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Abstract
Planning is hard. The use of subgoals can make planning
more tractable, but selecting these subgoals is computation-
ally costly. What algorithms might enable us to reap the bene-
fits of planning using subgoals while minimizing the computa-
tional overhead of selecting them? We propose visual scoping,
a strategy that interleaves planning and acting by alternately
defining a spatial region as the next subgoal and selecting ac-
tions to achieve it. We evaluated our visual scoping algorithm
on a variety of physical assembly problems against two base-
lines: planning all subgoals in advance and planning without
subgoals. We found that visual scoping achieves comparable
task performance to the subgoal planner while requiring only a
fraction of the total computational cost. Together, these results
contribute to our understanding of how humans might make
efficient use of cognitive resources to solve complex planning
problems.
Keywords: planning; problem solving; physical reasoning;
spatial reasoning; task decomposition; hierarchical reinforce-
ment learning

Introduction
Imagine you are preparing a meal. You need to wash, chop,
heat, sauté, move around, boil. How do you know what to do
next? Planning every action in advance is practically impossi-
ble: the number of potential sequences of actions grows expo-
nentially with one’s action repertoire and the number of steps
needed to reach the goal state. Not planning at all is no better:
some actions must precede others (you can’t sauté without
heating the pan), and timing matters too (e.g., adding sauce to
uncooked pasta). How do humans manage to routinely solve
such complex planning problems in everyday life?

Classical approaches to planning formulate such problems
as search over a space of actions (Newell & Simon, 1972;
Kirsh, 2009), augmented with heuristics and stochastic meth-
ods to more selectively search the space of possible actions
(Geffner, 2013). Even with heuristics and stochastic meth-
ods, planning complex tasks in a rich environment is com-
putationally prohibitive, because the space of potential plans
that needs to be searched grows rapidly with both the num-
ber of possible actions available and the number of actions
required to achieve the task (Bellman, 1957). The compu-
tational complexity predicted by the classical approach is at
odds with the effortlessness with which people act in the real
world (Kirsh, 2009).

A promising alternative approach from hierarchical re-
inforcement learning (Botvinick, Niv, & Barto, 2009) per-
mits an agent to learn abstractions over sequences of ac-
tions, which can then be invoked as subgoals during plan-

ning (Maisto, Donnarumma, & Pezzulo, 2015; Zhang,
Lerer, Sukhbaatar, Fergus, & Szlam, 2019; Bapst, Sanchez-
Gonzalez, Shams, et al., 2019). However, while proposing
good subgoals can reduce the computational cost of planning
the sequences of actions (Correa, Ho, Callaway, & Griffiths,
2020), actually choosing which subgoals to propose can itself
be highly costly. How might people manage these costs?

What these formal approaches tend to ignore is that when
people confront such tasks they are often embedded in physi-
cal environments that can be reconfigured to suit their current
goals (Kirsh, 1995). For example, one could gather all the
vegetables on the cutting board and then focus on chopping
what is there, ignoring what could be done elsewhere in the
kitchen. After achieving this subgoal, it may be worth con-
sidering what the next subgoal should be (e.g., sautéing the
vegetables), then focusing on that task (e.g., only considering
actions available near the stove), and so on. We call this visual
scoping—manipulating the visual environment to select the
next subgoal. While such a strategy would not be expected to
always identify the optimal sequence of subgoals, it may re-
duce the overall cost of jointly inferring subgoals and actions
without leading to devastating consequences. This paper aims
to establish a basic understanding of how such a visual scop-
ing mechanism constrains planning behavior and impacts the
overall computational cost of planning. Our investigation of
visual scoping takes inspiration from recent work exploring
how agents intervene on the world to aid in physical reason-
ing and planning (Dasgupta, Smith, Schulz, Tenenbaum, &
Gershman, 2018; Allen, Smith, & Tenenbaum, 2020). Unlike
these studies, we focus not on experimental or perceptual in-
terventions which yield new information, but rather on inter-
ventions that select already present information to aid physi-
cal and spatial reasoning (Kirsh & Maglio, 1994).

As a case study, we consider planning in block-tower re-
construction problems, in which an agent uses an inventory
of rectangular blocks to recreate a specific block tower. The
combinatorial nature of construction leads to an explosion in
the number of possible states to consider when planning block
placements. To explore how visual scoping may influence
problem solving in this challenging domain, we conducted a
set of computational experiments comparing its behavior to
that of both classical planning algorithms and more recent
approaches which decompose the task into subgoals in ad-
vance of action-level planning (Correa et al., 2020). We dis-
covered that visual scoping can approximate the success and
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Figure 1: We relate three different strategies for planning
using subgoals: no subgoals, planning only the next subgoal
(scoping) and planning all subgoals in advance (full-subgoal
planning). A schematic search tree of potential actions is
shown at the bottom. Both the number of possible different
actions (breadth of tree) and the length of sequences of action
(depth) increases with the size of the subgoal.

efficiency of full task decomposition on a block-tower recon-
struction task while requiring a much smaller computational
budget overall. We also find that in trading off quick progress
and low planning cost in choosing the next subgoals, valu-
ing minimizing planning costs leads to more subgoals and
poorer performance. Together, these findings help advance
our knowledge of how perceptual and cognitive constraints
interact to support efficient problem solving.

Approach
Block-tower reconstruction task
Three specific considerations motivated the choice of block-
tower reconstruction for our experiments: (1) it requires plan-
ning over somewhat extended time horizons, (2) it is familiar
enough to people that they can easily predict the consequence
of their actions, and (3) it is inherently spatial, enabling vi-
sual scoping to select regions of the environment to focus
on that could constitute plausible subgoals. Here we use the
block tower reconstruction task, which entails assembly of
two-dimensional block towers in a gridworld running simu-
lated physics (McCarthy, Kirsh, & Fan, 2020). Similar block
tower construction tasks have been used to study planning
and physical reasoning in artificial agents (Sussman, 1975;
Bapst, Sanchez-Gonzalez, Doersch, et al., 2019) and humans
(Dietz, Landay, & Gweon, 2019; Cortesa, Jones, Hager, &
Khudanpur, 2018; McCarthy et al., 2020).

On each trial, the planner is presented with an outline of
a shape and has to recreate it by placing blocks from a fixed
inventory in a building area. An action consists of the choice
of a block (eg. 2x1) and a horizontal location. The block is
then placed on top of the highest block or the ground in that
horizontal location. Once a block has been placed it cannot
be removed, necessitating planning in order to not get stuck

in dead ends.1 As a simplification in our current experiments,
blocks were also “glued down” after they were placed, pre-
venting towers from toppling over. The trial ends either when
the target shape is perfectly reconstructed, when no further
block can be placed or when the planner chooses to not place
a further block. The trial is considered successful if the target
shape has been exactly reconstructed. 16 unique silhouettes
were used in our experiments, spanning a range of difficulty
levels for the planner. This is a challenging task for human
participants: human subjects average 22.4% perfect recon-
struction, albeit without glued blocks (McCarthy et al., 2020).

Visual scoping
The use of subgoals can reduce both the number of possi-
ble different actions and the length of sequences of actions
needed to reach the (sub)goal (see Figure 1). Visual scoping
attempts to reap this computational benefit while minimizing
the cost of subgoal selection by only choosing the next sub-
goal depending on the current state of the environment. Our
visual scoping planner works by interleaving two operations:
(1) identifying the next subgoal to achieve, and (2) using an
action-level search algorithm to plan the sequence of actions
to achieve that immediate subgoal (Algorithm 1, Figure 1).
Subgoals are defined spatially: a subgoal is defined as a re-
gion of space rather than as a specific state of the world. The
set of potential subgoals we consider are horizontal layers, eg.
the first or the first three rows of the target shape. Splitting a
construction problem into horizontal layers is sensible given
the incremental nature of building: it is easier to place blocks
on top of other blocks rather than below them. Cortesa, Jones,
Hager, Khudanpur, and Shelton (2017) show that young chil-
dren naturally adopt a layerwise strategy on a related block
construction task. In our block-tower reconstruction setting,
this corresponds to identifying the height of the subtower the
agent seeks to reconstruct, then searching over potential ac-
tion plans for doing so.

Planners
Subgoal level planners We implemented two hierarchical
subgoal planners, scoping and full-subgoal planning (see Al-
gorithm 1 for a comparison of the algorithms), as well as a
baseline of not using subgoals at all. The scoping planner
considers all potential next subgoals given the current state of
the environment. After a subgoal has been chosen, the sub-
goal is passed on to the action-level search algorithms and the
actions it returns are applied to the environment. The process
repeats until the target shape is completed or no subgoal that
is perfectly solvable can be found. It has to trade off imme-
diate progress and computational cost when selecting a sub-
goal: does it prefer more substantial subgoals (i.e., making

1If actions can be undone, planning is not technically necessary
(Kirsh, 2009): one could just try out actions and backtrack if they
fail. However, placing and then undoing physical parts is costly and
not always possible. Reasoning about the consequences of actions
is thus important, particularly in domains where most paths do not
lead to the goal.
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Algorithm 1: Full-subgoal & scoping planner
Input: action-level search algorithm LLP, target shape G,

environment E
Parameters: weight parameter λ, computational budget b
ctotal ← 0

Run once: Full

-4pt
While E 6= G: Scoping

Φ← {(g1:m1),(g1:m2), . . . ,(g1:mn) where gm1 = gm2 =
. . . = gnm = G} possible complete sequences of sub-
goals given E Full

Φ ← {(g1),(g2), . . . ,(gn) where g1,g2, . . . ,gn > E}
possible sequences of subgoals given E of length 1

Scoping

For each (g) in Φ:
s = Empty
For each g in (g):

rg ← Area(g)−Area(s)
While s f inal 6= g and cplanning

g < b:
csolution = 0
[(a1, . . . ,al)g, csolution

g , s f inal ]← LLP(s,g)

cplanning
g += csolution

g

ctotal+= cplanning
g

if s f inal = g: if subgoal is solved
s← s f inal

else:
cplanning

g = ∞

Continue to next (gk) ∈Φ

For each (g) in Φ:
V(g)← ∑g∈(g) rg−λ∗ cplanning

g

Apply (a1, . . . ,al)g∈argmax(V(g)) to E Choose sequence
with highest score and apply all actions Full

Apply (a1)g∈argmax(V(g)) to E Choose sequence with
highest score and apply only the first action Scoping

define LLP(s,g):
Attempts to find a sequence of actions from s to g
return [(a1,a2, . . . ,an),csolution,s f inal ]

rapid progress) even at the cost of higher computational cost,
or more modest subgoals that are easier to solve? This trade-
off is controlled by the λ parameter. The higher the value of
λ, the more the scoping planner works to minimize action-
planning cost. When λ = 0, the scoping planner maximizes
progress no matter the cost. The full-subgoal planner finds
one sequence of subgoals from the beginning of building to
the final structure in one go. It first considers all possible se-
quences of subgoals that end in the full target shape, selects
the one that minimizes the action-level search algorithm com-
putational cost and builds the structure from start to finish, as
in Correa et al. (2020). Finally, to compare the use of subgoal
planners to a baseline of pure action-level search not using
subgoals at all we also apply the pure action-level search al-
gorithm directly on the target structure without decomposing

it into subgoals.
These planners use a given action-level search algorithm to

determine for each potential subgoal the computational cost
of solving the subgoal with the action-level search algorithm.
This is done by running the action-level search algorithm re-
peatedly on a subgoal until a solution is found or the cost
threshold b is exceeded. It is necessary to sample repeatedly,
since the action-level search algorithms used here break ties
randomly between equally good plans and therefore might
yield different results. Since not all subgoals are achiev-
able for a certain action-level search algorithm, a threshold
is needed after which the subgoal is considered unsolvable.
Only solvable subgoals are considered by the subgoal level
planner. Finally, the subgoal planner selects the subgoal or
sequence of subgoals that maximizes progress (the proportion
of the target shape solved) while minimizing the cost of solv-
ing the subgoals using the action-level search algorithm. Be-
cause the subgoal planners minimize the planning cost of the
action-level search algorithm, they perform resource-rational
task decomposition. (Correa et al., 2020). Our implemen-
tation of resource-rational task decomposition differs from
Correa et al. (2020) in three specific ways: (1) the use of
abstract subgoal states (rather than specific world states serv-
ing as subgoals), (2) the ability to only plan a certain number
of steps ahead as mediated through λ, and (3) the ability to
handle impossible subgoals and stochastic action-level search
algorithms.

Action-level search algorithms The subgoals planners are
hierarchical agents: they find a subgoal decomposition both
using a particular action-level search algorithm, and specif-
ically for that particular algorithm. An action-level search
algorithm searches the space of possible actions to find a
sequence of actions to reach a certain goal. Since the
space of potential states (different placements of blocks in
the building area) is very large—there are roughly 3515 ≈
1.5×1023 different states—exhaustively searching the entire
space of states for a complete sequence of actions is not feasi-
ble. Therefore, the action-level search algorithms are imple-
mented as lookahead planners: if a path to the solution cannot
be found within a certain computational budget, the planner
plans a sequence of actions as long as it can given a compu-
tational constraint with ties broken randomly, then takes the
first action of that sequence and plans again, now on the basis
of the state resulting from the action just taken. We chose two
classical search algorithms: one performing brute search, the
other performing search informed by a heuristic.

Breadth first search lookahead (BFS) exhaustively ex-
plores all possible placements of blocks in the target shape n
steps into the future or until a perfect reconstruction is found,
then chooses the sequence of actions that maximizes the area
of the target shape filled out.

A* lookahead runs the A* search algorithm (Hart, Nils-
son, & Raphael, 1968) either until a sequence of actions re-
sulting in a perfect reconstruction is found or until a specified
computational budget is exceeded. A* chooses to explore the
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action that minimizes f (s) = g(s) + h(s), where g(s) is the
cost of reaching the current state from the start measured in
number of blocks placed down and h(s) is the heuristic for
how expensive the target is to reach from the current state.
Here, h(n) is the number of cells left in the target shape di-
vided by the size of the smallest block, so it provides a up-
per bound for the number of blocks left to fill out the target
shape.2

Hypotheses The full-subgoal planners considers the largest
set of subgoal decompositions, so we expect that it has the
highest rate of perfect reconstruction as well as the lowest ac-
tion planning cost of the solutions themselves compared to
the scoping planner. However, we hypothesize that this opti-
mality comes at a steep cost: we expect the subgoal-planning
cost incurred by the full-subgoal planner to be higher than
that incurred by the other two. By contrast, we predict that
the scoping planner will trade off higher performance and
cheaper action-level planning for a large decrease in the cost
of finding the subgoals. Finally, we predict that not using
subgoals at all will lead to a much lower rate of perfect re-
construction and higher action-level algorithmic cost of the
solution that is found.

Experiments We ran each planner 32 times on each of the
16 structures using different random seeds. For the scoping
planner, we used 64 different values of λ each.

Results

Figure 2: Scoping can approximate the success and action
planning cost of full-subgoal planning while requiring a much
smaller cost in choosing subgoals. (A) Each dot corresponds
to a combination of subgoal planner (no subgoals, scoping,
full-subgoal planning) and action-level search algorithm (A*,
BFS). The cost of planning the actions given the sequence of
subgoals and the rate of perfect reconstruction is shown. (B)
Same as (A), but with the cost of selecting the subgoals shown
instead. Costs are measured in evaluated number of states.
Error bars represent bootstrapped 95% confidence intervals.

Pure action-level search To establish a baseline for both
success and planning cost, the action-level search algorithms

2Note that the heuristic h(s) is not strictly admissible: for states
that cannot possible reach a perfect reconstruction (for example, if a
hole has been left and covered by a block), this locked in dead end
is not going to be apparent in the heuristic.

Search Budget Accuracy 95% CI Cost 95% CI

Random None 0.038 [0.000, 0.125] 0 [0, 0]

BFS Depth 1 0.100 [0.000, 0.250] 8.294×101 [8.200×101, 8.480×101]

BFS Depth 2 0.187 [0.063, 0.313] 1.520×103 [1.447×103, 1.593×103]

BFS Depth 3 0.263 [0.125, 0.438] 2.454×104 [2.216×104, 2.692×104]

BFS Depth 4 0.410 [0.188, 0.625] 3.518×105 [3.150×105, 3.833×105]

A* 8 Iterations 0.062 [0.000, 0.188] 1.202×102 [1.148×102, 1.260×102]

A* 64 Iterations 0.083 [0.000, 0.188] 3.420×102 [3.277×102, 3.707×102]

A* 4096 Iterations 0.123 [0.000, 0.250] 1.653×104 [1.453×104, 1.853×104]

A* 65536 Iterations 0.100 [0.000, 0.250] 1.574×105 [1.393×105, 1.732×105]

Table 1: Increasing the budget of action-level search in-
creases success somewhat, but costs grow exponentially. The
table shows the cost and accuracy of various action-level
search algorithms without resampling on a single attempt on
the block construction task.

were used to try to find solutions to the 16 target shapes. Table
1 shows the success and planning cost of solutions found for
a number of configurations of BFS lookahead and A* looka-
head without resampling. Two particular action-level search
algorithms will be used in conjunction with the scoping and
full-subgoal planner: BFS lookahead with a search depth of
3 and A* lookahead with a budget of 4096 iterations. Us-
ing pure-action level search with resampling, BFS achieves
a rate of perfect reconstruction of 0.438 (95% confidence in-
terval (CI): [0.438,0.438]; CI derived by computing the mean
reconstruction rate across towers on each of 1000 iterations,
where each iteration is defined by a novel permutation of the
random seeds used to initialize search); A* achieves 0.313
(95% CI: [0.313,0.313]). Block construction is a challenging
task: pure action-level search is far from performing at ceil-
ing. Increasing the search budget of the action-level search
algorithms leads to an increase in success, but with it comes
a ballooning of planning costs.

Full-subgoal planning We sought to replicate the finding
that using subgoals in planning can reduce action planning
cost (Correa et al., 2020). We apply the full-subgoal planner
to the same 16 structures, using both BFS lookahead and A*
lookahead as action-level search algorithms. The full-subgoal
planner achieves a perfect reconstruction on every attempt.
The action planning cost of those solutions is cheaper com-
pared to pure action-level search (1.903×104 fewer states
evaluated, 95% CI: [1.790×104,2.354×104], p < 0.001;
A*: 2.651×104, 95% CI: [2.651×104,2.651×104], p <
0.001; CI derived by computing the mean paired difference
in planning cost between agents on each of 1000 iterations,
where each iteration is defined by a new set of random seeds)
compared to the respective action-level search algorithm
without subgoals. While the chosen subgoals themselves are
easy to solve, the cost of coming up with the sequence of
subgoals is very large (BFS: M = 1.028×107 states evalu-
ated, 95% CI: [1.001×107,1.139×107]; A*: 1.394×107,
95% CI: [1.394×107,1.394×107]).

Scoping To capture the planning behavior over a broad
range of values for λ, we average over the dynamic range
of λ (BFS: [0,0.008], A*: [0,0.003]) for the following anal-
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Figure 3: An overview over the different decompositions cho-
sen by each planner. Each vertical stripe corresponds to a sin-
gle attempt of the planner to build a certain target shape. Each
chosen subgoal is marked in a different color, with blue indi-
cating a the first and orange the eight chosen subgoal. The
columns are organized by target shape and for the scoping
planners sorted by λ.

ysis. The scoping planner achieves a slightly lower success
compared to full-subgoal decompositions perfect success rate
(BFS: 0.104 lower rate of perfect reconstruction compared to
full-subgoal planner, 95% CI: [0.000,0.188], p = 0.042; A*:
0.145, 95% CI: [0.063,0.250], p = 0.008). The scoping plan-
ner finds more expensive solutions (BFS: 9.107×103 more
states evaluated, 95% CI: [3.767×103,1.701×104], p <
0.001; A*: 1.484×104, 95% CI: [8.268×103,2.546×104],
p < 0.001). However, the subgoal planning cost is dramat-
ically lower (BFS: 9.528×106 fewer states evaluated, 95%
CI: [9.079×106,1.067×107], p < 0.001; A*: 1.306×107,
95% CI: [1.299×107,1.316×107], p < 0.001) —see Figure
2. Figure 3 shows the chosen task decompositions made by
the planners.

When building block towers, the planner can choose to
use large blocks, making progress quickly, or to apply a
more conservative strategy of using smaller blocks. The av-
erage number of blocks in a successful solution measures this
tendency. Using BFS lookahead, the scoping planner uses
more blocks on average compared to pure action-level search
(5.331 more blocks used per solution, 95% CI: [2.688,7.875],
p < 0.001), but insignificantly fewer than the full-subgoal
planner (2.272 fewer blocks, 95% CI: [−1.689,6.064], p =
0.064). Thus, the scoping planner using BFS lookahead
finds somewhat longer solution solution compared to pure
action-level search, but not full subgoal decomposition. Un-
der A* lookahead, the scoping planner uses fewer blocks than
both pure action-level search (1.414 fewer blocks, 95% CI:
[−2.500×10−1,3.313], p = 0.027) and full-subgoal plan-
ning (3.095 fewer blocks, 95% CI: [1.563×10−3,6.188],
p = 0.015).
Trading off immediate progress and action planning cost
To analyze the tradeoff between avoiding costs and making
progress, we apply the scoping planner under a range of val-
ues for λ—see Figure 4. As expected, valuing reducing plan-
ning cost indeed results in a reduction in action planning cost
(BFS: Pearson’s r(62) = −0.927, 95% CI: [−0.929,−0.925],
p < 0.001; A*: r(62) = −0.581, 95% CI: [−0.581,−0.581],
p< 0.001, all confidence intervals bootstrapped). Along with
this comes a reduction in success (BFS: r(62) =−0.955, 95%
CI: [−0.955,−0.955], p < 0.001; A*: r(62) = −0.840, 95%

CI: [−0.840,−0.840], p < 0.001): with lower action plan-
ning costs comes an increased chance of building oneself into
a corner. When increasing λ, the number of subgoals also
increases (BFS: r(62) = 0.982, 95% CI: [0.976,0.986], p <
0.001; A*: r(62) = 0.964, 95% CI: [0.964,0.964], p < 0.001.
Paradoxically, trying to minimize action planning costs in-
creases the total subgoal planning cost (BFS: r(62) = 0.961,
95% CI: [0.950,0.970], p < 0.001; A*: r(62) = 0.920, 95%
CI: [0.920,0.920], p < 0.001. This is due to the increase in
the number of subgoals, as smaller subgoals tend to be easier
to plan. More subgoals means that the costly subgoal plan-
ning cost needs to be performed more often. This illustrates
that cognitive resource limitations can lead to a larger total of
cognitive resources used, albeit in smaller increments.

Finally, the found solutions themselves qualitatively differ
across values of λ as well as action-level search algorithms.
Increasing λ leads to more blocks being placed when using
BFS as a action-level search algorithm, but a slight decrease
with A* (BFS: r(62) = 0.560, 95% CI: [0.420,0.678], p <
0.001; A*: r(62) = −0.054, 95% CI: [−0.248,0.132] p =
0.143). Valuing making progress over avoiding planning cost
thus leads the scoping planner with BFS lookahead to shorter
solutions, whereas avoiding costs leads to more conservative,
longer solutions.

Discussion
We found that both scoping and full-subgoal planning out-
performed pure action-level search, consistent with the no-
tion that decomposing complex problems can be beneficial.
While full-subgoal planning succeeds in finding the best task
decompositions, the cost of finding this decomposition into
subgoals is much higher than the scoping planner requires
to achieve comparable task performance. In order to be a
plausible proposal for how people approach these planning
problems, both kinds of costs need to be taken into account.
Here we assume that subgoal planning cost as defined is a
plausible proxy for the actual cost of finding subgoals: while
humans likely don’t fully search for actions for all potential
subgoals, the cost of subgoal planning arguably depends on
the number of potential subgoals as well as their difficulty.
Taken together, our findings suggest that visual scoping may
be a promising way to reap the benefits of utilizing subgoals
while minimizing the overhead of subgoal planning, thereby
making efficient use of limited cognitive resources.

Given the way that scoping exploits spatial information to
manage the computational overhead involved in planning, it
may also be a useful source of insight into how people solve
similar spatial reasoning problems. Towards this end, we are
developing a novel behavioral paradigm allowing people to
visually define subgoals during planning, enabling us both to
make inferences about cognitive resource constraints and to
observe how they interleave planning and action over time.
A promising direction for future work is the evaluation of a
broader array of scoping strategies, such as those forms of
scoping closer to full-subgoal planning that plan more than
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Figure 4: Parameter λ governs the tradeoff between choosing a subgoal that is easy to solve and one that maximizes progress.
(A) A higher emphasis on minimizing action planning cost as opposed to maximizing progress (increasing λ) leads to a decrease
in action planning cost, (B) a lower rate of perfect reconstruction, (C) an increase in the number of subgoals the planner actually
ends up using, (D) as well as the total subgoal planning cost, since the scoping planners need to find the next subgoal more
often. (E) It increases the number of blocks used for BFS lookahead, but not for A* lookahead.

one subgoal into the future at a time before taking action.
Likewise, we aim to extend visual scoping from simple two-
dimensional grid worlds to richer three-dimensional environ-
ments, where effective use of cognitive resources is crucial.
In the block tower reconstruction task, the environment is de-
terministic. When the effect of the actions are uncertain—
when the environment is stochastic or its dynamics aren’t
fully known to the planner—the benefit of only planning sub-
goals into the near future is likely going to be more rele-
vant. A future direction is to investigate how people scope
in non-deterministic environments. Finally, visual scoping
understands the planners as embedded in space and time: the
planner exploits the structure of its environment to propose
subgoals, and those subgoals are proposed on the basis of ac-
tions the planner has taken before. In this sense, visual scop-
ing connects classical algorithmic models of problem solving
with the notion of cognition being always situated in and de-
pendent on an environment (Kirsh, 2009).
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