address the above challenges is
reactive synthesis, which utilizes a replanning-and-execution
method to adjust control strategies and adapt to changes in
the environment. Previous studies [7], [8], [9], [10] have
demonstrated that traditional reactive synthesis techniques
rely on complete environmental observability to construct
a transition system. Such a system models the interaction
between a human and a robot as a two-player game and then
identifies a winning strategy. However, despite its theoretical
soundness, this approach is not practical in numerous intelligent
manufacturing scenarios, where the dynamic environment often
limits perception to a small amount of local information.
For instance, as depicted in Fig. 1, even if a high-resolution
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Fig. 1. The robot works collaboratively with a human partner in a shared
workspace. The robot is desired to select an appropriate tool from the source
workspace A, hand it to the human, and assist the human in the goal
workspace B. Throughout this collaborative task, humans may occasionally
step in to assist the robot, such as helping them with part of their work
or providing feedback. Unfortunately, human errors can also occur, such as
misplacing tools. Due to these possible interactions with humans, the robot
needs to perceive its surroundings and quickly react and replans its actions
whenever something does go off-script.

camera is strategically placed using the eye-to-hand technique
to achieve global workspace observability, it is still likely to be
obstructed by the robotic manipulator during the manipulation
process, thereby making global observability unattainable.

To deal with the aforementioned issues, in this framework,
the camera is installed at the end-effector of the manipulator,
and the eye-in-hand approach is utilized to enable more
precise predictions of the grasp position and orientation as
the arm approaches the target object. To address the issue of
local observability during motion planning, we developed a
high-resolution grasping network (HRG-Net) that integrates
multi-modal inputs and different scales of feature map infor-
mation. This enables the use of the original-sized feature
map to achieve precise high-resolution representation, while
simultaneously downsampling to obtain a richer semantic
representation. Our experiments on the Cornell and Jacquard
datasets demonstrate that the HRG-Net outperforms existing
methods. Significant improvements have been made over
our previous work [11]. Firstly, we conducted tests on the
GraspNet-1Billion [12] dataset and achieved state-of-the-art
results. Secondly, we tested the algorithm on real physical
scenarios involving dynamic objects and object generalization
with random initial positions. Our results show that the
HRG-Net is superior to other methods, achieving time savings
of approximately 9% − 21% when performing the same task.
This is primarily due to the HRG-Net’s ability to generate more
accurate predictions of the grasping position and orientation
while avoiding time-consuming exploration during motion
planning.

To enable reactive synthesis based on local vision-based
observation of the environment, we propose a novel locally
observable transition system (LOTS), which associates the
robot’s perceived environment states with the task progress.
Building this association requires a structured representation
of a task so that the task progress (i.e., the completion of
subtasks) can be verified online according to the perceived

environment states. We apply linear temporal logic (LTL) [13]
to express high-level tasks, which can model a rich class of
human-interpretable tasks for robots. Its crucial benefit is to
employ an automaton to track the process of satisfaction. This
allows us to utilize the environment states and the robot states
to conveniently check the automaton transitions through the
perceived information, based on which the robot can replan
correspondingly toward the completion of the task. In this
framework, our approach can utilize reactive synthesis methods
in a dynamic environment, which removes the requirement of
global observability in previous reactive synthesis methods [7],
[8], [9]. Furthermore, since the size of the product automaton
can grow exponentially large as the environment size and the
complexity of the LTL task increases, searching all feasible
paths in the product automaton is computationally expensive.
Instead, we establish a mapping from automata to LOTS
through the visual perception that can conduct fast reactive
planning by searching only in the automaton. It is shown
that our approach has a lower space complexity ranging
from O((n + 1)2) to O(n4) in the worst case, compared to
the traditional reactive synthesis with the complex range of
O((n + 1)2m2) to O(n4m2).

The main contributions are summarized as follows:
• We propose a paradigm for human-robot interactions to

accomplish high-level complex tasks relying on local
perception in dynamic unstructured environments.

• We relax the restriction of requiring a fully observable
environment in [7], [8], and [9] and achieve fast reactive
planning with reduced algorithm complexity.

• In the perception module, we extend the preliminary
work [11] and develop a high-resolution grasping network
(HRG-Net) that fuses multi-modal inputs to achieve safe
and reliable closed-loop control in dynamic environments,
achieving seamless human-robot collaboration. Physical
demonstration using a 7 DoF Franka Emika Panda robot
shows the effectiveness of the developed reactive task and
motion planning framework.

II. RELATED WORKS

A. Reactive Planning

Traditional motion planning refers to the control strategy
that a robot maps directly from its state to its available actions.
However, this strategy is likely to fail when the environment
changes. To enable reactive behaviors, joint perception, and
planning have been widely investigated for robotic systems. For
instance, Wang et al. [14] introduce a framework that leverages
predictive modeling of human behavior to facilitate effective
collaboration between humans and machines in complex tasks.
Raessa et al. [15] presented a constraint-based incremental
manipulation planning method that generates robot motions to
facilitate efficient and comfortable human-robot collaboration
in assembly tasks. The previous work [14], [15] discussed the
attainment of efficient collaboration through reactive planning
in structured environments. In contrast, this paper addresses the
issue of reactive planning when relying solely on local percep-
tion in unstructured and dynamic environments. Bai et al. [16]
proposed the partially observable Markov decision process to
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integrate perception and planning in the continuous space.
Ghosh et al. [17] presented an efficient obstacle avoidance
approach based on joint perception and planning using stereo
vision. Seraj et al. [18] developed, a collaborative planning and
control algorithm to enhance the cooperative behaviors of a
multi-robot system for joint perception-action tasks in dynamic
environments. Despite the progress, the works of [16], [17],
and [18] mainly focus on simple tasks, such as point-to-point
navigation or obstacle avoidance, and the developed joint
perception and planning approaches cannot be immediately
extended to handle complex tasks that involve a series of
logically organized actions.

Due to the rich expressivity of temporal logic in specifying
logically organized actions, reactive synthesis with temporal
logic specifications has attracted growing research attention.
He et al. [8], [9] considered a reactive strategy synthesis with
resource-constrained finite tasks and developed a composi-
tional approach, which achieves orders-of-magnitude speed-up
over existing explicit approaches for pick-and-place tasks.
Ghasemi et al. [19] developed an active perception and planning
algorithm for the agent to realize the task with high probability
in an environment with partially known semantics. Li et al. [7]
developed a dynamically reconfigurable planning methodology
using behavior tree-based control strategies, which shows
efficient recovery functionalities with a minimal number
of replanning steps. Well et al. [10] considered probabilistic
reactive synthesis for collaborative human-robotic manipulation
tasks. Since pre-specified tasks can become infeasible in a
dynamic environment, tasks with temporal logic specifications
are often relaxed to enable reactive motion replanning. For
instance, least-violating control strategies were developed in the
works [20], [21], [22], [23]. In the work [24], [25], [26], hard
and soft constraints were considered where the soft constraints
can be violated to allow motion replanning. Other represen-
tative results include receding horizon control based reactive
planning [27], [28], learning-based approaches [29], [30], and
sampling-based reactive methods [31], [32], [33]. Despite the
progress, the aforementioned works either rely on a product
graph for motion planning, which can become intractable if
the task and environment complexity is high, or assume global
observability, i.e., global awareness of the environment and
robot states. Limiting to using a “third-person” camera with
global observability, these approaches do not readily apply to
the eye-in-hand manipulation considered in this work.

B. Parallel Gripper Robot Grasping

Parallel jaw robotic grasping detects oriented rectangles
in the image, which represent promising grasp candidates
for parallel jaw grippers. The ability to locate the object’s
position and determine the appropriate grasping pose is crucial
to stable and robust robotic grasping. Earlier works [34], [35]
were mainly geometry-driven, which requires the knowledge
of the geometric model of the grasping object, limiting its
generalization capability to new objects. The data-driven
approaches [36], [37], [38], [39] are well positioned to
learn the grasp paradigm implicitly embedded within the
data. Prior works were to extract a series of bounding

box proposals and select the best one as output through a
two-stage network. However, such an approach requires a
large number of candidates, which is time-consuming. Later
many works [38], [40], [41], [42] utilize convolutional neural
networks to generate bounding box proposals to estimate
the grasp pose of objects. However, these methods all rely
on an encoder-decoder structure, which indicates that spatial
information is compromised. Although spatial information can
be recovered by upsampling, the predicted results may fail in
practice, especially when there are multiple objects sticking
together or the camera is far away from the target which
yields compound pixel errors. Previous methods overemphasize
the high-level semantic information and ignore the low-level
spatial information. Therefore, the high-resolution feature maps
are retained in our HRG-Net to mitigate the loss of spatial
information.

III. PROBLEM FORMULATION

A. Preliminary Background

Definition 1: Linear temporal logic (LTL) is a formal logic
whose basic component is a set of atomic propositions 5.
The standard Boolean operators such as ∧ (conjunction),
∨ (disjunction), ¬ (negation), and temporal operators such
as ♦ (eventually), , (next), � (always), and U (until). The
syntax of an LTL formula φ is defined as:

φ ::= true | p | φ1 ∧ φ2 | ¬φ1|#φ | φ1Uφ2 ,

where p ∈ 5 is an atomic proposition, true, negation ¬, and
conjunction ∧ are propositional logic operators, and next #
and until U are temporal operators. �φ means φ is true for all
future moments; ♦φ means φ is true at some future moments;
#φ means φ is true at the next moment; and φ1Uφ2 means φ1
is true until φ2 becomes true.

The semantics of an LTL formula are defined over an infinite
sequence σ = σ0σ1 . . . with σi ∈ 25 for all i ≥ 0, where
25 represents the power set of 5. In summary, the semantics
of LTL are defined as:

σ |H true

σ |H p ⇔ p ∈ σ(0)

σ |H φ1 ∧ φ2 ⇔ σ |H φ1 and σ |H φ2

σ |H ¬φ ⇔ o ̸|H φ

σ |H #φ ⇔ o[1:] |H φ

σ |H φ1Uφ2⇔ ∃t ≥ 0 s.t. σ [t :] |H φ2, ∀t ′
∈ [0, t),σ [t ′

:] |H φ1

More detailed descriptions of the syntax and semantics of
LTL can be found in [43]. An LTL formula can be translated
to a nondeterministic Büchi automaton (NBA).

Definition 2: Nondeterministic Büchi Automaton (NBA)
B is a tuple B = (Q, Q0, 6, δ, F), where Q is a finite set of
states, Q0 ⊆ Q is a set of initial states, 6 = 25 is the alphabet
from LTL formula, δ : Q × 6 → 2Q is a non-deterministic
transition function, and F ⊆ Q is a set of accepting states
called the acceptance set.

Let q σ� q ′ denote the transition from q ∈ Q to q ′
∈ Q

under the input σ ∈ 6w iff q ′
∈ δ(q, σ ). Given a sequence of
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input σ = σ0σ1σ2 . . . over 6w, the generated infinite sequence
q = q0q1q2 · · · is a run of B, where qi

σi
−→ qi+1 for i ≥ 0.

Run q0q1q2 . . . is accepting if qi ∈ F for infinitely many
indices i ∈ N.

Due to the consideration of eye-in-hand manipulator, the
field-of-view (FOV) of the camera is time-varying as the
end-effector moves, resulting in limited observability of envi-
ronment states. Specifically, in the model building example,
the robot can only observe at most half of the workspace
(e.g., either the A or B in Fig. 1). Hence, we consider only
task-related objects in the workspace and introduce a local
observable transition system (LOTS) to record the task progress.

Definition 3: Locally Observable Transition System
(LOTS) T = (S, s0, At , δt ,O, 5,L) where S = S A

∪ SB

is the finite set of states consisting of S A and SB that represent
all possible states of W A and W B respectively (We divide the
whole workspace W into two rectangular areas W A and W B

as shown in Fig. 1, where W A denotes source workspace, and
W B denotes goal workspace), s0 is an initial state, At is a set
of actions, δt : S × At → S is a deterministic transition, 5

is a set of atomic propositions, O is the state of the part of
the workspace that the robot can observe and L : S → 25 is
a labeling function that maps the state to a subset of atomic
propositions that hold true.

Suppose there are M classes of objects R = (o1, o2, . . . , oM)

(e.g., hammer, knife, etc.) in workspace W and let s = on
i ,

i ∈ {1, . . . , M} denotes the number of oi as n. The class and
number of task-related objects in W A and W B are denoted by
s A and s B , respectively, which gives rise to the state s in LOTS.
For instance, if there are multiple classes of objects in the local
FOV of the camera, the state in T is denoted as s = s A_s B

with s A
= o1

1o3
2o2

3 and s B
= o0

1o0
2o0

3, which indicates that there
are 1, 3, and 2 of o1, o2, o3 in W A and none of o1, o2, o3 in
W B , respectively. The action set At consists of a series of
task-related actions. For instance, the action a A

B (oi ) ∈ At is to
pick the object oi (e.g., a hammer) from W A and then places
it in W B . An atomic proposition π ∈ 5 corresponding to a
state s ∈ S can be either true or false. For example, π = o1

i _o2
j

is true if and only if there are one oi in W A and two o′

j s in
W B . L maps a state s ∈ S to a set of true atomic propositions
L(s) ⊆ 5.

B. Problem Formulation

Consider a human and a robot collaborating to complete
an intelligent manufacturing-related temporal logic task φ in
a shared workspace W . To elaborate on the human-robot
collaboration task, the model-building example introduced in
Fig. 1 will be used as a running example throughout the
work.1 Specifically, suppose the workspace W consists of
a source workspace W A and a goal workspace W B , where
W = W A

∪ W B and W A
∩ W B

= ∅. The task of building a
model is specified by the LTL formula φ. There is no direct
communication between the robot and the human throughout

1The developed visual perception and reactive planning framework is not
limited to collaborative manipulation tasks and can be extended to a variety
task (e.g., persistent navigation) that involves visual feedback and a series of
logically organized actions.

the process. The robot’s awareness of the workspace W relies
only on the perception information of the RGB-D camera
mounted at its end-effector. During model building, the human
can interact with the robot in either an assistive (e.g., picking
up a tool) or a non-assistive manner (e.g., misplacing tools or
taking away tools). Specifically, we consider two classes of
human interactions:

• dis1: Human only moves objects between W A and W B ,
and thus the type and number of objects in W = W A

∪W B

will not change.
• dis2: The type and number of objects in W change due

to human behaviors (e.g., taking away objects from W or
adding new objects to W ).

Assumption 1: It’s assumed that the given LTL specification
can always be satisfied during the process of human-robot
interactions.

Problem 1: Given an LTL task φ, the objective is to develop
reactive motion planning and accomplish it using real-time local
visual perception (i.e., eye-in-hand camera) under human-robot
interactions i.e., dis1 and dis2.

Due to the consideration of interactions with the human
operator, it is possible that the human actions can directly lead
to task failure (e.g., the human operator discards all items in
the workspace. As a result, the task may never be completed
by the robot), or repeatedly place the items picked by the
robot back to the workspace. Hence, Assumption 1 is made
to ensure that the required task is theoretically possible to be
completed.

Motivation: The attainment of effective human-robot col-
laboration in intelligent manufacturing is a critical concern.
The current approaches often have limitations, such as neces-
sitating robots to possess comprehensive knowledge of the
entire process or mandating a fixed task assignment between
humans and robots. While the former is difficult to achieve
in practical environments, the latter can only offer generic
collaboration in assembly lines. Furthermore, as tasks become
more intricate, human errors may result in the failure of
collaborative tasks. To address these limitations, we present
a framework that enables robots to perform collaborative
tasks with humans, leveraging local perception and no fixed
task assignments. To reflect the robot’s reactive planning
capabilities, we enable complex temporal logic constraints
between various subtasks. Our framework aims to infer the
state of the entire workspace by monitoring the state of the
local workspace. By comprehending the human’s impact on the
collaborative task through the workspace state, the robot can
select suitable actions to collaborate with the human and suc-
cessfully complete the task. This approach empowers humans to
utilize their creativity during collaborative tasks without undue
constraints.

IV. SOLUTION

This section presents the reactive planning framework, which
consists of a perceptual and reactive task planning module and
a motion planning module, as shown in Fig. 2. In addition,
our framework involves human-robot collaboration, and we
employ several mechanisms to ensure the security of this
collaboration.
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Fig. 2. The overview of the real-time visual perception and reactive planning framework. The left describes the reactive planning of the task, which incorporates
visual detection methods and automata theory to quickly determine the progress of the task using only local visual feedback and correctly select the next action
in the presence of human interactions. On the right is a module on motion planning. A high-resolution grasping network is developed for robust and stable
grasping in a dynamic and cluttered environment.

A. Perception Based Reactive Task Planning Module

The developed perceptual and reactive task planning module
in this work contains two main components as shown in the left
of Fig. 2. One is an LTL task φ that incorporates the intelligent
manufacturing task, and the other is an online reactive task
planning algorithm that combines perception and decision-
making.

The visual perception and planning algorithm is outlined
in Alg. 1. Given the LTL formula φ and the LOTS T =

(S, s0, At , σt ,O, 5,L), we first construct the corresponding
NBA B = (Q, Q0, 6, δ, F). The initial states q0 ∈ Q′ and
s0 ∈ S are set as the root node of the search tree T R.
(lines 1 - 2 in Alg. 1). The Dijkstra search algorithm is used to
search for the shortest path from q0 ∈ Q0 to qF ∈ F over B,
which yields an accepting run q = q0q1q2 . . . , qi ∈ Q of B
and the associated state trajectory s = s0s1s2 . . . , si ∈ S, since
the action set At in T is defined over the alphabet 6 and the
actions ai = a(σi ) ∈ At are performed when qi

σi
−→ qi+1. The

state-action pairs (s B
i , ai ), s B

i ∈ SB, ai ∈ At and the state pairs
(qi , s B

i ), qi ∈ Q, s B
i ∈ S are then recorded to build the initial

table T and the search tree T R, respectively (Alg. 2). In this
way, the current state s B

current ∈ SB can be inferred from the
observations of the camera, and the next action ai+1 ∈ At to
be taken can be determined by the knowledge base table T
(lines 5 - 14 in Alg. 1). However, this offline knowl-
edge database T can only quickly react to known states
(i.e., encountered situations). If a new situation is encountered,
Alg. 3 is invoked to update the search tree T R and thus
update the knowledge database table T to account for the
new situations. We will show later in Theorem 1 that there
always exists at least one path in LOTS that satisfies the LTL
formula φ so that we can establish a mapping from B to T .

Due to possible interactions with human operators, the state
may not transit as desired. For instance, a tool supposed to be
picked up by the manipulator may be misplaced by the human
operator, or a new object is added by the human operator to the

workspace. The above two kinds of interference correspond
to dis1 and dis2 in the III-B, both of them may lead to a
sudden change in the state of s ∈ S. If Assumption 1 holds,
the maximum possible state of SB that depends on φ is a
invariant with respect to human interactions, while maximum
possible states of S A may increase. We verify it as follows:

Lemma 1: Given the LTL task φ and the initial state of
W is s0 = on1

1 on2
2 on3

3 . . . onx
x _o0

1o0
2o0

3 . . . o0
x , let |SB

| denote the
cardinality of the state set SB . If Assumption 1 holds, |SB

|

is always equal to a constant C depending on φ under any
disturbances dis1 and dis2.

Proof: Suppose that, under the LTL formula φ, the initial
state of W is s0 = on1

1 on2
2 on3

3 . . . onx
x _o0

1o0
2o0

3 . . . o0
x and the final

state of W B is s B
f inal = on′

1
1 on′

2
2 on′

3
3 . . . on′

x
x , where n′

i ≥ 0, ∀i ≥ 0.
Let s B

t = ot1
1 ot2

2 ot3
3 . . . otx

x denote the state of SB at the moment t
that the task has not completed yet. According to Assumption 1,
we have ti ≤ n′

i , ∀i > 0. If ti > n′

i , then there exists a state
where the object oi needs to be moved from W B to W A, which
violates Assumption 1. Hence, there are at most n′

i objects oi

on W B , and the cardinality of states SB is |SB
| =

∏x
i=1(n

′

i +1),
i.e., C =

∏x
i=1(n

′

i + 1).
Suppose the current state s B

current ∈ SB of W B as inferred
from local observations, the robot can then determine exactly
the next action to be selected. When s B

current ∈ T , we can select
the appropriate action ai ∈ At according to the hash table T .
If s B

current does not exist in T (e.g., the task does not proceed as
desired due to human interactions or the environment changes),
the tree T R is updated by Alg. 3. The general idea in Alg. 3
is to randomly select a node (q, s B) in T R as the starting
point and grow the tree by generating new pairs (qnext , s B

next )

until s B
current is reached. Once s B

current is reached, T is updated
according to it’s corresponding q, and continue to complete
the task φ using T (lines 16 - 20 in Alg. 1). If the total
number of edges in T R exceeds that of W B , it means that
the task φ cannot be completed from the current s B

current
(lines 22 in Alg. 1).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 01,2024 at 20:26:06 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Algorithm 1 Visual Perception and Planning
Input: The task LTL formula φ, the LOTS

T = (S, s0, At , σt ,O, 5,L)

1 Generate the corresponding B = (Q, Q0, 6, δ, F);
2 Create a tree T R with the root node (q0, s B

0 );
3 Construct a table T = get_table(q0, s B

0 ,B) by Alg. 2;
4 while True do
5 Get slo by local observation;
6 if slo ∈ S A then
7 s B

current = s \ slo, s B
= s B

current
8 else
9 s B

current = slo, s A
= s \ slo

10 end
11 s = s A_s B ;
12 if s B

current exists in T then
13 Determine ai such that

(
s B

current , ai
)

∈ T ;
14 Perform action = ai ;
15 else
16 T R = tree_update(B, T , T R, s B

current ) by Alg.
3;

17 if s B
current exists in T R then

18 Find q ∈ Q satisfying (q, s B
current ) ∈ T R;

19 T = get_table
(
q, s B

current ,B
)
;

20 Determine ai such that
(
s B

current , ai
)

∈ T ;
21 Perform action = ai ;
22 else
23 Perform action = wait ;
24 end
25 end
26 end

To elaborate the perceptual and reactive task planning
framework, the following example is provided.

Example 1: Consider a manufacturing scenario that requires
a set of tools, such as a hammer, screw and screwdriver.
The fabrication process consists of a series of steps. For
example a specific task can be expressed in the LTL formula as
φmodel = �♦p1∧�♦p2∧�♦p3∧�♦p4, where p1 indicates
the action of taking the hammer from W A to W B , p2 and
p4 indicate taking the screws from W A to W B the first and
the second time respectively, and p3 indicates taking the
screwdriver from W A to W B . Initially, there are 1 hammer,
1 screwdriver, and 2 screws in the W A, and one basket in W B .
Consequently, the initial state of LOTS is S0 = s A

0 _s B
0 , where

s A
0 = h1s2d2 and s B

0 = h0s0d0 (where h represent hammer,
s correspond screw and d present screwdriver). The goal is
to put the items in the basket in the desired order according
to φmodel . Given φmodel , the generated automaton and LOTS
corresponding to the task φmodel are shown in Fig. 3 and Fig. 4.
The video corresponding to the example is shown in the link
https://youtu.be/O94KcVqwccA.

Under Assumption 1, Lemma 1 indicates that the robotic
manipulation only needs to decide the progress of the task
based on the current state of W B , since dis1 and dis2 cannot
trigger a new state for SB . Based on Lemma 1, the following

Algorithm 2 Function get_table()

Input: Automaton state qs , LOTS state s B
s , B

Output: T
1

[
q, σ

]
= Di jkstra

(
qs, s B

s ,B
)

;
2 for i=0:length(σ )-1 do
3 ai = a(σ [i]);
4 s B

i+1 = δt (s B
i , ai );

5 Add (s B
i , ai ) to T ;

6 qi = q[i];
7 Add (qi , s B

i ) to T R;
8 end
9 return T ;

Algorithm 3 Function tree_update()

Input: Automaton B, T , T R, s B
current

Output: T R
1 while s B

current /∈ T R do
2 Randomly select a node (q ′, (s B)′) from T R;
3 for σi ∈ 6 do
4 qnext = δ(q ′, σi ) ∈ Q;
5 s B

next = δt ((s B)′, a(σi ));
6 Add (qnext , s B

next ) to T R;
7 if |T R| ≥ |W B

end | then
8 break;// |T R| represents the

number of elements in the
T R, and |W B

end | represents
the number of possible
states of all LOTS in W B

before the task is
completed.

9 end
10 end
11 end
12 return T R;

Fig. 3. The Büchi automaton B corresponding to the LTL task
φmodel = �♦p1 ∧ �♦p2 ∧ �♦p3 ∧ �♦p4. The blue arrow lines indicate
a path that satisfies φmodel , which is mapped to a feasible path in LOTS
of Fig. 4.

theorem shows that there exist at least one trajectory in T that
satisfies φ.
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Fig. 4. The constructed LOTS, where the node represents its states and the
edges represent potential transitions. The green dotted lines that connect the
potentially reachable states and the red dashed boxes indicate the states that
can be reached due to dis2. The empty dashed ellipses indicate possible LOTS
states that are not listed.

Theorem 1: Given a manipulation task specified by the LTL
formula φ, if Assumption 1 holds, Alg. 1 can find at least one
trajectory in T that satisfies φ.

Proof: Consider an LTL formula φ and its corre-
sponding B = (Q, Q0, 6, δ, F). Without loss of generality,
suppose that initially there are x classes of task-related
objects o1, o2, o3, . . . , ox with numbers n1, n2, n3, . . . , nx ,
respectively. The initial state of the workspace W is s0 =

on1
1 on2

2 on3
3 . . . onx

x _o0
1o0

2o0
3 . . . o0

x . It is assumed that, under the
LTL formula φ, the final state of the W B is s B

f inal =

on′

1
1 on′

2
2 on′

3
3 . . . on′

x
x (n′

i ≥ 0, ∀i ≥ 0). Under Assumption 1,
we can learn from Lemma 1, the number of all possible
task-related states in W B is equal to

∏x
i=1(n

′

i +1). Let q0 ∈ Q0
and s B

0 = o0
1o0

2o0
3 . . . o0

x are the initial state of B and W B ,
respectively. By the construction and update of T R and the
probabilistic completeness of the sampling-based method [44],
all possible input sequence σ and the corresponding trajectory q
that satisfies φ can be generated in T R. In other words, for
∀q ∈ Q, there always exists an input sequence σ = σ0σ1 . . . σi

that yields a trajectory from q to qF ∈ F . Since the action set
At in T is defined over 6, when ai = a(σi ) is executed,
the state transition in T occurs. Note that, regardless of
the interactions, the state s B

t = o
nt1
1 o

nt2
2 o

nt3
3 . . . ontx

x always
satisfies nti ≤ n′

i , ∀i ≥ 0. Since SB contains all possible
states in W B , we can definitely find a s B

∈ SB corresponding
to q ∈ Q. Considering that S A is changing, there may
exists s1, s2 ∈ S, st.s B

1 = s B
2 but s1 ̸= s2. Therefore, there

always exists at least a path in T corresponding to q that
satisfies φ.

Theorem 1 indicates the desired task φ can be guar-
anteed to be completed by identifying and following a
corresponding path in LOTS. Compared with traditional
approaches [7], [8], [9], [10], we have the following benefits.
First, our approach relies only on local perception and does
not require global observability. Second, our method searches
directly in the automaton, avoiding the need of building a
product automaton and searching for paths in the product
automaton. The following lemma shows that the complexity
of our approach is significantly reduced.

Fig. 5. The architecture of the HRG-Net. The high-resolution feature maps are
maintained in the whole network while low-resolution features are gradually
introduced and convolutions of different resolutions are connected in parallel.
This enables information interchange between representations of different
resolutions, which improves the spatial sensitivity while ensuring strong
semantic expressiveness.

Lemma 2: The complexity of LOTS-based reactive synthesis
algorithm ranges from O((n+1)2) to O(n4) while the best-case
complexity of product automaton-based reactive synthesis
algorithms is O(n2(n + 1)2).

Proof: Suppose the number of atomic propositions of an
LTL formula φ is n, the cardinality of states in the LOTS is
|S|, and the set of states of product automaton is Q p. If the
current state is only related to the previous action, the number
of automaton states ranges from n + 1 to n2. Then, the number
of states of the product automaton ranges from O(|S|(n + 1))

to O(|S|n2). To fully construct the product automaton graph,
the works of [7], [8], [9], and [10] need to check for valid
transitions for all pairs ∀qp, q ′

p ∈ Q p, which results in the
complexity of the product automaton-based reactive method
ranging from O(|S|

2(n + 1)2) to O(|S|
2(n4)). In contrast,

the reactive synthesis in this work searches directly in the
automaton B, and the complexity ranges from O((n + 1)2)

to O(n4). By Assumption 1, the given LTL task φ can be
completed. That is, in the presence of human interference
such as dis1 and dis2, the number of objects in W is greater
than the atomic proposition n. Suppose the state of W at
time t is st = on1

1 on2
2 on3

3 . . . onx
x _om1

1 om2
2 om3

3 . . . omx
x . then the

number of all objects in W is
∑x

i=1(mi + ni ), which indicates
that

∑x
i=1(mi + ni ) ≥ n and |S| =

∏x
i=1(mi + 1)(ni + 1) >∑x

i=1(mi + ni ) ≥ n. It can be estimated that the complexity
of the product automaton-based reactive synthesis algorithm
is at least O(n2(n + 1)2), while the worst-case of maximum
complexity of the LOTS-based approach is O(n4), which is
better than automaton-based reactive approaches.

B. Motion Planning Module

The previous section focuses on how the robot determines the
actions to be taken based on the locally observed environmental
changes. This section presents how to achieve determined
actions. For example, consider the action of moving the oranges
from W A into the basket in W B . To improve the grasping
performance, a high-resolution grasping network (HRG-Net)
is developed by using the RGB image and depth image of the
RGB-D camera in a fully convolutional network, and outputting
three feature maps Q, 8, and W as shown in Fig. 5. Q is an
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image that describes the grasp quality executed at each point
p = (x, y). The value q is a scalar that ranges from 0 to 1,
where a value closer to 1 indicates higher grasp quality, i.e., the
higher chance of grasp success. 8 is an image that describes
the grasp angle to be executed at each point p. Since the
antipodal grasp is symmetrical around ±

π
2 radians, the angles

are given in the range
[
−

π
2 , π

2

]
. W is an image that describes

the gripper width to be executed at each point p. To allow for
depth invariance, the variable z is in the range of [0, 150] pixels,
which can be converted to a physical measurement using the
depth camera parameters and the measured depth. According to
the above three feature maps Q, 8, W and the object detection
algorithm, we can find the best grasping position and pose
g = (x, y, z, φ,w, q).

Although g can be obtained from a single view, such a
approach is not preferred, since the target object in general
occupies very few pixels at the initial position where the
manipulator is often far away from the object (as in Fig. 6(1).
A small deviation in prediction can have a great impact on
the quality of the grasp. Thus, multiple views method [45]
are used to predict the best grasp position and pose g
after comprehensive comparisons of different views. Another
advantage of the multiple views approach is that it takes full
advantage of eye-in-hand features to yield accurate predictions
when the camera is close to the object. However, the selection
of multiple viewpoints is a difficult problem. Existing methods
mainly rely on the gradient of entropy to facilitate the selection
of appropriate grasping position and orientation g. Hence, early
prediction of the grasping position plays an important role,
as poor prediction tends to cause the robotic manipulator to
spend more time exploring until it is confident enough to
complete the grasping task. If the robotic manipulator reaches
the lowest point and still cannot find a suitable grasping point,
the grasping task fails. Through experiments shown in Sec. V,
we find that traditional CNN methods often fail to get good
early grasp predictions.

Unlike traditional CNN based methods, our network does
not directly use the encoder and decoder method to obtain
the feature map that has the same size as the input depth
map. Those traditional CNN based methods are not preferred
mainly because, in the process of motion planning, the camera’s
FOV decreases rapidly due to the eye-in-hand setup, leading
to potential failures in searching the target in many scenes.
Therefore, there are not enough candidates of predicted grasping
locations, resulting in a lot of time spent exploring and still
not finding the ideal g. On the contrary, HRG-Net retains the
high-resolution representation and convolutes the flow from
high resolution to low resolution in parallel, while repeatedly
exchanging information. The advantage is that it can both retain
accurate spatial information in high resolution, and contain
rich semantic information in low resolution.

The visualization of the motion planning module is shown in
Fig. 6. In Fig. 6 (a), the robot first generates an initial prediction
of the grasping position and pose at the initial position. Then
the end-effector moves in the direction that keeps the target in
the center of the camera FOV, as indicated by the red arrow
in the figure. Fig. 6 (b) and Fig. 6 (c) show that the FOV
is gradually reduced as the end-effector moves closer to the

Fig. 6. These images show that applying HRG-Net in multiple views can
improve the performance of the grasping prediction. The objects observed by
the camera are shown using a point cloud, and the green rectangular blocks
are visualizations of the predicted grasping positions and poses, the red arrow
represents the speed direction of the current motion control.

target. In Fig. 6 (d), the robot reaches the desired position and
is ready to complete the grasping task.

It is worth pointing out that the motion planning of the
manipulator only depends on local visual perception. Initially,
the manipulator starts from the center of the workspace W
and determines the next step direction according to the current
local perception of the environment. Particularly, the motion
is planned to reduce the uncertainty in the grasping process.
For instance, there may be multiple objects in the camera’s
field of view. To locate the target from these objects, the robot
needs to minimize the entropy, so that a high-quality grasp
prediction can be obtained by more focusing on the target and
reducing possible interference from other objects. Once the
manipulator reaches the preset height Z, the robotic manipulator
will determine the final predicted gripping posture and position
based on the observations throughout the trajectory.

C. Security Mechanisms

We take two types of approaches to address potential safety
concerns in human-robot collaboration. The first approach
focuses on preventing collisions before they occur (pre-collision
measures), while the second approach focuses on limiting the
impact force in case of a collision (post-collision measures).

Regarding the pre-collision, we propose the following three
points to ensure safety:

• By utilizing the RGB-D camera at the end effector, we can
detect the presence of humans in the robot’s workspace.
If a human is detected and the distance between the
end-effector and the human is less than 0.05 m, the
robot arm stops to prevent any potential harm. This is
an effective way to ensure safety by proactively avoiding
collisions.

• We design the framework consisting of a gripping detec-
tion network and motion planning algorithm that can
effectively avoid the end-effector to enter the singularity,
to avoid the situation that the end-effector moving a small
distance needs large joint angular velocity. This situation
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will seriously cause the robotic arm to lose control, which
is the most serious safety hazard.

• We have added various constraints to the program,
including speed and acceleration limits. If the robot
arm’s speed or acceleration exceeds the threshold values,
indicating that it is entering a singularity point, the
program immediately disconnects control of the robot arm.
Additionally, if the robot arm’s command frequency drops
below 1000 Hz, an emergency stop is triggered to ensure
safety. These constraints provide additional safeguards
and prevent potentially dangerous situations.

Regarding post-collision, we primarily rely on impedance
control enabled by the Franka Panda Emika robot’s force
sensors, which have a collision detection time of less than
2ms and a force-sensing resolution of less than 0.05N . These
sensors enable the robot arm to detect collisions and halt
quickly, thereby avoiding any actual harm to humans. Following
practical testing, we can confirm that our approach ensures the
safety of human-robot collaboration.

V. EXPERIMENTS

In this section, we first describe the experimental setup and
show the performance of the developed HRG-Net on main-
stream datasets and physical experiments. We then evaluate the
real-time performance of the developed local observation-based
reactive planning method via experiments of human-robot
collaboration.

The desk-mounted Franka Panda robotic manipulator and the
RealSense D435 RGB-D cameras are used in the experiment.
The camera is attached to the end-effector of the manipulator.2

The YOLO3 object detection algorithm [46] is used throughout
to detect the type and number of objects relevant to the task at
hand. We use a computer with an Ubuntu real-time kernel for
robotic manipulation control and another computer equipped
with an Nvidia RTX-2080Super for network deployment.

A. HRG-Net Performance

We first validate the performance of HRG-Net on three
popular grasping datasets: the Cornell, Jacquard, and Graspnet-
1Billion datasets. The results are shown in Table I, Table II,
and Table III.

On the Cornell dataset, the image-wise (IW) and object-wise
(OW) settings are used. Since the dataset is relatively small,
to make the comparison more fair and meaningful, we use
five-fold cross-validation following previous works [45], [47].
To show the computational time of HRG-Net, the average
speed of processing a single image using NVIDIA RTX-2080
Super is about 51ms, which meets the requirement of real-time
implementation. On the Jacquard dataset, we split the entire
dataset into a 90% training set and a 10% test set. We tested
the performance of HRG-Net in the RGB, depth, and RGB-D
channels separately. We also tested HRG-Net on the Graspnet-
1billion dataset which has 97280 RGB images and each image
is captured from multiple views in over 190 cluttered scenarios
with real-world sensors. HRG-Net achieves better performance

2The eye-in-hand manipulation is preferred in this work since it generally
enables precise control as images can be captured much closer to an object.

TABLE I
THE ACCURACY ON CORNELL GRASPING DATASET

TABLE II
THE ACCURACY ON JACQUARD GRASPING DATASET

TABLE III
THE ACCURACY ON GRASPNET-1BILLION RESULTS

in all input modalities compared with previous methods. Our
method achieves state-of-the-art in those datasets. These results
also indicate that better accuracy can be achieved by combining
depth image and RGB image, which is consistent with common
sense, since fusing multi-modal information like color and
depth images enables information crossover and complement,
thus improving the robustness and generalization of the network.
The code is released for validation.3

3https://github.com/USTCzzl/HRG_Net
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TABLE IV
COMPARISON RESULTS USING AND NOT USING LAYER-FUSION

To investigate the role of layer-fusion in HRG-Net, we did
ablation studies on Cornell and Jacquard datasets with and
without layer-fusion, respectively. The experimental results are
shown in Table IV. The use of layer-fusion is significantly
better than not using layer-fusion in both datasets. This is
because the information exchange that occurs between feature
maps of different sizes allows the network to take into account
both low-level spatial features and high-level semantic features.

Combined with the object detection algorithm, HRG-Net
can locate specific objects in the clutter and generate grasp
bounding box predictions. Since the visual processing time
is negligible during the whole robotic manipulation grasping
process, we sample multiple viewpoints during the robotic
manipulation motion and then select the best grasping position
and orientation from them. Since the camera is far away
from the object at the beginning, the pixels of each object
are relatively low and thus the capture position is not ideal.
As the camera gets closer to the object, this issue can be
gradually avoided. For instance, as shown in Fig. 6 (a) If
the robotic manipulator directly follows the prediction at this
point to grasp orange can easily lead to failure, since the
predicted grasp position is close to the banana at the beginning.
However, as the camera approaches the orange, the predicted
position and orientation of the grasp box are significantly
improved in Fig. 6 (b)-(d)). During this process, the robot
will call HRG-Net many times until a preset height is reached
(0.2m in the experiment). We sampled several points on the
motion trajectory of the robotic manipulator, and, as the view
is getting smaller and smaller, only part of the W A can be
perceived, which motivates the introduction of LOTS.

To further test the robustness of HRG-Net using local
observation, we designed three sets of comparison experiments,
namely, grasping under multi-object interference, grasping
under random initial positions, and grasping with dynamic
targets. In each set of experiments, HRG-Net is compared with
the methods of [45] and [47] in terms of the success rate and the
time consumption. The experimental results are shown in Fig. 7,
which indicate that HRG-Net is not only highly accurate but
also takes the least amount of time. This is because HRG-Net
retains high-resolution features throughout the network and is,
therefore, able to make good predictions in the preparation
phase of the capture, reducing the time spent exploring for
ideal position and orientation. For more details, please refer to
the video https://www.youtube.com/watch?v=nJsql6b3W1Q.

Fig. 7. The performance comparison of HRG-Net with [45] and [47]. The
x-axis indicates the success rate and the z-axis indicates the time consumption
used to complete the task.

Fig. 8. The Human operator and robotic manipulator work in a shared
workspace. Fig. 8.5-Fig. 8.9 demonstrate that, when the human is assistive,
the robot can determine the current task progress and continue on subsequent
tasks. The experiment video is available at https://youtu.be/jKXuOJu1MsA.

To investigate the role of layer-fusion in HRG-Net, we did
ablation studies on Cornell and Jacquard datasets with and
without layer-fusion, respectively. The experimental results are
shown in Table IV. The use of layer-fusion is significantly
better than not using layer-fusion in both datasets. This is
because the information exchange that occurs between feature
maps of different sizes allows the network to take into account
both low-level spatial features and high-level semantic features.

B. Experiment of Human-Robot Collaboration in Intelligent
Manufacturing

1) Model Building: The manufacturing task is specified as
φmodel = �♦p1∧�♦p2∧�♦p3 (The order is not reflected in
the formula because we used the default order of the LTL2BA
tool4), where p1 indicates the action of taking the saws from
W A to W B , p2 indicate the actions of taking the scissors
from W A to W B , and p3 indicates the action of taking the
hammer from W A to W B . The snapshots of the experiment
are presented in Fig. 8. Initially, in Fig. 8.1 - Fig. 8.3, the
robot picks up the saw from W A and places it onto W B ,
after which the human operator starts using the saw to cut
objects. In Fig. 8.4 - Fig. 8.6, the human operator desires
to remove burrs from the objects as early as possible and
therefore assists the robot by moving the scissors from W A to

4https://github.com/utwente-fmt/ltl2ba
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Fig. 9. The Human operator and robotic manipulator work in a shared
workspace. Fig. 9.6-Fig. 9.12 demonstrate that, when the humans are
non-assistive, the robot can react promptly to ensure mission completion.
The experiment video is available at https://youtu.be/jKXuOJu1MsA.

W B and quickly starts removing the burrs using the scissors.
This corresponds to dis1 as defined in Sec. III-B, since the type
and number of objects in the workspace W remain unchanged.
However, this process is not captured by the local sensing of
the robot arm. As a result, the robot arm continues to be ready
to transport the scissors from W A to W B according to the task
formula φmodel , until it eventually realizes that the subtask has
already been completed. Once the robot arm recognizes this,
it places the scissors in the waste basket, which can be seen in
Fig. 8.7 - Fig. 8.8. Finally, in Fig. 8.9, the robot arm picks
up the hammer from W A and transports it to W B , thereby
completing the task as defined by φmodel . The robotic arm
was able to successfully handle non-assisted human operations
as well. For instance, in Fig. 9.5 - Fig. 9.6, the robotic arm
completed the subtask of sending scissors from W A to W B , but
the human mistakenly sent the scissors back to W A. The robotic
arm recognized this interference and retrieved the scissors again
from W A to W B . This example falls under dis1 in Sec. III-B
since it did not change the type or number of objects in the
workspace W . In contrast, Fig. 9.8 is an example of dis2 in
Sec. III-B, where the human introduced a new tool that changed
the type and number of objects in workspace W , but this did
not interfere with the robot’s decision to continue performing
subtask p3.

2) Human-Machine Collaboration to Build Towers: To
further demonstrate the effectiveness of the developed reactive
planning framework, human-robot collaboration in building a
toy tower is considered in this section. Building a tower is
order-sensitive, i.e., the towering peak, the tower body, and
the tower bottom have to be stacked in a specific order. In the
experiment, the blocks on W A are required to be moved to W B

and stacked in order to build a tower. Such a task is specified
in the LTL formula as φstacking = ♦(p1#(♦(p2#(♦p3)))),
where p1, p2, and p3 indicates the action of moving the
tower bottom, tower body, and tower peak form W A to W B ,
respectively. The task φstacking requires first moving the tower
bottom from W A to W B , placing the tower body on top of
the tower bottom, and finally placing the towering peak on
top of the tower body. The snapshots of the experiment are
shown in Fig. 10. Fig. 10.1 - Fig. 10.3 shows the robot arm
first completes the subtask p1. Fig. 10.4 shows the human
interference of type dis2 (introducing a new object to the W B).
Human has finished subtask p2. Since the robotic arm only
has local perception and does not find the subtask p2 being

Fig. 10. In the human-machine collaborative tower building experiment,
the robotic arm needs to observe human behavior to passively take action to
ensure the tower is built successfully. The experiment video is available at
https://youtu.be/yUs-abJtbuc.

completed, the robotic arm will still look for the tower body.
Fig. 10.5 - Fig. 10.6: when the robot arm is ready to place
the tower body, it found that p2 had been finished, so it put
the tower aside and went to look for the top of the tower in
W A. Fig. 10.7 - Fig. 10.8: when the robot arm was looking
for the towering peak, the human mistakenly took the tower
body away from W B (interference of type dis2). When the
robot arm was ready to place the towering peak, it found that
p2 has not been completed, so it put the towering peak back.
Fig. 10.9 - Fig. 10.13: when the robot arm rebuilt the tower
body, the human moved the tower body from W B to W A

by mistake (interference of type dis1). The robot arm then
went back to find the tower body to rebuild the tower body.
At this point, the robot arm completes subtask p2. The human
interference is of type dis2 (i.e., introducing a new object to
the W A). Since such interference does not affect the desired
order of building the tower, the robot decides to continue to
select the towering peak and place it on top of the tower body,
as shown in Fig. 10.14 - Fig. 10.16. Subtask p3 ends and the
whole task is completed.

VI. CONCLUSION

This study presents a real-time reactive planning framework
that enables a robot to perceive its surroundings and infer the
progress of the current task, as well as the impact of human
collaborators, using only the camera in its hand. The framework
allows the robot to quickly react and reprogram its actions
during human-robot collaboration. To ensure the real-time
robustness of this planning framework, we have developed
a new grasping location prediction network called HRG-Net.
HRG-Net achieves promising performance compared to existing
methods. We have also designed a closed-loop grasping strategy
that effectively avoids robots from entering singularities and
ensures the safety of human-robot collaboration.

Our ongoing research will consider using timed temporal
logic to impose time constraints on reactive planning and
further extend the application scenarios of existing methods.
Additionally, we will investigate the prediction of the behavior
of human collaborators. Predicting human behavior allows
for faster reactive planning and improved efficiency, and can
be combined with control methods such as control barrier
functions to ensure the safety of human-machine collaboration.
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