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Medical responders to radiological and nuclear disasters
currently lack sufficient high-throughput and minimally
invasive biodosimetry tools to assess exposure and injury in
the affected populations. For this reason, we have focused on
developing robust radiation exposure biomarkers in easily
accessible biofluids such as urine, serum and feces. While we
have previously reported on urine and serum biomarkers,
here we assessed perturbations in the fecal metabolome
resulting from exposure to external X radiation in vivo. The
gastrointestinal (GI) system is of particular importance in
radiation biodosimetry due to its constant cell renewal and
sensitivity to radiation-induced injury. While the clinical GI
symptoms such as pain, bloating, nausea, vomiting and
diarrhea are manifested after radiation exposure, no reliable
bioindicator has been identified for radiation-induced gas-
trointestinal injuries. To this end, we focused on determining
a fecal metabolomic signature in X-ray irradiated mice.
There is overwhelming evidence that the gut microbiota play
an essential role in gut homeostasis and overall health.
Because the fecal metabolome is tightly correlated with the
composition and diversity of the microorganism in the gut, we
also performed fecal 16S rRNA sequencing analysis to
determine the changes in the microbial composition postir-
radiation. We used in-house bioinformatics tools to integrate
the 16S rRNA sequencing and metabolomic data, and to
elucidate the gut integrated ecosystem and its deviations from
a stable host-microbiome state that result from irradiation.
The 16S rRNA sequencing results indicated that radiation
caused remarkable alterations of the microbiome in feces at
the family level. Increased abundance of common members of

Lactobacillaceae and Staphylococcaceae families, and de-
creased abundances of Lachnospiraceae, Ruminococcaceae
and Clostridiaceae families were found after 5 and 12 Gy
irradiation. The metabolomic data revealed statistically
significant changes in the microbial-derived products such
as pipecolic acid, glutaconic acid, urobilinogen and homoge-
ntisic acid. In addition, significant changes were detected in
bile acids such as taurocholic acid and 12-ketodeoxycholic
acid. These changes may be associated with the observed
shifts in the abundance of intestinal microbes, such as R.
gnavus, which can transform bile acids. � 2016 by Radiation

Research Society

INTRODUCTION

The efficiency of clinical tests to accurately assess
radiation exposure in a high-throughput manner after a
radiological event or nuclear explosion depends heavily on
the robustness and predictive power of the biomarkers.
Easily accessible biofluids such as urine and blood have
been the obvious choices in many biomarker discovery
efforts and have provided valuable insight into the
mechanism of radiation-induced injury and stress signaling.
In this regard, the field of metabolomics has played a
particularly important role in expanding our knowledge of
physiological and metabolic changes after exposure to
various types of radiation. Metabolites are the end points of
chemical reactions in our bodies, thus, changes in their
concentrations represent systemic responses to radiation
exposure. To date, most radiation metabolomic studies have
focused on mammalian metabolites while widely ignoring
those that are microbial in origin. Considering that in the
human gut alone the microbial cells outnumber the
eukaryotic cells in the entire body by ten to one and
contribute over 100-fold more genetic material, it is
essential to assess their contributions to phenotype and
radiation injury. The gut microbiota and their metabolic
products are in constant cross-talk with the host cellular
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metabolism. Recent studies have provided evidence on the
regulatory role of microbiota in immunological responses
and stress signaling, such as those observed after injury
induced by ionizing radiation (1–3).

The gastrointestinal (GI) system is particularly susceptible
to radiation injury due to increased apoptosis of crypt
epithelial cells, mucosal cell loss and by lymphocyte
infiltration of the underlying tissue (4). In addition,
cytotoxic effects of radiation exposure can also lead to
defects in the intestinal epithelial barrier, which offers
higher permeability to luminal bacteria and triggers immune
responses (5). Furthermore, while the severity of these
histological changes tends to be dose dependent (4), there
are also secondary adverse GI effects that are directly
related to the radiation exposure such as bile salt
malabsorption from terminal ileal damage (6, 7), malab-
sorption of lactose or other fermentable sugars (8), small
bowel bacterial overgrowth (9, 10) and altered transit time
(11). Therefore, to study the local biology and the
perturbations in gut homeostasis, stool may be a valuable
biofluid. Stool not only contains significant information on
the status of the GI system, its metabolome reflects changes
in the metabolism of the host and the intestinal microbiota,
as gut microbiota also contribute to transformation and
fermentation of dietary components and production of final
metabolites, including short-chain and branched-chain fatty
acids as well as phenol, indole and sulfur compounds. It is
now understood that the state of GI microbial communities
closely relates to the status of human health, with the
population of microorganisms in the intestines being
sensitive to changes in the intestinal microenvironment
and dysbacteriosis of the microbiota being associated with
an expanding list of diseases (12, 13).

Taken together, this evidence emphasizes the importance
of the microbial contribution to maintaining the host health,
and to shaping and refining the host metabolomic response
to radiation exposure. While the wide diversity of species
that make up the gut microbiota is difficult to characterize, it
is known that disturbances in both the bacterial diversity
and abundance as a result of environmental exposures are
associated with gut dysbiosis (14). For instance, preclinical
studies have shown that radiation exposure causes a
substantial increase in the number of bacteria on intestinal
villi, and small intestinal bacterial overgrowth was observed
in irradiated patients (9, 15). Also, a cohort study of
irradiated patients with intestinal toxicity showed that
impaired motility was a cause of gastrointestinal coloniza-
tion of Gram-negative bacilli (16), while a more recent
study showed a progressively increasing dysbiotic pattern in
six postirradiation patients with diarrhea symptoms (17).
Therefore, in this study, over the course of 30 days we
explored the changes in the fecal microbiome and
metabolome of mice that were whole-body irradiated with
a single fraction of 5 and 12 Gy of external beam X rays.
We used 16S rRNA gene pyrosequencing to determine the
significant differences in fecal microbiota after irradiation.

We observed a remarkable decrease of Firmicute bacteria,
which has also been previously reported in mice (18) and
humans (19) after broad-spectrum antibacterial treatments.
In addition, fecal metabolomic analysis revealed significant
changes in the microbial metabolic products. Together,
these results show that fecal metabolomics can provide
valuable insight into the effects of radiation on the gut
microbiota and ultimately the host metabolism, and that it
can serve as a radiation exposure assessment biofluid.

MATERIALS AND METHODS

The lipid standard, phosphatidylserine PS (14:0/14:0), was
purchased from Avantit Polar lipids (Alabaster, AL). Debrisoquine
sulfate, 4-nitrobenzoic acid (4-NBA) and UPLC-grade solvents such
as acetonitrile, water and isopropanol were purchased from Fisher
Scientific (Hanover Park, IL). Glyceric acid, glutaconic acid, pipecolic
acid, homogentisic acid, sebacic acid, serotonin, hypoxanthine, a-
ketobutyric acid, hippuric acid, taurine and hydroxyphenylpyruvic
acid were purchased from Sigma-Aldricht (Seelze, Germany). In
addition, the MS/MS spectra provided by Scripps Center for
Metabolomics (La Jolla, CA) were used as reference spectra for
hydroquinone.

Animal Experiment and Sample Collection

Animal housing. C57BL/6J eight-week-old male mice (Jackson
Laboratory, Bar Harbor, ME) were maintained in a 12:12 h light-dark
schedule at 228C in 30–70% humidity and provided certified rodent
diet along with filtered water ad libitum. Mice (n ¼ 6–7 per study
group) were exposed to a whole-body dose of 0, 5 or 12 Gy X rays
using an X-RAD 320 X-ray irradiator (Precision X-ray Inc., North
Branford, CT). We used 320 kV and 12.5 mA X-rays filtered with a
1.5 mm aluminum/0.25 mm copper/0.75 mm tin filter placed in front
of the source for both 5 and 12 Gy irradiations. After irradiations mice
were returned to their home cages and monitored regularly. All animal
procedures were performed according to protocols approved by the
Institutional Animal Care and Use Committees (IACUC) at George-
town University. For our research, we followed Guide for the Care and
Use of Laboratory Animals, prepared by the Institute of Laboratory
Animal Resources, National Research Council and U.S. National
Academy of Sciences.

Feces collection. Feces were collected by placing the mice into
customized Tecniplastt (West Chester, PA) metabolic cages for 24 h
at a time. At the end of 24 h, feces were collected and stored at�808C
until analysis. Feces were collected at one day before irradiation and 3,
14 and 30 days after irradiation (Table 1).

16S rRNA Sequencing and Microbiome Data Analysis

Feces collected from mice before and after irradiations (0, 5 and 12
Gy) were subjected to 16S rRNA sequencing. For mice in the 0 and 5
Gy groups, feces were obtained at day 1 before irradiation and at day 3
and day 30 postirradiation, while for the 12 Gy irradiated group,
samples were obtained only at day 1 before and day 3 postirradiation.
Genomic DNA extraction, amplification of the V4 region of 16S
ribosomal RNA genes and paired-end sequencing on an Illuminat

HiSeq 2500 were performed as described previously (27). The 150
base-paired-end reads were processed using QIIME version 1.8.0,
with default parameters to generate approximately 254 base-pair-
joined reads (50). The number of reads per sample ranged from
413,213 to 953,186, with a mean of 692,987. Operational taxonomic
units (OTUs) were picked against the May 2013 version of the
Greengenes database (http://greengenes.secondgenome.com), prefil-
tered at 97% identity. The biom-format file derived from QIIME was
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imported into Phyloseq package on R data filtering, normalization,
species richness (Observed, Chao1) and alpha diversity measurements
(Shannon) were performed in Phyloseq.

Metabolomics and Data Analysis

The fecal samples were prepared by resuspending 50 mg of dry
fecal pellets in 150 ll of Optimae LC/MS grade water. The samples
were then homogenized and heated in a 378C water bath for 90 s, then
chilled on ice. One microliter from each sample was removed for
protein concentration measurement. Optima acetonitrile (150 ll)
containing internal standards, 4-NBA and debrisoquine, were added to
the samples. The samples were then spun at maximum speed for 20
min at 48C. The supernatant was placed in a new tube, dried under a
gentle stream of nitrogen and resuspended in 300 ll of solvent A (98%
water, 2% ACN and 0.1% formic acid) for LC/MS. The MS analysis
was performed by injecting 2 ll aliquots of each sample into a reverse-
phase 50 3 2.1 mm H-class ACQUITY UPLC 1.7 lM BEH C18
column (Waterst Corp., Milford, MA) coupled to a time-of-flight
mass spectrometry (TOFMS). The mobile phase consisted of solvent
A and 100% acetonitrile (solvent B). The Xevo G2-S mass
spectrometer (Waters Corp.) was operated in the positive (ESIþ) and
negative (ESI�) electrospray ionization modes scanning a 50–1,200 m/
z range. The following 11 min gradient was used: 98%/2% solvent A/
solvent B at 0.5 ml/min for 8 min; 2%/98% solvent A/solvent B for 2
min; and back to 98%/2% solvent A/solvent B for the last minute. The
lock-spray consisted of leucine-enkephalin (556.2771 [M þ H]þ and
554.2615 [M – H]–). The MS data were acquired in centroid mode and
assessed for quality assurance using MassLynxt software (Waters
Corp.). In-house bioinformatics tools and workflows were used to
putatively identify ions, utilizing the Human Metabolome Database
(HMDB; http://www.hmdb.ca), LipidMapst (http://www.lipidmaps.
org), the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database (http://www.genome.jp/kegg/) and BioCyc (http://biocyc.
org; SRI Intl., Menlo Park, CA). The m/z values were used to
putatively assign IDs to the ions by neutral mass elucidation, which
was accomplished by considering the possible adducts (Hþ, Naþ and/
or NH4þ in the ESIþ mode; H– and Cl– in the ESI– mode). The masses
were then compared to the exact mass of small molecules in the
databases, from which putative metabolites were identified with a
mass error of 20 parts per million (ppm) or less. KEGG-annotated
pathways associated with these putative metabolites were also
identified. Candidate metabolite markers were then chosen from this
list for further MS/MS validation.

Progenesist QI Informatics (Nonlinear Dynamics, Newcastle, UK)
was used to deconvolute the data and align the high-energy scans
(fragments) and the low-energy scans (precursors) of MSE data. The
data was normalized to total protein concentration for each sample.
Our in-house statistical analysis program, MetaboLyzer (20), was then
used to analyze the data and identify statistically significant ions as
described previously (21). The ion presence threshold was set at 0.7 in
MetaboLyzer in each study group for identifying complete-presence
ions (which have nonzero abundance values in .70% of the samples
for both groups) and partial-presence ions (which are .70% present
for only one group). Data were then log-transformed and analyzed for
statistical significance via the nonparametric Kolmogorov-Smirnov
test for statistical significance with false discovery rate (FDR)

correction (FDR , 0.10). Partial-presence ions were analyzed as
categorical variables for presence status (i.e., nonzero abundance in
70% of samples) via FDR-corrected Fisher’s exact test (FDR , 0.10).
The data for statistically significant complete-presence ions (398 ions)
in positive ESI mode were then utilized for principal component
analysis (PCA) and for constructing a receiver operating characteristic
(ROC) curve. The ROC curve was constructed utilizing a Gaussian
kernel support vector machine (SVM)-based binary classifier coupled
with a Monte Carlo cross-validation (MCCV) procedure. Approxi-
mately one-third of all samples were randomly removed from the
dataset, while the remaining two-thirds were utilized to train the SVM.
The removed samples were then classified with this trained SVM to
evaluate the predictive ability of the statistically significant ions. This
procedure was repeated 30 times for the purposes of gathering enough
data to construct a ROC curve.

In addition to the aforementioned classical statistical analysis
procedure, differential correlation analysis was also conducted on
complete-presence ions for the purposes of examining subtler shifts in
the coregulation of metabolic processes. For each group, Pearson’s
correlation coefficients were calculated between all possible ion pair
combinations and arranged into a triangular matrix. The matrices for
each group (control and irradiated) were then utilized to construct two
dissimilarity heatmaps for a qualitative comparison of correlation
shifts in the coregulation structure of the metabolome. Statistically
significant correlation differentials were also identified via the Z test
for statistical significance (P , 0.01) after a Fisher transformation and
visualized via heatmap construction (20). The subset of statistically
significant differential correlation pairs, whose constituent ions’
putative identities both map to the same KEGG pathway (i.e. ‘‘double
hit’’), were also further analyzed via pathway enrichment analysis
(FDR-corrected hypergeometric statistical testing). This differential
correlation-based ‘‘double hit’’ pathway analysis was dichotomized
into statistically significant correlation gains and losses, which
represent increased coregulatory activity and dysregulation of
metabolic pathways, respectively.

Inter-omic Correlation Analysis

Inter-omic networks allow for exploration of correlation patterns
across two large datasets to reveal possible biological interactions (in
this case between microbes and spectral features) (61). These networks
are constructed from pairwise correlations between features of interest
in each dataset (i.e. each combination of a microbe and ion). We
constructed an inter-omic network from microbes and spectral features
that had a statistically significant association with radiation exposure.
To adjust for differences in biological states across samples, the two
datasets were fitted to multivariate models incorporating radiation
dose and time point. The two datasets were first filtered to remove
features present in less than 10% of samples. Microbes were
additionally filtered for a minimum abundance of 0.0001. DESeq2
(http://bit.ly/295KboX) was used to fit microbial abundance to
negative binomial models and shrink dispersion using an empirical
Bayesian approach (22). Significance was calculated with the Wald
test and P values were adjusted for multiple hypothesis testing; Q
values below 0.05 were considered significant (23). Metabolomics
data were normalized and variance stabilized using mean-variance
regularization (MVR), an approach designed for metabolomic
analysis, then fitted to Gaussian models with the limma package in
R (24, 25). Significance was calculated using empirical Bayes
moderated t statistics and P values were adjusted to Q values to
correct for multiple hypothesis testing (23, 25). Microbes and spectral
features that were differentially abundant after either 5 or 12 Gy
irradiation then underwent inter-omic correlation analysis. Spearman
correlation was calculated for all pairs of microbes and ions using the
residuals of microbiome data fitted to negative binomial models and
residuals of transformed metabolomics data fitted to Gaussian models.
P values were computed for Spearman correlation coefficients with
the asymptotic t approximation, and were then converted to Q values.

TABLE 1
Experimental Design

Radiation dose
Number of mice per

time point
Time point

(days postirradiation)

0 Gy (control) 7 –1, 3, 14, 30
5 Gy 7 –1, 3, 14, 30
12 Gy 7 –1, 3a

a Mice died before the 14- and 30-day time points.
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Microbe-ion correlation pairs with Q , 0.15 were used to construct a
microbe-ion network in Cytoscape version 3.2.1 (http://cytoscape.
org).

RESULTS

In this study we assessed the changes in the fecal
metabolome and metagenome of mice exposed to 5 and 12
Gy on external beam X rays. The LD50/30 dose for mice of
this age and strain is typically about 8 Gy, thus there is no
lethality at 5 Gy but the dose is sufficient to cause some GI
toxicity (60); doses of �10 Gy show accelerated lethality
typical of increasing GI toxicity (49). The metabolomics
analysis was performed using a UPLC-TOFMS which
enabled us to detect over 3,500 spectral features in positive
and negative ESI modes. The fecal metabolomic signature
of mice in the positive ESI mode showed changes in the
abundances of 720 spectral features which were present in
more than 70% of the samples from a total of 2,700 detected
features, as shown in the volcano plot (Fig. 1A). The red
circles represent the spectral features, which were found to
display statistically significant changes in their abundances
after 5 Gy irradiation. The x-axis of this plot represents the
magnitude of change (fold change) and the y-axis shows the
statistical significance (P value). The red circles on the
positive scale of the x-axis show the spectral features, which
had statistically significant increasing abundances after
irradiation, and those on the left had a decreasing pattern in
their abundances. These perturbations in the fecal ions from
the irradiated mice drove a statistically significant shift in
the overall fecal metabolomic signature of these mice away
from that of the control mice, as shown by the separation of
the signatures in the PCA plot (Fig. 1B). The heatmap
shown in Fig. 1C highlights the spectral features, which
contributed the most to this separation. The bottom one-fifth
of this heatmap shows the spectral features whose fecal
levels decreased after irradiation while the top four-fifths of
the heatmap show spectral features with an increase in their
fecal levels. The ROC curve in Fig. 1D shows the results to
evaluate the predictive ability of the statistically significant
spectral features from Fig. 1A. The ROC was constructed
utilizing an SVM-based classification model coupled with
Monte Carlo cross-validation and shows that the statistically
significant features, upon more comprehensive evaluation,
may be used to predict radiation exposure. It is, however,
important to note that we utilized SVMs in our analysis for
exploratory purposes. Thus a comprehensive evaluation of
predictive potential of the features would require much
larger sample sizes and more stringent analysis.

Results from differential correlation analysis reveal shifts
in coregulation of metabolic processes. The dissimilarity
heatmap generated from the Pearson’s correlation coeffi-
cients calculated for the control group (Fig. 2A) exhibits a
high degree of coregulation and coordination, as represented
by the abundance of dark red hues. When comparing this to
the heatmap generated from the irradiated group (Fig. 2B),

there is a clear loss of correlation, as exhibited by the lighter
red hues in the periphery of the top right corner where
darker hues existed in the previous heatmap. However, there
is also evidence of increased coregulation as a result of
radiation exposure, as exhibited by the newly darkened
areas in the bottom left corner compared to the control.
These differences are emphasized in the differential
correlation heatmap (Fig. 2C), where orange hues represent
a gain of correlation (and thus increased coregulation),
while blue hues represent a loss of correlation (i.e.,
dysregulation). With respect to the number of statistically
significant correlation shifts, correlation losses exceed gains
by approximately 2 to 1, implying that the overall effect of
radiation exposure resulted in widespread dysregulation of
metabolic processes. However, the correlation gains are not
negligible, and represent a biologically relevant subset of
metabolic processes that were observed to have increased
levels of coregulation, rather than dysregulation. The results
of ‘‘double hit’’ pathway enrichment analysis on this subset
of correlation shifts (Fig. 2D), which plots the �1*log10 (P
value) for each KEGG pathway, as calculated by the
uncorrected (blue bar) and FDR-corrected (red bar) hyper-
geometric test, yielded tyrosine metabolism, tryptophan
metabolism, cyanoamino acid metabolism, bile acid secre-
tion and phenylalanine metabolism all undergoing increased
coregulatory activity.

Furthermore, we focused on identifying microbial
metabolites with statistically significant changes in their
fecal concentration at day 3 after 5 and 12 Gy irradiation
(Fig. 3A). Glyceric acid, homogentisic acid, glutaconic acid
and pipecolic acid showed decreasing levels with radiation
dose, while hippuric acid, taurine and urobilinogen showed
increasing levels with dose. This indicates radiation has a
distinct effect on the fecal microbial metabolic products
even as early as day 3 postirradiation. In addition, we
assessed the changes in the fecal metabolome over the
course of the 30-day study. Due to signs of morbidity, the
12 Gy irradiated mice were humanely euthanized and did
not survive the 30-day study. Therefore, we followed the
fecal metabolome of the 5 Gy irradiated mice from the
earliest time point, day 3, through day 30, and found that
their fecal metabolome at all three time points (day 3, 14
and 30) was distinct from that of control mice, as shown in
the random forests-generated multidimensional scaling
(MDS) plot in Fig. 3B. This plot also shows that the fecal
metabolomic profiles of mice at day 14 and 30 after 5 Gy
irradiation were more similar to each other, as they separate
only slightly on the second dimension of the plot, than to
that at day 3 separated on the first dimension. This may
indicate an early response at day 3 due to irradiation and an
adaptation of the response at the later time points.
Furthermore, the heatmap shown in Fig. 3C details the
changes in the abundances of the top 50 most important
variables in a time-dependent manner as marked by yellow
boxes. From these spectral features we identified serotonin
and sebacic acid, which had a persistent decrease through-
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out the 30-day study after 5 Gy irradiation, while

hypoxanthine and 2-ketobutyric acid showed persistent

increases in their radiation response (Fig. 3D).

Among the fecal metabolites affected the most by

exposure were three bile acids: taurocholic acid, 7-

sulfocholic acid and 12-ketodeoxycholic acid, (Fig. 4).

The taurine and the sulfur-conjugated primary bile acids,

taurocholic acid and 7-sulfocholic acid showed increasing

levels in their fecal abundances at day 3 after 5 and 12 Gy

irradiation while the secondary bile acid, 12-ketodeox-

ycholic acid, showed decreased abundance. The increase in

the levels of primary bile acids may indicate a reduction of

their intestinal absorption and a lower rate of their

deconjugation by the gut microbiota caused by radiation.

Fecal bacterial diversity and comparative community

structure were determined by 16S rRNA sequencing assay

followed by bioinformatics analysis using QIIME and

Phyloseq packages. The samples had similar sequencing

FIG. 1. Perturbations in the fecal metabolomic signature in mice 3 days after irradiation was assessed via
MetaboLyzer. Here we show these perturbations after 5 Gy irradiation with 12 Gy irradiation showing similar
changes (Supplementary Fig. S2; http://dx.doi.org/10.1667/RR14306.1.S3). Panel A shows a volcano plot,
where the statistically significant (Kolmogorov-Smirnov test, FDR , 0.10) spectral features are shown in red.
The x-axis of the volcano plot, log2 fold change, highlights the direction of the shift in the abundance of the
spectral features. On this axis the positive scale represents an increase and the negative scale represents a
decrease in the abundance of spectral features at day 3 after 5 Gy irradiation. The y-axis of the volcano plot, –log
P value, specifies the significance of the change, decrease or increase, in the abundance of the spectral features.
Panel B shows a principle component analysis (PCA) scores plot and highlights the distinct separation between
the overall fecal metabolomic profile of the control mice vs. those irradiated at 5 Gy at day 3. The statistically
significant ions in panel A contribute to the separation seen in panel B. Panel C is a heatmap of individual ions
with most significant contribution to the separation of the fecal metabolomic signature of mice exposed to 5 Gy
external beam irradiation compared to the control mice. The top four-fifth of the heatmap shows spectral features
with increasing abundances after 5 Gy irradiation, while those at the bottom one-fifth of the heatmap show a
decreasing pattern in their abundances after irradiation. To evaluate the predictive ability of the statistically
significant spectral features, an ROC curve (panel D) was constructed utilizing an SVM based classification
model coupled with Monte Carlo cross-validation.
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depth and library sizes regardless of treatment, and the
range of the number of reads were consistent with other
mouse fecal microbiome studies (26, 48). To assess the
effects of radiation on gut bacterial community complexity,
the filtered 16S rRNA sequencing results were subjected to
alpha diversity measures, which estimated the number of
types of bacteria in a single sample. Figure 5A shows three

common measures; observed richness indicates the actual
number of different taxa observed in a sample, chao1 index
shows the predicted number of taxa in a sample by
extrapolating the number of rare bacteria that may have
been missed due to undersampling, and Shannon index
combines the richness of a sample and the evenness of taxa
in the sample. Both chao1 and Shannon measures indicated

FIG. 2. Differential correlation analysis showed shifts in the coregulation of several key pathways. Panel A:
Dissimilarity heatmap generated from the Pearson’s correlation coefficients calculated for the control group
exhibiting a high degree of coregulation and coordination, as represented by the abundance of dark red hues.
Panel B: Dissimilarity heatmap generated from the Pearson’s correlation coefficients calculated for mice exposed
to 5 Gy (30-day time point) showing a clear loss of correlation compared to panel A, as exhibited by the lighter
red hues in the periphery of the top right corner where darker hues existed in the previous heatmap. There is also
evidence of increased coregulation as a result of radiation exposure, as exhibited by the newly darkened areas in
the bottom left corner when compared to panel A. These differences are emphasized in the differential
correlation heatmap in panel C, where orange hues represent a gain of correlation (and thus increased
coregulation), while blue hues represent a loss of correlation (i.e. dysregulation). Panel D: The results of ‘‘double
hit’’ pathway enrichment analysis on this subset of correlation shifts. The y-axis is the �1*log10 (P value) for
each KEGG pathway, as calculated by the uncorrected (blue bar) and FDR corrected (red bar) hypergeometric
test. Several pathways are highlighted based on their statistical and biological significance including tyrosine
metabolism, tryptophan metabolism, cyanoamino acid metabolism, bile acid secretion and phenylalanine
metabolism all undergoing increased coregulatory activity.
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a lower diversity on day 3 after 5 Gy irradiation compared
to preirradiation (5 Gy, day 0; i.e., the samples collected
before irradiation), which recovers by the end of the 30-day
study. The 12 Gy dose did not cause significant changes to

the alpha diversity compared to preirradiation (12 Gy, day
0). As shown in Fig. 5B, the bacteria in mouse feces were
dominated by three main phyla: Bacteroidetes, Firmicutes
and Verrucomicrobia. Radiation also caused a decrease in

FIG. 3. Panel A: Seven fecal metabolite markers known to be of bacterial origin show statistically significant
changes in their abundances after irradiation. Glyceric acid, homogentisic acid, glutaconic acid and pipecolic
acid show decreasing abundances after 5 and 12 Gy at day 3. This decrease is dose specific as the mice exposed
to 12 Gy show greater decrease in the fecal abundance of these metabolites than those exposed to 5 Gy. Hippuric
acid, taurin and urobilinogen show increase in their fecal abundances postirradiation in a dose specific pattern.
Because these metabolites are products of the gut microbiota, significant changes in their abundances imply
changes in the microbial metabolism and a shift toward gut dysbiosis. Panel B: Multidimensional scaling plot
showing the separation of fecal metabolomic profile after 5 Gy irradiation throughout the 30 days. The fecal
metabolomic signature of the irradiated mice are well separated from the preirradiation mice (control group). In
addition, the metabolomic signatures of day 30 and 14 are closer while that of day 3 is further separated and
closer to that of the control group. Panel C: The heatmap of top 50 important variables highlights the time
dependence of the metabolomic response to 5 Gy irradiation. The two yellow boxes show individual spectral
features with gradual decreasing abundances throughout the 30-day study while the features at the bottom of the
heatmap show a rapid drop. Several ions from panel C are shown in panel D. Panel D: these individual microbial
markers show time-specific responses to 5 Gy irradiation throughout the 30-day study. Sebacic acid and
serotonin showed decreasing levels while 2-ketobutyric acid and hypoxanthine show increasing levels
throughout the 30-day study at 5 Gy irradiation.
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the abundance of Firmicutes and an increase in the
abundance of Verrucomicrobia, which recovered by day 30.

To determine if radiation caused shifts in the microbiome,
paired differential analysis was performed on the OTUs’
abundance from mice before and after irradiation. At day 3
after 5 and 12 Gy irradiation, 90 and 82 OTUs, respectively,
were differentially abundant compared to day 1 before
irradiation, and 12 of these OTUs were in common. At day
30 after 5 Gy irradiation, 91 OTUs had significantly
different abundance compared to the preirradiation group.
Furthermore, 24 of the differential OTUs were in common
at day 3 and 30 postirradiation. The differential OTUs are
listed in Supplementary Table S1 (http://dx.doi.org/10.
1667/RR14306.1.S1). The common changes at the genus
level observed in more than one condition were marked in
blue for the ones with decreased abundances compared to
preirradiation and in red for the increased abundances. We
observed that both dose exposures resulted in a decline in
the abundances of Lachnospiraceae and Ruminococcaceae.
Decreased abundance of Clostridiaceae was also observed
at day 3 postirradiation and it persisted until the end of the
30-day study. On the other hand, the abundance of members
of the Lactobacillaceae, Staphylococcaceae, Bacteroidace-
ae families and two members of the Ruminococcaceae
family increased after irradiation. There were a handful of
differential OTUs belonging to the family of S24-7, but we
could not determine their genus assignment.

Previously reported studies have shown that radiation
causes bile salt malabsorption in the intestine due to
terminal ileal damage (6, 7). The metabolomics results
above also indicated altered levels of bile acids in feces after
irradiation. It is of interest to see changes of gut bacteria
with bile acid transforming activities under the same
conditions. As shown in Fig. 6, the levels of species
Ruminococcus gnavus (R. gnavus), an abundant commensal
that converts deoxycholic acid (DCA) to less toxic isoDCA,
declined significantly after irradiation. To display the
intragroup variation, the abundance data of individual
mouse samples for the species R. gnavus are shown in the
Supplementary Fig. S1 (http://dx.doi.org/10.1667/
RR14306.1.S3). While histological results did not show

visible changes in intestinal tissues (data not shown) at 30

days postirradiation, the sensitive mass spectrometry

approaches used here in addition to 16S rRNA sequencing

highlighted the significant alterations in the metabolome
and microbiome after exposure.

We investigated whether the abundance of intestinal

microbes could be correlated with levels of the validated

metabolites affected by radiation. For this we performed an

inter-omic network analysis, which allowed for exploration
of correlation patterns across the two large datasets to reveal

possible biological interactions [in this case, between

microbes and spectral features (Supplementary Table S2:

http://dx.doi.org/10.1667/RR14306.1.S2)]. The networks

were constructed from pairwise correlations between
features of interest in each dataset (i.e., each combination

of a microbe and ion). We constructed an inter-omic

network from microbes and 20 validated metabolites with a

statistically significant association with radiation exposure.
Members of the S24-7 family had a central position in the

resulting inter-omic network, with positive and negative

correlations to the majority of the validated metabolites

(Fig. 7). This suggests the importance of this poorly

characterized phylogenetic group in the meta-metabolome
of the mouse intestine. Metabolites correlated in most cases

with multiple phylogenetic groups, highlighting the need to

consider metabolic activity in the intestine as a community

phenotype rather than as an attribute of single microbes. For

instance, urobilinogen levels were positively correlated with
Ruminococcaceae, Lachnospiraceae and Rikenellaceae.

Other subnetworks were more complex such as that for

serotonin, which was positively correlated with Rumino-
coccaceae and two Lachnospiraceae OTUs, but was

negatively correlated with Lactobacillus and a separate
Lachnospiraceae OTU. These correlations could reflect

either direct metabolic activity of the microbes or their

response to radiation exposure associated with the co-

correlated metabolites. These metabolites may be produced

by microbes or the epithelium, or may be derived from a
combination of host mucosal and microbial metabolic

activities.

FIG. 4. Three bile acids were detected to have statistically significant changing levels postirradiation.
Secondary bile acid ketodeoxycholic acid shows decreasing levels postirradiation while the conjugated bile
acids, taurocholic acid and sulfocholic acid, show increasing levels at day 3 postirradiation.
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DISCUSSION

In this study, metabolomics and 16S rRNA sequencing
were employed to assess the changes in the fecal
metabolome and phylogenome in mice after irradiation.
While 5 Gy irradiated mice did not show any alterations at
day 30 in the crypt count and villi structure (data not shown)
and survived the 30-day study, the 12 Gy irradiated mice
experienced lethal GI toxicity and possibly early bacteremia
within the first week of the experiment as shown in a

previous study (49). Radiation is known to cause apoptotic

or necrotic cell death in the GI tract (58, 59), which not only

leads to discontinuity of the epithelial barrier and increased

intestinal permeability, but also triggers inflammation.

Recent clinical (53, 54) and preclinical (55) studies have

also shown significant alterations of the intestinal micro-

biome after radiotherapy. For instance, germ-free mice were

found to be markedly more resistant to lethal radiation

enteritis than the conventionally-housed animals (56).

FIG. 5. Microbiome diversity analysis of fecal samples of pre- and postirradiation. (panel A) Alpha diversity
measures of fecal microbiome, observed richness, Chao1 measure and Shannon index are shown. In this plot
each closed circle represents an individual mouse. The ‘‘0 day’’ denotes preirradiation (panel B). Proportion of
OTUs present in mouse feces classified at the phylum level.
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FIG. 6. Panel A: The abundance of Lachnospiraceae (Ruminococcus) detected in the experimental groups.
Panel B: The box and whiskers plot of the abundance of the species R. gnavus observed at day 3 post irrradiation
(5 and 12 Gy). The data for individual samples are shown in Supplementary Fig. S1 (http://dx.doi.org/10.1667/
RR14306.1.S3).
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While this highlighted the importance of microbiota in
radiation-induced intestinal pathogenesis, little information
is available on the mechanism of action and the regulatory
signaling through which microorganisms and host factors
interact to maintain intestinal homeostasis (57). While a
healthy gut harbors thousands of different species of
microorganisms, it is dominated by three phyla: Bacter-
oidetes, Firmicutes and Verrumicrobia. Here we showed
that radiation exposure caused remarkable changes at the
phylum level, which are consistent with previous studies
performed either on rodents after irradiation (43) or patients
undergoing chemotherapy (44). Alterations of some genera
such as Lachnospiraceae (Ruminococcus), Clostridium and
Lactobacillus that were seen at day 3 postirradiation
persisted until the later time points, suggesting that radiation
exposure may lead to a prolonged change in the gut
microbiome (Fig. 5). These alterations can be the
consequence of radiation-induced disturbance of the
intestinal environment including a shift in the levels of a
variety of metabolites as revealed by the metabolomics
investigations. It is important to note the intragroup
variations observed in 5 and 12 Gy preirradiation samples
(day 0) in Fig. 5A, where each dot represents a sample from
an individual mouse. These intragroup variations did not
affect the results of our analyses presented here, as we
compared the sample from each mouse after irradiation to

before irradiation (day 0) to discount the observed
intragroup variation and the potential cage effects. Our
investigations revealed statistically significantly increased
coregulatory activity of several metabolic pathways, such as
tyrosine metabolism, tryptophan metabolism, cyanoamino
acid metabolism, bile acid secretion and phenylalanine
metabolism, as shown in the differential metabolomic
correlation-based ‘‘double hit’’ pathway analysis in Fig. 2D.

Gut microbiota have a role in metabolic activity and
utility of amino acids, and thus regulate energy and lipid
metabolism in the host. The amino acid-derived products of
bacterial fermentation also have a role in regulating host
immune responses and cell function. In addition, amino
acids, particularly branched-chain amino acids such as
alloisoleucine, provide a reliable food source for the gut
bacteria, thus influencing their diversity and composition,
metabolism and gut ecology (28). In this study, we observed
statistically significant changes in the fecal levels of several
amino acids postirradiation. For instance, while we
observed a strong and persistent decrease in the levels of
alloisoleucine and tyrosine, we observed an increase in the
postirradiation levels of taurine and ornithine (Table 2 and
Fig. 3). Taurine is synthesized in the pancreas via cysteine
sulfinic acid pathway and is readily utilized as a substrate by
the gut microbiota in the synthesis of hydrogen sulfide. The
taurine degradation pathway is essential to maintain the

FIG. 7. Inter-omic network between metabolites and microbes. The network was created from correlations between 20 validated metabolites
and OTUs with differential abundance after irradiation that were identified at the family to species level. These correlations were based on the
residuals of fitted models to account for radiation status. The metabolites are in yellow and the taxa in blue, with red lines showing negative
correlation and gray showing positive correlation. Each line represents a correlation between a single OTU within the taxa and a validated
metabolite.
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beneficial colonic sulfate-reducing bacteria, Clostridia (52).
An increase in the levels of colonic content of taurine may
indicate a decrease in the rate of the taurine degradation
pathway due to disturbances in the abundance and
metabolism of Clostridia (Lachnospiraceae family) postir-
radiation. Phylogenetic analysis further revealed a decrease
in the abundance of Clostridia postirradiation (Supplemen-
tary Table S1; http://dx.doi.org/10.1667/RR14306.1.S1),
which negatively correlates with the increase in the colonic
content of the free substrate, taurine. Ornithine, on the other
hand, is used by the colonic bacteria to form polyamines
such as putrescine. We observed a slight increase in the
fecal levels of ornithine after irradiation (Table 2), which
may be due to the mucosal stress response after radiation-
induced injury (41). Ornithine is decarboxylated by the
bacterial ornithine decarboxylase to form polyamines,
which play an important role in the growth and maturation
of intestinal epithelium. The intestinal mucosa undergoes
constant cell regeneration, which involves cell division
maturation and loss into the lumen. This process is altered
upon injury to the mucosa. Ornithine decarboxylase has
been found at increasing levels during the cell maturation
phase in the intestinal mucosa. However, after injury such
as that induced by radiation, the activity of the enzyme is
reversibly yet markedly reduced, leading to an increase in
the substrate ornithine and a drop in the polyamine
products. This in turn alters the distribution of epidermal
growth factor receptor, modulates its signal transduction
and decreases its association with the actin filaments in the
IEC-6 cells, ultimately leading to reduced mucosal cell
proliferation and migration (42). Thus, the slight increase in
the fecal levels of ornithine observed in this study may be
indicative of a decrease in the activity of this bacterial
metabolic enzyme postirradiation.

Our metabolomics data also showed that radiation
changes the fecal bile acid profile with increases in the
taurine-conjugated bile acid, taurocholic acid and the
sulfur-conjugated bile acid, sulfocholic acid and a decrease
in the secondary bile acid, 12-ketodeoxycholic acid (Fig.

4). This is in accordance with a previously reported study in
rats showing an increase in conjugated bile acids
postirradiation as the result of reduced capacity of the
microbiome to deconjugate and desulphate bile acids (29).
In addition, a separate study concluded that bile acid levels
increased as early as 24 h postirradiation and remained
persistently high three days after exposure (7). Under
physiological conditions, 90% of bile acids are reabsorbed
by the gut by the highly efficient enterohepatic recirculation
system (38), which may indicate that the radiation-induced
bile acid increases in the colonic contents is due to the
reduction of intestinal absorption caused by radiation. The
decrease in the secondary bile acid, ketodeoxycholic acid,
is further evidence for the shift in the microbial metabolism
and lower rate of deconjugation of bile salts (Fig. 4). These
bile acid shifts are likely due to the development of
dysbiosis in the gut postirradiation, given the considerable
evidence that bile acid signaling through farnesoid X
receptor (FXR) and TGR5 is critical for maintaining the
epithelial barrier, promoting antibacterial defenses and
regulating hepatic bile acid synthesis (39, 40). Further
microbiome analysis revealed altered abundance of a
bacterial species, R. gnavus, which is capable of bile acid
transformation. It has been reported that R. gnavus is a
prominent species in producing isodeoxycholic acid, which
has less toxic detergent activity than its precursor,
deoxycholic acid (45). This conversion favors the growth
of the abundant genus Bacteroides, a major genus involved
in deconjugation of bile acids (46, 47). These connections
highlight the complexity of radiation-induced perturbations
in the intestinal environment. The reciprocal interplay
between gut microbiome and metabolome reflects the
physiological and functional changes of the intestine after
irradiation. The secondary bile acid, deoxycholic acid,
which is produced by the gut microbiota, has been shown
to stimulate the hepatic stellate cells to secrete pro-
inflammatory factors in a senescence-associated secretory
pathway under stress conditions (29). There is also
evidence that bile acids serve as host factors in reshaping

TABLE 2
Additional Statistically Significant Fecal Metabolites Postirradiation

m/z_retention time ESI mode Adduct, error (ppm) BioCyc ID
P value

(K-S test, FDR corrected)

Log2 fold change

5 Gy 12 Gy

153.0547_2.64 Positive [M þ H]þ, 0.47 p-Hydroxyphenylacetic acida 0.023 –1.84 –2.83
176.0704_2.72 Positive [M þ H]þ, 1.17 5-Hydroxyindoleacetaldehydea 0.025 1.34 1.06
137.0589_1.08 Positive [M þ H]þ, 5.95 Phenylacetic acida 0.033 3.53 1.32
132.1026_0.62 Positive [M þ H]þ, 5.23 L-alloisoleucine 0.045 –0.48 –0.29
182.0812_1.12 Positive [M þ H]þ, 1.98 Tyrosine 0.036 –0.54 –0.75
131.0824_0.33 Negative [M – H]–, 1.56 Ornithine 0.00031 0.61 0.34
139.0052_0.38 Negative [M þ Cl]–, 14.50 Malonic acida 0.0014 0.41 0.66
166.0178_0.37 Negative [M – H]–, 12.56 Quinolinic acid 0.0022 0.75 2.21
227.0232_0.37 Negative [M þ Cl]–, 13.16 Citric acid 0.0076 0.95 0.79
471.2418_4.82 Negative [M – H]–, 0.91 Chenodeoxycholic acid sulfate 0.041 –0.95 –1.51

Notes. ESI ¼ electrospray ionization; ppm ¼ parts per million; K-S ¼ Kolmogorov-Smirnov; FDR ¼ false discovery rate.
a Putative identification.
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the gut microbiota. An increase in bile acid secretion has
been shown to alter the composition of microbiota in rats
(30). Such results further point to the complexity of host/
microbial interactions and regulatory roles in maintaining
health and homeostasis.

It is well documented that the host-microbiota interaction
plays an important role in host immune development and
metabolism (31, 32). For example, a fecal metabolomics
study showed that antibiotic treatment disrupts intestinal
homeostasis and alters the microbial metabolic byproducts
(33). The microbial metabolic byproducts are essential for
microbial-host co-metabolism and may be gauged to assess
changes in the microbial composition. The distinct fecal
metabolomic profiles observed here after 5 (Fig. 1B) and 12
Gy (Supplementary Fig. S2; http://dx.doi.org/10.1667/
RR14306.1.S3) irradiations in mice were attributed to
statistically significant changes in the levels of several
microbial metabolic byproducts with dose-specific respons-
es, among which were glyceric acid, homogentisic acid,
glutaconic acid and pipecolic acid (Fig. 3A). The decreasing
levels of sugar alcohol glyceric acid in the exposed mice
may be due to a decrease in the levels of Eubacterium
biforme, which are responsible for the release of glyceric
acid signaling a shift in the energy metabolism. Eubacte-
rium biforme are present in the normal flora and are thought
to benefit bionts, whose metabolic products are important in
maintaining the normal ecology of the large intestine. In
addition, homogentisic acid is an intermediate in the
catabolism of aromatic amino acids and is consumed by
the gut bacteria, particularly sulfur reducing Desulfovibrio,
leading to the formation of methylhydroquinone. A decrease
in the levels of homogentisic acid after irradiation directly
correlates with the decrease in the abundance of Desulfovi-
brio (Fig. 7). While the metabolites displaying statistically
significant changes in their fecal levels after irradiation
could be of various biological sources (i.e., produced by
microbes, host epithelium), Fig. 7 focuses on the connection
and co-correlation of the fecal microbial compositing and its
metabolome after irradiation. Among the most statistically
significant and radiation-responsive microbial metabolic
byproducts as well were hippuric acid and urobilinogen,
which showed increasing levels with radiation dose (Fig.
3A). This may indicate a dose-dependent shift in the
metabolism of specific bacterial phyla, which catabolize
these metabolites. For instance, hippuric acid is a carboxylic
acid produced by the conjugation of benzoic acid with
glycine, a reaction that occurs not only in the liver (34), but
also directly in the intestine (35) and kidney (36). Its
excretion is modulated by the composition of the intestinal
microbiome (37). Thus, an increase in the fecal levels of
hippuric acid after irradiation may reflect alterations in the
microbiome such as those promoting the overgrowth of the
pathobionts. While in this study no direct conclusions can
be drawn between radiation-induced changes in the micro-
biome and the host inflammatory responses without
complete metagenomic and transcriptomic analyses, there

is evidence that the gut commensal microbiome may
regulate these responses through various byproducts such
as hypoxanthine, which is a purine derivative with

statistically significant increasing levels after irradiation
(Fig. 3D). Hypoxanthine promotes formation of reactive
oxygen species (51), which has been shown to be a defense
mechanism of commensal microbiota under metabolic stress

against opportunistic pathogens. Thus, the increase in the
colonic content of hypoxanthine may indicate a regulatory
response of the gut commensal microbiome under radiation-
induced inflammatory conditions.

While each of the two omics platforms in this study are

useful in elucidating the changes in the gut microbiome and
metabolome after irradiation, the novelty of this study is in
the integration of the data from these two platforms. We
used specialized in-house bioinformatics tools to achieve

this integration and define the community types that are
robustly preserved among study groups as well as
identifying metabolites that correlate with radiation-induced
phylogenetic changes (Fig. 7). The two bacterial phyla with

the highest number of correlations with the metabolome are
Firmicutes and Bacteroidetes. The phyla are correlated with
several validated and putative metabolites. The most
prominent correlations highlighted by the interomic analysis

were those among the amino acids and bile acids and the
Lachnospiraceae, Desulfovibrio and Ruminococcus. Be-
cause the field of microbiomics is in its infancy and the
microbial metabolite databases are not well established

(only 100 microbial metabolites are available in HMDB
database), we could not assign identities to many of these
ions. Despite the emerging importance of the local and
systemic role of gut microbiome in maintaining human

health, physiological homeostasis, metabolism and in
regulating stress and immunological signaling, the field of
microbiomics remains underdeveloped. Considering the
sheer number and the vast spectrum of species living in

our gut alone, there is much to be learned about their
functional potential and capacity. If identified and validated,
prospective microbial communities and their metabolite
markers for radiation exposure may create an opportunity
for new biodosimetry measures. In addition, metagenomic

data may help in identifying keystone species, which may
be provided in the form of probiotics to a population
affected by a nuclear/radiological event to protect against GI
injury by replenishing the flora. Unfortunately, there is

currently very little information available on the metabolic
products of the gut microbiota and their systemic influence
on the host phenotype and immunological responses to
radiation. Therefore, more work is needed to unravel the

extent of microbiome influence on the host and whether it
can be manipulated to protect the host against radiation-
induced injury. This notion of cultivating the gut micro-
biome to exploit their beneficial effects in the host is

particularly promising as the debate on the use of probiotics
heats up.
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CONCLUSION

In this study we focused on assessing the changes in the
fecal metabolome of mice exposed to 5 and 12 Gy of
external X-ray beam over the course of 30 days. We also
took advantage of the advances in 16S rRNA sequencing
to determine the changes in microbial diversity and
richness postirradiation. The metabolomics data showed a
persistent response from microbial byproducts including
pipecolic acid, glutaconic acid, phenylpyruvate, homoge-
ntisic acid and secondary bile acids. The 16S rRNA
sequencing results showed increased abundance of com-
mon members of Lactobacillaceae and Staphylococcaceae
families, and decreased abundance of Lachnospiraceae,
Ruminococcaceae and Clostridiaceae families after 5 and
12 Gy irradiation. We also observed changes in the
abundance of R. gnavus, a species of gut bacteria involved
in bile acid transformation. Furthermore, we took advan-
tage of specialized bioinformatics tools to bridge the gap
between these two omics platforms and integrate the two
datasets. This resulted in a rich inter-omic network of
bacteria such as those from the Firmicute and Bacteroidete
phyla with strong correlation with the fecal metabolome.
Although much work is needed to advance the field of
microbiome and its contributions to the host metabolism
and overall health, there is much potential in the
implication of such studies in radiation-induced gut injury
and biodosimetry.

SUPPLEMENTARY INFORMATION

Table S1. A list of differential OTUs from a paired
differential analysis on the OTUs’ abundance from mice
pre- and postirradiation. Supplementary Table S1* includes
a list of OTUs, whose abundances were found to be
statistically significantly different (p , 0.05) in the paired
analysis of pre- and postirradiation at the specified time/
dose conditions. The file contains three sheets correspond-
ing to various time/dose conditions, namely 3 days after 5
Gy irradiation (‘‘3D after 5 Gy IR’’). In each sheet, there are
three major columns: OTU ID, Change and Taxa classifi-
cation. OTU ID is the unique Greengenes ID. Change
indicates the direction of the change in abundance, i.e. either
decrease or increase of the OTU abundance after irradiation
compared to the paired preirradiation controls. A decrease
in the abundance of an OTU means that lower abundance of
that particular OTU was found in the postirradiation group
vs. the preirradiation controls. Taxa classification column
contains the taxonomy retrieved from the Greengenes
database. The common changes at the genus level observed
in more than one condition were marked in blue for the ones
with decreased abundances compared to before irradiation,
and in red for the increased abundances.

Table S2. A list of additional highly correlated (Q ,

0.05) microbe-metabolite pairs. This table contains a list of
highly correlated (Q , 0.05) OTU-metabolite pairs. This

table includes the OTU IDs, the metabolite IDs (p stands for
Positive ESI and n stands for negative ESI, the m/z and the
retention time), the Q value and the correlations (p stands
for positive correlation and n stands for negative correla-
tion). The Greengene IDs and the taxonomies (column S)
are also included in this table. Column J summaries all the
information in columns B through G in the following order:
Greengene ID OTU ID; correlation (n for negative and p for
positive); metabolite ID (p for positive ESI and n for
negative ESI_m/z_retention time).

Fig. S1. The abundance data of individual sample for the
species R. gnavus. These data are identical to those used in
the box & whiskers plot in Fig. 5B. The x-axis lists the
sample ID from each individual mouse (IDs are listed) and
the y-axis represents the number of OTU reads (ranging
from 0 to 15000). Each group (pre- and postirradiation) re
designated below each figure. For consistency reasons the
color coding is kept the same as that in Fig. 6A. Although
there are intragroup variations in panel A for both pre- and
postirradiation, the difference observed in each sample
induced by radiation is consistent and statistically signifi-
cantly decreasing (P , 0.01, as shown in Fig. 6B). Panel B
shows a similar decreasing trend, however, the paired
analysis did not result in a significant difference (P¼ 0.16,
as shown in Fig. 6B).

Fig. S2. Perturbations in the fecal metabolomic signature
in mice 3 days after 12 Gy irradiation assessed via
MetaboLyzer. Panel A shows a volcano plot, where the
statistically significant (Kolmogorov-Smirnov test, FDR ,

0.10) spectral features are shown in red. The x-axis of the
volcano plot, log2 fold change, highlights the direction of
the shift (decrease or increase) in the abundance of the
spectral features while the y-axis of the volcano plot, –log P
value, specifies the significance of the shift. Panel B is a
PCA scores plot and highlights the distinct separation
between the overall fecal metabolomic profile of the control
mice vs. those irradiated at 12 Gy at 3 days. Panel C is a
heatmap of individual ions with most significant contribu-
tion to the separation of the fecal metabolomic signature of
mice exposed to 12 Gy external beam irradiation compared
to the control mice. The top two thirds of the heatmap
shows spectral features with increasing abundances after 12
Gy irradiation, while those at the bottom one third of the
heatmap show a decreasing pattern in their abundances
postirradiation.
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