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Modelling the Complex Ecological Dynamics of Kelp Forests

Abstract

Empirical and theoretical evidence have shown us that ecological systems present a variety of

different complex dynamics such as alternative stable states, chaotic dynamics, or long transient

dynamics. One of these ecosystems with complex dynamics is the rocky reefs in temperate coastal

waters. These rocky reefs exhibit different alternative stable states, of which the kelp forest and

urchin barrens are the most studied. Kelp forests generally are highly productive and diverse

ecosystems, whereas urchin barrens generally are not. This has made the question of how to

manage these ecosystems to preserve current kelp forests an important one. Furthermore, we can

use mathematical models to provide important and relevant information for management. In my

dissertation, I use mathematical models to explore the complex dynamics that could arise in the

kelp forest ecosystem. I focus most of my work on the question of when can kelp spread (i.e. have a

positive growth rate at low population densities). I start my dissertation studying how ecosystem

engineers’ (of which kelp populations are an example) interaction with their environment affect

their spread capabilities. Then I explore the possibility of the alternative stable states we observe

in rocky reefs are long transients, in which kelp spread would always be feasible in a multi-decadal

time scale. Finally, I use a spatially explicit model to explore the question of, when kelp is able

to spread in the short time scale, what management strategies can enhance the rate at which it

spreads.
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CHAPTER 1

Introduction

Natural ecosystems are complex dynamical systems. A wide range of complex dynamics have

been observed in nature, ranging from predictable oscillations [13] to completely unpredictable

chaos [59], including more nuanced dynamics such as alternative stable states and hysteresis (de-

pendence of the system on previous states) [10], and long transients, which resemble attractors

for long ecological timescales [57]. In a changing world where ecosystems are being altered by

human impacts, understanding what complex dynamics may appear in these ecosystems is crucial

to predict the specific impacts of different types of human activities. This includes for example

economic activities such as harvesting [122] and ecotourism [17], how ecosystems are impacted by

anthropogenic climate change [16], and conservation and restoration [42].

Mathematical models are an useful tool to understand these complex dynamics through dy-

namical systems theory. Even more, complex dynamics can arise on simple models that can be

tractably analyzed through dynamical systems theory. This has been clasically exemplified with

the logistic map, which phenomenologically models a single population with non-overlapping gen-

erations and, with a single equation, can produce chaotic dynamics [94]. More modern models may

include more complexity and realism, which may make them not analytically tractable. However,

thanks to the modern increased computational power, numerical analysis and statistics allow us to

get a better understanding of the complex dynamics arising in these models without the need to

analyze them by hand. This has expanded our capabilities of using models to better understand

ecological dynamics, and thus make a more robust ecological theory [95].

In this dissertation I focus my work on mathematical models to study the kelp forest ecosys-

tem. Kelp forests are ecosystems created by populations of kelp species and found in many of

the rocky reefs of the temperate coastlines of the world [142]. Kelp populations are an example

of an ecosystem engineer, which directly modify the availability of resources in the ecosystem by

changing the physical properties of some of the biotic and abiotic factors in the system [67]. In the
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case of kelp forests, kelp not only provides an energy source for herbivores, it also reduces the light

availability of the coastal seabed, which provides shelter to many organisms. This generally fosters

highly productive and species-rich communities, which provide direct economical and cultural value

to human populations living near the coasts with kelp forests [136], as well as the potential to be

a blue carbon sink in some parts of the world to absorb human emissions [75].

Kelp forests have become in recent years an important ecosystem to study for conservation

and restoration purposes, as some areas of the world have seen important declines in kelp forest

density [76]. Temperate rocky reefs present several population regimes which in practice act as

alternative stable states. The most well-researched regimes are the kelp forests and the urchin

barrens, which are dominated by populations of urchins overgrazing on available kelp [87]. These

regime shifts from kelp forest to urchin barrens are one of the main causes of kelp decline. Even

more, this bistability behavior makes management more difficult, as ignoring the complexity of the

hysteresis present in the ecosystem may make any management decisions futile [66].

Mathematical models allow us to explore questions such as what determines the hysteresis of

the system, or which of a given list of ecological interactions has a bigger impact on determining

kelp spread (positive growth rate at low population densities). The answers to these questions can

then be useful information to make decisions of restoration management.

In Chapter 2 (published in 2020 in the Bulletin of Mathematical Biology) I study more generally

the dynamics of ecosystem engineers (of which kelp forests are an example). I use a single-species

two-patch model to explore under which conditions an ecosystem engineer is able to spread in a

patch if there is an established population in the other patch. Using classical stability theory, I find

that for low dispersal rates, alternative stable states arise. In these alternative stable states, the

population may or may not spread to the other patch depending on the initial population density

in the established population.

In Chapter 3 (published in 2022 in the Bulletin of Mathematical Biology) I explore another

possible explanation to the alternative stable states point of view of the kelp forest-urchin barren

regimes. I use a discrete-time two-species model to study the possibility of these regimes being long

transients of multi-decadal oscillations. I identify several long transients present in the model and
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use perturbation theory to give analytical approximations of how long some of these long transients

are.

In Chapter 4 (currently Under Review in Ecological Applications) I provide management-

relevant information for kelp forest restoration using a mathematical model. I use a two-species

integrodifference equation model to study how fast can kelp forest spread in the short term in a

one-dimensional coastline. Using this model I find that kelp spread is not possible for high enough

urchin densities. When kelp spread is possible, I also find that focusing management efforts in the

shorter-term enhances how fast kelp spreads more than distributing the management efforts over a

more prolonged period of time.
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CHAPTER 2

Spatial dynamics and spread of ecosystem engineers: Two patch

analysis

2.1. Introduction

At a community scale, nontrophic interactions between organisms and their environment are

important factors to consider when understanding biodiversity and ecosystem functions present

in these environments [49]. However, mathematical models usually focus on biotic interactions,

and do not account for the former [58], which are only implicitly considered in the parameters of

the model. The concept of ecosystem engineers, introduced by [67], presents certain populations

as having nontrophic interactions that significantly modify the ecosystem structure. Thus, when

modelling populations of ecosystem engineers, this type of interactions should be addressed.

Previous models have considered this relationship between ecosystem engineers and their en-

vironment before [27, 28, 45, 51, 147]. However, the question of what conditions allow for the

spread of an ecosystem engineer and what the spatial distribution is on a fine scale have not been

thoroughly explored. This is an important question as some of these organisms have invaded exotic

ecosystems [69], or play an important role in enhancing biodiversity in their habitat range [22]. [45]

looked at a spatial model of ecosystem engineers, but focused on the role that dispersal has on lo-

cal dynamics. However, this analysis does not consider how other factors play a role in spatial

dynamics.

The results from [28] show that, in the case of obligate engineers, their interaction with the

environment induces a delayed Allee effect, where small population densities may not able to modify

the environment at a rate enough to sustain its population. In a spatial context, Allee effects

can produce a limitation of the range in which the population can be found, an effect known as

”pinning” [73]. If the nontrophic interactions are ignored, this pinning effect can be overcome by an

increase in population densities [73] or an increase in dispersal rate [65]. For obligate engineers we
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have to consider these nontrophic interactions. What effect does the environmental modifications

have on the ability of an obligate engineer to spread?

The engineering effects of ecosystem engineers are not always strictly local in space, which

makes the effects of nontrophic interactions different from an Allee effect [58]. Species that accrete

sediment and raise the ”height” of the habitat, such as Spartina alterniflora cordgrass would raise

the height of the habitat at some distance away from the organism. Flow modifiers in aquatic

habitats, such as the zebra mussel Dreissena polymorpha would modify flow over some distance.

Species that affect the fire regime also would have an effect at some distance away from the en-

gineering organism. How does this nonlocal effect of engineering contribute to spatial dynamics?

What are the similarities and differences from a system with a standard Allee effect?

In this paper we explore these questions of interaction between the spatial scale of engineering

and organism movement by developing a two-patch spatial model that considers not only the disper-

sal of the population, but also how the environmental engineering effect spreads. This model is the

simplest spatial extension of the nonspatial model that considers both of these spatial phenomena.

We then analyze these two spatial factors and the local engineering effect to further understand

how these factors play a role in the spread of ecosystem engineers.

This paper is divided as follows. In Section 2 we will present the two-patch spatial model of

ecosystem engineers that we use to understand this aforementioned interaction. In Section 3, we

analyze this model, trying to reveal what are the minimum conditions that allow the population of

ecosystem engineers to spread. This will be done based on the ideas presented in [84]. Finally, in

Section 4 we discuss the results and their limitations, and provide future ideas of research.

2.2. Model

The model presented in this article is an extension of the model presented in [28] to two patches

connected by dispersal of the organism and spread of the engineering effect. We first describe the

original model with a small change in the nondimensionalization, which is more useful for the

resulting two patch model. We begin with the dimensional form of the one patch model. Denote

the population of the ecosystem engineers as Ñ . The engineering species alters a characteristic
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of the environment Ẽ, which has a value of 0 in absence of the engineering. The growth of the

engineering population and its effect on the environment are described by the equation:

dÑ

dt̃
= ((a0 + a1Ẽ)− (b0 + b1Ẽ)Ñ)Ñ

dẼ

dt̃
= −cẼ + fÑ

(2.1)

where a0, a1, b0, b1, c, f are parameters described in Table 2.1. It is important to mention that

the parameter a0 can be either positive or negative. We will say that the population is an obligate

engineer if a0 < 0 and a non-obligate engineer if a0 > 0.

Table 2.1. Parameters of equation 2.1.

Parameter Description

a0 Environment independent growth rate of population N
a1 Environment dependent growth rate of population N
b0 Environment independent death rate of population N
b1 Environment dependent death rate of population N
c Environment recovery rate from the engineering effect
f Environment transformation rate from the engineering effect

In [28], the analysis uses a particular non-dimensionalization. Here we consider a different one.

If we let Ẽ = (|a0|/a1)E, Ñ = (|a0|c/(a1f))N, γ = b0c/(a1f), δ = b1c|a0|/(a21f), ε = c/|a0|, t̃ =

t/|a0|, we transform the previous equation to:

dN

dt
= (sgn(a0) + E − (γ + δE)N)N

dE

dt
= ε(N − E).

(2.2)

This nondimensionalization has a parameter ε interacting with both N and E, which will let

us simplify the analysis of the spatial model. Using this nondimensionalization, we will consider a

corresponding two patch model of the system.

Assume that the population is separated into n patches, with varying conditions. Suppose that

dispersal between patch i and patch j has a base rate µi,j . In addition, suppose that the engineering

effect of the population in patch j has an indirect effect over the environmental variable in patch i
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given by ηi,j . Then, in a similar way to other models such as those presented in [65,84,120], the

engineering population and its effect on the environment in patch i are described by the equations:

dNi

dt
= (sgn(a0,i) + Ei − (γi + δiEi)Ni)Ni +

∑
j

µi,j(Nj −Ni)

dEi

dt
= εi(Ni − Ei) +

∑
j

ηi,jNj .

(2.3)

In general we will assume that sgn(a0,i) is the same value σ for all i (the population is either

obligate engineer or non-obligate engineer in all patches at the same time) and ηi,j = ηj,i > 0 (the

spread of the environmental modification from one patch to another is symmetric and the flow

goes from a patch with more environmental modification to another with a smaller environmental

modification).

Throughout the rest of this paper we will consider the case with two patches with the same

underlying dynamics, in which the dispersal of the population and the spread of the environment

modification are not influenced by the environment (i.e µi,j = µ and ηi,j = η for any i, j). Notice

that this assumption also considers the patches are identical in size, in addition to its suitability [20].

Based on these assumptions, the model we will analyze is written as follows:

dN1

dt
= (σ + E1 − (γ + δE1)N1)N1 + µ(N2 −N1)

dE1

dt
= ε(N1 − E1) + ηN2

dN2

dt
= (σ + E2 − (γ + δE2)N2)N2 + µ(N1 −N2)

dE2

dt
= ε(N2 − E2) + ηN1.

(2.4)

[28] showed that for σ = 1, the system behaves in a similar manner to the classical logistic

growth, and in σ = −1 the dynamics resemble an Allee effect with delay. In the next section we

will focus on the spatial dynamics of the case with σ = −1, with an emphasis on its issues of

spread. In order to do this, we analyze the behavior of the System 2.4 through stability analysis

of the equilibria where N2 > 0 if our initial conditions have N1 > 0, N2 = 0. This analysis will
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be done by varying the parameters of interest ε, µ, and η, where the first represents the relation

between the local engineering effect of the population and the ability of the environment to recover,

and the latter two comprise the organismal dispersal and engineering effect spread . However,

any analytical formulation of these equilibria is either intractable or not biologically insightful. To

overcome this, we will do the analysis numerically using MATLAB.

2.3. Results

In this section we do an analysis of System 2.4 to further understand the spatial dynamics of

obligate engineers. In this case, the nonspatial model implies obligate engineers present delayed

Allee effects, depending on their ability to modify their environment at a fast enough rate to make it

suitable for survival. We compare and contrast these results with those presented in [65], where the

Allee effect is considered without nontrophic interactions. In this case, the ability of a population to

spread depends not only on its dispersal rate, but also the strength of the Allee effect the population

displays.

2.3.1. Stability analysis. To understand how can a population of ecosystem engineers dis-

perse into an uninhabited patch, we will consider the possible stable equilibria of System 2.4. In

equilibrium, we get the following relation between population densities. For i ̸= j:

(2.5)
(
µ+

η

ε
N∗

i − η

ε
δN∗2

i

)
N∗

j =
(
1 + µ− (1− γ)N∗

i + δN∗2
i

)
N∗

i .

If we numerically solve this relation by varying the parameters µ and η at the same rate, we

get a bifurcation diagram for N1 depicted in Figure 2.1. Notice that Figure 2.1 is split into two

different parts, corresponding to the equilibria near carrying capacity (a) and those near extinction

(b). Notice that the top equilibria in Figure 2.1(b) correspond to the Allee threshold identified

by [28]. Therefore, we would expect the System to behave as a spatial Allee effect with a delay.

Notice as well that a saddle-node bifurcation occurs at some value µc. Although this bifurcation

seems to have a codimension bigger than one, as two bifurcations of N1 occur for the same value

of µ, this is in fact a saddle-node bifurcation, as can be seen in Figure 2.2, where the codimension

of the stable manifold around the saddle node bifurcation is 1. This saddle node bifurcation and
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the symmetric relation of Equation 2.5 gives us a similar result to that of [84]. For small values of

the dispersal parameter µ, we get nine different equilibria, as shown in Figure 2.3. As µ increases,

the equilibria outside of the line N1 = N2 collapse into one of the three equilibria inside the line.

This implies that for big values of µ, we expect that at equilibrium the only possible scenario is

N∗
1 ≈ N∗

2 .

Now that we know the asymptotic behavior of System 2.4, how does this bifurcation point µc

vary as we change the other parameters of interest ε and η? In Figure 2.4, we freely change ε,

and change η as a factor of µ. Notice that as the ratio of η/µ increases, the value of µc decreases.

This makes sense as the implicit effect of the population at one patch makes the other a more

suitable environment, which makes spread easier. With respect to ε, as it increases, the value of

µc increases as well. Notice that ε increases as the environment recovery rate c increases, or the

population becomes less dependent on the engineering effect (|a0| decreases). As the environment

recovery rate c increases, the population will need to disperse faster from a suitable patch in order

to provide enough density to make an unmodified patch suitable for living. The fact that as the

dependence on the engineering effect decreases, the population needs to disperse faster in order to

spread seems a contradictory result. However, notice that as |a0| decreases, then so do Ñ and Ẽ,

which implies that the resulting population will also be smaller, and thus less able to engineer a

suitable habitat.

2.3.2. Fate of the system in the context of invasive species. Given that for small

dispersal rates µ we can find conditions under which spread cannot occur from an established

patch, the next question we can consider is under what conditions is the population able to spread?

This can be answered from a context of invasive species, more specifically we will consider the

ecosystem engineer as a ”swamper” invader, introduced in [104]. This type of invader succeeds by

having a high initial population density as it enters the novel environment. We can consider this

type of invader by increasing the initial condition of N1, as we keep the initial conditions of N2

and E2 equal to zero (an unmodified, uninhabited patch). For the initial condition of E1, we will

consider two scenarios: An initial invasion to an unmodified patch (E1 = 0), and an initial invasion

to a suitable patch (E1 at a positive equilibrium, which for the given parameter choices correspond

to E1 ≈ 38.7).
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Figure 2.1. Projection of the bifurcation diagram of System 2.4 as we vary µ
and η over N1. The other parameters are γ = 0.2, δ = 0.02, ε = 0.11, η = µ.
This bifurcation diagram has two important regions, (a) the values near carrying
capacity, and (b) the values near extinction. Notice the saddle node bifurcation at
a certain value µc.
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Figure 2.2. Dimension of the stable manifold for the equilibria of N1 in System
2.4 as we vary µ and η. The other parameters are γ = 0.2, δ = 0.02, ε = 0.11, η = µ.
This bifurcation diagram has two important regions, (a) the values near carrying
capacity, and (b) the values near extinction.
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Figure 2.3. Possible equilibrium values for small dispersal parameter µ in the
N1-N2 axes, where the blue points represent stable equilibria, and the red points
represent unstable equilibria. The 0 corresponds to the extinction equilibrium, the
K corresponds to carrying capacity equilibrium and the A corresponds to the Allee
threshold.

For the scenario of an unmodified patch, Figure 2.5 shows that below the critical parameter µc,

an increase in initial population density may only lead to a sustained population in a single patch.

Notice that after 100 time steps in Figure 2.6, although we are above the bifurcation parameter, it

is hard to distinguish the final value of N2 from that of Figure 2.5. In this case, although the model

will eventually spread to the second patch, the system could be passing through a ghost attractor

(introduced by [57], where demographic stochasticity could make the spread to the second patch

unfeasible.

One way to overcome this could be to increase the initial population density. In Figure 2.7

we explore what is the minimum population required in order to have N2(100) > 10, where 10

is roughly 25% of the carrying capacity value, as we vary freely ε and µ, and vary η as a factor

12



Figure 2.4. Values of µc for different values of ε and η as a factor of µ. In these
cases, γ = 0.2 and δ = 0.02.

of µ. We limit the numerical exploration to N1(0) ≤ 106, as we consider any population size 4

orders of magnitude higher than carrying capacity would be unfeasible. Figure 2.7 suggests that

there is some threshold in ε and µ below which the initial population density required to ensure

spread becomes orders of magnitude higher than carrying capacity, which suggests spread can be

potentially unfeasible.

If we perform the same analysis on an initial invasion to a suitable patch (the case E1 ≈ E∗
1),

we find that for ε, µ above certain threshold values similar to those found in Figure 2.7, spread into

the second patch is possible for small values of N1(0). This suggests that a better environment

in the first patch facilitates the population to grow faster, and thus being able to spread with a

smaller population density. In addition, this result further reinforces the idea that there exists some

threshold of small parameters under which spread is not possible, as spread was not feasible even

in a facilitated environment.
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Figure 2.5. Solutions for N1 and N2 of System 2.4 with parameters γ = 0.2,
δ = 0.02, ε = 0.06, µ = 0.0009, and η = 0.0010 with initial population N1(0) = 244
(top) and N1(0) = 245 (bottom). In both scenarios we consider E1(0) = E2(0) = 0.
In this case, µc ≈ 0.00091.

2.4. Discussion

Our analysis of the spatial extension to the model has shown that the key features of the

non-spatial model still hold when considering two patches, while also presenting some interesting

results by itself. Asymptotically, the system still behaves similar to a system with a delayed Allee

effect at the local scale. However, it presents key differences to the spatial extension to the Allee

effect model (see [65]). First, there is no clear differentiation between weak, strong, and fatal Allee

effects, as the fate of the population depends not only on the initial population density, but also on

the suitability of the environment in the invaded patch. This implies that, as we see in Figure 2.7

for a high enough population density it is possible (while potentially unfeasible) to have a rescue

effect [3] that allows the spread from one patch to the other. How high enough of a population will

depend on how fast is the engineer population able to modify their environment.
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Figure 2.6. Solutions for N1 and N2 of System 2.4 with parameters γ = 0.2,
δ = 0.02, ε = 0.06, µ = 0.0010, and η = 0.0010 with initial population N1(0) = 244
(top) and N1(0) = 245 (bottom). In both scenarios we consider E1(0) = E2(0) = 0.
In this case, µc ≈ 0.00091.

This lack of distinction between the strength of the Allee effect also relates to the other key

difference, which is the fact that there is a threshold in the dispersal parameter µ, where over this

threshold, the rescue effect will occur as long as the initial patch survives, whereas below it, there

may not be a rescue effect at all. Since the Allee effect is delayed, dispersal has to occur fast enough

in order for the population to survive before the effect occurs in the population.

These results stand under the assumption that the relative emmigration and immigration rates

for the populations are equal on both patches. One way for these rates to differ is that patches have

different sizes, which may cause a bigger relative emmigration rate for a smaller patch, or a smaller

relative immigration rate for a bigger patch [20]. In this case, a bigger patch would require a bigger

immigration rate to persist, as the environment would require a bigger modification in order to be

suitable for the population. In contrast, a smaller patch would need a smaller modification rate.

This could also be further explored by considering environmental dependences on the dispersal
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Figure 2.7. Minimum initial population density for N1 (in log scale) required to
ensure the population of N2 is sustainable for high values of µ, where the grey areas
represent a value higher than 106 (potentially ∞). In this simulation we consider
E1(0) = E2(0) = 0 and take γ = 0.2, δ = 0.02, and (a) η = 10µ, (b) η = µ, and (c)
η = 0.1µ.

rate, where a better environment might make the local populations emmigrate less, or a worse

environment make them emmigrate more.
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Another key insight provided in this analysis is the advantage in spreading a population which

has a stronger environmental modification at a regional scale. As the order of magnitude of this

regional effect increases, the population requirements to spread become less intense. Examples

of engineering effects that can be easily spread are modifications in fire regimes [137] or changes

in community structure due to water filtration [69]. This study suggests that species performing

this type of modification to their environment would be better spreaders in equal conditions to

ecosystem engineers doing harder to spread modifications.

Our approach to the analysis has presented several issues. First, a spatial extension with n

patches will require 2n equations, which as we have seen here, is not analytically tractable for

any n > 1, which restricts the insights from the analysis to a subset of numerical parameters.

Following on that, the other issue this model presents is that the non-dimensionalization used

to analyze it does not allow many of the parameters to be easily interpreted or scaled. Here

we focus our interpretation on the parameter ε as it represents an useful trade-off between the

speed of environmental recovery and the trade-off between dependence on the engineering effect

and real population density. However, the numerical scale of these nondimensional parameters

in reality is not clear. Our work shows that this scale is important, as the values where the

populations may experience a ”pinning” effect are only a small portion of our explored parameter

space. Understanding the real scale of these parameters would require a further fit to an appropiate

dataset.

Some examples of obligate engineers where understanding spatial spread would be of manage-

ment interest are the mud shrimp [148], the European bee-eater [22], and the Sphagnum moss [105].

Increasing the range of these populations can have an important effect in terms of ecosystem func-

tion, such as changes in microbial community structure in the seabed, or increased productivity of

peatland ecosystems. In the case that the dispersal rate of these populations is low, facilitating

their engineering effect by slowing down the recovery of the environment (decreasing ε) would re-

duce the required dispersal rate to ensure the rescue effects that allow spread. If the dispersal rate

is high, spread is significantly simpler, and would be ensured as long as the population is able to

persist in the initial patch from which it’s spreading.
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In terms of species reintroduction, Figure 2.7 shows that this would require an intense popula-

tion density to be initially introduced in order to ensure spread, in some cases significantly higher

than the final carrying capacity of the population. This can be overcome by slowing down the

recovery of the environment. This initial population density required might be smaller in the case

that the receiving patch is smaller, as the environmental modification would need to be smaller in

order to sustain a smaller population in a smaller patch.

Another possible management strategy that would facilitate spread of the population of interest

is to artificially engineer the environment before reintroducing the population, which would signif-

icantly decrease the initial density required to ensure spread when possible. It is also important to

remember that, as presented in Figure 2.6, long transients could arise and have to be accounted for

in management decisions. These long transients could be avoided by increasing the initial density

introduced. Another possibility to reduce these long transients is by modifying the size of the patch.

This could cause an increase between the distance of the relative dispersal rate and the bifurcation

value, which would reduce the time of the transient [99]. However, whether it would be required to

increase or reduce the patch size to achieve this goal is not clear from this work, and would require

further analysis of the system.

Overall, the analysis presented in this manuscript has shown that in the case of obligate engi-

neers, in order to understand the spread dynamics of the population, the spread dynamics of the

nontrophic interactions is an important factor to consider and analyze. This idea can be further

explored by considering the case in which space is a continuum, which would allow further spatial

questions to be understood, such as critical patch size. Other ideas that are not explored in this pa-

per but are important to consider are what are the differences in the dynamics when the population

is a nonobligate engineer (σ = 1 in our model), or if these results hold when considering a discrete

time system, where the engineering effect can be spread from one patch to the other. Understand-

ing these ideas would provide a clearer picture of the importance of nontrophic interactions in the

spread of natural populations.
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CHAPTER 3

Characterizing long transients in consumer-resource systems with

group defense and discrete reproductive pulses

3.1. Introduction

One of the goals of mathematical modelling of ecological systems is to understand the fate or

long term dynamics of such system. The main method to study such fate has been through the

analysis of the attractors in a model [62]. Recent years have seen an increase in the interest of

understanding non-attractor dynamics (hereafter transients) of the models, especially those that

resemble an attractor for a long period of time (hereafter long transients) [57]. Long transients

have gained recognition as a theoretical tool to better describe population dynamics by allowing

the study of dynamics that occur in a more biologically relevant timeframe [99]. In addition, an

understanding of long transients can inform conservation and natural resource management goals.

For example, identifying that a positively-valued long-term behavior observed in nature is actually

a long transient and what causes it can guide management to prolong it [44].

Long transients often appear in the presence of a “small” (close to zero) parameter in the

model [99]. One of the main challenges of identifying long transients is identifying such a small

parameter, which may be a function of the biologically reasonable parameters, and thus may not

be easily interpretable. For example, in ghost attractors, this small parameter is the difference

between a bifurcation parameter and its bifurcation value [99]. While varying the parameter past

such bifurcation leads to the destruction of an attractor, small differences the transient dynamics

will resemble the attractor. In crawl-by attractors, the small parameter is determined by the degree

to which the trajectory of the system is parallel to the stable manifold of a saddle node equilibrium

at a given time [99]. In this case the system will behave similarly to such a stable manifold for a

prolonged period of time before the unstable part of the trajectory leads to a change in the system

behavior.
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One behavior that has been demonstrated to lead to long transients in consumer-resource

systems is group defense [135]. Group defense is a behavior where a resource population reduces

the risk of individuals being predated by protecting each other. This behavior occurs in diverse

animal taxa, which produce early-warning signals to detect predators, as is the case of colonial

spiders [132], birds, [117], and mammals [37]. This behavior also occurs in producers such as kelp,

where high densities of kelp lead to an increase in predators of kelp grazers, which induces cryptic

behavior on such grazers and thus reduces grazing intensity [70].

Group defense transients might also depend on lags in population growth caused by discrete

reproductive pulses. In some taxa that exhibit group defense, adult stages of the population may

reproduce in discrete, seasonal pulses, such as is the case of kelp [70] or bees [71]. This can provide

individuals to a population decades after stressful events which cause population declines, such as

competitive exclusion of pioneer species in tropical rain forests [30], or extreme weather events in

phytoplankton [41].

In this paper we characterize the long transients in a consumer-resource with both group de-

fense and reproductive pulses. We first construct the model that describes a consumer-resource

interaction where the resource exhibits group defense and has discrete reproductive pulses. Then,

to illustrate the long transients present in this model, we identify a small parameter that describes

each of the transients (crawl-by and ghost attractor), and we use this parameter to calculate the

time the system remains in this long transient (hereafter transient time). Finding approximations

for these parameters and transient times provides biological insight into how these long transients

may arise in natural systems with the modelled dynamics. We conclude this paper with a discussion

of these results and their biological implications.

3.2. Model

In this section we construct a consumer-resource model with group defense and discrete repro-

ductive pulses. We previously explored a spatial, non-smooth version of this model to understand

spread of kelp being grazed by urchins [7]. We consider the dynamics of adult consumer P and

adult resource N densities through time. Adults of population i = P,N experience a natural mor-

tality at a rate di. In addition, consider that consumers consume resource following a unimodal
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Type IV Holling functional response that represents group defense with a decline in consumption

at high resource densties [5]. We let γN be the attack rate of the consumer, and the maximum

per-capita resource consumption occurs when N = 1
σN

.

Reproduction and recruitment of juvenile stages occur at discrete points in time. We model this

recruitment as a impulsive differential equation. Let t = m be the periods at which the offspring

recruit to the population. The number of consumer recruits is proportional to the amount of

resource consumed at time t = m with proportionality constant γP . Resource produce a per-capita

numberR of recruits. We assume thatR > 1−exp(−dN ) in order to have a self-replenishing resource

in the absence of consumers. For predation, a fraction of those offspring survive consumption with

a probability following an exponential distribution with mean 1
γS
. Resource offspring also survive

intracompetition from adults with carrying capacity proportional to 1
β .

Then, given P−
m+1 as the density of consumers before the pulse and P+

m+1 its density after the

pulse (with analogous notation for resource, N−
m+1 and N+

m+1), the dynamics of the adult consumer

and resource populations satisfy the following system of impulsive differential equations:

dP

dt
= −dPP,

dN

dt
= − γNPN

1 + σNN2
− dNN,

P+
m+1 = P−

m+1 + γP
P−
m+1N

−
m+1

1 + σNN−2
m+1

,

N+
m+1 = N−

m+1 +R
exp

(
−γSP

−
m+1

)
1 + βN−

m+1

N−
m+1.

(3.1)

We next transform Model 3.1 into a discrete-time model. We can rewrite the continuous part

of the Model 3.1 as

1

P

dP

dt
= −dP ,

1

N

dN

dt
= − γNP

1 + σNN2
− dN .

(3.2)

Following the derivation of [29], we discretize the System 3.2 as
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Pm+1 = Pm exp(−dP ),

Nm+1 = Nm exp(−dN ) exp

(
−γN exp(−dP )Pm

1 + σNN2
m

)
.

(3.3)

By taking δP = exp(−dP ), δN = exp(−dN ) and using P−
m+1 = Pm and N−

m+1 = Nm as described

in System 3.1, we arrive the following discrete-time model:

Pm+1 = δPPm + γP
PmNm

1 + σNN2
m

,

Nm+1 = δNNm exp

(
− γNδPPm

1 + σNN2
m

)
+R

exp (−γSPm)

1 + βNm
Nm.

(3.4)

To simplify our analysis, we will study a nondimensional version of the model. For each m,

let pm = γSPm, nm = βNm. Then, if γp = γP /β, γn = γNδP /γS , σ = σN/β2, our nondimensional

version of the model is

pm+1 = δppm + γp
pmnm

1 + σn2
m

,

nm+1 = δnnm exp

(
− γnpm
1 + σn2

m

)
+Rnm

exp (−pm)

1 + nm
.

(3.5)

Note that we have also changed the indices of δi and ki in order to preserve clarity.

3.3. Analysis and Results

In this section we characterize the dynamics of Model 3.5 and its potential for long tran-

sient dynamics. We identify two different classes of long transients, a crawl-by transient around

the extinction of resource and another around the carrying capacity of the resource, and a ghost

consumer-resource cycle. To illustrate the transients identified and test the accuracy of our ana-

lytical approximations, we also characterize all transients numerically by iterating the logarithm

of Model 3.5 in Julia, where the used, fixed parameters and initial conditions are specified as

relevant to each analysis below. Based on preliminary numerical simulations in double-precision
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floating-point numbers, we find that iterating the logarithm of Model 3.5 instead of the original

model prevents numerical instabilities potentially occurring at long-transients near zero by reduc-

ing the range of the derivative near zero. The source code for these simulations can be found in

https://github.com/jarroyoe/characterizing-transients.

We analytically derive approximations for the transient time of the crawl-by transients using

perturbation theory, while we numerically analyse the ghost attractor transient time by regressing

the transient time using a power law, which we describe further in Section 3.b.

Before we characterize these long transients, we first analyze the equilibria of the model. This

model has up to four biologically relevant fixed points: a resource-only carrying capacity equilibrium

(0, n∗), an unstable extinction equilibrium (0, 0), and two possible unstable coexistence saddle

equilibria (p∨∧, n∨∧). We assume that the carrying capacity of resource is greater than the density

at which consumption growth is its highest, i.e. n∗ > 1/
√
σ, such that group defense is relevant

to resource populations below carrying capacity. Under this condition, the equilibria (0, n∗) and

(p∧, n∧) go through a transcritical bifurcation at

(3.6) γ∗p = (1− δp)
1 + σn∗2

n∗ .

In this case, the equilibria (0, n∗) is stable for γp < γ∗p and unstable for γp > γ∗p , and the

equilibrium (p∧, n∧) is unstable for γp < γ∗p and is not in the first quadrant (i.e. R2
+) for γp > γ∗p .

See Appendix A for the expressions of these equilibria and their stability. This analysis allows us

to better understand the nature of the transients we have identified.

3.3.1. Crawl-by transients. Although the coextinction equilibrium is a saddle in the n-

direction (which implies that n will stay above 0), System 3.5 can resemble a system where the

resource is extinct for a long period of time when consumer density is high (Figure 1). This is an

example of a long crawl-by transient. We determine how prevalent this behavior is in the following

Theorem, proven in Appendix B.

Theorem 3.3.1. Let ε ≪ 1. If p0 is of order ε−1 and n0 of order 1, then System 3.5 goes

through a crawl-by transient at the extinction of resource n = 0. Recovery of resource will begin
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Figure 3.1. Time series in logarithmic scale of a) consumers pm and b) resource
nm following System 3.5 for 200 time steps (m). In this figure, p0 = 10, n0 = 1, δp =
0.9, γp = 1, σ = 2.67, δn = 0.8, γn = 1, R = 2.

after a time of approximately

(3.7) M = O

(
log(ε)

log(δp)

)
.
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Figure 3.2. Observed resource recovery time (circles) and estimated recovery time
using Equation 3.7 (solid line) in System 3.5 as a function of initial consumer density
p0. In this figure, δp = 0.9, γp = 1, σ = 2.67, δn = 0.8, γn = 1, R = 2.

In figure 2 we show that Equation 3.7 is a reasonably close estimator of the observed point of

recovery, especially for large values of the initial consumer density p0, where the consumer density

is an order of magnitude higher than the initial resource density n0. We will show in the following

theorem that the long term dynamics seen in Figure 1 did not depend on the initial conditions of

the model.

Theorem 3.3.2. System 3.5 has a compact, connected global attractor in the first quadrant

M = {(p, n) ∈ R2 : p ≥ 0, n ≥ 0}.

See Appendix C for the proof of this theorem. Theorem 3.3.2 implies that, when γp < γ∗p ,

System 3.5 will go towards carrying capacity of resource and extinction of consumers. On the

other hand, when γp > γ∗p , there are no stable fixed points in the first quadrant. Thus, Theorem

3.3.2 implies the existence of a nonlinear attractor, which we can describe based on numerical

observations, as seen in Figure 3.

When γp > γ∗p , the resource population is able to reach a maximum density of carrying capacity

and stay there for a prolonged period of time (Figure 3). However, after the consumer reaches a
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Figure 3.3. Time series of consumers pm (a and c) and resource nm (b and d)
following System 3.5 for 5000 time steps (m). In this figure, p0 = 10, n0 = 1, δp =
0.9, σ = 2.67, δn = 0.8, γn = 1, R = 2, and the consumer conversion intensity γp = 3
(a and b) and γp = 8 (c and d).

high enough density, the resource population collapses and passes through a transient extinction

phase. This cycle repeats itself through time, but at each repetition, the amplitude of consumer

density varies. We hypothetize that this variation in amplitude is caused by the system having

a long periodicity. In addition, increasing γp increases the period between each oscillation. This

is consistent with the implication from Theorem 3.3.1 that a higher consumer density causes the

resource to stay around the extinction equilibrium for a longer period of time.

Figure 3 also shows that the system can stay around the resource-only equilibrium for a pro-

longed time. We approximate this time in the following Theorem, proven in Appendix D.

Theorem 3.3.3. Let γp > γ∗p , where γ∗p is defined by Equation 3.6 and let

(3.8) λ1 = δp + γp
n∗

1 + σn∗2 .
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Figure 3.4. Observed escape time of consumer extinction (circles) and estimated
recovery time using Equation 3.9 (solid line) in System 3.5 as a function of initial
consumer density p0. In this figure, δp = 0.9, γp = 8, σ = 2.67, δn = 0.8, γn = 1, R =
2.

Then, if (p0, n0) = (ε, n∗ − ε) for 0 < ε ≪ 1, System 3.5 goes a crawl-by transient at the

resource-only equilibrium n = n∗. resource will start decaying after a time of approximately

(3.9) M = O

(
log
(
1
ε

)
log(λ1)

)
.

In figure 4 we show that this expression is a reasonably close approximation of the time it takes

for the consumer to escape extinction across a wide range of orders of magnitude for the initial

consumer density.

3.3.2. Ghost attractors. Theorem 3.3.2 ensures that, when γp < γ∗p , System 3.5 will con-

verge to the stable equilibrium (0, n∗). However, when γ∗p − γp ≪ 1, this convergence can take a

significantly longer time, as can be seen in Figure 5. Before the system reaches the equilibrium,

the dynamics resemble pseudo-oscillations similar to those observed in Figure 3 when γp > γ∗p .
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Figure 3.5. Time series of a) consumers pm and b) resource nm following System
3.5 for 10000 time steps. In this figure we consider p0 = 0.99p∨, n0 = 1.01n∨, δp =
0.9, γp = 0.9912γ∗p , σ = 2.67, δn = 0.8, γn = 1, R = 2. Although we know that the
system will converge to the equilibrium point, this convergence takes over 5000 time
steps.
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Figure 3.6. Approximation of transient time (τ) following Equation 3.10, where
ε = γ∗p − γp. In this figure, p0 = 10, n0 = 1, δp = 0.9, σ = 2.67, δn = 0.8, γn = 1, R =
2.

Given limitations of available analytical tools for exact derivation of limit cycles in discrete-time

models, we approximate the time spent in the ghost attractor τ by considering a power law for the

time spent in a limit cycle [98]:

(3.10) τ(γp) = A(γ∗p − γp)
−B.

Whenever nM > n∧ and pM < p∧, System 3.5 shows that nk+1 > nk and pk+1 < pk for all

k > M . Therefore, we identify the time the system escapes the ghost attractor as τ = min{M :

nM > n∧, pM < p∧}. Figure 6 shows that this approximation using the power law provides a

reasonable approximation.

3.4. Discussion

In this work we have identified two types of long transients, crawl-by transients and ghost

attractors, that can appear in a consumer-resource system with group defense with discrete re-

productive pulses. Our long-term dynamics are qualitatively different from those found in [29],
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where they identified a variety of bifurcations and chaotic dynamics. The key differences between

the two models are that, while that of [29] models reproduction as a continuous process and inte-

grates the density-dependent growth for a case with overcompensation in discrete time, our model

considers reproduction as a discrete event and has a saturating density-dependent function. The

model in [29] is a discrete-time model similar to the Ricker model, where increased reproduction

rates lead to unstable dynamics [116]. When modelling reproduction as a discrete process with

saturating (Beverton-Holt style) density dependence rather than overcompensation, our analysis

did not suggest that increased reproduction numbers leads to instabilities in our model.

In addition, discrete reproduction events are one of the main reasons we see the long transients

analyzed in this model. The crawl-by transient observed at high consumer densities (Theorem

3.3.1) is caused by a sudden crash in the adults of the resource population, which is followed

by a slow crash of the consumer population due to its inability to find enough resource for self-

replacement. Although the adult resource population is almost nonexistent, the few remaining

individuals eventually lead to an increase the resource population when the consumer population

becomes small enough.

The other reason long transients appear in this model is due to the self-replacement of consumers

depending on the ability of resource to defend themselves. The Type IV Holling functional response

produces a bifurcation on the proportionality constant γp at the value γ∗p given by Equation 3.6.

This constant can be associated with the conversion capability of consumers, i.e. the amount of

energy invested in reproduction activities. When the conversion capability of consumers is too small

(γp < γ∗p), group defense of resource will prevent self-replacement of consumers at high resource

densities, which will lead to collapse of consumers. When this conversion capability is high enough,

self-replacement can be satisfied, and the consumer-resource cycles of Figure 3 will occur. These

cycles and their condition for existence resemble those found in other models where a mechanism

of group defense of resource is considered [2,134,135].

In the case where the system presents consumer-resource cycles, the resource-dominated phase

will include a crawl-by transient when the conversion capability is close to this bifurcation value

(Theorem 3.3.3). This will follow by a crash of the resource population, where the consumer-

dominated phase appears and presents the crawl-by transient previously described. This behavior
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presents an alternative perspective to the concept of alternate stable states [10], where the different

“alternative stable states” constitute long transients, which may resemble stable states during a long

period of time, which then transition into the other phase and stay in a different long transient. In

reality, stochasticity may render this juvenile survival when rare impossible or accelerate consumer

death, which may lead the model to a stable state in a shorter period of time [113].

When the conversion capability of consumers is smaller than the critical value γ∗p but close to

it, these quasiperiodic orbits do not disappear completely and stay as ghost attractors. This ghost

attractor stays until the resource density surpasses a given threshold (the equilibrium value n∧) and

the system enters the basin of attraction of the resource-only equilibrium. The emergence of this

ghost attractor is caused by group defense, because in its absence (σ = 0), the unstable equilibria

that cause the quasiperiodic orbits (p∨∧, n∨∧) do not exist. In their absence, resource population

density will consistently increase and the consumer density decrease.

The estimation of the transient time of the ghost attractor shows one of the limitations of our

analysis, as the theory to study limit cycles in discrete-time systems is not developed enough to pre-

cisely analyze the transient time of this ghost attractor. Given the seasonality of the reproduction

and recruitment for many organisms [6,19,119,138], a continuous-time model may not properly

reflect the biological dynamics we are interested in. Despite this challenge, the expression for the

transient time found for transient limit cycles in continuous-time systems in [98] is a reasonably

accurate fit in our model. The transient times of the ghost attractor found in our work are similar

to those found in the predator-prey model with group defense of [135]. However, our biological

mechanisms differ, as their transients could be attributed to search time of prey from the predators

through space, a feature not explicitly modelled in our work. In contrast, the length of the ghost

attractor in our model can be attributed to the length of the crawl-by transients that are part of

the cycle itself, which are periods of low population growth for either the consumer or the resource.

In conclusion, we show how long transients can appear in predator-prey systems with group

defense and discrete recruitment pulses. A possible extension of this model is to explicitly consider

the dynamics of the juvenile stages through a continuous-time model, which could give a more

accurate approximation of the transient times found in this paper. A multi-stage model would also
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allow exploration of the effect of relative adult versus juvenile vulnerability to consumption on the

transient dynamics.
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CHAPTER 4

How far to build it before they come? Analyzing the use of the

Field of Dreams hypothesis to bull kelp restoration

4.1. Introduction

One of the main challenges in restoration ecology is understanding the intensity and extent of the

efforts required to achieve restoration goals [15]. The idea that partial restoration might be effetive

is embodied in the Field of Dreams hypothesis [107], which postulates that setting up favorable

conditions for restoration at the beginning of the project can be enough to promote the natural

processes that will lead to a successful restoration effort. Partial restoration has been successful in

cases such as short-term habitat enhancement through a one-time coral reef transplantation, which

then enhanced a longer-term natural recovery of coral [96], or reintroduction of former native species

in degraded systems, which leads to increases in species richness in the community [114]. However,

partial restoration may not always be effective at achieving management goals. In some cases the

resulting community may not be desirable due to a lower diversity than the target community

[146], or stochasticity may bring similar ecosystems to completely different states, making further

restoration efforts necessary if one of the states is undesirable [131].

These examples raise the question of under what conditions engaging in partial restoration

efforts and then relying on natural processes for ecosystem recovery can achieve restoration goals.

This question can be explored in terms of partial restoration efforts occurring at three different

scales [1,143]. First, considering the spatial scale, partial restoration depends on the extent of the

restoration effort that will then lead to natural recovery of the rest of the region through spread.

Second, considering the temporal scale, partial restoration arises from performing restoration efforts

at a short-term timeframe and longer term recovery following from natural dynamics. Third,

considering the ecological scale, partial restoration arises from targeting a species or component of

the community (e.g. reintroducing a foundational or early successional species, or removing a pest
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species), and then recovery of additional species in the community occurs naturally (e.g. through

succession). Existing evaluations of partial restoration have explored different scales. For example,

[127] tested the ecological scale of restoration in terms of whether restoring dune vegetation could

lead to the natural recovery of beach mice. They found that beach mice occupied restored habitats

almost as frequently as natural habitats. In addition, a meta-analysis by [72] of seagrass restoration

found that as the spatial scale increases, the likelihood of restoration success increases as well.

Therefore, different aspects of partial restoration might vary in their efficacy, and a next step

in understanding the efficacy of a Field of Dreams approach is to comprehensively evaluate the

interaction between all three scales of partial restoration: spatial, temporal, and ecological.

Resolving the effect of these different scales on restoration success is particularly relevant to

systems with the potential for alternative stable states and threshold dynamics. If an ecological

system exhibits multiple stable states for a single set of environmental conditions, disturbance

can lead to a shift in the system to an undesirable state or ecosystem function with impeded

recovery [10]. In this case, the unstable threshold represents a target restoration must cross for

recovery to occur [128]. In the context of the Field of Dreams hypothesis, such a threshold can

provide specific partial restoration goals that have to be fulfilled before natural recovery is possible.

While the potential for alternative stable states has been identified across terrestrial [64,110] and

marine [24,101,123] systems (further reviewed in [42]), establishing whether such states represent

prohibited versus slowed recovery is difficult to resolve empirically given challenges over resolving

community outcomes at large temporal and spatial scales [109].

A system that exemplifies these multi-faceted components of partial restoration is temperate

rocky reefs. Temperate rocky reefs have experienced kelp declines and associated increases in kelp-

grazing urchins in several parts of the world [76], including southern Australia [81] and northern

California [118], motivating novel restoration initiatives [100]. In addition, temperate rocky reefs

can exsit in kelp forest or urchin barren states, which might represent alterantive stable states

depending on an array of nonlinear feedbacks [87]. For example, urchins typically subsist off

of kelp blades that detach from extant kelp and drift into the seafloor (“drift kelp”), such that

grazing does not cause kelp mortality, especially when predator presence induces cryptic urchin

behavior [55]. However, at low kelp densities, which might arise from environmental disturbances
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such as heat stress, low nutrients, or storms [11], urchin starvation and low predator density can

lead to more active kelp grazing, which further increases kelp mortality [55]. In this sense, outcomes

in kelp forests likely arise from a mix of bottom-up and top-down processes [50,70,97]. Urchins

in urchin-dominated barrens can go dormant for prolonged periods of time and at high densities

that limit the capacity for kelp to settle. This has lead restoration efforts to focus on urchin

removal [83,140]. However, the spatial and temporal extent of urchin removal necessary for kelp

recovery is uncertain, and several strategies that extend the ecological scale of restoration, such

as kelp reseeding (introducing kelp seeds or juvenile stipes) and outplanting (planting mature kelp

stipes), are under exploration [40,100].

For example, the Sonoma and Mendocino County coastlines of northern California experienced

a 95% decline in bull kelp (Nereocystis luetkeana) forest coverage [97]. These declines occurred

due to multiple factors including anomalously warm seawater temperatures between 2014-2016 and

nutrient-poor water, that stress kelp and increase purple urchin (Strongylocentrotus purpuratus)

recruitment [97,118], and the local extinction of the sunflower sea star (Pycnopodia helianthoides),

the main natural predator of urchins in this region, due to the sea star wasting disease outbreak

in 2013 [56]. This decline in kelp coverage has led to the starvation of other herbivores, which

has resulted in the closure of the recreational red abalone (Haliotis rufescens) fishery and the

decline of the commercial red sea urchin (Mesocentrotus franciscanus) fishery [118]. This economic

impact has accentuated the demand to restore the kelp forest ecosystems in this region. Proposed

restoration strategies include urchin removal, kelp reseeding, and outplanting [61]. The novelty of

these restoration efforts provides high uncertainty on what impact might they have and how they

will influence the spatiotemporal patterns of purple urchin density.

In this paper, we use a dynamical population model to explore how the spatial, temporal,

and ecological scales of restoration extent influence restoration efficacy in the context of bull kelp

restoration in the northern California temperate rocky reefs. To do this, we analyze two metrics

for restoration efficacy: the threshold urchin density for natural kelp recovery and the rate of kelp

recovery. We evaluate the spatial scale by exploring how varying the portion of the intervened

coastline by restoration influences these metrics. We explore the temporal scale by applying the

intervention either just at the beginning of the restoration project or through continuous efforts.
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Finally, we explore the ecological scale by analyzing how reintroducing kelp or reducing urchin

density, separately and in combination, influences these metrics.

4.2. Methods

4.2.1. Model overview. In this subsection we present an overview of the model we use to

describe the spread dynamics of kelp, and in the following subsection we provide a mathematical

formulation of the model. This model follows the distribution of kelp and urchin populations

through survival, reproduction, and dispersal over a one-dimensional coastline (Figure 4.1).

At each time step the adults survive with a given probability. We assume that urchin survival

is density independent. Kelp survival depends on the grazing intensity by urchins, which depends

on both urchin and kelp density. Direct grazing intensity is unimodal with kelp, at first increasing

with resource availability and then decreasing at high kelp densities, as might occur due to a switch

from active grazing to passive subsistence off of drift kelp [55]. Adult kelp produces spores at a

constant per capita amount, whereas urchins larvae production depends on kelp grazing and drift

kelp consumption. Spores and larvae then disperse through the coastline and a fraction of them

settle and become adults. In line with observations of urchin adult movement on the scale of a few

meters [36], kelp seeds and zoospore movement on the scale of tens of meters [32], and urchin larval

movement on the scale of kilometers [80], we assume that adult urchin movement is significantly

smaller than dispersal of the kelp and urchin juvenile stages, and thus neglect any adult urchin

movement.

We vary the amount of urchin removal, kelp reseeding, and kelp reintroduction over a range of

spatial and temporal extents. We focus on these interventions, and do not include predator rein-

troduction as well, for two reasons. First, research into the feasibility of seastar reintroduction as

a restoration intervention for our focal system of the California north coast is still in development

and at the stage of lab tests (J. Hodin, personal communication), while urchin removal is under-

way [139] and kelp reseeding and reintroduction are undergoing field tests (B. Hughes, personal

communication). Therefore, this focus centers our analysis on established and ongoing management

approaches and decisions. Second, an open question under current investigation for the feasibility

of predator reintroduction is whether or not predators require non-barren urchins (i.e. urchins
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Figure 4.1. Overview of the dynamics of the model with the respective functional
forms of the spore dispersal and grazing intensity. At each time step, a proportion of
adults of each species dies off and recruits are produced and dispersed. The grazing
interaction affects the spore production of urchins and kelp mortality. Diagram
images thanks to Janes Thomas, IAN Image Library (https://ian.umces.edu/
imagelibrary/)

in recovered kelp stands with enough kelp consumption to support gonad production) in order to

consume and gain nutritional value from predation and therefore be viable after reintroduction (J.

Hodin, personal communication). If so, then the interventions modeled here might be necessary

first steps that precede any predator reintroduction, where our questions of the roles of different

aspects of reintroduction scales can inform the efficacy of different approaches to these necessary

first steps.

4.2.2. Model. Our model combines the ecological dynamics of [70] with the spatial dynamics

of [68]. We consider populations of kelp and urchins cohabit in a one-dimensional coastline Ω. Our

model follows kelp (At(x)) and urchins (Ut(x)) through time t and space x. At each time step and

for each species i (i = A for kelp and i = U for urchins), the adults survive to the next step following

the function Pi(At(x), Ut(x)) and adults produce recruits according to a function Ri(At(x), Ut(x)).
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The recruit survive to the next step following a function Si(At(x), Ut(x)) and disperse from their

source following a kernel ki in an integrodifference equation framework. Combining these dynamics,

the populations for algae and kelp at the next time step follow:

At+1(x) =PA(At(x), Ut(x)) + SA(At(x), Ut(x))

∫
Ω
kA(x, y)RA(At(y), Ut(y))dy

Ut+1(x) =PU (At(x), Ut(x)) + SU (At(x), Ut(x))

∫
Ω
kU (x, y)RU (At(y), Ut(y))dy.

(4.1)

Adult kelp has a natural survival probability in absence of urchin grazing given by δA, which

implies a mean lifespan of 1/δA. In addition, kelp survival depends on urchin grazing, which

we model as a Holling’s “Type IV” functional response G(At(x), Ut(x)). This functional response

phenomenologically represents a behavioral shift from active to passive grazing with increasing kelp

and can lead to two alternate stable states: a kelp-dominated state (kelp forest) and an urchin-

dominated state (urchin barren) [70], which occurs under our parameterization (Appendix E).

Urchins graze kelp holdfast with a base attack intensity γA. Given a maximum grazing consumption

at At(x) =
1√
σA

, adult kelp survival is:

(4.2) PA(At(x), Ut(x)) = δAAt(x)max (1− γAG(At(x), Ut(x)), 0)

(4.3) G(At(x), Ut(x)) =
Ut(x)At(x)

1 + σAAt(x)2
.

We assume that kelp produces a constant per capita number of sporesR, which givesRA(At(y), Ut(y)) =

RAt(y). Kelp spore survival and recruitment depends on two factors: the probability of spores

settlement and urchin predation. Settlement is density-dependent with a saturating, Beverton-

Holt-type function given the maximum kelp population at a given location x of 1
β . In addition, we

assume that urchins graze recently settled kelp stipes before they can grow to a mature sporophyte

with a per capita probability γS . Then, the survival of kelp spores is

(4.4) SA(At(x), Ut(x)) =
max (1− γSUt(x), 0)

1 + βAt(x)
.
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Urchin survival occurs with a constant probability δU , which gives us PU (At(x), Ut(x)) =

δUUt(x). Urchin larval production arises from two sources. First, urchins gain energy through

direct grazing, proportional to Equation 4.3 with a proportion constant γU [103]. Second, urchins

gain energy for larval production through drift kelp consumption at a constant proportion ε of the

kelp available at each location x. Both γU and ϵ encapuslate conversion of energy gained from kelp

consumption into larval production and survival such that SU (At(x), Ut(x)) = 1. Combining both

sources of energetic gain, the total urchin larval production is

(4.5) RU (At(y), Ut(y)) = γUG(At(y), Ut(y)) + εAt(y)Ut(y).

Finally, we model both dispersal kernels as Laplace kernels with mean dispersal distance for

each species i 1/ai given by the equation [88]:

(4.6) ki(x, y) =
ai
2
exp (−ai|x− y|) .

Note that, with constant and homogeneous kelp natural mortality δA, kelp spore production

R, and urchin production γU and ε, we focus on kelp-urchin interactions and ignore the role of

seasonal and variable environmental conditions in driving kelp and urchin dynamics. We make

this simplifying assumption because of our focus on restoration decisions concerning the choice

of urchin removal and kelp reintroduction interventions at different spatial extents and temporal

scales. Informing the additional (and important) restoration decisions of optimal location and

timing of restoration interventions, not under consideration here, would require model extensions

that account for spatially heterogeneous and temporally stochastic environmental drivers such as

nutrients, light, and wave disturbance that can influence kelp dynamics [50, 70], as well as the

stochasticity and seasonality of urchin reproduction [23,106].

4.2.3. Parameter estimation. We fit the model without interventions to kelp and urchin

distribution data in the Sonoma-Mendocino coast. We compile yearly kelp coverage data from the

dataset of [97] with the yearly urchin data of Reef Check [111]. We estimate all parameters except
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Figure 4.2. Kelp (green dots) and urchin (purple dots) data available for 2007-
2008 in the Sonoma and Mendocino counties of California. Notice the highlighted
regions, circled in blue, where urchin data is available. These regions correspond to
Little River (top circle) and Timber Cove (bottom circle). Notice the purple dot in
the middle of the map corresponds to a single spatial point, which makes our spatial
analysis unfeasible.

β using the 2007 and 2008 data (Figure 4.2). We identify two regions with available urchin data,

which correspond to the coasts of Little River and Timber Cove.

We estimate the parameters using the Approximate Bayesian Computation (ABC) method,

implemented using the EasyABC package in R [63]. In order to reduce estimation errors due to

possible parameters correlations, we will implement the ABC algorithm with Metropolis-Hastings

sampling, implemented in the EasyABC package as the Marjoram method and described in [141].
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Using the ABC algorithm, we start our simulations taking the initial conditions A0(x), U0(x)

being the distribution for each of the regions at the 2007 measurement. We initialize our ABC

algorithm with uniform prior distributions for each of the parameters in the range presented in

Table 4.1. We then run the model for a sampled combination of parameters for a year (where each

time step t corresponds to 1 month) and compare the obtained kelp distribution A12(x) with the

distribution at the 2008 measurement. We compare these distributions through using RMSE as

our summary function. In other words, if A12(x) is the 2008 distribution in the given region, we

find combinations of parameters that minimize:

RMSE =

(∫
Ω
(A(x)−A12(x))

2dx

)1/2

.

While this approach ignores the seasonal nature of kelp and urchin recruitment as well as kelp

mortality from winter storms [38,126], in the absence of monthly data that would allow model-

fitting to seasonal processes, it does capture the year-to-year dynamics that match the time scale

of the data.

To estimate the β parameter that inversely determines the kelp recruitment saturation level, we

perform a linear regression at each point in space in the kelp distributions from 2004 to 2009 and

fit it to a Beverton-Holt model [12]. This procedure allows us to make use of the higher availability

of kelp data, and reduce the number of parameters our ABC procedure has to estimate. We then

use the distribution of maximum densities as our distribution for 1
β .

4.2.4. Control strategies and model analysis. To explore what control strategies promote

the spread of kelp, we follow the restoration focus of the Sonoma-Mendocino Bull Kelp Recovery

Plan [61]. This Recovery Plan focuses in implementing several restoration strategies near kelp

“oases”, i.e. patches of extant kelp, to try to enhance kelp expansion to nearby regions. We

explore three restoration strategies around these oases: urchin removal, kelp re-seeding, and kelp

outplanting.

We initialize our simulation with initial condition of kelp A0(x) be 0 everywhere except at a

starting oasis of length L, in which we start with kelp at an initial kelp density A0; the urchins

initial density is U0 throughout the coastlines Ω. To identify target restoration locations as kelp
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density (and therefore the location of oases) changes through time, at each time step t, we define

the region where restoration efforts are applied as the set of all locations centered around x with

length η where the kelp density surpasses a critical density Ac. This gives us a function δt(x) to

indicated the presence or absence of restoration actions given by

(4.7) δ(x) =


1 if

∫ x+η/2
x−η/2 At(y)dy ≥ Ac,

0 otherwise.

Multiplying implementation presence δt(x) by the control intensity of urchin removal µU , kelp

seeding µS , or kelp outplanting µA, provides the terms for modifying the survival probability of

adult urchins, spore production of kelp, and survival probability, respectively, when implementing

restoration, yielding

(4.8) PU (Ut(x)) = γU (1− µUδ(x))Ut(x),

(4.9) RA(At(x)) = R(1 + µSδ(x))At(x),

(4.10) PA(At(x), Ut(x)) = δAAt(x)

(
1 + µAδ(x)− γAUt(x)

At(x)

1 + σAAt(x)2

)
.

We explore the temporal scale of restoration through two scenarios: first we implement a short

time scale restoration effort by varying the initial densities A0 and U0 and setting long-term control

µi = 0 for function i = U, S,A. This corresponds to the case in which partial restoration efforts are

performed at the start of the project, and then natural processes (e.g. succession) might eventually

achieve restoration goals. Second, we implement a long time scale restoration effort where the

initial kelp and urchin densities A0 and U0 are fixed, and we vary the restoration effort intensity µi.

For these simulations, we set the initial kelp density A0 = 1/β within the oasis (and zero elsewhere)

and initial urchin density U0 to 95% of the threshold value that the system must cross for kelp

recovery. Then, for ongoing restoration intervention, we explore a range of intensities in terms of a

percentage increase in urchin mortality (urchin removal), kelp spores (seed outplanting), and adult
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kelp (kelp outplanting). In each case we explore weak (10%), moderate (40%), and strong (70%)

intensities.

In both temporal scale scenarios, we explore the effect of different spatial scales. For the short

time scale scenario, we explore the spatial scale of restoration by varying the length of the initial

oasis L. In the long time scale scenario, we explore the spatial scale of restoration by varying the

size of the region with a control effort η. Finally, we explore the ecological scale of restoration

by comparing scenarios with only a single control strategy or a combination of strategies (urchin

removal, kelp re-seeding, or kelp outplanting) at varying intensities.

We evaluate these scenarios using two metrics. Our first metric is the maximum initial urchin

density at which kelp can spread (hereafter the urchin threshold), which represents the restoration

effort necessary for eventual recovery to take place. The second metric is the kelp recovery rate

(hereafter spread rate). To calculate the spread rate, we run the system for 12 time steps (months)

and, at each time step, calculate spread extent as the distance from the starting point x = 0 to

the point x where there is a significant amount of kelp coverage is more than 1% of kelp coverage.

We then calculate the spread rate as the slope of the linear regression of spread extent versus time.

We choose months as our time scale to explore the dynamics of our system through the span of

a single year, which allows us to see the short-term effect of the different restoration strategies,

while also accounting for the annual nature of bull kelp, where factors not modelled, such as storm

disturbance, might further affect kelp survival at the end of our time horizon.

In order to quantify the relative effect of different processes and management levers on the

urchin threshold and spread rate, we perform a global sensitivity analysis of all parameters in the

model, based on the procedure by [54]. We first sample 2000 combinations of parameters from the

posterior distributions obtained from the parameter estimations and calculate the urchin thresholds

and spread rates for each combination. We then construct a random forest using the R package

randomForest [85], with the parameters of our model as predictors and the urchin threshold or

spread rate as the target function. The randomForest package provides an importance metric for

each predictor, which indicates how frequently that predictor served a breakpoint in the random

trees of the forest.
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4.3. Results

In our model parameterization, the ABC presented high uncertainty in all of the estimated

parameters; we focus on our global sensitivity analysis influence of the different parameters on the

model outcomes. We only show the results for the parameter estimates of the Timber Cove region,

using the best-fit values presented in Table 4.1. We do this because the ABC of Timber Cove

provided better posterior distributions than that of Little River, and thus less uncertainty. See

Appendix F for the posterior distributions for both regions.

4.3.1. Urchin threshold. Given a short-term, one-time urchin removal, the threshold urchin

density necessary for kelp recovery increases if, in addition to urchin removal, further kelp is planted

(Figure 4.3). This occurs because increasing kelp density lowers the grazing intensity of urchins due

to the behavioral feedback in the Type IV functional response of urchin grazing. Accordingly, an

increase in σA (the parameter which determines the strength of the behavioral feedback) increases

the threshold urchin density for kelp recovery. In the context of the Field of Dreams hypothesis,

kelp natural recovery can be feasible after removing urchins below a certain threshold. Increasing

the ecological scale of restoration through including kelp outplanting (i.e., increasing initial kelp

density) increases this threshold, which reduces the intensity of urchin removal efforts required to

ensure kelp recovery.

Our global sensitivity analysis (Figure 4.4) confirms the main factor that affects this threshold

urchin density for kelp recovery is the urchin grazing activity (described by the conversion of kelp to

urchins γA and the kelp grazing inhibition parameter σA). Specifically, the threshold urchin density

is greater for slower urchin grazing (lower γA) and a lower peak value for direct kelp grazing (lower

σA). In addition, the threshold urchin density is higher for a higher urchin natural mortality rate

(lower urchin survival probability δU ), higher initial kelp density (higher initial kelp density A0),

and with a lower kelp natural mortality (higher kelp survival probability δA).

4.3.2. Kelp spread rate. Given an initial urchin removal below the threshold value required

for recovery, kelp spread rate increases with expanding interventions across ecological scales more

than expanding over spatial or temporal scales. Under our baseline parameterization, ongoing kelp

seeding enhances kelp recovery rate, while long-term, ongoing kelp outplanting or urchin removal
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Figure 4.3. The threshold urchin density necessary for kelp recovery as a func-
tion of kelp outplanting intensity. Different lines represent different values of σA
(inversely determines the kelp density of maximum urchin grazing in the Type IV
functional response) changed by 10% from its baseline value.

do not (Figure 4.5). However, the relative effect of other strategies is sensitive to initial kelp

density. With double the initial kelp density, further kelp outplanting increases kelp recovery rate

(Figure 4.6a), while with triple the initial kelp density, ongoing urchin removal has a bigger effect

on kelp recovery rate (Figure 4.6b). The greater sensitivity to initial kelp density for ongoing urchin

removal and kelp outplanting, as compared to kelp reseeding, is likely due to the nonlinear (Type

IV) feedback between urchin grazing and extant kelp as compared to the linear (Type I) feedback

between urchin grazing and kelp seeds. These different dynamics lead to a different influence of the

control strategies that directly affect the local kelp-urchin interaction.

For the spatial scale of restoration, increasing the extent of ongoing restoration efforts does not

affect the rate of recovery of kelp (compare panels a) and b) of Figure 4.5). This suggests that

kelp recovery is mainly determined by the local urchin grazing intensity, and extending restoration
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Figure 4.4. Importance ranking of the parameters of the Model 4.1 from the global
sensitivity analysis of the threshold urchin density necessary for kelp recovery. See
Table 4.1 for more detailed parameter definitions.

efforts to regions of the coastline with reduced kelp densities, where urchin grazing is stronger,

will not affect kelp recovery rate. For the temporal scale of restoration, increasing the initial kelp

density and decreasing the initial urchin density through a more intense partial restoration effort

at the beginning enhance kelp recovery more than ongoing restoration efforts (compare the spread

rates in Figure 4.7 to those in Figures 4.5 and 4.6). Increasing kelp density and reducing urchin

density near the kelp oasis provides better conditions for kelp survival when interacting with the

urchins, which further enhances kelp recovery rate. Overall, the combination of increasing initial

kelp density, reducing initial urchin density, and implementing an ongoing kelp seeding leads to the

fastest kelp recovery.
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Figure 4.5. Kelp spread rate under different restoration strategies with increasing
intensity following urchin removal below the threshold value necessary for kelp re-
covery and with an initial kelp density 1/β. Each line represents a different strategy:
kelp outplanting in red circles, kelp seeding in green triangles, and sustained urchin
harvest in blue squares. Panel a) shows ongoing restoration efforts near the kelp
oasis (η = 1), and panel b) shows ongoing restoration efforts across a wider region
of the coastline (η = 10).

The primary role of short-term restoration efforts is further evident in the global sensitiv-

ity analysis of the spread rate (Figure 4.8), where initial kelp and urchin densities (A0 and U0

respectively) have a higher impact over the spread rate than ongoing restoration efforts (µi for

i = U,A, S). Therefore, both natural local conditions that lead to higher kelp coverage and lower

urchin densities after a marine heatwave, as well as interventions to increase kelp density and de-

crease urchin density, have a strong impact on overall spread rate. When comparing the importance

of the parameters for the threshold urchin density (Figure 4.4) and kelp recovery rate (Figure 4.8),

we observe that parameters such as size of the oasis (L) and mean dispersal distance of kelp (aA)
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Figure 4.6. Kelp spread rate under different restoration strategies with increasing
intensity following urchin removal below the threshold value necessary for kelp re-
covery with a varying initial kelp density. Each line represents a different strategy:
kelp outplanting in red circles, kelp seeding in green triangles, and sustained urchin
harvest in blue squares. Panel a) shows ongoing restoration efforts with double the
initial kelp density in the oasis compared to the default of 1/β, and panel b) shows
ongoing restoration efforts with triple the initial kelp density.

play a role on kelp recovery once urchin density is below the threshold necessary for recovery.

Intuitively, a higher mean dispersal distance of kelp seeds (aA) leads to a faster spread (Figures

G.1-G.3 in Appendix G), especially for the strategy of seed outplanting. However, note that the

relative efficacy of the different restoration strategies remain unchanged for different values of mean

dispersal distances of kelp seeds. In addition, the lower importance value of kelp dispersal distance

compared to parameters related to urchin grazing indicates that local kelp-urchin interactions have

a greater influence on kelp spread rate than kelp dispersal. While increasing the size of the initial
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Figure 4.7. Kelp spread rate under different initial conditions for partial restora-
tion efforts at the initial (short-term) restoration stage. Each line represents a
different ongoing restoration effort in terms of kelp seeding: no ongoing restoration
effort in red circles, strong ongoing seeding in green triangles (µS = 0.7), and weak
ongoing seeding in blue squares (µS = 0.1). Panel a) shows the change in spread
rate as the initial kelp density varies, and panel b) shows the change in spread rate
as the initial urchin density varies.

kelp oasis (L) through kelp outplanting enhances kelp recovery rate, the spatial scale of ongoing

restoration efforts (η) has a minimal impact over kelp recovery rate.

4.4. Discussion

In our model of kelp restoration, scaling up ecologically on restoration efforts can have a bigger

effect in restoration success than scaling up spatially or temporally. One of the key factors in

determining if kelp recovery will be possible is the threshold urchin density, which our model

suggests is mostly determined by local interactions. Because we incorporated kelp-urchin grazing
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Figure 4.8. Importance ranking of the parameters of the Model 4.1 from the global
sensitivity analysis of the kelp recovery rate. See Table 4.1 for more detailed pa-
rameter definitions.

feedbacks that can drive alternative stable states, kelp recovery does not occur in our model unless

urchin density is below a certain value (Figure 4.3). This threshold increases as kelp density

increases, i.e. kelp outplanting reduces the amount of urchin removal necessary for recovery. In

addition, improving the initial conditions through an increase in kelp density or decrease in urchin

density at an early stage can enhance kelp recovery rate more than ongoing restoration efforts

(compare Figures 4.5 and 4.7). This suggests that a Field of Dreams approach can apply in kelp

forest restoration, as in our model enhancing the ecological conditions at a short temporal scale and

small spatial scale has more impact than distributing restoration efforts through a longer period of

time or to a greater spatial extent.
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The theoretical results of the different restoration outcomes are consistent with what has been

observed in kelp restoration efforts. In recent restoration efforts in our focal system of Northern Cal-

ifornia, sites where urchin removal has been implemented below a threshold density of 2 urchins/m2

had seen significantly higher kelp density compared to sites without urchin removal [139]. While

these restoration sites and regions of improved recovery cover a much smaller spatial scale compared

to original loss (compare [118] to [139]) due to resource limitation, they can facilitate kelp recovery

in targeted locations of economic importance (e.g. near ports) to coastal stakeholders such as the

fishing and diving communities. In Southern California, sea urchin removal can increase the success

of kelp reseeding [43]. Beyond California, [81] found that urchin removal and kelp outplanting had

been successful restoration methods for increasing kelp density in different regions of the Australian

coastline. In the case of kelp reintroduction on the coast of Tasmania, [121] found greater success

of kelp outplants in areas with urchin removal.

This predominant role of early restoration efforts also parallels empirical findings in systems

beyond the kelp system modeled here. For example, in [82] restoring the habitat of anurans

(wetlands) at a small spatial and temporal scale was enough to allow eventual recovery of community

composition and diversity of amphibians. In [18], thinning of the forest at an early stage led to an

increase in the density of certain bird populations compared to unthinned (Figure 4.7). These cases

where a Field of Dreams approach is successful have in common that the habitat quality is one of

the main limiting factors of restoration success. In the case of kelp forest restoration, a suitable

habitat is determined by the active grazer density (purple urchins in our study system).

The predominance of early restoration efforts, and greater efficacy of ecological scaling up

over spatial or temporal scaling up in restoration efforts, arises, in part, because of the threshold

dynamics in our model with alternative stable states. As described above, with these threshold

dynamics, once initial restoration passes the threshold, which depends on both urchin and kelp

densities, then natural recovery can occur. The potential for alternative stable states arises from

our Type IV (unimodal) functional response in urchin grazing to kelp density, which might occur

due to an urchin grazing behavioral shift from active to passive grazing due to greater subsistence

on drift kelp or cryptic behavior with higher densities of kelp and associated urchin predators [70].

Accordingly, our global sensitivity analyses indicates that the parameters that shape urchin grazing
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response to kelp density comprise the main driving factors of both the possibility of recovery and

its rate. If, in reality, this feedback between kelp density and urchin density is not strong enough

to drive alternative stable states, we would expect a reduction in the overall role of active grazing

behavior and a potential increase in the role of greater spatial and temporal scales of restoration

efforts. That said, our best-fit model did find a strong enough feedback between kelp density

and urchin grazing for alternative stable states to occur, and [97] provide empirical support of a

significant role of urchin grazing in kelp decline on the California north coast, where including urchin

grazing into a partial least squares regression analysis doubled the variability in the yearly data of

kelp coverage explained by the model. In addition, as noted above, data from restoration efforts

indicate that urchin removal can increase restoration success in an number of kelp systems spanning

California and Australia [43,81,121,139]. Further evidence for a role for urchin densities in kelp

dynamics include rapid kelp recovery following urchin mass mortality in southern California [144]

and rapid kelp declines following urchin range expansions in Tasmania [86]. In Tasmania, both

theory and data suggest that alternative stable states between urchin barrens and kelp forests affect

recovery success, analogous to our model [66,86,92].

Although increasing the temporal scale of restoration has a smaller effect on the ability of kelp

to recover in our determinisitc simulations, an increase in the temporal scale of restoration can

buffer against the potential for short-term restoration failure from caused by extreme, stochastic

events [112]. In the case of kelp, an increase in the likelihood of marine heatwaves can lead to

potential die-offs of kelp and increases in urchin recruitment, which might bring urchin density

above the threshold and restrict kelp recovery [118]. This potential for restoration failure due to

environmental stochasticity has been noted in amphibian [33] and plant [31] reintroductions, and

has been observed in coral reef restoration failing due to hurricane activity [14].

Finally, partial restoration efforts leading to longer-term, larger scale recovery will depend on

the spatial extent of the dispersal and the temporal scale of generation time of the ecological

components. For example, long river systems may require a timeframe in the scale of decades

to reestablish their hydrological dynamics [129]. In addition, active interventions may reduce

the impact of ecological traps produced by restoration efforts [52]. For example, [124] found

the butterfly Lycaena xanthoides to selectively oviposit more frequently and with more eggs in
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seasonally-flooded habitats with lower egg survival, as compared to adjacent non-flooded habitats

where a tall invasive grass obscured native plants. Averting this accidental cue to poor ovipositing

habitat would likely require scaling up of restoration to also incorporate invasive species removal

in non-flooded habitats. More generally, active management approaches to account for ecological

traps may include changing the behavior of the animals by removing cues or habituating the animals

to ignore the cues provided by ecological traps [52].

4.4.1. Management implications. In our model, the most effective restoration approach for

kelp forest in northern California is a combination of reduction of purple urchin density through

urchin removal and increase of bull kelp density through adult kelp outplanting at an early stage

of the restoration project. The role of any ongoing restoration efforts, including further urchin

removal and kelp outplanting, as well as kelp seeding was highly sensitive to initial kelp density

(Figures 4.5 and 4.6), which supports targeting such efforts around extant kelp “oases”. In the

absence of any oases, kelp recovery might further rely on initial kelp reseeding or outplanting

restoration interventions, depending on the potential for a spore bank as discussed in the “Model

limitations” section below. Ongoing restoration efforts might play a greater role if initial removals

are insufficient to pass the threshold for kelp recovery or, as noted above, future extreme climate

events might disrupt restored populations.

Urchin removal is a technique that is already being applied in the northern coast of California

[61]. Our results suggest that these efforts are more likely to be successful when complemented

with kelp outplanting. Transplantation of N. luetkeana has been successfully applied further north

in the coast of Washington, where transplanting of juveniles of natural populations was more

successful than cultured kelp [21]. The effectiveness of outplanting cultured kelp or juveniles of

natural populations is still an open question in the highly exposed Sonoma and Mendocino County

coastlines [47].

In other rocky reef systems, kelp forest restoration success has been determined by kelp intro-

duction and removal of stressors (such as active grazers) [100]. Kelp introduction was a determinant

for the success of Lessonia nigrescens restoration in the northern coast of Chile [25]. Previous work

has shown that younger kelp sporophytes are more prone to predation [90]. Thus, identifying how
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to minimize urchin predation on younger transplants or outplants is key to ensuring successful in-

troduction of kelp. Previous studies have proposed using grazer exclusion devices [21] or choosing

sites where grazers are not as highly abundant can benefit kelp introduction [34]. The sensitivity

of our model to urchin grazing rate further supports the potential efficacy of such approaches.

While our model can provide qualitative management-relevant insights into the relative efficacy

of different approaches (e.g. initial vs. ongoing interventions; urchin removal, kelp reseeding, and

kelp outplanting separately or in combination), quantitatively precise insights, such as the exact

urchin threshold and kelp densities that can enable recovery, are more challenging due to data

limitations. Our best-fit model has wide-ranging posterior distributions for most parameters (Figure

B.1), including those that strongly influence the threshold urchin and kelp densities for recovery such

as the urchin grazing rate on kelp. In addition, these parameters will inevitably vary in space and

time, such as through urchin grazing dependence on water temperature and sedimentation [130],

such that no one target value will apply. Our sensitivity analysis can inform data collection aimed at

resolving parameters (and their environmental dependencies) most likely to improve the ability to

precisely estimate target values for urchin removal and kelp reintroduction. As more data becomes

available from both kelp recovery monitoring and monitoring of potential abiotic drivers at finer

spatial and temporal scales, our model (with extensions to address the assumptions described in the

“Model limitations” section below) provides a foundational quantitative framework for leveraging

those data for more precise predictions of threshold values for achieving a target recovery likelihood

or rate.

Another consideration for kelp restoration management, especially in northern California, is

the reintroduction of predators such as the sunflower seastar. A role for predator reintroduction is

evident in the high sensitivity of the recovery threshold and rate in our model to parameters that

likely depend on predator presence: urchin mortality (δA) and the potential for urchins to switch

between active and passive grazing (σA). If the urchin grazing mode depends on a cryptic behavioral

response to predator presence [26,35] as well as drift kelp presence [55], then predator reintroduc-

tion could increase system resilience in terms of both likelihood and rate of recovery. Empirically,

predator decline was one of the identified drivers of kelp forest loss in northern California [97,118],
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such that predator reintroduction is then a component of addressing the drivers of system degra-

dation, which is a key determinant of restoration success [100, 108]. As noted in the Methods:

Model overview, we did not explicitly include predator reintroduction because of uncertainty in its

near-term feasibility and because initial restoration to a kelp-dominated system with non-barren,

nutritious urchins through the interventions modeled here might determine predator reintroduction

success. Therefore, while our model can provide insight into restoration management on the short

(annual) time scales modelled here, understanding the potential long-term recovery of ecosystem

structure and resilience will likely require consideration of predator dynamics and reintroduction.

Our findings provide a system-specific case study of threshold-based approaches illuminated

in previous theoretical models that look at the optimal restoration strategy of partial restoration

efforts. [77] suggest that an economically optimal approach is to engage in restoration efforts until

the target population reaches a certain threshold (the urchin threshold density in our case). In our

work we find two key restoration strategies to perform at early stages of restoration: urchin removal

and kelp outplanting. [78] further suggest that the optimal restoration strategy is to implement one

strategy until a certain threshold is reached (removing urchins below the urchin threshold density),

and then combining the two strategies until a certain “investment benchmark” is achieved, after

which the system (e.g. kelp forest) will recover from natural processes. This benchmark might

be determined in terms of a minimum kelp density or a maximum urchin density in the restored

kelp oasis. Budget limitations may restrict the number of target sites that can be successfully

restored [145], which makes choosing priority sites based on likelihood of restoration success an

important step when performing restoration. Finally, the three strategies explored in this work

might have an optimal timing of when to be applied, which likely differs for each strategy [79].

Finding the optimal timing of application of the three strategies explored in this work and other

unexplored strategies is still an open question.

4.4.2. Model limitations. As with any model, we made a number of assumptions to con-

struct the simplest possible model relevant to our central questions. We have chosen a Laplacian

dispersal kernel, but dispersal of kelp seeds is known to be highly dependent on currents, which may

skew the direction of dispersal [46]. With advection, kelp spread rate would likely increase in favor

of the direction of the current [89], dependent on physical factors such as seed buoyancy and water
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turbulence. These physical factors could be further explored using a non-parametric kernel [115].

We also ignore adult urchin movement, where the effect will depend on urchin movement responses

to kelp recovery, where urchins exhibit lower movement inside than outside kelp forests due to

differences in food availability [93]. If kelp recovery reduces urchin movement due to increased

drift kelp availability, then accounting for urchin movement might decrease the amount of urchin

removal and the role of ongoing restoration in restoration efficacy. Alternatively, if recovering kelp

attracts high-movement barren urchins as active grazers, then accounting for urchin movement

might increase the amount of urchin removal and the role of ongoing restoration in restoration

efficacy.

Other physical factors that are not considered explicitly in this model are variations in environ-

mental conditions such as temperature and nutrients, which are known to affect kelp productivity

and growth [11]. Our sensitivity analyses show that parameters highly dependent on environmental

conditions in our model such as kelp mortality (δA) are influential in determining both the urchin

density threshold and kelp recovery rate. Thus, both urchin threshold density and kelp recovery

rate might be higher at regions of the coastline with environmental conditions that further enhance

kelp survival, leading to location-specific restoration intervention intensity required for success. If

stable in time, local variation in environmental conditions could also help identify regions of the

coastline with a higher potential to become kelp oases [60].

Our model also assumes that the effects of ongoing restoration effort occur instantaneously. In

reality, restoration efforts might present lags in their impact for reasons such as long life-cycles of

the target population [133] or natural lags in the biogeochemical cycles [53]. For kelp, a lag between

seed outplanting and sporophyte establishment and maturation, during when kelp outplants might

be more vulnerable to urchin grazing [4], captured in our model with a separate grazing rate γS ,

could decrease the efficacy of seed outplanting modelled here.

In addition, we focus our model on the dynamics of kelp sporophytes and implicitly considers

the dynamics of the gametophytes. Gametophytes have the potential to act as a spore bank similar

to a terrestrial seed bank, with persistence in a dormant state for an extended period of time until

favorable environmental conditions occur [39]. This could enable kelp recovery in the absence of the

extant “kelp oases” modeled here and lead to the alternative stable states observed in our model to
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behave as long transients instead [8]. In this case, management might focus on how to decrease the

length of the urchin barren transient state while also increasing the length of the kelp forest transient

state, if a goal is to avoid extended periods of economic loss from kelp-associated livelihoods such as

the red urchin commercial fishery, red abalone recreational fishery, and recreational diving. While

analyzing the effect of different restoration interventions on transient duration given a kelp spore

bank would require model modifications, given the importance of the grazing interaction between

kelp and urchins found here, we suspect the qualitative results of our model would not change

significantly.

Our best-fit model also assumes that alternative stable states are relevant to the kelp-urchin

dynamics observed in our system. Preliminary evidence suggests kelp is returning to some areas

of the coastline, potentially due to more nutrient-rich, colder waters (Brent Hughes, personal com-

munication). This recovery could be due to a shift in environmental conditions from a range where

alternative stable states were relevant to a range where the kelp-dominated is the only relevant

state. Alternatively, this recovery might indicate that the system state shifts with environmental

conditions without alternative stable states. While these alternative explanations affect the rel-

evance of our results concerning a threshold value of urchin density or kelp reintroduction that

enables recovery, in either case restoration might still affect the rate of recovery, as observed in

northern California [139], especially if transients are slow as noted above. Determining which case

best explains this apparent recovery will require analyzing the emerging data in the coming years

in comparison to model predictions with environmental drivers and different model structures with

or without alternative stable states (as done for giant kelp in southern California in [70], where

there is greater data availability than for the northern California bull kelp system that is our focus

here).

Our model considers only the interactions between sea urchins and kelp, which are central to

the efficacy of current restoration interventions. In reality, an array of other species in California’s

temperate rocky reefs might affect recovery dynamics and restoration outcomes. For example,

crustose coralline algae competing with kelp may also facilitate urchin recruitment, potentially

decreasing the threshold urchin density, i.e. increase the urchin removal necessary for kelp recovery

[9]. In comparison, the presence of a natural predator of sea urchins such as the sunflower sea star
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(currently functionally extinct on the California north coast [118]) would lead to a more cryptic

behavior of urchins, which would lead to an increase in threshold urchin density [125]. Adding

such predators and their potential reintroductioncan add another ecological ecological dimension

to restoration, as discussed above in the section on Model implications. Therefore, further adding

ecological realism can allow extensions in the capacity of our model to inform restoration efforts.

58



Parameter Description Range of Possible Values
Explored

Best-fit Value

δA Survival probability of adult kelp [0, 1] 0.510
γA Grazing intensity of urchins on

kelp
[0, 1] 0.101 kelp m−2

urchins−1

σA Inversely determines kelp density
at maximum urchin grazing

[0, 100] 15.475 kelp
m−2

γS Probability of juvenile kelp stipes
being grazed by urchin

[0, 100] 0.743
urchins−1

β Inverse of maximum kelp density Estimated without ABC
(see text)

2.42 kelp m−2

aA Inverse of mean dispersal distance
of kelp

[0, 100] 16.137 m−1

R Per capita spores production of
kelp

[0, 10] 5.500

δU Survival probability of urchins [0, 1] 0.312
γG Urchin production from direct kelp

consumption
[0, 10] 4.956 urchins

aU Inverse of mean dispersal distance
of urchin

[0, 100] 93.586 m−1

ε Urchin production from kelp con-
sumed by urchins as drift kelp

[0, 10] 9.484 kelp m−2

µU Intensity of urchin removal relative
to natural urchin mortality

[0, 1]

µS Intensity of kelp seeding relative to
per capita spores production

[0, 1]

µA Intensity of kelp outplanting rela-
tive to natural kelp mortality

[0, 1]

η Length of region to apply restora-
tion efforts around a kelp oasis

[0, 100]

Ac Critical kelp density to identify
where to apply restoration efforts

[0, 1]

A0 Initial kelp density at the kelp oasis [0, 5]
U0 Initial urchin density at the coast-

line
[0, 100]

Table 4.1. Description of each of the parameters of the model.59



APPENDIX A

Fixed points of System 3.5 and their stability

The fixed points of System 3.5 (p, n) satisfy the equations

p = δpp+ γp
pn

1 + σn2

n = δnn exp

(
− γnp

1 + σn2

)
+Rn

exp(−p)

1 + n
.

If p = 0, then the second equation gives us two solutions for n, n = 0 and

(A.1) n∗ =
R

1− δn
− 1.

If p ̸= 0, then the first equation has two solutions for n given by

(A.2) n∨∧ =
γp

2(1− δp)σ

(
1±

√
1− 4σ(1− δp)2

γ2p

)

where n∨ corresponds to the solution with a − sign and n∧ to the solution with a + sign. These

solutions are positive whenever γp ≥ 2
√
σ(1 − δp). In such case, plugging n∨∧ into the second

equation provides us with the following expression:

δn exp

(
− γnp

1 + σn±2

)
+

R

1 + n∨∧ exp(−p) = 1.

Then there is an unique value p∨∧ that solves the trascendental equation

(A.3) p∨∧ = log

 R

(1 + n∨∧)
(
1− δn exp

(
− γnp∨∧

1+σn±2

))
 .
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This equation in p has an unique solution as the function

(A.4) f(p) = p− log

 R

(1 + n∨∧)
(
1− δn exp

(
− γnp

1+σn±2

))


is monotonic for p and satisfies limp→−∞ f(p) < 0 and limp→∞ f(p) > 0. For it to be biologically

relevant, we also require limp→0 f(p) < 0, which will occur when

(A.5) R > (1− δn)(1 + n∨∧)

or, after reorganizing the terms, n∨∧ < n∗.

The Jacobian of the system J is the following:

(A.6)

J(p, n) =

 δp + γp
n

1+σn2 γpp
1−σn2

(1+σn2)2

− δnγnn
1+σn2 exp

(
− γnp

1+σn2

)
− Rn exp(−p)

1+n δn exp
(
− γnp

1+σn2

)(
1 + 2σγnpn2

(1+σn2)2

)
+ R exp(−p)

(1+n)2

 .

From here, the extinction equilibrium satisfies

(A.7) J(0, 0) =

 δp 0

0 δn +R


which has eigenvalues δp < 1 and δn + R > 1. Therefore the extinction equilibrium is a saddle.

For the resource-only equilibrium, the upper right term of the Jacobian matrix equals 0 whenever

p = 0. Therefore J(0, n∗) is a triangular matrix, with the eigenvalues being the diagonal terms

(A.8) λ1 = δp + γp
n∗

1 + σn∗2 ,

(A.9) λ2 = δn +
(1− δn)

2

R
.
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Because R > 1 − δn, 0 < λ2 < 1. λ1, on the other hand, λ1 will produce a change in stability

when

(A.10) γp = γ∗p = (1− δp)
1 + σn∗2

n∗ .

In this case, the equilibrium is stable whenever γp < γ∗p and a saddle when γp > γ∗p . Because

n∗ > 1/
√
2σ, plugging γp = γ∗p in Equation A.2, we have that n∗ = n∧. Based on the conditions

for (p∧, n∧) to be biologically reasonable, this implies that at γp = γ∗p , the system goes through a

transcritical bifurcation, where the carrying capacity (0, n∗) changes stability.

The trascendental equation that describes p∨∧ renders it impossible to analyze them directly.

However, a numerical exploration in Figure A.6 shows that these equilibria are unstable for γp <

γ∗p and (p∧, n∧) becomes stable for γp > γ∗p . Combining this result with the condition for the

equilibrium point (p∧, n∧) to be biologically relevant (Equation A.5), we find that when γp > γ∗p ,

there are no fixed points in the first quadrant (i.e. R2
+).

This transcritical bifurcation occurs with almost any combination of parameters in our region

of interest. To show this, we perform a similar analysis as those in [74,102]. When γp = γ∗p , we

can rewrite our system in diagonal form and centered around the origin by making the change of

variables:

(A.11) xm =
λ2 − 1

n∗
(
1− δn + δnγn

1+σn∗2

)pm
(A.12) ym = pm + nm − n∗

provided that
(
1− δn + δnγn

1+σn∗2

)
̸= 0. Otherwise, we let xm = pm, ym = nm − n∗. In both cases,

this lets use write our System 3.5 as

(A.13)

 xm+1

ym+1

 =

 1 0

0 λ2

 xm

ym

+ h.o.t.
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We can expand this system to include the parameter as a dynamical factor with eigenvalue

1 as µm ≡ γp − γ∗p . The central limit theorem gives us that ym = h(xm, µm) for some function

h = O((xm + µm)2). Because xm is a multiple of pm, its dynamics follow the same trend, and can

be approximated up to O((xm + µm)3) as:

(A.14) xm+1 = f(xm, µm) = xm +
γ∗p(1− σn∗2)

(1 + σn∗2)2
x2m +

σn∗2(n∗ − γ∗p)

(1 + n∗2)2
xµm +O((xm + µm)3)

Equation A.14 satisfies that fx(0, 0) = 1, fµ(0, 0) = 0, fxx(0, 0) ̸= 0 Because we assume that

n∗ > 1/
√
σ, and fxµ(0, 0) ̸= 0 except when n∗ = γ∗p . Plugging this value Equation 3.6, we get that

the condition n∗ = γ∗p holds only when n∗ =
√

1−δp
σδp

.

Therefore, whenever n∗ ̸=
√

1−δp
σδp

, the system goes through a transcritical bifurcation between

(0, n∗) and (p∧, n∧) as γp passes through γ∗p .
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Figure A.1. Numerical values of different equilibria for n and their stability as we
vary γp in our region of interest. The red points correspond to unstable equilibria,
whereas the blue points correspond to stable equilibria. In this figure, δp = 0.9, σ =
2.67, δn = 0.8, γn = 1, R = 2.
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APPENDIX B

Proof of Theorem 3.3.1

If p0 = O(ε−1), plugging O(ε−1) into the formula for n1 gives us that n1 = o(ε). Plugging o(ε)

into the formula for p2 gives us that:

(B.1) p2 = δpp1 + o(ε).

In addition, if nm = o(ε), the equation for nm+1 satisfies:

(B.2)
nm+1

nm
= O (δn exp (−γnpm) +R exp(−pm)) .

While pm = O(ε−1), this expression will satisfy nm+1/nm < 1. We can thus assume that the

expression

(B.3) pm+1 = δppm + o(ε)

is satisfied until pm+1 = O(1). Therefore, when pm = O(ε−1), the consumer population time

evolution can be approximately solved as

(B.4) pm =
δmp
ε

+ o(ε).

This expression stops working when pm = O(1), and thus resource will start a recovery after-

wards. We can estimate the order of magnitude of such m by plugging pm = 1 above. Solving for

m gives us that
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(B.5) m =
log(ε)

log(δp)

which is the expression that proves the theorem.
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APPENDIX C

Proof of Theorem 3.3.2

To show the existence of this theorem, we use Theorem 2.9 of [91]. To do this, we consider

the first quadrant M as a metric subspace of R2 with metric d(x, y) = ∥x − y∥2 induced by the

Euclidean norm. Let T : M → M be given by

(C.1) T

 p

n

 =

 p
(
δp +

γpn
1+σn2

)
n
(
δn exp

(
− γnp

1+σn2

)
+ R exp(−p)

1+n

)
 .

We show that T is a point dissipative, compact map on M . Because M is a subspace of R2,

compactedness is trivial. A map is point dissipative if there is a bounded set B0 ⊂ M such that

B0 attracts each point in M . To show T is point dissipative, we find such bounded set B0.

Let

fp(n) = δp +
γpn

1 + σn2
,

fn(p, n) = δn exp

(
− γnp

1 + σn2

)
+

R exp(−p)

1 + n
.

(C.2)

Note that fn < 1 whenever n > n∗, where n∗ is given by Equation A.1. This implies that n is

attracted by the set [0, n∗]. Without loss of generality, we assume that n ∈ [0, n∗]. Suppose that

p > p∗, where p∗ is

(C.3) p∗ = max

(
1 + σn∗2

γn
, 1

)
=

1

ε
.

A similar argument to that of the proof for Theorem 3.3.1 shows that in this case, the consumer

population will satisfy p = O(1) in time ln(ε)/ln(δp). In particular, p < p∗ after a period of time.

In addition, if p < p∗ but Tp > p∗, fp satisfies:
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(C.4) fp(n) ≤ δp +
γp
2
√
σ

for any n. This implies that Tp ≤
(
δp +

γp
2
√
σ

)
p∗. Let τ be the period of time such that

T τ
(
δp +

γp
2
√
σ

)
p∗ < p∗. Therefore p is attracted by the set [0, (δp +

γp
2
√
σ
)τp∗]. Then, the bounded

rectangle

(C.5) B0 :=

[
0,

(
δp +

γp
2
√
σ

)τ

p∗
]
× [0, n∗]

is an attracting set in M . Therefore, T is a point dissipative map.

Therefore, Theorem 2.9 of [91] implies that there is a compact global attractor in M . Finally,

Because M is locally connected, Theorem 4.5 of [48] implies that the global attractor is connected,

which completes the proof.
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APPENDIX D

Proof of Theorem 3.3.3

Let xm = pm, ym = n∗ − nm. Because ∥(xm, ym)∥ = O(ε), System 3.5 can be approximated by

the linearized system:

(D.1)

 xm+1

ym+1

 ∼ J(0, n∗)

 xm

ym

 ,

where the Jacobian J(0, n∗) is described by Equation A.6. The calculations of Appendix A

show that the Jacobian J(0, n∗) is a lower triangular matrix, with eigenvalues

(D.2) λ1 = δp + γ
n∗

1 + σn∗2 .

(D.3) λ2 = δn +
(1− δn)

2

R

and eigenvectors

(D.4) v1 =

 u

1

 , v2 =

 0

1


where

(D.5) u =
λ2 − λ1

n∗
(
1− δn + δnγn

1+σn∗2

) .
This system has for solution the expression
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(D.6)

 xm

ym

 = aλm
1 v1 + bλm

2 v2,

where a, b are constants. If we let m = 0, then we can solve the linear system

(D.7)

 ε

ε

 =

 u 0

1 1

 a

b

 ,

which has solutions

(D.8)

 a

b

 =

 1
u 0

− 1
u 1

 ε

ε

 .

In particular, this gives us that a = ε
u . Because γp > γ∗p , then λ1 > 1, and λ2 < 1. Therefore,

for big m, System D.6 can be approximated as

(D.9)

 xm

ym

 ∼ aλm
1 v1 =

ελm
1

u

 u

1

 .

Thus, System 3.5 will stay near the resource-only equilibrium as long as ∥(xm, ym)∥ = O(ε). In

particular, the System will escape the saddle point when xm = O(1). Plugging in xm = 1 into the

approximated solution lets us find M that solves the equation

(D.10) 1 = ελM
1 .

This has for solution

(D.11) M =
log
(
1
ε

)
log(λ1)
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which is the expression that proves the theorem.
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APPENDIX E

Presence of alternate stable states in the nonspatial version of

Model 4.1

In this appendix we show the presence of alternate stable states in our model by showing it

has trajectories at where kelp recovers (kelp forest state) and where kelp collapses (urchin barren)

at different initial conditions. To show these trajectories, we run our spatial model 4.1 and then

calculate the total kelp density (denoted by At) and urchin density (denoted by Ut) by integrating

their densities at each point y over the entire coastline. In mathematical terms, we calculate these

total densities using the expressions:

(E.1) At =

∫
Ω
At(y)dy,

(E.2) Ut =

∫
Ω
Ut(y)dy.

Figure E.1 provides trajectories of total kelp and urchin densities after 24 time steps under a

range of values for initial kelp and urchin densities (and with the same set of paramter values for all

simulations). These simulations demonstrate the existence of two alterative steady-state outcomes

in the model: the time series converge to either (a) a limit cycle of high kelp density and urchin

persistence (kelp forest state) or (b) a barren state where kelp declines to regional extinction and

the urchins initially increase but eventually collapse due to starvation. Which of these states is

the long-term outcome depends on initial kelp and urchin densities relative to the threhold values

identified in Fig. 3.
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Figure E.1. Trajectories of a) total kelp (At) and b) urchin (Ut) densities. Each
color represents different initial conditions, the solid lines represent trajectories that
converge into an urchin barren, while the dashed lines represent trajectories that
converge into a kelp forest state.
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APPENDIX F

Posterior distributions of parameters of Model 4.1

Figure F.1. Posterior distributions obtained using the Approximate Bayesian
Computation algorithm for each of the parameters for both the Little River and
Timber Cove regions. Notice that β is estimated using a different approach (see
main text).
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APPENDIX G

Spread rates 4.1 at different values of kelp mean dispersal distance

Figure G.1. Kelp spread rate under different restoration strategies with increas-
ing intensity following urchin removal below the threshold value necessary for kelp
recovery and with an initial kelp density 2/β and half the estimated mean dispersal
distance (double the baseline of aA). Each line represents a different strategy: kelp
outplanting in red circles, kelp seeding in green triangles, and sustained urchin har-
vest in blue squares. Panel a) shows ongoing restoration efforts near the kelp oasis
(η = 1), and panel b) shows ongoing restoration efforts across a wider region of the
coastline (η = 10). Compare to Fig. 4.6b
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Figure G.2. Kelp spread rate under different restoration strategies with increasing
intensity following urchin removal below the threshold value necessary for kelp re-
covery and with an initial kelp density 2/β and double the estimated mean dispersal
distance (half the baseline value of aA). Each line represents a different strategy:
kelp outplanting in red circles, kelp seeding in green triangles, and sustained urchin
harvest in blue squares. Panel a) shows ongoing restoration efforts near the kelp
oasis (η = 1), and panel b) shows ongoing restoration efforts across a wider region
of the coastline (η = 10). Compare to Fig. 4.6b
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Figure G.3. Kelp spread rate under different initial conditions for partial restora-
tion efforts at the initial (short-term) restoration stage. Each line represents a
different value of mean dispersal distance, either double or half mean dispersal dis-
tance from the baseline. Panel a) shows the change in spread rate as the initial kelp
density varies, and panel b) shows the change in spread rate as the initial urchin
density varies.
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[22] A. Casas-Crivillé and F. Valera, The European bee-eater (Merops apiaster) as an ecosystem engineer in

arid environments, Journal of Arid Environments, 60 (2005), pp. 227–238.

[23] R. C. Cochran and F. Engelmann, Environmental regulation of the annual reproductive season of strongy-

locentrotus purpuratus (stimpson), The Biological Bulletin, 148 (1975), pp. 393–401.

[24] S. D. Connell, K. J. Kroeker, K. E. Fabricius, D. I. Kline, and B. D. Russell, The other ocean acid-

ification problem: CO2 as a resource among competitors for ecosystem dominance, Philosophical Transactions

of the Royal Society B: Biological Sciences, 368 (2013), p. 20120442. Publisher: Royal Society.

79



[25] J. A. Correa, N. A. Lagos, M. H. Medina, J. C. Castilla, M. Cerda, M. Raḿırez, E. Mart́ınez,
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