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Angiopoietin-like 4 (Angptl4) is a
secreted protein modulating tri-

acylglycerol homeostasis. Its transcription
is induced by glucocorticoids, which act
to elevate circulating Angptl4 levels dur-
ing fasting. In investigating the role of
Angptl4 in glucocorticoid action, we
identified that in addition to its known
ability to inhibit lipoprotein lipase,
Angptl4 stimulates intracellular adipocyte
lipolysis. Fatty acid release by murine
adipocytes following fasting or treatment
with glucocorticoids or catecholamines
is highly Angptl4-dependent. In fact,
Angptl4 can directly stimulate cAMP-
dependent PKA signaling and lipolysis
when added to adipocytes. Here, we
detail this novel Angptl4-dependent
lipolytic regulatory mechanism and dis-
cuss its physiological and therapeutic
implications.

Mammals benefit from the ability to
switch between fuel substrates to power
the body’s energy needs in response to
changing nutritional, environmental, and
circadian states. Flexible substrate utiliza-
tion allows for the provision of an even
supply of energy to working tissues during
the most adverse circumstances; for
example the running of a marathon or
the scaling of a high-altitude mountain
peak. On the other hand, the failure to
switch seamlessly between fuels can wreak
havoc, as when runners hit “the wall” and
collapse during endurance races.

This capacity is not reserved for extreme
situations. Even during a simple overnight
fast, coordinated fuel switching is taking
place within the liver. Specifically, the liver

must switch from using glycogen early in
a fast to relying on fatty acids (FAs)
mobilized from the triacylglycerol (TG)
pool of white adipose tissue (WAT) as a
fuel for everything from β-oxidation to
ketone body synthesis when fasting is
extended. An inability to steadily flux
FAs from the WAT to the liver during
prolonged fasting could therefore be life-
threatening.

Despite its requirement for normal
intermediary metabolism, conditions in
which FA release by the WAT is excessive
can also be deleterious. For example, in
patients with obesity and insulin resis-
tance, lipolysis by white adipocytes is no
longer restricted to the fasted state,
occurring even in the fed state when
insulin normally suppresses it.1,2 The
resulting increased flux of FA from the
WAT to other tissues, including the liver,
skeletal muscles, pancreas and other meta-
bolic tissues, is associated with their
dysfunction.1-3 This injurious process is
termed lipotoxicity and has been impli-
cated in the development of type 2
diabetes. Therefore, beyond providing a
better understanding of normal physio-
logy, efforts to determine new factors that
stimulate and limit lipolysis may yield
therapeutic targets relevant to diabetes.

Several factors are known to participate
in regulating TG hydrolysis (intracellular
lipolysis) in the WAT and the lipolytic
release of stored fatty acids during fasting.
These include sympathetic neurotrans-
mitters, such as norepinephrine, and a
slate of counter-regulatory hormones,
including glucagon, thyroid hormone,
growth hormone and glucocorticoids.4-7

Of these, glucocorticoids exert a profound
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effect on lipid partitioning between tissues
and can produce extreme alterations in
body fat distribution when chronically in
excess, as in the Cushing syndrome.8,9

Glucocorticoids exert their complex effects
by binding to intracellular glucocorticoid
receptors (GRs) that controls the trans-
cription of hundreds of genes across
tissues. The normal diurnal variation in
glucocorticoid levels, therefore, may be an
important component dictating the daily
fluctuation in gene transcription in several
metabolic tissues. We have explored
glucocorticoid-dependent transcription as
a means to identify potential targets to
limit WAT lipolysis and prevent lipotoxi-
city in obesity states.10

We initially identified angiopoietin-like
4 (Angptl4) as a glucocorticoid-regulated
gene in several cell types, including A549
human lung epithelial cells, rat primary
hepatocytes and human primary adipo-
cytes.11,12 We further confirmed the
induction of Angptl4 mRNA in mouse
liver and WAT in response to the systemic
administration of dexamethasone (DEX),
a synthetic glucocorticoid.12 Angptl4 held
promise as a glucocorticoid-dependent
modulator of lipid flux for several reasons.
First, hypertriglyceridemia is promoted
both by glucocorticoid excess and in
models where ANGPTL4 levels are
increased.13-15 Second, Angptl4–/– mice
display increased plasma TG clearance
and decreased liver TG synthesis, two
components of the phenotype seen when
the ratio of active to inactive glucocorti-
coids is reduced by pharmacologically
inhibiting 11β-hydroxysteroid dehydro-
genase type I.16,17 Third, Angptl4 synthesis
and secretion by the WAT and liver are
profoundly induced by fasting [it is also
called fasting-induced adipose factor
(FIAF)],18,19 a condition also associated
with elevated glucocorticoid levels.

In further investigating the transcrip-
tional regulation of rat Angptl4 gene
by glucocorticoids, we used chromatin
immunoprecipitation along with a bio-
informatics approach to identify a putative
binding site for GR in the genomic region
of Angptl4.12 DEX treatment markedly
stimulated the activity of a luciferase
reporter coupled to this GR binding
region positioned in front of the TATA
box in H4IIE rat hepatoma cells.12 This

region was ultimately identified as a
functional glucocorticoid-responsive ele-
ment (GRE) by mutagenesis and gel shift
experiments.12 Our work pinpointed that
GR-control of Angptl4 transcription
involves modulating DNase I accessibility
and the levels of histone acetylation within
the genomic region containing the GRE.12

We linked these effects to in vivo
physiology by studying mice lacking
Angptl4. These mice had reductions in
DEX-induced hypertriglyceridemia and
hepatic steatosis, indicating that Angptl4
is required for these effects.12 Despite
our transcriptional characterization, we
wondered how Angptl4 and glucocorti-
coids conspire to regulate lipid fluxes
in vivo.

In exploring this question, our most
recent work has focused on the role of
Angptl4 during fasting. A net flux of FFAs
out of the WAT can result when the rate
at which adipocytes hydrolyze intracellular
triacylglycerols (TGs) and release FFAs is
greater than the rate at which they take up
and esterify dietary fats. The uptake of
dietary fats stored within circulating
lipoproteins by adipocytes requires the
action of lipoprotein lipase (Lpl) enzymes
(extracellular lipolysis), whereas the
mechanisms governing TG hydrolysis
(intracellular lipolysis) by adipocytes are
more complex. Although the involvement
of glucocorticoid action in fasting-induced
WAT lipolysis has been described,15,20

determining the extent to which gluco-
corticoids regulate intracellular adipocyte
lipolysis and the mechanisms by which
this occurs has been elusive. In considering
how Angptl4 functions, it is intriguing to
note that, in addition to inhibiting Lpl,
Angptl4 also promotes the expression of
WAT genes involved in TG hydrolysis and
the lipolytic release of intracellular FFAs
by adipocytes.21,22 Therefore, we thought
that Angptl4 might modulate both extra-
cellular and intracellular lipolysis.

Our studies reveal that, beyond inhi-
biting extracellular Lpl, Angptl4 also
stimulates intracellular TG hydrolysis and
FFA release by murine adipocytes during
fasting in response to classic physiological
cues. Angptl4–/– mice failed to appro-
priately release glycerol, a marker of
intracellular lipolysis, in response to a
physiological fast.23 Furthermore, we

showed that glucocorticoid action is a
direct determinant of the TG-hydrolytic
potential of the WAT during fasting23 and
that, interestingly, this action also requires
Angptl4.23 In our experiments, TG hydro-
lysis by adipocytes in response to short-
term fasting (6 h) and glucocorticoid
treatment in vivo and catecholamine
treatment in vitro was preceded by
increases in cytosolic levels of cAMP.23

Angptl4 was necessary for each of these
stimuli to elevate cAMP levels and to
stimulate the PKA-dependent phos-
phorylation of key components of the
lipolytic machinery.23 These findings com-
bine to suggest that Angptl4 may regulate
intracellular adipocyte lipolysis by modu-
lating a common step in the cAMP-
dependent signaling cascade. In exploring
this possibility further, we found that
purified human ANGPTL4, when added
on its own to cultured murine adipocytes,
remarkably increased intracellular cAMP
levels and rescued the lipolytic impairment
seen in Angptl4-deficient cells.23

Our in vivo and in vitro findings allow
for the construction of a more advanced
model depicting the temporal contribution
of several components of fasting-induced
lipolysis and the role of Angptl4 in this
process (Fig. 1). Early on during a fast,
catecholamines and other counter-regula-
tory defenses act on the WAT early on to
increase cAMP levels, leading to activation
of PKA and phosphorylation of hormone-
sensitive lipase (Hsl) and perilipin-1
(Plin1), two proteins that localize to lipid
droplets and participate in lipolysis upon
undergoing specific PKA-dependent phos-
phorylation.6 During this phase (modeled
by fasting mice for 6 h), Angptl4 serves
two roles: it inhibits Lpl to limit extra-
cellular lipolysis and fat uptake by adipo-
cytes and also potentiates the actions of
catecholamines by enhancing their effect
on cAMP-dependent TG hydrolysis.
When fasting is extended (modeled by
fasting mice for 24 h), glucocorticoids
exert a greater effect on WAT TG
hydrolysis by controlling the transcription
of many genes, one of which is Angptl4.
For both catecholamines and glucocorti-
coids, the ability to stimulate the release of
stored TG by the WAT is linked to their
capacity to increase adipocyte cAMP
levels. For this, they require Angptl4. We
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have therefore identified Angptl4 as a
common downstream mediator that inte-
grates the acute lipolytic actions of
glucocorticoids and catecholamines during
physiological fasting in adipocytes.

The net flux of lipids between tissues in
intermediary metabolism is complex, and
involves a balance between rates of both
lipogenesis and lipolysis within the WAT.
As such, it is interesting to note that
glucocorticoids can stimulate both lipolysis
and lipogenesis.10 Although the overall
effect of glucocorticoid action during a
physiological fast may be to stimulate lipid
flux from the WAT to the liver, this effect
can be remarkably different in other states.
For example the Cushing syndrome of
chronic glucocorticoid excess is associated
not with a uniform increase or decrease in

the size of fat depots in the body, but rather
with a redistribution of fat from the
periphery to visceral and hepatic depots.8,9

This shift is due in part to depot-specific
differences in glucocorticoid-responsive
lipolysis and lipogenesis. Specifically, vis-
ceral depots increased lipogenesis and TG
storage, allowing them to expand, whereas a
more dominant effect of lipolysis in
peripheral depots is associated with their
atrophy. Determining what factors deter-
mine depot-specific differences in these two
counteracting processes is of biomedical
importance. With this in mind, it will be
important to know whether differences in
Angptl4-dependent lipid metabolism
between visceral and peripheral adipocytes
may contribute, at least in part, to the
depot-specific effects of glucocorticoids.

Glucocorticoids do not regulate inter-
mediary metabolism in isolation. Indeed,
in addition to the several hormones
controlling WAT lipolysis, others are
anabolic during the fed state. Primary
among these is insulin, which acts to
stimulate fat storage, both in the WAT
and liver. Insulin is known to increase the
expression of Lpl and certain lipogenic
genes, an effect mirroring that of gluco-
corticoids24,25 in some fat depots and in
the liver during the fasted state. However,
insulin also represses the expression of
Angptl4,26,27 an effect reciprocal to that of
glucocorticoids, which induce its expres-
sion. As such, Angptl4 expression levels
are an integrated function of various
hormonal inputs, and this integration
may important in determining how
Angptl4 levels rise and fall during the
diurnal cycle of feeding and fasting. The
influence of other hormones and signaling
systems on the Angptl4-dependent com-
ponent of glucocorticoid-regulated lipid
metabolism is only beginning to be
understood.

Our specific work has also brought
several other key questions to light.

First, does Angptl4 modulate adipocyte
lipolysis in a tissue-specific or systemic
manner? The liver and the WAT are the
two main tissues responsible for fasting-
induced secretion of Angptl4. Given that
the resulting rise in Angptl4 levels can be
clearly measured in human and mouse
blood, it is reasonable to assume that
Angptl4 may exert endocrine effects. In
this model, the liver could use Angptl4 as a
hormone to modulate WAT lipolysis from
a distance. On the other hand, adipocyte-
derived Angptl4 could act in a local
paracrine or autocrine manner within the
WAT, modulating lipolytic activity in the
secreting or adjacent cells. These two
possibilities remain to be examined.
Interestingly, Angptl4 is secreted both as
a full-length and truncated protein.
Whether one version of Angptl4 functions
more as an endocrine hormone and the
other as a tissue-specific paracrine modu-
lator is a question worthy of future study.
Furthermore, many other tissues, includ-
ing the brown adipose tissue, skeletal
muscle, lungs and mammary glands, also
express Angptl4. It is unclear whether
fasting increases the expression of Angptl4

Figure 1. The physiological role of Angptl4 in adipocyte lipolysis. Model depicting the concert of
factors proposed to mediate the pace of adipocyte lipolysis during short-term (6 h) and extended
(24 h) fasting. Early on during a fast (top), TG hydrolysis by adipocytes is largely under control of
catecholamines, which act through b-adrenergic receptors (bAR) and stimulatory G-proteins to
increase cAMP levels and activate PKA-dependent phosphorylation of key elements of the lipolytic
machinery, including perilipin-1 (Plin) and hormone-sensitive lipase (Hsl). Phosphorylated Plin
(pPlin), in turn, facilitates the interaction between adipocyte triglyceride lipase (ATGL) and CGI-58,
which is associated with lipase activation. Activated ATGL and Hsl work together to release fatty
acids from TG stores, which flux to the liver and are used for oxidation, VLDL synthesis, and ketone
body production. Basal levels of Angptl4 facilitate catecholamine action during this phase of
fasting. When fasting is prolonged (bottom), the influence of catecholamines wanes, giving way to
the more dominant role of glucocorticoids. Glucocorticoids strongly induce Angptl4, the levels of
which rise proportionally in the WAT. Angptl4 mediates glucocorticoid-dependent PKA signaling,
acting to maintain ATGL and Hsl-dependent TG hydrolysis and the steady flux of fatty acids from
the WAT to the liver. Angptl4 action in this setting is required for fasting-induced hepatic steatosis,
a hallmark of prolonged fasting in mouse models.
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in these tissues and how this Angptl4
contributes to lipolysis.

Second, what roles do other angiopoie-
tin-like family members play in systemic
lipid metabolism? The relationship
between Angptl4 and fat metabolism is
seen in humans as well as in mice. For
example, a large population-based study
showed that sequence variations in human
ANGPTL4 are associated with reduced
plasma TG levels,28 and another showed
that ANGPTL4 levels in the WAT
correlate with body weight in monozygotic
twins.29 However, these studies have also
revealed that genetic alterations in several
other members of the angiopoietin-like
family of proteins may also play key roles
in systemic lipid metabolism. For example,
nonsynonymous sequence variations in
human ANGPTL3, ANGPTL4 and
ANGPTL5 analyzed from a large study
population were each associated with
circulating TG levels in the lowest quartile,
and many of these variant alleles produced
proteins with a loss of function when
expressed in cells.30 Therefore, ANGPTL3
and 5 may mirror ANGPTL4 and play
similarly important roles in maintaining
normal TG levels in mammals. Loss of
function of ANGPTL3 can have lipid-
lowering effects.31 Additionally, it is worth
noting that ANGPTL5 expression is
relatively high in human WAT.30 While
ANGPTL3 is mainly expressed in the
liver, it may still be able to affect adipocyte
function through an endocrine mecha-
nism. As such, the search for therapeutic
targets to lower lipids levels should be
extended to include members of the
angiopoietin-like family other than just
ANGPTL4.

Third, is the Angptl4 protein domain
needed to inhibit extracellular lipolysis
distinct from that needed to stimulate
intracellular lipolysis? Among the known
sequence variations in human angiopoie-
tin-like family members, those that impair
the ability of the protein to inhibit Lpl
activity in vitro are located within regions
coding for the N-terminal half of the
protein.32 By contrast, none of the tested
variants that altered the c-terminal portion
of ANGPTL3 and 4 were shown to modify

the Lpl-inhibitory capacity of the protein.30

Furthermore, purified N-terminus of
ANGPTL4 is able to inhibit Lpl,33 and a
single mutation at amino acid 40 of human
ANGPTL4 (from glutamic acid to lysine,
E40K) abolished its Lpl inhibitory activity
(E40K).34 The domain or amino
acids required for adipocyte lipolysis are
unclear. Experimental dissociation of the
Lpl inhibitory- and adipocyte lipolytic
activities of ANGPTL4 would have
intriguing metabolic and pharmacologic
implications. Circulating ANGPTL4 is
present in both full-length and truncated
forms,18 and these two could have distinct
effects on TG homeostasis. Moreover,
ANGPTL4 mutants that promote adipo-
cyte lipolysis without inhibiting Lpl acti-
vity could provide a potential therapeutic
approach to reduce adiposity without
raising plasma TG levels. On the other
hand, mutants that specifically lack TG-
hydrolytic activity could provide insight
into how lipolysis may be limited in insulin
resistant individuals, protecting against
chronic lipotoxicity in non-adipose tissues.

Fourth, what is Angptl4 receptor and
how does Angptl4 act to stimulate adipo-
cyte TG hydrolysis? One of the most
intriguing conclusions drawn from our
studies to date is the concept that secreted
Angptl4 can act on the extracellular aspect
of adipocytes to modulate intracellular
cAMP signaling and lipolysis. This con-
clusion directly invokes the presence of an
Angptl4-responsive cell surface receptor on
adipocytes. What is this receptor? As
Angptl4 shares homology with the angio-
poietins, which bind to the TIE family of
receptor tyrosine kinases, one possibility
for Angptl4 receptor is a member of the
TIE family. However, the angiopoietin-
like family members are notably different
from the angiopoietins in that they do not
have a TIE-binding domain. This makes it
unlikely that these two otherwise similar
families of secreted ligands share the same
set of receptors.35 Rather, Angptl4 was
shown to bind to fibronectin, vitronectin,
integrin β1 and β5 in keratinocytes;36,37

however, it is unknown whether this
receptor binding specificity plays a role
in adipocyte biology.

We found that the inability of cate-
cholamine treatment to stimulate TG
hydrolysis or increase cAMP levels in
Angptl4-deficient murine adipocytes could
be rescued by adding either forskolin, 8
bromo-cAMP, or a phosphodiesterase
inhibitor,23 indicating that the adrenergic
signaling cascade leading to lipolysis
requires the presence of Angptl4 at a point
downstream of the β-adrenergic receptor
but upstream of activated adenylate
cyclase. The expression of GaS, Gβ, Gc
and distinct isoforms of β-adrenergic
receptors and adenylyl cyclase were similar
in WAT of wild-type and Angptl42/2

mice.23 However, it is possible that
Angptl4 initiates signaling events that
modulate the activity of these proteins.
Angptl4 has been shown to regulate
distinct signaling pathways in different
cell types. In keratinocytes, ANGPTL4
has been shown to activate integrin-
mediated signaling that includes the
stimulation of focal adhesion kinase and
other downstream signaling molecules,
such as protein kinase C and the small
GTPase Rac.36-38 Notably, Angptl4 in the
hypothalamus has been shown to inhibit
AMP-activated protein kinase (AMPK).39

AMPK action has been linked to adipocyte
lipolysis.40,41 Angptl4 has also been shown
to inhibit the MAP/ERK kinase pathway
in endothelial cells.42 None of these
signaling pathways has been examined for
their role in the action of Angptl4 in
adipocytes, and its potential effects on
cAMP-dependent signaling requires
investigation.

Determining the adipocyte receptor and
downstream signaling processes for
Angptl4 is definitely worthy of research,
as it may greatly facilitate the testing of
potential Angptl4-blocking approaches as
another strategy to reduce the aberrant
lipolysis and attendant lipotoxicity in
metabolic tissues that is seen in insulin
resistant individuals.
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