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Time Domain Double Diffraction at a Pair of 
Coplanar Skew Edges 

Filippo Capolino, and Matteo Albani 
Dip. Ingegneria dell’Informazione, Universiih di Siena, Via Roma 56, 53100 Siena, Italy. 

I. Introduction 
A time domain version of the uniform description of double diffraction at 

a pair of coplanar skew edges is here presented, with source and observation at 
a finite distance. The time domain (TD) field description is obtained by direct 
Fourier inversion of the frequency domain (FD) doubly diffracted (DD) field re- 
cently developed in [l], [2] for point source excitation and in [3] for line source 
excitation. There, a high-frequency uniform approximation of the DD field was 
given using a special transition function that is conveniently expressed in t e r m  
of generalized Fresnel integrals (GFIs) [4]. Thus, the TD-DD field response to an 
impulsive delta excitation, is obtained by Fourier inversion of the high-frequency 
DD field. This is valid only for early times, on and close to (behind) the wave 
fronts. The TD-DD field response to a more general pulsed excitation is obtained 
via convolution. If the exciting signal has no low-frequency components and is 
thus dominated by high frequencies, the range of validity of the resulting pulsed 
response is enlarged to later observation times behind the wavefront. The present 
TD-DD field is limited to real time, and matches and compensates the spatial 
discontinuity of the TD singly diffracted field developed in [5] ,  [SI. Analytic 
extension of the DD mechanisms to complex time, as in [7], [8], [6] for singly 
diffracted field, is currently under investigation. 

11. Doubly Diffracted Field 
Let us consider a pair of wedges with soft/hard boundary conditions (BCs) and 
coplanar edges, illuminated by a spherical source. It is useful to define a cylindri- 
cal (pi ,  q5j, zj) and a spherical (rj, p;, q5j) ray fixed coordinate system at each edge 
with origin at the diffraction point Q, (i = 1,2). Our description of the double 
diffraction mechanism is constructed first in the FD as the superposition of two 
analogous mechanisms: a field diffracted from edge 2 when it is illuminated by 
the field diffracted from edge 1 (12), and that from 1 when it is illuminated by 
2 (21), as in [I], and here reported for clarity. In the following, only the con- 
tribution 12 will be considered. The ray geometry from the field DD at Q1 and 
Qz is depicted in Fig.1 with ! the distance between the two diffraction points 
Q1 and Q2, and 412 (&,) the azimuthal coordinate of Q2 (Q1) measured in the 
system at edge 1 (2). FD and TD quantities are related by the Fourier transform 
pair $(U) = J-”, & ) e d U t d t ,  &t) = & J-”,”, +(w)eiwtdu (a caret - tags time- 
dependent quantities). We present first the FD high-frequency doubly dfiacted 
field obtained in [l], that is successively transformed into its TD counterpart. 

Frequency Domain The sing1 diffracted field from the first wedge illu- 
minated by a spherical source at P{$;) evaluated at edge 2, 
is expressed as superposition of spectral spherical sources at P’(cr1 + $12 + T) 
weighted by the spectral G””(q$,al ++12) [l], where G s ~ h ( q b , ~ r )  = -;[sec(($’- 
4)/2) sec((# + 4)/2)], with the - (+) sign referring to the soft (hard) BC. 
Each spherical source provides a diffracted field contribution from edge 2 at the 
observation point P(452) (rz,& 42),  that is conveniently calculated using reci- 
procity, i.e., the diffracted field from edge 2 at P’(q  + 612 + n) due to a point 
source at P(q52) is represented as a summation of spectral spherical sources at 
P(cr2 + &- + n) weighted by the spectral Gs,h(&, a2 + q5i2). Thus, using the 
spectral superposition of the field radiated by wedge 2 for all the spectral spher- 

(r)l,a - 
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Fig. 1. Geometry of the two half planes. (a) Angles with respect to the edges. (b) 
Transverse angles. (c) Observer A is reached by both singly and DD fields, while 
B is reached only by the DD field. The shadow boundary (SB) plane truncates the 
domain of existence of the singly diffracted field. 

ical sources representing the radiation by edge 1, leads to the the double integral 
representation 

in whichR(al,az) = 1P'(al+4i~+a)-P(az+d:~+~)) is thedistancebetween 
the spectral source and observation whose explicit expression is given in [l], and 
k = w / c  with c the ambient wavespeed. The integrand in (1) exhibits a t w e  
dimensional stationary phase point a t  (al,az) = (0,O) that provides the DD 
ray field contribution, and poles in each variable given by the G functions at  

= 4 2  + ( - l )q& + K 
(q  = 1,Z). AS shown in [l], first the integrand is decomposed in its even and odd 
part with respect to (al,az) = (O,O), then it is evaluated asymptotically through 
saddle point in a uniform way with respect to the poles of the G functions, 
leading to $f$ - q@A(r;,t,rz) exp(-jk(r; + e  + rz))D$, in which = 
exp(--jkr;)/(4ar:) is the incident field a t  edge 1 (at Ql), and A(r;, t ,rz)  = 

&/ Jm is the spreading factor. The diffraction coefficient for the 
soft (s) and hard (h) cases are represented as Dig = D:Ph + Drr,8,h 12 where, for 
space limitations, only the first order 

= = 4; + (-1)Pdlz + K (p = 1,2), and QZ = 

is treated and TDinverted in the following. According to [l], the transition 
function 

jab b + (-1)'wa a + (-1)'wb 
T'(a, b, w) = - 

is here conveniently represented as combination of generalized Fresnel integrals 
(GFI) [41 

G(. , y 1 - - y p a  lw G d v ,  G(-z, y) = -G(z, y). (4) 

The parameters of the T' functionin (2), hp = m s i n f l :  J m s i n ( C f / 2 ) ,  
5, = m s i n b  drzt/(rz + e )  sin(~!/2), and w = (r-;rZ)'/' [(~:+t)(rz+t)]- '/~, 
are all independent of w. The normalization with respect to ,/Z has been made 
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to prepare T' for its Fourier inversion. Similar expressions apply for the higher 
order contribution D:i,3,h (see [l]). 

Time Domain The TD version of the DD field 4$ is obtained through direct 
Fourier inversion of the FD high-frequency field $fi. Except for the exponential 
term e-jk(r:+'+rz) (k = w/c), the w variable compares at  the denominator of 
the coefficient D$'" and in the parameters of the transition function T' in (2). 
Therefore, the TD-DD field is given by 

where Ainc = 1 / ( 4 ~ r i )  is the incident spreading factor at  Q1, and @$'(t) = 
B{$?"(t) + h:ph(t) is the Fourier inverted TD double diffraction coefficient 
evaluated at  the retarded time T ~ .  As before, only the first order 

is here discussed. Note that the factor j k  at the denominator of (2) is included 

TD transition function P'(t, $, h,,ur) represented as combination of TD-GFI 
in the Fourier inversion of ( i k ) - ' T r ( f i h P ,  fiig, w) leading by definition to the 

It is convenient 50 limit our analysis to the real part of the positive w spectrum, 
therefore using G(t ,  x, y) = Re f JF G(fix,  fiy)dUtdw, to avoid definitions of 
the square root fi for w < 0 and inherent definition of the FD-GFI in (4) for 
complex parameters. Using the integral representation (4), the w and w orders 
of integration are interchanged (allowed specifying 3mt > 0, that is eventually 
removed) 

We limit our present preliminary formulation to real time signals, leaving the 
more general analytic signal formulation to future studies. To this end, we use 
the identity We f JF dwdW(t+x2-u2) = d(t+x2-v2) fort real. Next, recalling that 
d[j(v)] = b(v - v,)ldf/dvl;' when f(vS) = 0, in the evaluation of the w integral 
in (8) we consider only positive solutions v, = on the integration domain 
(x, a), i.e., U, > x for t > 0. Eventually, using Idf/dvl,, = 2v, = 2-, the 
evaluation of the v integral leads to the TD-GFI 

G(t,x,y) = 80, -2, y) = -&, z, y). (9) 2 (t + 2 2  + y2)" 
Far from the shadow boundaries (SBs) (see Fig.lc), where 181 and 181 + CO, it can 
be easily verified that Tr( t ,  8, b,w) + cU(t), whence the DD wave phenomenology 
acts like a time integrator. As shown in Fig.2a, the time dependence of the 
TD-DD field is shaped as the primitive of the exciting Rayleigh pulse. This is 
consistent with the l/w-frequency dependence of the FD-DD field. 
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TD-DD field 4:; in three distinct wave regimes. Geometry: T: = 42cm; l? = 
45cm; TZ = 33cm; 0; = 100"; flz = 50'; & = looo; +lz = looo, hard BC. Band 
limited excitation: normalized Rayleigh pulse 6(t) = aeL/(j + 2 r f ~ t / 4 ) ~ ] ;  central 
frequency f~ = 3GHz ( A y  = c/ j M  = 10cm. a) Far from transition regions (6; = 
310°, $2 = 310'). b) Observer in transition region (6; = 310", & = 281' w 
& +180"). c) Source and observer both in transition region (6; = 281", & = 281'). 

Shadow Boundary Limits. Let us consider first the case when the observation 
point crosses the plain containing edges 1 and 2, depicted in Fig.lc. There, the 
singly diffracted field from edge 1 is spatially discontinuous at any time, due to 
the shadowing by edge 2. At this aspect, 4 2  --t 4i2 + ?r, so that = 2?r and 

consequently 6, = 0 (see [l]). Using the limit 6(t, x + 0, y) = q f ( y ' ,  t ) ,  being 
f(y2, t )  = myZiY(t) / [&(t+y2)]  the TD transition function of the TD-UTD [6], 
it can be shown after substitution in (7), (6), and (5) that Gg = -$gn(6l)t@, 
with 4 l  the TD-UTD singly diffracted field [6], so that compensating for the 
discontinuity of &' at the SB 4 2  = + K, at and after the wavefront. At 
this SB limit, the Gg time dependence recovers the well known l/& behaviour 
of the singly diffracted field, as shown in Fig.2b. Analogously, when only the 
source crosses the plane containing the edges, is the singly diffracted field at edge 
2 (4," )that is now shadowed. The DD field G$ compensates for the spatial 
discontinuity of 4; given by its abrupt appearance or disappearance. When the 
source and the- observer are b:th close to the plane containing the edges, both 
6, b + 0 and $f," .-, 1/4sgn(66) @(P), i.e. the DD field reduces to one forth 
of the free-space direct contribution of the source, allowing the simultaneous 
compensation for the appearing/disappearing of the Geometrical Optics and of 
the two closetetransition singly diffracted fields, restoring the continuity of the 
total field at and after the wavefront. At this double transition regime, the DD 
field time dependence is the same of the exciting pulse ( Fig .2~  ). 
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