
UCSF
UC San Francisco Previously Published Works

Title
The Role of Dementia Diagnostic Delay in the Inverse Cancer-Dementia Association.

Permalink
https://escholarship.org/uc/item/7cd5f4m3

Journal
The Journals of Gerontology Series A, 77(6)

ISSN
1079-5006

Authors
Hayes-Larson, Eleanor
Shaw, Crystal
Ackley, Sarah F
et al.

Publication Date
2022-06-01

DOI
10.1093/gerona/glab341
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7cd5f4m3
https://escholarship.org/uc/item/7cd5f4m3#author
https://escholarship.org
http://www.cdlib.org/


1254

Journals of Gerontology: Medical Sciences
cite as: J Gerontol A Biol Sci Med Sci, 2022, Vol. 77, No. 6, 1254–1260

https://doi.org/10.1093/gerona/glab341
Advance Access publication November 12, 2021

© The Author(s) 2021. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved.  
For permissions, please e-mail: journals.permissions@oup.com.

Research Article
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Abstract

Background:  Cancer is inversely associated with dementia. Using simulations, we examined whether this inverse association may be explained 
by dementia diagnosis timing, including death before dementia diagnosis and differential diagnosis patterns by cancer history.
Methods:  We used multistate Markov simulation models to generate cohorts 65 years of age and free of cancer and dementia at baseline; 
follow-up for incident cancer (all cancers, breast, prostate, and lung cancer), dementia, dementia diagnosis among those with dementia, 
and death occurred monthly over 30 years. Models specified no true effect of cancer on dementia, and used age-specific transition rates 
calibrated to U.S. population and cohort data. We varied the average lapse between dementia onset and diagnosis, including nondifferential 
and differential delays by cancer history, and examined observed incidence rate ratios (IRRs) for the effect of cancer on dementia diagnosis.
Results:  Nondifferential dementia diagnosis delay introduced minimal bias (IRRs = 0.98–1.02) for all cancer, breast, and prostate models 
and substantial bias (IRR = 0.78) in lung cancer models. For the differential dementia diagnosis delay model of all cancer types combined, 
simulation scenarios with ≥20% lower dementia diagnosis rate (additional 4.5-month delay) in those with cancer history versus without 
yielded results consistent with literature estimates. Longer dementia diagnosis delays in those with cancer and higher mortality in those with 
cancer and dementia yielded more bias.
Conclusions:  Delays in dementia diagnosis may play a role in the inverse cancer–dementia relationship, especially for more fatal cancers, but 
moderate differential delays in those with cancer were needed to fully explain the literature-reported IRRs.

Keywords:   Alzheimer’s disease, Bias, Markov model, Neoplasm, Simulation study

Cancer is inversely associated with dementia in robust litera-
ture; meta-analyses have reported hazard ratios (HRs) ranging 
from 0.62 to 0.85 (1–4). The explanation for this paradoxical 
inverse association is unclear and a subject of debate (5–7). This 
inverse link might be due to cancer-related physiologic changes 
that prevent dementia or due to shared etiologic factors that 
increase the risk of cancer while reducing the risk of dementia 
(5–7). If so, studying the association may offer a novel window 

into dementia etiology and inform future prevention and treat-
ment strategies. While some research suggests such a shared 
common cause (5,8–11), proposed noncausal explanations for 
the cancer–dementia link include selective survival bias, bias 
from the competing risk of death preventing dementia onset, 
and dementia diagnosis patterns that are differential between 
older adults with and without a history of cancer (5–7). The 
utility of studying the inverse cancer–dementia relationship to 
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understand dementia etiology depends on ruling out these alter-
native noncausal explanations.

While selective survival bias and the competing risk of death do 
not appear to fully account for the reported inverse link, (12) prior 
work has not investigated potential contributions of dementia diag-
nosis patterns. Dementia has a long and insidious onset, making 
diagnosis complex and delays likely. As a result, this noncausal ex-
planation is particularly relevant for studies using electronic health 
records. We thus examine 2 mechanisms related to dementia diag-
nosis that could influence the observed association between cancer 
and dementia. First, diagnostic delays that result in missed dementia 
cases yield underestimates of true dementia incidence rates. An in-
verse cancer–dementia association could be observed if elevated 
mortality in those with a cancer history exacerbates the underesti-
mate of dementia incidence (because dementia cases remain undiag-
nosed at cancer death), even if dementia diagnostic practices are the 
same for those with and without cancer history. Second, dementia 
diagnostic practices may differ according to cancer history (6,7). 
This mechanism, often called diagnostic or ascertainment bias, 
could lead to either positive or inverse observed cancer–dementia 
associations, depending on whether dementia diagnosis occurs more 
quickly in those with a cancer history (eg, due to increased contact 
with the medical system), or more quickly in those without a cancer 
history (eg, if those with cancer are too frail for diagnostic workup, 
if their symptoms are attributed to other things like “chemobrain,” 
or if physicians are not as concerned with diagnosing dementia in 
someone with a limited life expectancy due to cancer).

Even if there is no true effect of cancer on dementia, either 
nondifferential or differential dementia diagnosis delays could lead 
to an association between cancer and dementia. In this study, we 
use simulations to investigate the possibility that dementia diagnosis 
patterns among those with and without a cancer history can explain 
some of the inverse cancer–dementia link.

Method

Simulation Model Structure and Causal Scenarios
We used a multistate continuous-time Markov model to simulate a 
cohort of 65-year-olds starting free of both cancer and dementia and 
transitioning across states of disease and death. Multistate Markov 
models simulate how people transition across possible states (eg, 
disease progression), and have been used in a number of recent 
studies on dementia (13–18); although other simulation approaches 
exist, advantages of Markov models include that they are clear heur-
istics of disease processes and allow for excellent calibration of the 
data-generating model.

Our simulation model builds directly on prior work (12), in 
which we used a similar multistate Markov model to simulate a co-
hort of cancer- and dementia-free individuals transitioning across 5 
states (combinations of history of cancer no/yes, dementia no/yes, 
and death) and showed that mortality due to cancer (ie, survival 
bias) could not yield a strong enough inverse cancer–dementia as-
sociation to explain empirical findings. In this analysis, we expand 
our simulation model to 7 states, and specifically model dementia 
diagnosis (none, undiagnosed, and diagnosed) in addition to cancer 
history (no/yes) and death (Figure 1). This allowed us to examine 
differential dementia diagnosis rates as an alternative source of bias 
yielding an inverse cancer–dementia association. In our main ana-
lysis, the simulated cohort members all started in State A  (neither 
cancer nor dementia), and were followed monthly over 30 years.

State transitions during follow-up denoted incidence of an event 
(cancer, dementia, dementia diagnosis, or mortality). For example, 
a transition from State A to D denoted incidence of cancer without 
dementia, and a transition from State B to State C indicated inci-
dence of a diagnosis of dementia in the absence of cancer (Figure 
1). Transitions were irreversible; individuals could not revert to a 
state free of cancer history, dementia, dementia diagnosis, or death 
once they had experienced any of these events. Consistent with all 
Markov models, transition rates varied by age (ie, follow-up time) 
but not by length of time spent in a state (19).

Because our objective was to evaluate the extent to which de-
mentia diagnosis patterns among those with and without a cancer 
history can explain the inverse cancer–dementia link, in all scenarios 
cancer had no effect on dementia incidence. We first simulated a scen-
ario in which cancer was unrelated to time to transition from undiag-
nosed to diagnosed dementia (“Nondifferential Delay Scenario”). In 
this scenario, even though cancer was unrelated to transition time 
from undiagnosed to diagnosed dementia (ie, delay in dementia 
diagnosis), cancer accelerated transition to death, which precluded 
dementia diagnosis. This scenario characterized the estimated effect 
of cancer on diagnosed dementia absent any differential delay by 
cancer history. We next simulated a set of scenarios in which cancer 
influenced time to diagnosis, that is, transition from undiagnosed to 
diagnosed dementia, in addition to accelerating transition to death 
(“Differential Delay Scenario”). With these models, we aimed to de-
termine under what circumstances such differential delay could lead 
to estimated effects of cancer on diagnosed dementia similar to those 
reported in the literature.

All analyses were conducted in R version 4.0.2. The model was 
specified using differential equations corresponding to the states 
shown in Figure 1, and solved using the “ode45” solver in the 
deSolve package (20). The code, which generates and analyzes all 
data, is available at https://github.com/Mayeda-Research-Group/
CancerAD-diagnosissims. The simulations did not involve human 
participants and Institutional Review Board approval was therefore 
not required.

Model Parameters and Data Sources
The simulation required specifying parameters for transition rates 
corresponding to each arrow in Figure 1. We parameterized the 

Figure 1.  Schematic of simulation model. Arrow thicknesses qualitatively 
represent relative magnitude of incidence rates. Blue arrows, transition from 
no dementia to dementia. Purple arrows, transition from undiagnosed to 
diagnosed dementia (showing Differential Delay Scenario). Orange arrows, 
transition from no history of cancer to history of cancer. Green arrows, 
transition to death. Transition rates were obtained from real-world data 
(Supplementary Table 1).
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model using age-specific real-world data, most of which has been 
reported in detail previously (12); details on parameters and data 
sources are reiterated below and summarized in Supplementary 
Table 1. Importantly, model parameters were age-specific for each 
cancer type and were additionally sex-specific for breast and pros-
tate cancer models. Most information on dementia, cancer, and 
mortality rates was provided in 5-year age bands. To calibrate the 
model to this input data, we converted these to monthly estimates 
using the pracma package (21) in R, which allowed us to fit smooth 
polynomials to the age band-specific estimates to obtain transition 
rates in each month of follow-up in the simulation model (input 
parameters and smooth polynomials shown in sections 1 and 2 of 
Supplementary Material).

Dementia incidence parameters
Dementia incidence rates were obtained from cohort studies with ac-
tive dementia case-finding and gold-standard assessment: the Adult 
Changes in Thought study (ACT) for ages <90 and the 90+ Study 
for ages ≥90 (22,23). ACT is a cohort study of 4 445 dementia-free 
community-dwelling members aged 65+ recruited between 1994 and 
2010 from Kaiser Permanente Northwest (formerly Group Health); 
participants are assessed biannually for dementia with the Cognitive 
Abilities Screening Instrument followed by complete diagnostic 
evaluation (physical, neurological, and neuropsychological testing, 
and lab/imaging studies) for low-scoring individuals. Published inci-
dence estimates include 3 605 participants with at least 1 follow-up 
visit to date (median follow-up 6.3 years) (22). The 90+ Study is a 
cohort study of 330 dementia-free participants age 90+ at baseline 
who had previously participated in the Leisure World Cohort Study 
of a retirement community in California (23). Dementia assessments 
included neurological exam and neuropsychological test battery 
(every 6  months) or informant questionnaires/Cognitive Abilities 
Screening Instrument (annually), as available, with average 2.3 years 
of follow-up for incidence estimates (23).

In all simulations, we specified no true effect of cancer history on 
dementia incidence rates to quantify the magnitude of bias induced 
in the scenarios described above.

Dementia diagnosis parameters
A key parameter in our models was the time that elapsed between 
when an individual met clinical criteria for dementia and when de-
mentia was diagnosed, which determined the transition rate from 
undiagnosed to diagnosed dementia. In our models, this transition 
rate was taken from a recent analysis comparing dementia diagnoses 
in members of the ACT study described above (which had biannual 
active case-finding) to diagnoses in electronic health records for the 
same individuals for the 2  years prior to the ACT diagnosis (24). 
Using the findings of this paper, we calculated an average time from 
dementia onset to dementia diagnosis of approximately 2 years (cal-
culation in section 3 of the Supplementary Material). However, this 
likely represented a pessimistic estimate of the time to diagnosis 
(because the calculation assumed that cases of dementia identified 
in ACT had dementia during the entire 2-year period prior to the 
ACT diagnosis), so our model for the Nondifferential Delay Scenario 
used an average lapse of 1.5 years, regardless of cancer history. The 
average lapse was varied in sensitivity analyses (see below).

In the Differential Delay Scenario, we allowed cancer history to 
affect rate of dementia diagnosis. The effect of cancer history on de-
mentia diagnosis rates reflected the net of 2 opposing processes: his-
tory of cancer could increase rate of diagnosis of dementia (decreasing 
delay, eg, due to more frequent contact with clinicians who could refer 

patients for a dementia assessment) or decrease rate of dementia diag-
nosis (increasing delay, eg, due to those with cancer being too unwell to 
complete an assessment, attribution of cognitive symptoms to effects 
of cancer and treatment, or fewer dementia diagnoses for people with 
limited life expectancy due to cancer). Estimates for this relative rate 
are not available in the literature, so a key question in our analyses was 
how different dementia diagnosis rates would need to be to produce 
estimated effects of cancer on dementia similar in magnitude to those in 
the prior research. We thus varied the relative rate of diagnosis between 
those with and without cancer history from 0.5 (50% lower rate of 
diagnosis) to 1.5 (50% higher rate of diagnosis).

The upper limit of 1.5 was based on an analysis of the Health 
and Retirement Study (HRS, a nationally representative longitu-
dinal study of approximately 20 000 adults age 50+ (25)) linked to 
Medicare claims comparing health care utilization before and after 
diagnosis of incident cancer. The analysis included 2  682 individ-
uals with incident cancer who were at least 67 years of age and free 
of dementia at the time of cancer diagnosis (see section 4 of the 
Supplementary Material for details).

Cancer incidence parameters
Cancer incidence rates (overall and type-specific for female breast, 
prostate, and lung) were obtained from the Surveillance Epidemiology 
and End Results 21 Area (SEER 21) registry for 2012–2016 using 
standard SEER cancer site coding (26–28). SEER is a national 
registry and authoritative source of cancer incidence and survival 
data in the United States; data are aggregated from population-based 
cancer registries covering nearly half the U.S. population, and the 
covered population is comparable to the U.S. population on educa-
tion and poverty (29,30).

Mortality parameters
Mortality rates were parameterized such that cumulative survival matched 
U.S.  lifetables for the cohort born 1919–1921 from age 65 to 95 (31). 
Lifetables are records maintained by the National Vital Statistics system, 
and report age-specific death rates and survival proportions based on 
death registrations observed for a given birth cohort over time (31). The 
effect of cancer on mortality was obtained by converting 5-year relative 
survival estimates for each cancer type from SEER 18 (2009–2015) to 
rate differences (26,28). (SEER 18 is a geographic subset of SEER that in-
cludes 18 (out of 21) geographic areas and is used to report survival data 
(28).) The effect of dementia on mortality was obtained from published 
estimates of the effect of dementia on mortality in a cohort of 273 843 
dementia-free Kaiser Permanente Northern California health plan mem-
bers aged 64+ with up to 13 years of follow-up starting in 2000 (32).

The combined effects of cancer and dementia on mortality in the 
models were obtained from an analysis of data from the HRS. The 
analyzed sample included 15 526 participants 65+ in the 1998–2014 
surveys, with average follow-up time of 10 years (see section 5 of the 
Supplementary Material for more details). The analyses suggested 
an interaction HR of 0.50. For example, if for a given age, cancer 
increases mortality rates by 3-fold, and dementia increases mortality 
rates by 4-fold, an interaction HR of 0.5 would mean that having 
both cancer and dementia yields a 3 * 4 * 0.50 = 6-fold increase 
in mortality relative to those with neither cancer nor dementia. 
Additional details are in section 4 of the Supplementary Material, 
and this input was subject to sensitivity analyses as outlined below.

Quantification of Bias
Because we specified the true effect of cancer on dementia incidence to be 
null, any deviation from a null rate ratio (ie, 1.00) in our simulations was 
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bias due to delays in dementia diagnosis. We estimated instantaneous inci-
dence rate ratios (IRRs) for cancer on diagnosed dementia: for each month 
of follow-up we divided the rate of dementia diagnosis among all those 
with a history of cancer (number of dementia diagnoses among those with 
cancer/person-time with cancer) by the rate of dementia diagnosis in those 
without a history of cancer (number of dementia diagnoses among those 
without cancer/person-time without cancer). To obtain IRRs over the dur-
ation of follow-up, we exponentiated the average of the natural log of the 
instantaneous rate ratios in each month. Only diagnosed dementia cases 
would be seen in empirical studies and were included in the numerators of 
rate calculations for comparison to prior published associations. We quan-
tified the amount of bias as the difference between the true value of 1.00 
and the value observed in our simulations.

We compared results from our simulations to literature-reported 
values for the inverse cancer–dementia association, expressed as stand-
ardized IRRs or HRs, for each of the 4 cancer types we examined (all 
types combined, breast, prostate, and lung). Specifically, we compared 
to findings from the most recent systematic review and meta-analysis, 
as well as the most recent large cohort study of multiple cancer types 
(4,33). The simulation scenarios for each cancer type that best-matched 
the empirical data were determined by the weighted least mean-squared 
error (LMSE) for each simulation scenario, where the weighted LMSE 
was taken as the mean of the squared differences between each cancer-
specific simulated IRR and the corresponding empirical estimates, 
weighted equally between the meta-analysis and cohort study.

Sensitivity Analyses
We conducted sensitivity analyses to determine robustness of the results 
to key model input parameters. First, we assessed the sensitivity of the 
results to the interaction effect of cancer and dementia on mortality in 
the model. As described above, this effect’s parameter value in the main 
analyses (interaction HR = 0.50) came from an analysis of HRS data. 
In sensitivity analyses, we varied this parameter from 0.40 to 0.70 (ie, 
assuming joint effects of cancer and dementia on mortality were 40% to 
70% of multiplicative). In addition, we varied the lapse between onset of 
meeting clinical criteria for dementia and diagnosis among those without 
cancer by approximately half-year increments, examining average lapses 
between 0.05 years (~2.5 weeks, the smallest computationally feasible 
lapse in the multistate model) and 2 years (the upper bound derived from 
ACT study data (24), shown in section 3 of the Supplementary Material). 
Finally, we conducted a sensitivity analysis in which we allowed cancer 
type-specific prevalent cancer at baseline (age 65); prevalence at age 65 
was estimated from SEER 13 data (the subset SEER uses to report preva-
lence) (26,28), using the prevalence for ages 50–64 and 65–74 at their 
midpoints (ie, 57 and 70) and assuming a constant percent change over 
time (details in section 6 of the Supplementary Material).

Results

Across all simulated cohorts, models were well-calibrated to cumula-
tive survival from U.S. lifetables and cancer and dementia incidence 
(from SEER and the ACT and 90+ studies, respectively). Example 
calibration results (smooth polynomials) are shown in section 2 
of the Supplementary Material. Figure 2 shows an example of the 
cumulative incidence of dementia, dementia diagnosis, and death 
for a simulated cohort (model for all cancer types combined in 
the Nondifferential Delay Scenario). In this cohort, by the end of 
follow-up (30 years, age 95), 98.8% of the cohort had died. Over 
this follow-up time and prior to death, 20.2% of the cohort experi-
enced dementia, and 12.5% (62% of dementia cases) received a 
dementia diagnosis, indicating that just over one third of dementia 

cases died before their dementia was diagnosed. These dementia 
cases would not be seen in an empirical study and are therefore not 
included in the IRRs in the following results; as described previously, 
only observed (diagnosed) dementia cases are included.

Results for bias observed in the cancer–dementia association in 
simulations in the Nondifferential Delay Scenario varied by cancer type 
due to differences in cancer type-specific mortality rates. The observed 
IRR for the effect of cancer on diagnosed dementia was close to null 
(0.98) for all cancer types combined. For breast and prostate cancers, 
which have excellent average survival, IRRs were slightly positive (1.02 
and 1.01, respectively). The observed IRR for the effect of lung cancer 
on dementia showed a protective association (IRR = 0.78), as expected 
given that lung cancer has a high fatality rate.

Figure 3 shows results for analyses of the impact of differen-
tial delay on observed bias for each cancer type. Moving from left 
to right along the x-axis corresponds to increasingly delayed de-
mentia diagnosis among those with cancer history versus without 
(ie, slower rate of dementia diagnosis). As expected, an increasing 
delay in dementia diagnosis in those with cancer resulted in increas-
ingly negative bias. Importantly, regardless of the magnitude of ef-
fect of cancer on the timing of dementia diagnosis (delays along the 
x-axis), cancers with worse survival had more protective observed 
IRRs. For example, nearly all lung cancer simulations produced 
observed IRRs for dementia that were protective (<1.0), while the 
breast cancer simulations produced observed positive IRRs (>1.0) 
even when dementia diagnoses were very slightly delayed in breast 
cancer patients.

Figure 4 shows the simulation model results overlaid with results 
from a recent systematic review and meta-analysis (Ospina-Romero 
et al. (4)) and an analysis of Danish registry data (Ording et al. (33)) 
for each cancer type. The Nondifferential Delay Scenario results were 
slightly more positive than point estimates in empirical data for all cancer 
types combined (eg, IRR 0.98 vs 0.81–0.96 in empirical data), breast 
cancer (IRR 1.02 vs 0.93–1.00), or prostate cancer (IRR 1.01 vs 0.96–
0.99); however, the simulated lung cancer estimate appeared slightly 
more protective than the literature estimates IRR (0.78 vs 0.84–1.12). 
The best-match Differential Delay Scenario for all cancer types (defined 
by weighted LMSE) occurred when the rate of dementia diagnosis was 

Figure 2.  Overview of cumulative proportion of cohort experiencing 
dementia, dementia diagnosis, and death in example simulated cohort (all 
cancers, Nondifferential Delay Scenario). Full color version is available 

within the online issue.
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20% slower in those with cancer than those without cancer history, cor-
responding to an additional 4.5-month delay in Figure 3 (or 18 months 
in those without cancer, and 22.5  months in those with cancer). In 
this scenario, the observed IRR was 0.87, between the estimates from 
Ospina-Romero et al. (4) and Ording et al. (33) for the association of 
all types of cancer with dementia. Simulated observed IRR estimates for 
breast and prostate cancers were most consistent with reported litera-
ture estimates when the dementia diagnosis rates were 10% smaller (an 
additional 2-month delay) in people with cancer history than without. In 
contrast, due to the qualitative differences in the literature estimates for 
Alzheimer’s dementia and all-cause dementia, the best match for the lung 
cancer model, which weighed both literature estimates equally, required 
a 40% increase in dementia diagnosis rate (over 5-month reduction in 
delay) among those with lung cancer history.

In sensitivity analyses, we examined the impact of both average 
time to dementia diagnosis and assumptions about the combined 
effects of cancer and dementia on mortality (ie, mortality rates in 
States E and F in Figure 1) in the all cancer types model. Figure 5 
shows the results for this model in the Nondifferential Delay (5A) 
and best-match Differential Delay (5B) Scenarios (net 20% decrease 
in dementia diagnosis rate in those with cancer history). In each 
panel, longer delays in dementia diagnosis (moving left to right on 
x-axis) yielded greater bias in the observed IRR; indeed, when there 
was minimal delay (0.05 years, or approximately 2.5 weeks in those 
without cancer), there was essentially no bias observed. In addition, 
the greater the combined effects of cancer and dementia on mortality 
(moving from light to dark lines), the greater the negative bias in the 
observed IRR; with larger combined effects, the mortality rate in-
creases for those with cancer and dementia, making them more likely 
than counterparts without cancer to die before a dementia diagnosis. 

Figure 3.  Observed cancer–dementia incidence rate ratios (IRRs) in 
Differential Delay Scenario  models varying effect of cancer on dementia 
diagnostic delay. Note: Negative delay indicates faster dementia diagnosis 
among those with cancer history than without; positive delay indicates 
slower dementia diagnosis among those with cancer history than without.

Figure 4.  Nondifferential Delay Scenario simulation results and Differential 
Delay Scenario  simulation results best-matched to empirical findings, 
overlaid with empirical findings, by cancer type. Triangles and squares 
represent simulation results, and circles represent empirical findings from 
the literature. The best-match Differential Delay Scenario  simulations 
(triangles) included the following relative rates for dementia diagnosis 
among those with cancer history versus without: all cancer types: 0.8; breast 
cancer: 0.9; prostate cancer: 0.9; lung cancer 1.4. AD = Alzheimer’s dementia.

Figure 5.  Sensitivity of results for all cancer types models to diagnostic delay 
and combined effect of cancer and dementia on mortality in (A) Nondifferential 
Delay Scenario and (B) Differential Delay Scenario with 80% slower dementia 
diagnosis rate in those with cancer. The x-axis shows the specified average 
time from onset of meeting clinical criteria to dementia diagnosis among 
those with dementia, and the y-axis shows the observed incidence rate 
ratio (IRR) for cancer history on dementia diagnosis. The color of the lines 
corresponds to the interaction effect of cancer and dementia on mortality. The 
lightest is 40% of fully multiplicative, darkest is 70% of fully multiplicative. 
For example, at a given age, if cancer increases mortality rates by 3-fold, and 
dementia increases mortality rates by 4-fold, 40% of multiplicative would be 
a 3  * 4  * 0.4  =  4.8-fold increase in mortality rates among those with both 
cancer and dementia versus neither, while 70% would be 3 * 4 * 0.7 = 8.4-fold 
increase.

Full color version is available within the online issue.

Full color version is available within the online issue. Full color version is available within the online issue.
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The final sensitivity analysis including prevalent cancer cases yielded 
nearly identical results as the main analysis; because of this, results 
are provided in section 6 of the Supplementary Material.

Discussion

This study examined the role of dementia diagnosis, including diag-
nostic delays both nondifferential and differential by cancer history, in 
explaining the inverse cancer–dementia association. After calibrating to 
real-world data on cancer and dementia incidence, mortality, and de-
mentia diagnosis rates, we found that delays in dementia diagnosis that 
are nondifferential by cancer status induced small biases, but empirical 
estimates were more protective than our estimates from these models 
for most cancer types. Only when dementia diagnosis rates were at least 
20% slower (ie, delayed by at least 4.5 months) among people with 
cancer were IRRs sufficiently biased to correspond with the reported lit-
erature for all cancer types combined. These results held when allowing 
for prevalent cancer at baseline.

Although our findings are not conclusive, they suggest that 
diagnostic delays are unlikely to fully explain the inverse cancer–
dementia link. Importantly, they clarify the critical assumptions ne-
cessary to quantify the impact of diagnostic delay. More fatal cancers 
are likely subject to greater bias because those with cancer and un-
diagnosed dementia are more likely to die before they are diagnosed 
with dementia. In our simulation results, negative bias was strongest 
in the lung cancer model, followed by all cancers combined, while 
breast and prostate cancer models produced more positive bias. We 
note that the positive bias in breast and prostate models in some 
scenarios was unexpected, but occurred because the mortality in 
those with breast or prostate cancer and dementia was only minim-
ally higher than in the larger group with dementia but cancer-free, 
meaning more dementia diagnoses were missed in those without 
cancer relative to person-time accrued (simplified proof in section 
7 of the Supplementary Material). Our findings across cancer types 
are broadly consistent with the empirical literature, where all cancer 
types combined show more protective effects than breast and pros-
tate cancers (4,33,34). There is less evidence on lung cancer (and no 
meta-analytic results available), but some estimates do show larger 
protective effects, especially for Alzheimer’s dementia (33,34).

Additionally, the simulation results showed that meaningfully 
(at least 20%) slower rates of dementia diagnosis, corresponding to 
at least 4.5-month additional delays in those with cancer history, 
were needed to obtain sufficient bias to match results from empir-
ical studies for all cancer types combined. Dementia has insidious 
onset and diagnosis may be delayed even for patients without cancer 
history; our findings suggest that an additional 4.5-month delay for 
patients with cancer is needed to explain empirical results. Slightly 
slower rates (at least 10% slower, 2-month delays) were needed to 
explain the small inverse associations reported in the literature for 
breast and prostate cancers. Individuals with cancer or cancer his-
tory are in greater contact with the medical system, which may in-
crease their rate of diagnosis, suggesting that a net reduction of 20% 
(all cancers combined) would require those with cancer history to be 
substantially less likely to be referred or diagnosed with dementia at 
a given level of cognitive functioning. Of course, estimates from em-
pirical studies may be subject to multiple sources of bias, potentially 
in competing directions. If there are other positive sources of bias (eg, 
confounding) in empirical estimates, even greater differences in de-
mentia diagnosis patterns (or other sources of negative bias) would 
be needed to explain reported estimates. Although more research is 

needed on the plausibility of this magnitude of underdiagnosis, our 
simulations showed that even smaller differences in diagnostic prac-
tices produced some bias, and may contribute to the reported inverse 
association.

Finally, the results of the sensitivity analyses show that longer lapses 
between individuals meeting clinical criteria and receiving a dementia 
diagnosis, regardless of cancer history, are likely to increase bias in 
the observed cancer–dementia association. Dementia diagnosis delays 
occur in both routinely collected electronic medical record (EMR) data 
and data from cohort studies; studies using EMRs typically report as-
sociations closer to the null than studies with dementia assessments at 
regular intervals (4). Our simulations suggest that this could be par-
tially or fully explained if delays in diagnosis are shorter in clinical 
settings than in cohort studies, where participants are assessed for de-
mentia only at follow-up waves (eg, every 2 years). However, studies 
using EMRs are subject to potential differential delays by cancer status, 
whereas cohort studies with protocolized dementia assessments avoid 
such bias; our results suggest that faster dementia diagnosis rates in 
those with cancer would be needed to explain why effect estimates from 
EMR versus cohort studies are closer to the null.

The primary limitations of this work are the simplifications required 
for the multistate simulation models, and the availability of data to par-
ameterize the models. For example, we modeled dementia as a binary 
variable, rather than a trajectory of cognitive decline. Data were not 
available to separately model Alzheimer’s, vascular, and mixed path-
ologies, which may be of particular interest for lung cancer, because 
of qualitative differences in the association between lung cancer and 
Alzheimer’s dementia versus all-cause dementia in some empirical 
studies (33,34). We also assumed that mortality rates remained elevated 
indefinitely following a cancer diagnosis (12). If elevated mortality due 
to cancer did not persist, we would expect to see more positive IRRs (ie, 
less inverse associations) in both the Nondifferential and Differential 
Delay Scenarios, as reduced cancer mortality would lead to fewer 
deaths among those with dementia and cancer prior to dementia diag-
nosis; if our assumption is incorrect, our simulation results are pessim-
istic (observed bias from our simulations would be overly negative). No 
single cohort contained data needed for all input parameters, so our 
inputs came from multiple sources with different sample compositions. 
For example, dementia incidence and diagnosis rates came from a pre-
dominantly white cohort; incidence rates may be higher and diagnostic 
delays longer in some racial/ethnic groups (35,36). As shown in the 
sensitivity analyses, longer delays can result in more missed diagnoses, 
which could result in greater observed bias in estimates of the effect of 
cancer on dementia.

In conclusion, our simulations showed that delays in dementia 
diagnosis may play a role in explaining the inverse relationship be-
tween cancer and dementia, especially for more fatal cancers, but 
a moderately slower diagnosis rate (at least 20% slower; extra 
4.5-month delay) in those with cancer would be required to fully 
explain the IRRs reported in the literature. To date, there is no evi-
dence that cancer diagnosis delays dementia diagnosis, and increased 
interaction with the health care system among cancer patients may 
even hasten dementia diagnosis, increasing our confidence that other 
causal explanations for the inverse association, such as shared bio-
logical basis, may be important. However, future research that exam-
ines mortality and delays in diagnosis among individuals with cancer 
history, especially in cohort studies linked to EMR, may help inform 
the plausibility of slower rates of dementia diagnosis in those with 
cancer required in our simulations to match cancer–dementia associ-
ations reported in the literature.
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