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Novelty and Impact: We aim to predict oncologic outcomes of different drug combinations 

administered in clinical trials treating advanced cancer patients. This is achieved by a machine 

learning (ML) model trained on a dataset including clinical trial, drug-related biomarker, and 

molecular profile information. We validate our model by showing a significant correlation 

between oncologic outcomes and our model’s predictive parameters in randomized trials. Our 

model may be useful to optimize new drug-development strategies. 
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ABSTRACT 

Predicting oncologic outcome is challenging due to the diversity of cancer histologies and 

the complex network of underlying biological factors. In this study, we determine whether 

machine learning can extract meaningful associations between oncologic outcome and clinical 

trial, drug-related biomarker, and molecular profile information. We analyzed therapeutic 

clinical trials corresponding to 1,102 oncologic outcomes from 104,758 cancer patients with 

advanced colorectal adenocarcinoma, pancreatic adenocarcinoma, melanoma, and non-small-cell 

lung cancer. For each intervention arm, a dataset with the following attributes was curated: line 

of treatment, number of cytotoxic chemotherapies, small-molecule inhibitors, or monoclonal 

antibody agents, drug class, molecular alteration status of the clinical arm’s population, cancer 

type, probability of drug sensitivity (PDS) (integrating the status of genomic, transcriptomic, and 

proteomic biomarkers in the population of interest), and outcome. A total of 467 progression-free 

survival (PFS) and 369 overall survival (OS) data-points were used as training sets to build our 

machine learning (random forest) model. Cross-validation sets were used for PFS and OS, 

obtaining correlation coefficients (r) of 0.82 and 0.70 respectively (outcome versus model’s 

parameters). A total of 156 PFS and 110 OS data-points were used as test sets. The Spearman 

correlation (rs) between predicted and actual outcome was statistically significant (PFS: rs=0.879, 

OS: rs =0.878, P<0.0001). The better outcome arm was predicted in 81% (PFS: N=59/73, z=5.24, 

P<0.0001) and 71% (OS: N=37/52, z=2.91, P=0.004) of randomized trials. The success of our 

algorithm to predict clinical outcome may be exploitable as a model to optimize clinical trial 

design with pharmaceutical agents. 

 

 



 
 

BACKGROUND 

 Selecting drug regimens that are not optimized to the biology of individual cancers can 

lead to lower survival rates and is economically costly. Thus, new tools that can support or 

validate the decision making of drug selection are needed.  

 With the advent of next-generation sequencing (NGS) techniques, new predictive 

biomarkers are being discovered and are facilitating the trend in the literature of integrating 

clinical and biologic data for outcome predictions.1–4 Larger precision medicine trials are now 

examining the use of predictive biomarkers across cancer types and with different agents 

including targeted therapy, conventional cytotoxic chemotherapy, and immunotherapy.5,6 

However, predicting clinical outcome for cancer treatments still remains a challenging endeavor 

due to the diversity of genetic and environmental factors influencing tumor biology. Thus, 

investigating complex datasets requires sophisticated nonlinear algorithms found in machine 

learning (ML) software.7 The use of ML in oncology is a recently emerging innovative 

technology, and previous applications have shown promising results.8,9 For example, ML has 

been used to identify cancer pathways and phenocopying variants affecting patient response-

rates,10 to distinguish high-risk and low-risk patient groups using an integrative network analysis 

of modules containing signature gene variants,11 and to aid in cancer diagnosis through pattern 

recognition.12  

 Despite their potential, ML models for oncology face several substantial challenges, such 

as classifying which attributes contribute significantly to clinical predictions,13 lack of external 

testing and validation,1 and insufficient predictions based only on ‘macro-scale’ attributes (e.g., 

histology type).14  

 



 
 

Additionally, one of the most important and difficult problems in computational biology 

is the process of expressing biological sequences with a discrete model (or vector), while still 

retaining sequence-order information or pattern characteristics. A comprehensive review15 

demonstrates that the majority of ML models can only incorporate vector-based data. However, 

finding solutions to this problem (which can avoid, for example, losing sequence-pattern 

information for proteins) led to the development of Chou’s ‘PseAAC’ software.16,17 In 2015, 

very powerful webservers such as ‘Pse-in-One’18 and its updated version ‘Pse-in-One2.0’19 were 

established and used to generate any desired feature vectors for protein/peptide and DNA/RNA 

sequences.19  

 We are inspired by the work done to extract relevant features, the use of webservers, and 

also by Chou’s 5-step rule20 as fully introduced in our method section (the rule has been widely 

employed in a variety of applications in driving proteome/genome analysis and drug 

development, as seen in recent papers20–22). In our work, we will follow the 5-step rule to 

formulate an algorithm that requires first obtaining important features (e.g., genomic, proteomic, 

transcriptomic, and clinical outcome information) and then applying ML to extract pattern 

information between our chosen attributes and clinical outcome. Importantly, our algorithm can 

be expanded and used as part of an open access webserver that provides useful clinical predictors 

for oncologists and research scientists.  

To this end, in this study, we bridge databases that lack molecular profiles but contain 

clinical information (e.g., ClinicalTrials.gov) and databases that lack a variety of drugs tested 

and their outcome results but contain molecular data (e.g., The Cancer Genome Atlas or TCGA) 

through a variable termed as the probability of drug sensitivity (PDS). The PDS provides a 

numerical metric evaluating how well drug regimens and their biomarkers match to the 



 
 

molecular signature of the disease. We validate PDS as a clinical predictor by correlating PDS of 

drug regimens to their outcome results using clinical trial data. We also assess the impact of 

other clinical predictors such as treatment line, molecular alteration status, and tumor mutation 

burden by adjusting the PDS calculation for each parameter individually. Finally, we aggregate 

our curated data into several attributes (including PDS) and apply a random forest model (ML 

algorithm) on this dataset to predict outcomes of randomized clinical trials.  

 

 

 

 

 

 

 

 



 
 

METHODS 

Chou’s 5-steps rule 

The methods section is organized by following Chou’s 5-steps rule,20 stated as follows: 

(1) build a benchmark dataset to train and test the predictor; (2) represent the dataset through an 

effective formulation that reflects the intrinsic correlation between samples and the target to be 

predicted; (3) introduce a powerful algorithm to make predictions; (4) perform statistical analysis 

to evaluate the prediction accuracy; (5) develop a user-friendly webserver for the predictor. Steps 

(1) - (4) are described below, while step (5) is left for future work. 

Data collection process 

Clinical trial selection 

We initially analyzed the colorectal adenocarcinoma dataset and further validated our 

model on pancreatic adenocarcinoma, melanoma, and non-small cell lung cancer (including 

adenocarcinoma, squamous cell carcinoma, or mixed). From the U.S. National Institutes of 

Health (NIH) clinical trials database (https://clinicaltrials.gov/), we retrieved a total of 1,893 

interventional trials (with results) using the following search terms: “colorectal 

adenocarcinoma”, “colon cancer”, “rectal cancer”, “pancreatic adenocarcinoma”, “pancreatic 

cancer”, “melanoma”, “skin cancer”, and “non-small cell lung cancer” (colorectal 

adenocarcinoma retrieval date: 1/1/2018;  all other cancers: 3/15/2018).  

To control for study differences between clinical arms, several trials were filtered out 

from the initial dataset for the following reasons: less than 15 patients were treated, eligibility 

criteria permitted patients with different cancer types or uncommon histology (e.g., large-cell 

carcinomas), patients were not diagnosed with advanced cancer (stages III to IV), trials included 

non-pharmacologically-mediated and non-conventional interventions (i.e., radiation therapy, 

dietary procedures, chimeric antigen receptor-T-cells-based immunotherapy), or did not report 

https://clinicaltrials.gov/


 
 

median progression-free survival (PFS) or overall survival (OS) values (since only median PFS 

or time-to-progression and OS results were considered in this study). Using our selection criteria, 

a total of 351 clinical trials remained (94 – colorectal adenocarcinoma, 51 – melanoma, 37 – 

pancreatic adenocarcinoma, 169 – lung cancer) and 1,102 PFS or OS outcome results (PFS: 212 

– colorectal adenocarcinoma, 296 – lung cancer, 67 – melanoma, 48 – pancreatic cancer; OS: 

143 – colorectal adenocarcinoma, 246 – lung cancer, 41 – melanoma, 49 – pancreatic 

adenocarcinoma) were derived from 104,758 patients (Table 1). 

Drug-related biomarker collection 

In total, 115 single agents were used alone or in combination in our list of clinical arms 

(we found and validated 208 unique biomarkers from the literature – see Supporting Information 

Table S1). In this study, a biomarker was a molecular aberration (includes genomic, 

transcriptomic, or proteomic data) altering either: (1) a direct target of the drug (e.g., growth 

factor receptors and response to tyrosine kinase inhibitors); (2) an indirect target of the drug 

(e.g., specific ligand/agonist of a receptor and response to drugs inhibiting the receptor itself); or 

(3) the metabolic mechanism of the drug (e.g., DNA-damage related markers and response to 

DNA-damaging agents). 

Molecular profile collection 

Molecular profiles were collected from the cancer genome atlas database (TCGA)23 using 

the following cohorts: colorectal adenocarcinoma (277 tumors), pancreatic adenocarcinoma (129 

tumors), skin cutaneous melanoma (169 tumors), lung adenocarcinoma (186 tumors), and lung 

squamous cell carcinoma (178 tumors). Only locally invasive tumors (N1, N2 or N3) or 

metastatic tumors (M1) were considered (to enforce greater parity between the TCGA and 

clinical trial populations). These cohorts included genomic, transcriptomic, and proteomic data.  



 
 

Organizing our dataset to correlate input data with target for prediction 

 To formulate an algorithm that correlates inputs with a desired outcome, our dataset is 

organized into rows that represent drug regimens retrieved from different clinical intervention 

arms. For each intervention arm, the following attributes (or columns) were included: line of 

treatment, number of cytotoxic chemotherapy drugs (e.g., 5-fluorouracil), number of small-

molecule inhibitors (e.g., ruxolitinib), number of monoclonal antibody agents (e.g., nivolumab), 

one column per drug class (e.g., VEGFR-inhibitors, platinums, taxanes), molecular alteration 

status of the clinical arm’s population (e.g., ‘EGFR-positive’, ‘KRAS-wild type’ or ‘random’ if 

status was not provided), probability of drug sensitivity (see below), and clinical arm outcome 

(normalized from 0 – 1 per disease and for each outcome type: PFS or OS. Values were 

normalized to calculate correlation across diseases). See Fig. 1 for a pictorial depiction of how 

our dataset was labeled and organized.  

Algorithm used for prediction 

In this study, we apply a supervised learning approach using the random forest classifier 

to correlate our chosen attributes to a clinical arm outcome result. This classifier was chosen as it 

prevents overfitting of the data, has proven effective in other studies,24–28 and provided strong 

correlation coefficients. For example, using the PFS dataset, we compared the random forest 

classifier with other classifiers using the correlation coefficient (r) (outcome vs model’s 

parameters): [random forest, r = 0.82; linear regression, r = 0.75; multilayer perceptron or 

feedforward neural networks, r = 0.71].  The random forest classifier was then used to predict the 

outcome attribute in the test sets (OS and PFS datasets were analyzed separately) (Fig. 1). 

Application and summary of the random forest classifier 

Using our curated dataset formatted for machine learning, we sequestered our data into 

two sets, 75% for training (to build our random forest classifier), and 25% for testing (‘unseen’ 



 
 

data which is used to validate our classifier and provide our final results). On our training set 

(75% of our data), we build our random forest classifier using a 10-fold cross validation method. 

Specifically, our random forest classifier is calculated by averaging the performance of 10 

random forest classifiers which are individually produced from 10 equal sized sets consisting of 

their own individual training and testing sets (i.e., each set consisting of 90% data for training, 

and 10% for testing). Further details of the 10-fold cross validation method can be found by the 

work by Rafaeilzadeh et al.29 

 We now provide a more detailed description of the random forest method which we use 

in a supervised learning approach. Step 1: we select random samples from a dataset of interest 

(in our case, the training set), where each sample can be chosen more than once to create a new 

‘bootstrapped’ dataset (i.e., bootstrapping method30). Step 2: we create a decision tree (see 

decision tree algorithm for details31) on the bootstrapped dataset but only use a random subset of 

attributes (i.e., columns) at each decision step according to the following relationship: 

.32 Step 3: we repeat steps 1 and 2 at a user-specified amount to 

create a variety of different decision trees (forming the ‘random forest’). Step 4: the random 

forest classifier is applied by providing the input attributes and having each decision tree predict 

the outcome. The predicted outcome of each tree is then aggregated through the ‘bagging’ 

process30 to provide a single (aggregated) outcome prediction. Step 5: due to random sampling 

from step 1, some sample of the data does not appear in the bootstrapped dataset (this ‘lost’ 

sample is called the out-of-bag sample, or OOB33). The OOB is used to evaluate the OOB 

error,33 which is the proportion of OOB samples classified correctly by the random forest 

classifier. Step 6: The random forest classifier is further optimized by changing the number of 

columns considered at each decision tree (created in step 2) to try and reduce the OOB error. In 



 
 

this study, we used the machine learning software WEKA34 to automatically complete steps 1 – 6 

and build our random forest classifier (only default settings were used with a 10-fold cross 

validation running on a laptop with an Intel Core i7-8850H CPU, and NVIDIA Quadro P3200 

GPU). Note, that the mathematical details of the random forest classifier used by the WEKA 

software can be found in Leo Breiman’s work.35    

Probability of drug sensitivity  

 We hypothesized that one of the main attributes (considered in our random forest 

classifier) in predicting clinical outcome was predicated on the percentage of tumors (within the 

specified cancer type) carrying alterations in at least one of the biomarkers defined for the set of 

drugs within the regimen. This percentage of tumors carrying biomarker alterations was 

estimated by analyzing molecular profiles from the TCGA cohorts.  

 To this end, we formulate the ‘probability of drug sensitivity’ or PDS (equation (A)) to 

provide a numerical metric evaluating how well a drug regimen matches to the disease: 

(A)                                 

where X = overall probability of sensitivity; Y = probability of sensitivity in absence of 

resistance 

The overall probability of sensitivity (X) to the drug regimen was estimated by the 

percentage of tumors presenting at least one biomarker of sensitivity to one of the drugs in the 

regimen (thus, a tumor may include an alteration known to increase drug sensitivity and an 

alteration known to increase drug resistance). The probability of sensitivity in the absence of 

resistance (Y) to the drug regimen was estimated by the percentage of tumors presenting at least 

one biomarker of sensitivity and no biomarker of resistance to one of the drugs in the regimen 



 
 

(tumors only contain biomarkers that increase drug sensitivity). Biomarkers that increase drug 

sensitivity from deep-deletion, mRNA underexpression or inactivating mutations where labeled 

with a ‘-‘. All other biomarkers were considered to increase drug sensitivity from gene 

amplification, mRNA overexpression, or activating mutations (Supporting Information Table 

S1). 

To exemplify how we calculated the probability of drug sensitivity (PDS) (equation (A)), 

the following drug regimen was considered in the pancreatic adenocarcinoma cohort consisting 

of 129 patients: capecitabine (cytotoxic chemotherapy agent) + ruxolitinib (targeted agent). For 

this regimen the predictive biomarkers were MBD4, TYMP, TYMS -, DPYD - (for 

capecitabine)36–39 and JAK1, JAK2, TYK2 (for ruxolitinib).40 Entering this gene set (which 

includes all selected biomarkers for all drugs in the regimen) into cBioPortal,41 we found that 20 

patients (20/129 or 15.5% = overall probability of sensitivity) carried at least one marker of 

sensitivity to the regimen. Out of these 20 patients, 5 patients carried a marker of sensitivity and 

a marker of resistance to the regimen; thus, 15 patients (15/129 or 11.6% = probability of 

sensitivity in the absence of resistance) carried only markers of sensitivity and no markers of 

resistance. To acknowledge the uncertainty of these 5 patients being sensitive or resistant to the 

drug regimen, the PDS is an average between 15.5% and 11.6% (=13.6%). Thus, we 

hypothesized that approximately 13.6% of pancreatic adenocarcinoma patients may be 

considered sensitive to a therapeutic regimen including capecitabine in combination with 

ruxolitinib (see Supporting Information Fig. S1 for a visual depiction of this example).  

Adjusting the PDS for confounding factors 

 In some instances, the PDS needs to be adjusted to compensate for factors that may 

impact clinical trial outcome. For example, drug regimens given in different lines of treatment 



 
 

(with more advanced lines having attenuated response rates), treating population of patients with 

known molecular alteration status (EGFR-inhibitor to an EGFR-positive population), or using 

check-point inhibitors in cancer types with high tumor mutation burden (which is associated with 

increased response rates).42 

Adjusting PDS for treatment line 

 We used equation (B) to adjust the PDS for drug regimens used as a second or more line 

of treatment: 

(B)                                     

  Average 1st line PFS/OS is the average PFS/OS of all 1st line PFS/OS outcomes in the 

specified cancer type, and the Average 2nd line or more PFS/OS is the average PFS/OS of all 2nd 

or more line PFS/OS outcomes in the specified cancer type.  

Adjusting PDS for populations with known molecular alteration status 

 Some clinical trials present outcomes for drug regimens used in a population where the 

molecular alteration status is known. For example, erlotinib (inhibitor of EGFR) given to a 

population of patients with known EGFR-positive expression. In this case, the PDS must be 

calculated for a population of TCGA tumors that carry EGFR-positive aberrations (creating 

resemblance between the TCGA and clinical trial populations). Thus, for this example, the 

overall probability of sensitivity (see equation (A)) will be equal to 100%.  

Adjusting PDS for tumor mutation burden 

High tumor mutation burden (TMB) has been associated as a biomarker of response to 

check-point inhibitor immunotherapies (e.g., PD-L1 drugs such as nivolumab or 

prembrolizumab).42 To incorporate this into the PDS score, we first retrieved 9,167 tumors 

(containing multiple cancer types) from the TCGA database using the GDAC Firehose website 



 
 

(https://gdac.broadinstitute.org/ - standardized data run release 2016_01_28). All samples were 

published and available without restriction of use on May 1st, 2017. Because each tumor 

presented a total number of mutations, we calculated the 90th percentile value across all tumors. 

This value was equal to 373 mutations per genome and was used as the threshold in determining 

what constituted as a ‘high tumor mutation burden’ in patients (i.e., patients with a TMB above 

this threshold were considered sensitive to any drug regimen including PD-L1 

immunotherapies).  

Statistical analysis 

Statistical significance between first line and second or more line outcomes was 

evaluated by Welch’s t-test of unequal variance. 

The efficacy of PDS as a clinical predictor was verified by the nonparametric Spearman’s 

correlation (rs) between PDS of drug regimens and median PFS/OS outcomes of their 

corresponding treatment arms using the GraphPad Prism 6 software (version 6) – this was done 

for each cancer and outcome type separately. We demonstrated the difference in correlation 

when adjusting PDS for cofounding factors (treatment line, alteration status, TMB) versus not 

adjusting the PDS at all.  

The nonparametric Spearman correlation was chosen as it evaluates the monotonic (or 

nonmonotonic) relationship between observed and predicted outcome (or in the case for the PDS 

evaluation, PDS vs outcome). Importantly, the correlation can be used for linear and nonlinear 

relationships and is less sensitive to strong outliers present in the data. 

The correlation coefficients (r) of our machine learning algorithm, which determines the 

percentage of the variance described by the algorithm, was provided by the WEKA software for 

all training sets. We also calculated a nonparametric Spearman correlation (rs) between predicted 



 
 

outcomes using our machine learning model (random forest) versus actual outcomes for all test 

sets.  

In addition to the Spearman correlation, we also use the root-mean-square error (RMSE) to 

measure the difference between values of the predicted model to the actual values observed (e.g., 

PDS vs outcome, or prediction by the random forest algorithm vs outcome). The RMSE was 

calculated on observed and predicted outcomes which were first normalized from 0 – 1. The 

reason for normalization is because the RMSE does not provide any information on whether the 

relationship between observation and prediction is monotonic or nonmonotonic. Instead, the 

RMSE is useful for comparing against other RMSE values by providing a relative measure of 

overall error of the prediction (since every cancer type has a different relationship between how 

outcome increases/decreases with the prediction, it is useful to normalize to make cross-cancer 

type evaluations more meaningful). Note, that RMSE may be inflated as RMSE is sensitive to 

outliers, which do occur in our data.  

Lastly, we evaluated 73 PFS and 52 OS randomized trials (collected from a subset of our 

PFS and OS datasets which otherwise include both randomized and non-randomized trials) to 

examine whether we can predict which treatment arm will show a better PFS or OS outcome. A 

binomial probability test was used to evaluate how well our prediction method compared to 

flipping a coin of equal odds; this was assessed by calculating a z-score and corresponding P-

value.  

In all statistical P-value calculations, a P value ≤ .05 was considered statistically significant. 

 

 

 



 
 

RESULTS 

Summary of our clinical trial collection  

A total of 351 clinical trials corresponding to 1,102 PFS or OS outcome results were 

collected from ClinicalTrials.gov and used for analysis (Table 1).  In the clinical trial data 

collection (351 clinical trials, 623 PFS outcomes, 479 OS outcomes, 104,758 patients), we 

included both randomized and non-randomized trials. The mean outcome and 95% confidence 

interval was calculated for each treatment line (first or second or more), cancer, and outcome 

type (PFS or OS): 1st line colorectal adenocarcinoma [mean PFS = 8.5 (95% CI | 8.0, 9.1) 

months, mean OS = 19.6 (95% CI | 18.1, 21.1) months]; 2nd or more line colorectal 

adenocarcinoma [mean PFS = 4.7 (95% CI | 4.2, 5.1) months, mean OS = 11.3 (95% CI | 10.2, 

12.4) months]; 1st line pancreatic adenocarcinoma [mean PFS = 3.5 (95% CI | 3.2, 3.9) months, 

mean OS = 6.7 (95% CI | 6.2, 7.2) months]; 2nd or more line pancreatic adenocarcinoma [mean 

PFS = 2.1 (95% CI | 1.6, 2.7) months, mean OS = 4.8 (95% CI | 3.7, 5.9) months]; 1st line 

melanoma [mean PFS = 4.9 (95% CI | 4.1, 5.7) months, mean OS = 13.5 (95% CI | 11.8, 15.1) 

months]; 2nd or more line melanoma [mean PFS = 3.7 (95% CI | 2.8, 4.8) months, mean OS = 

9.7 (95% CI | 8.4, 10.9) months]; 1st line lung cancer [mean PFS = 6.2 (95% CI | 5.7, 6.6) 

months, mean OS = 13.2 (95% CI | 12.3, 14.1) months]; 2nd or more line lung cancer [mean 

PFS = 3.7 (95% CI | 3.4, 4.1) months, mean OS = 10.1 (95% CI | 9.4, 10.7) months. The means 

between 1st line and 2nd or more line outcomes were statistically significant in all datasets 

analyzed (P≤.05) (Fig. 2). 

When we correlated PDS with outcome (Fig. 3), we considered clinical trials that were 

randomized and non-randomized (all outcomes were used). The training set (used for machine 

learning) consisted of 467 PFS outcomes and 369 OS outcomes, derived from clinical trials that 



 
 

included both randomized and non-randomized trials (~75% of all outcomes). However, the test 

set consisted of only randomized trials and corresponded to 156 PFS and 110 OS outcomes 

(~25% of all outcomes) (Figs. 4 and 5).  

Evaluating the probability of drug sensitivity as a variable of clinical prediction 

 A total of 115 single agents used alone or in combination (corresponding to 208 unique 

predictive biomarkers) were reviewed from the literature (see Supporting Information Table S1). 

A probability of drug sensitivity (PDS) (equation (A)) was calculated for each drug regimen 

administered in clinical arms. For each cancer and outcome type (PFS or OS) analyzed, we 

correlate the PDS of drug regimens to their median outcome results. Because the clinical arm's 

outcome may be affected by variables such as treatment line, molecular alteration status of the 

arm's population, or tumor mutation burden, we also adjusted the PDS for these parameters (see 

Methods).  

 The Spearman correlations (rs) and RMSE values between adjusting PDS for the above 

parameters versus not adjusting PDS with median outcome were the following: colorectal 

adenocarcinoma PFS dataset [PDS adjusted: rs = 0.782 (P<0.0001), RMSE=0.174; PDS not 

adjusted: rs = 0.647 (P<0.0001), RMSE=0.203], colorectal adenocarcinoma OS dataset [PDS 

adjusted: rs = 0.860 (P<0.0001), RMSE=0.134; PDS not adjusted: rs = 0.660 (P<0.0001), 

RMSE=0.164], melanoma PFS dataset [PDS adjusted: rs = 0.711 (P<0.0001), RMSE=0.177; 

PDS not adjusted: rs = 0.560 (P<0.0001), RMSE=0.226], melanoma OS dataset [PDS adjusted: rs 

= 0.483 (P<0.004), RMSE=0.235; PDS not adjusted: rs = 0.355 (P=0.042), RMSE=0.262], 

pancreatic adenocarcinoma PFS dataset [PDS adjusted: rs = 0.650 (P<0.0001), RMSE=0.197; 

PDS not adjusted: rs = 0.591 (P=0.002), RMSE=0.212], pancreatic adenocarcinoma OS dataset 

[PDS adjusted: rs = 0.456 (P<0.007), RMSE=0.218; PDS not adjusted: rs = 0.391 (P=0.022), 



 
 

RMSE=0.220], lung cancer PFS dataset [PDS adjusted: rs = 0.615 (P<0.0001), RMSE=0.134; 

PDS not adjusted: rs = 0.186 (P=0.0295), RMSE=0.201], lung cancer OS dataset [PDS adjusted: 

rs = 0.414 (P<0.0001), RMSE=0.158; PDS not adjusted: rs = 0.019 (P=0.824), RMSE=0.195] 

(Fig. 3). 

Adjusting the probability of drug sensitivity (PDS) to treatment line, molecular alteration 

status, and tumor mutation burden individually 

 To quantify how each variable of interest (treatment line, molecular alteration status, and 

tumor mutation burden) individually affected the PDS calculation, the shift in Spearman 

correlation and RMSE between PDS adjusted versus not adjusted with median outcome was 

shown for several datasets: colorectal adenocarcinoma OS dataset [PDS adjusted only for 

treatment line: rs = 0.761 (P<.0001), RMSE=0.154; PDS not adjusted for treatment line: rs = 

0.625 (P<.0001), RMSE=0.164], lung cancer PFS dataset [PDS adjusted only for molecular 

alteration status: rs = 0.427 (P<.0001), RMSE=0.161; PDS not adjusted for molecular alteration 

status: rs = 0.134 (P=.021), RMSE=0.201], melanoma PFS dataset [PDS adjusted only for tumor 

mutation burden: rs = 0.719 (P<.0001), RMSE=0.211; PDS not adjusted for tumor mutation 

burden: rs = 0.685 (P<.0001), RMSE=0.222] (Supporting Information Fig. S2).  

Predicting clinical outcome using machine learning  

The correlation coefficients (r) of our machine learning algorithm for the PFS and OS 

training sets were equal to 0.82 and 0.70 respectively. The Spearman correlations (rs) and RMSE 

values between predicted outcome (using random forest) and actual outcome (results from 

clinical arms across diseases) for all regimens used in the PFS and OS datasets were the 

following: the PFS dataset [rs = 0.879 (P<.0001), RMSE=0.101] and the OS dataset [rs = 0.878 

(P<.0001), RMSE=0.114] (Fig. 4).  



 
 

 We also used our random forest algorithm to predict the better outcome arm in 73 PFS 

and 52 OS randomized clinical trials (i.e., PFS and OS test sets) by comparing our predicted 

outcomes to the actual outcomes observed. The better outcome arm was predicted in 81% 

(59/73) of randomized trials in the PFS dataset, while the better outcome arm was predicted in 

71% (37/52) of randomized trials in the OS dataset. Statistical significance of these results was 

evaluated by the binomial probability test: PFS dataset [z = 5.24 (P<.0001)] and the OS dataset 

[z = 2.91 (P=.004)] (Fig. 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

DISCUSSION 

 Predicting clinical outcome can facilitate optimized drug selections in clinical trial 

design. In this study, we approached our prediction model using a combination of clinical trial, 

drug-related biomarker, and molecular profile information. We sequestered our data based on 

several attributes that were individually tested for their significance and then applied using a 

random forest algorithm to make predictions.  

The first step in creating our prediction model was validating and collecting molecular 

biomarkers for several drugs. For targeted agents, most biomarkers include direct and/or indirect 

molecular targets (e.g., erlotinib and its target EGFR).43 The literature reveals that biomarkers for 

cytotoxic chemotherapy agents are described by alterations that either upregulate transporters, 

increase phosphorylation, or enhance the metabolic rate of the agent.44–46 Using the concept of 

biomarkers as the foundation, we hypothesized that a variable termed as the "Probability of Drug 

Sensitivity" or PDS (equation (A)) can be used as one of the main attributes to predict clinical 

outcome. Principally, PDS provides a numerical metric evaluating how well drug regimens and 

their biomarkers match to the molecular signature of the disease.  

Overall, we show that PDS correlates with clinical outcome and is validated by data that 

includes numerous drug regimens across cancer types (Fig. 3). For example, in a randomized 

clinical trial (NCT0084464947) treating pancreatic ductal adenocarcinoma (PDAC), a 

combination of gemcitabine and albumin-bound paclitaxel demonstrated a longer PFS compared 

to the PFS of the standard-of-care gemcitabine alone (PFS = 5.5 versus 3.7 months respectively). 

The PDS for a drug regimen including gemcitabine and albumin-bound paclitaxel was equal to 

34% compared to 21% for gemcitabine alone (P<.001)48 – correctly predicting the better 

outcome result and further validated by other studies demonstrating the regimen’s efficacy.49–51   



 
 

Adjustment to the PDS calculation must be made in certain cases, especially for clinical 

trials that pre-select patients with specific molecular alterations. For example, a clinical trial 

aimed at lung cancer (NCT01609543) used erlotinib on EGFR mutation-bearing patients 

resulting in a PFS of 12.8 months, while another lung cancer trial (NCT01836133) used erlotinib 

on a random population (not pre-selected for alterations) and demonstrated a PFS of only 2.7 

months. If the PDS was calculated on a population of TCGA tumors without considering the 

molecular alteration status of the clinical trial, it would equal 30%. In contrast, calculating the 

PDS on a population of TCGA tumors that carry EGFR alterations (creating parity between the 

clinical trial and TCGA populations) increases the PDS to 86% (which accurately reflects the 

improved outcome observed between both trials). By adjusting PDS for the molecular alteration 

status for all regimens and showing the increase in correlation with outcome, we validate 

molecular alteration status as a strong variable of clinical prediction (see Supporting Information 

Fig. S2).   

Another variable tested for outcome prediction was the treatment line. We show that 

regimens administered as a first line of treatment had significantly improved outcome over 

regimens administered after the first line of treatment. This result may be unsurprising, as the 

majority of 2nd or more line of treatments are administered to patients whose initial treatments 

have failed and it is well known that PFS decreases with progressive lines of treatments.52 By 

adjusting our PDS calculation (equation (B); Methods) for regimens administered after the first 

line, we significantly improved our correlation between PDS and outcome (see Supporting 

Information Fig. S2).  

In this study, our prediction model is formulated using machine learning (ML), which has 

been shown to increase accuracy of predicting cancer mortality by 15-25% in multiple 



 
 

studies.14,53,54 Thus, we incorporated ML on a dataset consisting of the following attributes: 

treatment line, number of cytotoxic, small-molecule, and monoclonal antibody agents, cancer 

type, drug class, molecular alteration status of the clinical arm's population, PDS and outcome 

(PFS or OS). Overall, our ML algorithm excelled in predicting clinical outcomes across different 

cancer types, as the Spearman correlation (rs) between predicted and actual outcome was 0.878 

(P<.0001) and 0.879 (P<.0001) for the PFS and OS test sets respectively (Fig. 4). Additionally, 

our ML algorithm was able to predict the better outcome arm in the majority of randomized trials 

(PFS: 81% or 59/73 trials, P<.0001; OS: 71% or 37/52 trials, P=.004) (Fig. 5). This result is 

expected when analyzing the variables considered by the ML algorithm. For example, in this 

study, we verified that PDS alone is a significant variable for clinical prediction. However, our 

ML algorithm not only considers PDS but also additional important variables such as drug class. 

This is significant, as indicating the drug class for each drug in a regimen, our ML model 

considers potential drug-drug interactions.55–58  

Limitations  

 Although PDS is one of the significant variables in our ML model, other factors may 

need to be considered to further improve PDS as a predictor of outcome. For one, the list of 

biomarkers found in the literature is likely to be incomplete, as the molecular mechanisms of 

each drug are not always fully understood. Additionally, PDS assumes that all biomarkers are 

equally 'predictive' of outcome even if that is not always the case. Another variable affecting 

clinical outcome may be drug dosage; for many types of chemotherapy, dose intensity may be an 

important correlate of better outcome, although this may not always be the case for some 

targeted agents.59,60   



 
 

 Another limitation is that statistics performed on a population-based dataset is difficult to 

approximate as differences in age, sex, ethnicity, or histology diagnosis can all affect the efficacy 

of drug treatments.61 For example, many lung cancer trials included patients with mixed 

histology (with lung adenocarcinoma and squamous patients having very different survival 

rates).62 Note that because the treated population from the TCGA database (used to derive our 

PDS score) and the clinical trial database (used to provide the clinical outcome) are different, can 

result in a less accurate prediction of outcome. Additionally, exclusion/inclusion criteria of 

clinical trials do not always follow a standard methodology, making comparisons between 

different trials and classification of trials challenging (e.g., number of patients receiving first line 

versus more lines of treatments is not always clear). Lastly, our ML approach was based on 

publicly available databases, thereby limiting the scope of this study as access to greater amounts 

of data may influence the prediction ability of ML models.  Furthermore, in this context, a 

limitation of the work is that bulk data was used (because that type of data is publicly available 

whereas patient-level data is generally not available), and one cannot easily transfer from 

population-level to patient-level applications. 

Conclusion 

 We illustrate the need to integrate multiple disease features including biomarker-based 

variables (i.e., PDS) in evaluating the clinical benefits of drug selection (i.e., precision 

medicine). We also show that an ML algorithm that considers a combination of variables such as 

treatment line, molecular alteration status, drug class, and PDS (among others) can impact 

clinical predictions significantly. These methods may be useful to predict success of randomized 

clinical trials and optimize drug development strategies.  



 
 

 In future work, we find that providing a publicly available webserver that can display 

new findings to be manipulated by users according to their need (e.g., list of drugs and their 

molecular biomarkers, or a score of predicted clinical outcome based on a user-specified drug 

regiment) to be valuable. As shown in recent publications,63,64 delivering publicly accessible 

webservers can significantly enhance the impact of new findings or approaches, especially in 

regard to medicinal chemistry and data analysis.65  
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FIGURE LEGENDS 

 

Figure 1. Graphical representation of our overall design and methods of this study 

 

a) We collected data from three sources: molecular profiles from TCGA, clinical trials from 

ClinicalTrials.gov, and drug-biomarker information from literature.  

 

b) This data was entered into a table with the following attributes per intervention arm: treatment 

line (first or second or more), number of cytotoxic chemotherapies, number of small-molecule 

inhibitors, number of monoclonal antibodies, 1 column per drug class, disease, molecular 

alteration status of the clinical arm’s population, PDS (equation (A)), and outcome (PFS or OS, 

normalized from 0 - 1). Machine learning software was used to build our random forest decision 

algorithm using ~75% of our data (training set). Our algorithm was used to predict the outcome 

for the rest of the data (test set).  

 

This figure, along with Fig. S1, provide a graphical approach to our methods, which is useful for 

analyzing complication relationships as emphasized by a comprehensive review.66   

 

Abbreviations: OS = overall survival; PDS = probability of drug sensitivity; PFS = progression-

free survival; TCGA = the cancer genome atlas 

 

 

Figure 2. Representation of PFS or OS outcomes among different cancer types and 

treatment lines 

 

A total of 351 clinical trials with 1,102 PFS or OS outcomes were analyzed. The median PFS or 

OS outcomes for all clinical arms are shown by grey dots, the mean is represented by a black 

line, and the 95% confidence interval is represented by red bars (clinical trials were grouped 

based on treatment line and disease considered, and a mean outcome – PFS or OS – was 

calculated for each group). The outcome results for the PFS dataset (623 outcomes) are shown in 

graph a), while the outcome results for the OS dataset (479 outcomes) are shown in graph b). 

Overall, we demonstrate that drug regimens administered as a first line of treatment had better 

clinical outcome compared to regimens administered after the first line of treatment (confirmed 

by Welch’s t-test).  

 

Abbreviations: ALL = data from colorectal adenocarcinoma, pancreatic adenocarcinoma, 

melanoma and NSCLC combined; NSCLC = non-small cell lung cancer (adenocarcinoma, 

squamous cell carcinoma, or mixed); OS = overall survival; PFS = progression-free survival 

 

Figure 3. Correlation between probability of sensitivity (adjusted and not adjusted) and 

median outcome (PFS or OS) 

 

PDS was verified as an attribute of clinical prediction by calculating the Spearman correlation 

(rs) between PDS of drug regimens and median PFS or OS outcomes from clinical arms 

administering these regimens (randomized and non-randomized trials). The median PFS/OS was 

also averaged across clinical trials administering the same regimen. This was done for each 



 
 

cancer and outcome type separately: a) colorectal adenocarcinoma; b) melanoma; c) pancreatic 

adenocarcinoma; and d) NSCLC (adenocarcinoma, squamous cell carcinoma, or mixed). The 

blue line represents the PDS when not adjusted to treatment line, molecular alteration status, and 

TMB (see methods), and the red line represents the PDS when adjusted for these parameters. The 

green markers represent the median outcome (PFS or OS) in months for each regimen 

administered in the clinical arms. For every cancer and outcome type, the correlation between 

PDS and outcome increased when the PDS was adjusted for treatment line, molecular alteration 

status, and TMB. All datasets represented statistically significant correlations (P<.05) except for 

the lung OS dataset (graph d)) where PDS was not adjusted (rs=.019, P=.824, RMSE=0.195). 

The colorectal OS dataset (graph a)) where PDS was adjusted presented the highest correlation 

(rs=0.860, P<.0001, RMSE=0.134). 

 

Abbreviations: NSCLC = non-small cell lung cancer (adenocarcinoma, squamous cell 

carcinoma, or mixed); OS = overall survival; PDS = probability of drug sensitivity; PFS = 

progression-free survival; TMB = tumor mutation burden 

 

Figure 4. Correlation between predicted outcome using machine learning and actual 

outcome using the PFS and OS test sets 

 

We derived a machine learning algorithm (random forest) using 75% of our data composed of 

several attributes including treatment line (first or second or more), disease, number of cytotoxic 

chemotherapies, number of small-molecule inhibitors, number of monoclonal antibodies, drug 

class, molecular alteration status of the clinical arm’s treated population, PDS (equation (A) in 

the Methods), and outcome (PFS or OS, normalized from 0 - 1). The rest of the data (25%) was 

used as our test set (consisting of only randomized trials) where our algorithm predicted the 

outcome. This analysis was done for the PFS and OS datasets separately and both show similar 

and highly statistically significant results: a) The PFS test set was composed of 156 outcomes, 

and the Spearman correlation (rs) between predicted and actual outcome was equal to 0.879 

(P<.0001); b) The OS test set was composed of 110 outcomes, and the Spearman correlation (rs) 

between predicted and actual outcome was equal to 0.878 (P<.0001); The rs value was also 

provided for each cancer type separately and all datasets presented statistically significant results 

(P<.0001).  

 

Abbreviations: OS = overall survival; PDS = probability of drug sensitivity; PFS = progression-

free survival 

 

Figure 5. Predicting the better outcome arm in randomized trials  

 

a) Our PFS and OS test sets (see Figure 4) included 73 and 52 randomized clinical trials, 

respectively. We used our machine learning algorithm to predict the better outcome arm by 

comparing our predicted outcome to the actual outcome observed. For the PFS and OS test sets, 

we correctly predicted the better outcome arm in 81% (59/73) and 71% (37/52) of randomized 

trials respectively. To test if these predictions are better than flipping a coin, we used the 

binomial probability test (z-score) and obtained statistically significant results for both sets (PFS: 

P<.0001; OS: P=.004).  

 



 
 

b) An example of predicting the better clinical arm is provided for a randomized clinical trial 

(NCT00326599) treating lung cancer (adenocarcinoma or squamous cell carcinoma). In this trial, 

the experimental arm (using AZD2171 (cediranib), carboplatin, and gemcitabine) demonstrated a 

better PFS outcome compared to the comparator arm (using carboplatin and gemcitabine). 

Correspondingly, our prediction score was higher for the experimental arm than the comparator 

arm. 

 

Abbreviations: OS = overall survival; PFS = progression-free survival 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



Table 1. Summary of clinical trial and molecular data

Clinical trial collection summary* Total

Number of clinical trials 351

Number of patients 104,758

Number of PFS outcomes 623

Number of OS outcomes 479

Number of molecular profiles 939

Number of unique drugs considered 115

Number of unique biomarkers considered 208

Abbreviations:  OS = overall survival; PFS = progression-free survival

**Using cBioPortal, we downloaded the TCGA cohorts per disease and collected 

939 molecular profiles with genomic, transcriptomic, and proteomic information 

(colorectal adenocarcinoma: N=277, melanoma: N=169, pancreatic 

adenocarcinoma: N=129, lung adenocarcinoma: N=186, and lung squamous cell 

carcinoma: 178). All molecular profiles where sequenced from tumors with lymph 

nodes at the N1, N2, N3 locations or diagnosed with M1 cancer. In our study, 115 

unique drugs corresponding to 208 biomarkers where collected and validated in 

literature and FDA documentation

*A total of 351 clinical trials (colorectal adenocarcinoma: N = 94, melanoma: N = 

51, pancreatic adenocarcinoma: N=37, lung cancer: N=169) were retrieved from 

ClinicalTrials.gov that also met our selection criteria (see methods)

Molecular profile, biomarker, and drug 

collection summary** Total
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DNA-

dmg

Molecular 

alteration 

status
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Bevacizumab, 
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Pancreatic 

adenocarcinoma
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VEGFR-
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Erlotinib, 

Bevacizumab

Second 

or more

Colorectal 

adenocarcinoma
1 0 1 YES YES NO random 40% 0.8

Erlotinib, 
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First

Pancreatic 

adenocarcinoma
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1) Molecular profiles 2) Clinical trials with outcomes 3) Biomarker info from literature

Step 1 - Collect data from the following sources

Step 2 - Create a database for machine learning

X = overall probability of sensitivity

Y = probability of sensitivity in absence of resistance 

Machine learning 

(Random forest)

Training set: 

75% of data

Test set: 

25% of data

PDS = (X + Y)/2
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SUPPLEMENTARY FIGURE LEGENDS  

Figure S1: Example of calculating the PDS for capecitabine + ruxolitinib administered to a 

pancreatic adenocarcinoma population 

 

PDS is a percentage reflecting the status of genomic, transcriptomic, and proteomic biomarkers 

in the population of interest. Here, we show an example of calculating the PDS for a drug 

combination including capecitabine and ruxolitinib administered to a pancreatic adenocarcinoma 

population. The individual steps are the following: step 1) describe the biomarkers for 

capecitabine and ruxolitinib; steps 2-3) download molecular profiles from the pancreatic 

adenocarcinoma TCGA cohort (129 patients) and count the number of patients without 

biomarker alterations or biomarker alterations resistant to capecitabine and ruxolitinib (109 

patients), the number of patients with biomarker alterations only sensitive to this regimen (15 

patients), and the number of patients with biomarker alterations both sensitive and resistant to 

this regimen (5 patients); step 4) the PDS is calculated using equation (A).  

 

Abbreviations: OS = overall survival; PDS = probability of drug sensitivity; PFS = progression-

free survival; TCGA = the cancer genome atlas 

 

Figure S2: Adjusting PDS for line of treatment, molecular alteration status, and tumor 

mutation burden individually 

 

Three key variables were hypothesized to impact clinical outcome: line of treatment, molecular 

alteration status, and tumor mutation burden (TMB). We demonstrate the significance of these 

variables by their effect on the PDS calculation. These graphs show correlations between 

outcome (PFS or OS) and PDS (adjusted versus not adjusted). The blue diamonds represent data 

points for which PDS was not adjusted for the variable of interest. The green triangles represent 

regimens where PDS may be adjusted, and the red squares represent the results when PDS was 

adjusted. The Spearman correlation (rs) increased when adjusting PDS versus not adjusting PDS 

in every case.  

 

a) Equation (B) (see Methods) was used to adjust PDS for drug regimens administered in 

different lines of treatment. The colorectal adenocarcinoma (OS) dataset exemplifies the 

significance of this variable as this dataset contained the largest difference in outcome between 

first and second or more line of treatments.  

 

b) For clinical arms where the molecular alteration status is known (e.g., EGFR inhibitor to 

EGFR-positive patients), the PDS needs to be adjusted. This was done by calculating the PDS 

from a cohort of molecular profiles that also carry the alteration described by the clinical arm. To 

demonstrate the significance of this variable, we use the lung cancer PFS dataset as this dataset 

included the largest number of clinical arms (66) where the molecular alteration status was 

known.  

 

c) As patients with high TMB are sensitive to anti-PD-L1/PD-1 checkpoint immunotherapies, 

PDS needs to be adjusted to adequately reflect these cases. The melanoma PFS dataset is shown 

as patients with this cancer type typically present high TMB.  



 

Abbreviations: OS = overall survival; PDS = probability of drug sensitivity; PFS = progression-

free survival; TCGA = The Cancer Genome Atlas; TMB = tumor mutation burden 
 



Table S1: List of drugs used and their biomarkers
Drugs Drug-related Biomarkers*

dasatinib ABL1, ABL2, KIT, SRC

nab-paclitaxel SPARC, ERBB2, TUBB3 -, TLE3

mk2206 AKT1, AKT2, AKT3

linsitinib IGF1R, IGF1, IGF2, INSRR

everolimus FKBP1A, MTOR, RPTOR, TSC1, TSC2

capecitabine BIRC5, CA9, TYMP, TYMS -, DPYD -

oxaliplatin ATM -, BRCA1 -, BRCA2 -, ERCC1 -, ERCC2 -, ERCC6 -, FANCC -, PALB2 -, BRIP1 -, BAP1 -

cetuximab EGFR, TGFA, HBEGF, AREG, BTC, EPGN, KRAS -

irinotecan TOP1, APTX -, BRCA1 -

pembrolizumab CD274, PDCD1LG2, PDCD1

azacitidine DNMT1, DNMT3A, DNMT3B, TET1, TET2, TRDMT1

bevacizumab FLT1, KDR, PGF, VEGFA, VEGFB, VEGFC, FIGF, CA9

panitumumab EGFR, TGFA, HBEGF, AREG, BTC, EPGN, KRAS -

ganitumab IGF1R, IGF1, IGF2, INSRR

ruxolitinib JAK1, JAK2, JAK3, PTPRD, STAT3, FER, TYK2

regorafenib BRAF, FLT1, FLT4, KDR, KIT, PDGFRB, RAF1, RET

aflibercept FLT1, KDR, PGF, VEGFA, VEGFB, VEGFC, FIGF, VHL

cediranib KDR, KIT, FLT4, FLT1, PDGFRB, FGFR1, PDGFRA

tivozanib FLT1, FLT4, EPHB2, FLT3, PDGFRA, PDGFRB

vemurafenib SRMS, TNK2, BRAF, RAF1, MAP4K5

nintedanib FGFR2, FLT1, FLT3, FLT4, KDR, LCK

axitinib FLT1, FLT4, KDR, KIT, PDGFRA, PDGFRB, FLT3

olaparib ATM, ATR, BAP1, BARD1, BRCA1, BRCA2, BRIP1, CDK12, EMSY, ERCC1, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCL, PALB2, PARP1, PARP2

saracatinib SRC, LCK, YES1, EGFR, LYN, FYN, FGR, BLK, KRAS -

linifanib FLT1, CSF1R, KDR, FLT3, KIT, PDGFRB, VEGFB, VEGFA

afatinib EGFR, TGFA, HBEGF, AREG, BTC, EPGN, KRAS -

figitumumab IGF1R, IGF1, IGF2, INSRR

sunitinib CSF1R, FLT1, KIT, PDGFRB, CSF1R

conatumumab TNFRSF10B

vorinostat HDAC1, HDAC10, HDAC11, HDAC2, HDAC3, HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, HDAC9

celecoxib FAT1, SLIT2, PTGS2, COX20

pemetrexed DHFR, TYMP, TYMS -

floxuridine BIRC5, CA9, TYMP, TYMS -, DPYD -

gemcitabine SLC29A1, SLC29A2, DCK, FKBP5, SLC28A1, SLC28A3, RRM1 -, RRM2 -

necitumumab EGFR, TGFA, HBEGF, AREG, BTC, EPGN, KRAS -

ramucirumab FLT1, KDR, PGF, VEGFA, VEGFB, VEGFC, FIGF, VHL

sorafenib BRAF, FLT1, FLT4, RAF1

erlotinib EGFR, TGFA, HBEGF, AREG, BTC, EPGN, KRAS -

dalotuzumab IGF1R, IGF1, IGF2, INSRR

pertuzumab AREG, EGFR, ERBB2, ERBB3, ERBB4, MAPK1, KRAS -

talimogene ERBB2

ipilimumab CTLA4, CD80, CD86, CD28

dabrafenib BRAF, LYMK1, NEK1, RAF1, SIK1

temozolomide MGMT

dacarbazine MGMT

trametinib MAP2K1, MAP2K2, PTPN11, RAF1

nilotinib ABL1, ABL2, BCR, DDR1, KIT

selumetinib MAP2K1, MAP2K2, PTPN11, RAF1

genasense BCL2

carboplatin ATM -, BRCA1 -, BRCA2 -, ERCC1 -, ERCC2 -, ERCC6 -, FANCC -, PALB2 -, BRIP1 -, BAP1 -

vinblastine ?

cyclophosphamide ?

sylatron ?

ril-21 ?

pimasertib MAP2K1, MAP2K2, PTPN11, RAF1

dinaciclib CDK2, CDK5, CDK1, CDK9

gsk2132231a ?

nivolumab CD274, PDCD1LG2, PDCD1

cobimetinib MAP2K1, MAP2K2, PTPN11, RAF1

intetumumab ITGA1, ITGAV, ITGA3, ITGA6

lenvatinib FGFR2, FGFR4, FLT1, FLT4, KDR, PDGFRB, RET

temsirolimus FKBP1A, MTOR, RPTOR, TSC1, TSC2

evofosfamide ?

etanercept TNF

imexon NR2E3, RRM1, RRM2

vismodegib SMO, PTCH1, PTCH2, SHH, DISP1, GLI1

ro4929097 HES1

sta-9090 HSP90AA1

alvocidib CDK1, CDK2, CDK4, CDK6, CDK9

docetaxel SPARC, ERBB2, TUBB3 -

anti-CD40 CD40, CD40LG, TRAF1, TRAF2, TRAF5, TRAF6

apricoxib COX20, APC, CTNNB1

ixabepilone TUBB3

cixutumumab IGF1R, IGF1, IGF2, INSRR

ispinesib KSP

tanespimycin HSP90AA1

imatinib HMGCLL1

tivantinib MET, HGF

atezolizumab CD274, PDCD1LG2, PDCD1

bexarotene RXRA

dexamethasone IL6, IL8, CCL2

vinorelbine ERBB2, EGFR, ALK

vandetanib EGFR, KDR, LCK, LYN, PTK6, RET, TEK

gefitinib EGFR, TGFA, HBEGF, AREG, BTC, EPGN, KRAS -

topotecan TOP1, APTX -, BRCA1 -

fosbretabulin ?

zibotentan ESR1, ERAL1, EDNRA, EDN1, EDN2

dacomitinib EGFR, TGFA, HBEGF, AREG, BTC, EPGN, KRAS -

volasertib PLK1, PDK1, MYC

pazopanib CSF1R, FLT1, FLT4, ITK, KDR, LCK

olaratumab PDGFC, PDGFD, PDGFRA

cbp501 ?

seribantumab AREG, EGFR, ERBB3, KRAS -

icotinib EGFR, TGFA, HBEGF, AREG, BTC, EPGN, KRAS -

eribulin TLE3 -



crizotinib ALK, HGF, MET, MST1R, ROS1

rilotumumab MET, HGF

buparlisib PIK3CA, PIK3CB, PIK3CG

cabazitaxel SPARC, ERBB2, TUBB3 -

veliparib ATM, ATR, BAP1, BARD1, BRCA1, BRCA2, BRIP1, CDK12, EMSY, ERCC1, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCL, PALB2, PARP1, PARP2

carbozantinib AXL, FLT1, FLT3, FLT4, KDR, KIT, MET, NTRK2, RET, TEK

ganetespib HSP90AA1

osimertinib EGFR, TGFA, HBEGF, AREG, BTC, EPGN, KRAS -

neratinib EGFR, TGFA, HBEGF, AREG, BTC, EPGN, KRAS -

ro5424802 ALK, HGF, MET, MST1R, ROS1

pg-csf ?

abp 215 FLT1, KDR, PGF, VEGFA, VEGFB, VEGFC, FIGF, CA9

brigatinib ALK, HGF, MET, MST1R, ROS1

alectinib ALK, HGF, MET, MST1R, ROS1

rabusertib CHK1, CHK2

trastuzumab EGFR, TGFA, HBEGF, AREG, BTC, EPGN, KRAS -

patritumab AREG, EGFR, ERBB3, KRAS -

luminespib HSP90AA1

ceritinib ALK, HGF, MET, MST1R, ROS1

ganetespib HSP90AA1

*Note, that while we obtained this list of biomarkers to the best of our knowledge using the literature, this list may be incomplete (we used a '?' for drugs were the drug-related biomarkers could not be determined)

Overall, 115 unique drugs were used as either single-agents or in combination in our datasets and corresponded to 208 biomarkers that were individually validated in literature. Biomarkers were defined as an aberration altering 

either: 1) a direct target of the drug; 2) an indirect target of the drug; or 3) the metabolic mechanism of the drug. Some biomarkers were denoted by '-', which indicates that a 'negative' alteration (under expression or deep-

deletion mutation) increased drug sensitivity. All other biomarkers increased drug sensitivity from 'positive' alterations (over expression or amplification mutations). 
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Figure S1. Example of calculating the PDS for capecitabine + ruxolitinib administered to a pancreatic adenocarcinoma population
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Adjusting PDS only for tumor mutation burden (TMB) (PFS- Melanoma dataset)

Spearman (rs), RMSE: 

PDS not adjusted, rs = 0.685 (P<.0001), RMSE=0.222

PDS adjusted, rs =  0.719 (P<.0001), RMSE=0.222

c)

Adjusting PDS only for mutation status (PFS- Lung cancer dataset)

Adjusting PDS only for line of treatment (OS- Colorectal dataset)

Spearman (rs), RMSE:

PDS not adjusted, rs = 0.134 (P=.021), RMSE=0.201

PDS adjusted, rs = 0.427 (P<.0001), RMSE=0.161

Spearman (rs), RMSE:

PDS not adjusted, rs = 0.625 (P<.0001), RMSE=0.164

PDS adjusted, rs = 0.761 (P<.0001), RMSE=0.154


