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Abstract 

Predictive neural networks, such as word2vec, have seen 
impressive recent popularity as an architecture to learn 
distributional semantics in the fields of machine learning and 
cognitive science. They are particularly popular because they 
learn continuously, making them more space efficient and 
cognitively plausible than classic models of semantic memory. 
However, a major weakness of this architecture is catastrophic 
interference (CI): The sudden and complete loss of previously 
learned associations when encoding new ones. CI is an issue 
with backpropagation; when learning sequential data, the error 
signal dramatically modifies the connection weights between 
nodes—causing rapid forgetting of previously learned 
information. CI is a huge problem for predictive semantic 
models of word meaning, because multiple word senses 
interfere with each other. Here, we evaluate a recently 
proposed solution to CI from neuroscience, elastic weight 
consolidation, as well as a Hebbian learning architecture from 
the memory literature that does not produce an error signal. 
Both solutions are evaluated on an artificial and natural 
language task in their ability to insulate a previously learned 
sense of a word when learning a new one. 

Keywords: distributional semantic models; catastrophic 
interference; word2vec; random vector accumulation; elastic 
weight consolidation 

Introduction 
Distributional models of semantic memory (DSMs; e.g., 
Landauer & Dumais, 1997) attempt to explain how humans 
learn the meaning of words through statistical inference. All 
DSMs are based on the distributional hypothesis of language 
(Harris, 1970), often summarized as learning a word’s 
meaning “by the company it keeps” (Firth, 1957). Classic 
DSMs use counts of co-occurrence between words in a 
corpus to construct semantic representations. Recently, with 
the development of predictive DSMs and improvements in 
overall computing power, the fields of cognitive science and 
machine learning have seen an increase in popularity of error-
driven DSMs within connectionist architectures. Predictive 
DSMs use the backpropagation of an error signal through the 
network to predict context and are particularly popular 
because they learn continuously—making them more space 
efficient and more cognitively plausible than earlier DSMs.  
    However, a major weakness of predictive DSMs is 
catastrophic interference (CI): The sudden and complete loss 
of previously learned associations when encoding new ones 
(French, 1999). When a predictive neural network is exposed 
to sequential data, the introduction of completely new 
information causes the error signal to be very large, 
effectively “shocking” the model and causing it to 
overcorrect the weights to accommodate the new 

information. The problem of CI is a major issue not only for 
functional reasons but for implications of cognitive 
plausibility as well. 

The standard predictive network currently discussed in the 
literature is Mikolov et al.’s (2013) word2vec model. 
Word2vec is a feedforward neural network with input and 
output layers that contain one node per word in the 
vocabulary, and a hidden layer of approximately 300 nodes.  
The word2vec architecture has two possible model 
directions. The context may be used to predict the word—
which is referred to as the Continuous Bag of Words 
(CBOW) model—or, the word may be used to predict the 
context—which is referred to as the skipgram model. We will 
use skipgram in this paper because it maps conceptually onto 
most connectionist models and has been shown to perform 
better with smaller training corpora than the CBOW model.  

Dachapally and Jones (2018) recently investigated the 
impact of CI on the internal representations produced by 
predictive DSMs when applied to sequentially learned word 
senses. Because of its current popularity, they used Mikolov 
et al.’s (2013) word2vec model to evaluate the effects of CI 
on the model’s final semantic representations.  In their study, 
Dachapally and Jones used homonyms to measure the effects 
of CI. Take for example a homonym like bank, with its two 
distinct meanings: river-bank and financial-bank. The word 
bank should have its final representation positioned 
equidistant to its two meanings in semantic space. Because of 
CI, however, if the financial sense was learned first, followed 
by the river sense, the final representation of bank would be 
positioned proximal to river-bank words, and the financial 
sense would be forgotten.  This study was the first evaluation 
of CI in a predictive semantic model. Now that we know CI 
affects semantic representations produced by predictive 
DSMs, we can begin to propose and evaluate possible 
solutions for CI. 

The goal of the current paper is to expand on Dachapally 
and Jones’ (2018) work by implementing and comparing two 
possible solutions to CI from the cognitive and neural 
sciences. The first candidate solution is elastic weight 
consolidation (Kirkpatrick et al., 2017) which has been 
impressively successful on machine learning tasks and can be 
considered a “vaccination” for predictive DSMs that would 
prevent the effects of CI. The second candidate solution is a 
different architecture, random vector accumulation (Jones, 
Willits, & Dennis, 2015), which can be considered naturally 
“immune” to the effects of CI by way of its learning 
mechanism. 

The goal of elastic weight consolidation (EWC) is to allow 
a predictive neural network to learn two sequential tasks, 
Task A and then Task B, without incurring CI. To do this, 
Kirkpatrick et al. (2017) introduced a method to constrain the 
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parameters of a neural network after learning Task A so that 
the network can subsequently learn Task B without forgetting 
Task A. The new loss function they introduce is a quadratic 
penalty that differentially constrains parameters in the neural 
network depending on how important each parameter is to 
completing Task A. To determine which weights in the 
network are important for Task A they calculate the Fisher 
Information for each parameter—a mathematical method to 
measure the amount of information a variable carries about a 
parameter. The resulting loss function that gets minimized in 
elastic weight consolidation is:  

 
ℒ(𝜃) = 	ℒℬ(𝜃) + ∑

*
+
𝐹-.𝜃- − 𝜃0,-∗ 3

+
-            (1) 

 
where  ℒℬ(𝜃) is the loss for Task B, l controls how important 
Task B is compared to Task A, F is the Fisher Information 
calculated for each parameter, and q represents the 
parameters in the network. Kirkpatrick et al. (2017) showed 
that EWC was able to insulate against CI when training a 
predictive neural network on the MNIST (LeCun et al., 1998) 
data set, a free data set of handwritten images. While EWC 
has been tested several times on categorization tasks, this 
paper will present the first implementation for use with 
distributional semantic models.  

EWC has potential as a “vaccine” for predictive DSMs, 
that is, networks may be insulated from CI without having to 
implement new architectures. There is reason to suspect that 
EWC may have limited effectiveness when translated to the 
field of semantic modeling. EWC calculates the relevance of 
each model parameter to Task A based on the actual class of 
the training data. However, in the case of semantic modeling, 
we are not necessarily interested in the final predicted class 
of the training data but in the internal representations created 
by models as they learn. It is one goal of this paper to 
determine how EWC affects the internal representations of 
predictive DSMs. 

The second candidate solution to CI that we evaluate is a 
different architecture: random vector accumulation (RVA; 
Jones et al., 2015). RVA is an alternate architecture that 
should theoretically be “immune” to CI by nature of the 
learning mechanism. RVA is the theoretical mechanism that 
is core to semantic models such as BEAGLE (Jones & 
Mewhort, 2007). Unlike predictive DSMs, which are affected 
by CI due to the error signal produced during learning, RVA 
models should be immune to CI because they utilize 
principles of associative learning and do not rely on an error 
signal to learn. These models learn via a simple Hebbian co-
occurrence learning mechanism.  The most basic RVAs first 
begin by initializing two random vectors from an arbitrary 
distribution and of arbitrary dimensionality for each word 
encountered in a corpus. One vector is unique to each word 
in the vocabulary, the environment vector, and the other is a 
summation of all context words, the memory vector. The 
update function for the memory vector of each word in the 
vocabulary is described in Equation 2: 

 
									𝑚- = 	 𝑒-67 +	𝑒-87                         (2) 
  

where mi  is the memory vector for an arbitrary word in a 
corpus, ei-1 is the unique environment vector for the context 
word before i, and ei+1 is the unique environment vector for 
the context vector after i. So, the memory vector for word i 
stores the context vectors for every other word that appears 
in context with word i.  

Similar to Dachapally and Jones’ (2018) study, this paper 
will use homonyms to measure the bias in semantic space 
created by CI. For each model, EWC and RVA, two 
conditions will be tested and compared to the performance of 
the original word2vec model in both an artificial and natural 
language. In the first condition, a target homonym will have 
two equally frequent senses with distinct meanings. Ideally, 
the target homonym should be equidistant from both of its 
two senses in semantic space. In the second condition, a 
target homonym will have two senses, one which is dominant 
(occurs more frequently) and one which is subordinate. In 
this case, the target homonym should be closer in semantic 
space to the dominant sense. Dachapally and Jones (2018) 
found that in both the artificial and natural language when 
word2vec was trained sequentially on equally balanced word 
senses, the target word was closer in semantic space to 
whichever sense had been trained most recently—forgetting 
the first sense of the word. The same effect was found when 
a target homonym had a dominant and subordinate sense; CI 
caused the target word to be more similar to the subordinate 
sense if the subordinate sense was trained most recently. 
Importantly, recency overpowered frequency, and the 
subordinate sense of the word became dominant if it was the 
most recently learned. To determine the effects of CI on a 
neural network equipped with EWC and on RVAs, a similar 
experimental structure will be used. 

 
Experiment 1: Effects of CI on EWC and 

RVAs in an Artificial Language  
Dachapally and Jones (2018) used a simple artificial 
language in which there is a single homonym, bass, that has 
two distinct meanings—bass[fish] and bass[guitar]. A corpus 
was created from this simple language by sampling word 
pairs from the following Markov grammar: 

 

In the first condition, a corpus of 8,000 sentences was 
generated from this grammar (“man catch bass”, “woman 
play bass”). Each sense of the word bass was equally 

Figure 1. The artificial language used to test. Bass is the 
target homonym, and its position in semantic space 
relative to the two sense-pure synonyms (acoustic/bass) 
is evaluated. 
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frequent; the fish-sense made up half of the total sentences 
and the guitar-sense made up the other half. To measure the 
similarity of bass to its fish-sense and bass to its guitar-sense, 
the cosine similarity between the vector representation for 
bass and its two sense-pure synonyms trout and acoustic 
were calculated, respectively.  

In the second condition, a corpus of 5,332 sentences was 
generated from the grammar—one sense of bass was 
dominant and the other subordinate. The dominant sense 
made up 4,000 of the total sentences and the subordinate 
sense made up 1,332. Thus, the subordinate sense was 1/3 as 
frequent as the dominant sense. Similar to the first condition, 
to determine the bias created in semantic space by CI, the 
similarity of bass to the dominant sense and bass to the 
subordinate sense was measured using the cosine similarity 
of the vector representations produced by each model.  

The word2vec models used in this paper are both 
implemented using TensorFlow. Additionally, it is important 
to note that the implementation of the word2vec model in this 
experiment is different than both Mikolov et al.’s (2013) 
model and the model that was originally used in Dachapally 
& Jones’ (2018) experiment. The full word2vec model as 
implemented by Mikolov et al. necessarily includes negative 
sampling and subsampling of the training data. Negative 
sampling is the practice of including negative information in 
the training data and subsampling is a method that results in 
less frequent words being sampled more often than frequent 
words. The model used by Dachapally & Jones used a 
different loss function called noise contrastive estimation 
which is common in the language modeling community 
because it is able to handle large input sizes. The model used 
in this experiment was purposely changed in order to be the 
most similar to the models previously used to implement 
EWC. This model uses cross entropy loss and does not use 

negative sampling or subsampling which may be responsible 
for the differences seen in the results of this paper.  

 
Results 

Figure 2 shows the cosine similarity of the vectors 
produced by word2vec, EWC, and the RVA in the case where 
sense 1 and sense 2 of bass are equally frequent. The pattern 
produced by word2vec is consistent with the findings in 
Dachapally and Jones’ (2018) original experiment. When the 
model was trained in random order, the bass-sense1 and bass-
sense2 similarities produced were approximately equal. 
When trained in sequential order, the sense which was 
sampled most recently ended up having a higher similarity to 
bass. The same procedure was repeated using EWC and the 
RVA. After exploring various parameter settings of both, we 
found that implementing EWC had virtually no effect on the 
results of the first experiment and that vector similarities 
produced by the RVA model were unaffected by CI.  

Figure 3 shows the cosine similarity of the vectors 
produced by word2vec, EWC, and the RVA in the case where 
one sense is dominant and the other is subordinate. The 
pattern produced by word2vec is once again consistent with 
Dachapally and Jones’ (2018) findings. When trained in 
random order, the dominant sense is more similar to bass than 
the subordinate sense. When trained in sequential order, the 
effects of CI reverse the frequency effects; when the 
subordinate sense of bass is trained last it becomes more 
similar to bass than the dominant sense. When the same 
procedure was performed using EWC and the RVA, we saw 
similar results to the first condition. The addition of EWC did 
not change the performance of word2vec and the RVA model 
was once again unaffected by CI.  

EWC adds one additional parameter to the word2vec 
model, l, which controls the importance of Task A compared 

Figure 2. The y-axis represents the cosine similarity of vectors produced by word2vec, EWC, and the RVA. The x-axis 
represents one of three training orders: random order, sequential order with sense 1 first then sense2, and sequential order 
with sense 2 first then sense 1. Sense 1 and sense 2 are equally frequent in this case. CI is present in both word2vec and EWC 
while the RVA is unaffected by CI. 
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to Task B. For both conditions in the first experiment, the 
value of l had little to no effect on the final semantic 
representations. The results shown in both Figure 2 and 
Figure 3 are representative of the results obtained by any 
value of l. 

 
Experiment 2: Effects of CI on EWC and RVA 

in Natural Language   
The texts used in this experiment are sourced from the TASA 
corpus (Landauer & Dumais, 1997). TASA contains 
language from textbooks with metadata tags which allowed 
us to train the models on distinct senses of a homonym 
without overlap. The same set of homonyms used in 
Dachapally and Jones (2018) was used for this experiment. 
They identified a sample of 14 homonyms that exist in the 
TASA corpus using the homonym norms from Armstrong, 
Tokowicz, and Plaut (2012) which determined homonyms 
with distinct meanings as rated by human participants. 

The 14 homonyms were divided into two groups: sense-
balanced and sense-imbalanced. We classified the two senses 
of a homonym as sense-imbalanced if one sense was at least 
twice as frequent in the TASA corpus, otherwise the two 
senses of a homonym were classified as sense-balanced. An 
example of a sense-imbalanced homonym is the word slip—
the “fallen out of place” sense occurred across science 
contexts an equal number of times as the “shopping receipt” 
sense occurred across business contexts. An example of a 
sense-imbalanced homonym is the word gum—the “chewing 
candy” sense occurs approximately 5 times as often in 
language arts contexts than the “tissue surrounding teeth” 
sense occurs in health contexts.  The sense-balanced 
homonyms are the counterpart to the first condition in the 
first experiment where the two senses of bass are equally 
frequent. The sense-imbalanced homonyms are the 
counterpart to the second condition in the first experiment 

where one sense of the word bass was dominant over the 
other. We then trained the word2vec model, the EWC model, 
and the RVA model on the entire corpus under three different 
order conditions. The first condition randomized the training 
order, the second condition was sense1 first then sense2 
order, and the third condition was sense2 first then sense1 
order.  Cosine similarities between the target word vector and 
the two sense vectors were then calculated for each homonym 
set. 

 
Results 
The most common version of word2vec used for non-

trivial training data is the model implemented within the 
Gensim Python library (Rehurek & Sojka, 2010). This model 
is optimized using C and is consequently very fast and 
effective. This is the model used by Dachapally & Jones in 
their second experiment to test for CI in natural language 
corpora. That model, however, is not directly compatible with 
the EWC implementation from our first experiment. For this 
reason, we did not use the Gensim model. Instead, we 
implemented a model in TensorFlow which is more similar 
to the model used in our first experiment and is compatible 
with EWC. However, there are some additional differences 
between the base models in our first experiment and the 
current experiment. In order to scale up to natural language, 
we had to include negative sampling and change the loss 
function to noise contrastive estimation. The model used in 
the previous experiment did not use negative sampling, but 
the model was unable to learn well from the natural language 
otherwise, so it was added. Additionally, while our first 
implementation of word2vec used a SoftMax layer to learn 
with a cross entropy loss function, the implementation in this 
experiment used noise contrastive estimation because the 
SoftMax method simply does not scale up well. The RVA 
model used in this experiment is the same model we used in 
the first experiment. 

Figure 3. The y-axis represents the cosine similarity of vectors produced by word2vec, EWC, and the RVA. The x-axis 
represents one of three training orders: random order, sequential order with the dominant first then the subordinate sense, 
and sequential order with the subordinate sense first then the dominant sense. CI is present in both word2vec and EWC while 
the RVA is unaffected by CI. 
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Figure 4 shows the results of training word2vec, EWC,  and 
the RVA on the sense-balanced homonyms from TASA. The 
pattern of cosine similarities produced by word2vec and 
EWC are consistent with the results from the artificial 
language. When trained in random order the target words 
have approximately equal similarities to both of its senses. 
When trained sequentially, we see the same issue that 
occurred in the first experiment—the sense that was trained 
last becomes more similar to the target word. The RVA 
model shows the same pattern exhibited in Experiment 1—

the similarity between the target and its two senses remain 
consistent no matter the training order.  

Figure 5 shows the results of training word2vec, EWC, 
and the RVA on the sense-imbalanced homonyms from 
TASA. The cosine similarities produced from word2vec and 
EWC are consistent again with the results from the artificial 
language. Similarly, the cosine similarities produced by the 
RVA are consistent with the results from the artificial 
language and do not appear to be dependent on training 
order. 

Figure 4. The y-axis represents the cosine similarity of vectors produced by word2vec, EWC, and the RVA when trained on 
sense-balanced homonyms from the TASA corpus. The x-axis represents one of three training orders: random order, sequential 
order with sense 1 first then sense2, and sequential order with sense 2 first then sense 1. CI is present in word2vec and EWC 
while the RVA is unaffected by CI. 

Figure 5. The y-axis represents the cosine similarity of vectors produced by word2vec and the RVA when trained on sense-
imbalanced homonyms from the TASA corpus. The x-axis represents one of three training orders: random order, sequential order 
with the dominant first then the subordinate sense, and sequential order with the subordinate sense first then the dominant sense. 
CI is present in word2vec and EWC while the RVA is unaffected by CI. 
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Discussion 
The results of this study suggest that efforts to mitigate the 
effects of CI need to be interdisciplinary. Within the 
machine learning community, insulating, or “fixing”, 
predictive DSMs from CI is an emerging area that has seen 
some innovation in recent years. However, suggested 
solutions so far only consider the problem as it relates to 
strictly machine learning tasks such as categorization or 
image classification tasks. This study has shown that 
solutions from the machine learning community are not 
guaranteed to work when applied to tasks from different 
fields.  

While Kirkpatrick et al. (2017) were able to show 
promising results from EWC on categorization tasks, the 
method was unable to prevent CI when applied to semantic 
modeling. This may be because the goal of EWC is to prevent 
the weights of a predictive neural network from changing 
based on how much information each weight carries about 
the true class of each training item. The connection between 
training items and their class is very straightforward in 
categorization tasks but is not as clear in semantic modeling 
tasks. When a predictive neural network learns a word 
representation, it is not explicitly predicting the class of a 
word but is attempting to predict which words belong or don’t 
belong in context with a target word. Additionally, the 
window size is a variable parameter in these models which 
can be greater than 2, implying that a target word could have 
multiple “true classes” if we consider context words the class 
of the target word.  

Additionally, EWC as it is now is not theoretically 
plausible for any task which requires unsupervised learning 
because the new loss function must be “turned on” when the 
network is learning a second task. This is especially 
cumbersome in NLP where it is impossible to supervise 
learning to the extent which EWC requires. Furthermore, 
EWC is unable to scale up well with its current 
implementation. Because it was designed to prevent CI in 
categorization tasks, it requires each training item to have a 
true class. This requirement prevents more efficient sampling 
methods which have been standardized in the DSM literature, 
such as noise contrastive estimation, from being used in 
conjunction with EWC. Similarly, calculating the Fisher 
Information for each node in a network becomes 
computationally expensive when the vocabulary and network 
gets large.  

Introducing the RVA model as a possible solution to CI is 
a preliminary attempt to approach the problem of CI from the 
perspective of cognitive science. Within the cognitive science 
community, many researchers assume that the brain is 
primarily a predictive learner, when in reality it learns using 
both prediction and co-occurrence methods. Because of the 
tendency to favor predictive explanations of learning, 
predictive DSMs are still the most popular learning models 
in the field even though the existence of CI implies 
biologically implausibility. This has been documented by 
Ratcliff (1990) and McCloskey & Cohen (1989) who both 
use CI to discredit the biological plausibility of predictive 
DSMs. While RVAs are not a brand-new idea, they have not 
become as popular within the machine learning or cognitive 

science communities as predictive DSMs. However, they are 
continuous learners, can learn sequentially without incurring 
CI, and are computationally efficient making them a viable 
alternative to predictive DSMs in both the fields of cognitive 
science and machine learning.  

While RVAs are promising, they have faced some criticism 
in the past.  RVAs are known to have problems with metric 
space compression—causing most word similarities to be 
compressed between 0 and 1—which limits the ability of the 
model to discriminate between related and unrelated words 
(Asr & Jones, 2017). It was initially believed that predictive 
DSMs were able to more accurately discriminate between 
words because of back-propagation or the connectionist 
architectures they commonly use. However, recently the role 
of negative sampling in DSMs has been explored in more 
depth by Johns, Jones, & Mewhort (2019) who find that the 
success predictive DSMs have at discriminating between 
words is due to the inclusion of negative information in the 
training data—not the use of connectionist architecture or 
predictive learning method. In fact, when negative sampling 
information is included in the training data for other DSMs, 
including RVAs, their ability to discriminate words is on par 
with predictive DSMs.  

Though this paper focused on comparing RVAs to 
predictive DSMs, RVAs aren’t the only possible alternative 
architecture that could present a solution to CI. Architectures 
like holographic neural networks and exemplar-based models 
should also theoretically be immune to CI and incorporate 
different theoretical frameworks of learning. Holographic 
neural networks use convolution as an association 
mechanism to learn words rather than backpropagation and 
are able to learn complex non-linear patterns with a single 
layer which makes them more space efficient than predictive 
DSMs. Exemplar-based models, unlike other DSM models 
which store a semantic representation, store only episodic 
context. These models construct semantic meaning from the 
aggregation of episodic context when presented with a 
memory cue (Jamieson et al., 2018). Both of these models 
should be evaluated to determine the effect CI has on their 
internal semantic representations. 

Up until now, the fields of machine learning and cognitive 
science have both been facing similar problems with 
predictive DSMs. Unfortunately, there has been little to no 
interdisciplinary communication to propose solutions. When 
we consider CI from a cognitive science perspective, we find 
that there are several possible solutions which haven’t been 
considered yet. These solutions, which are arguably more 
elegant than continuously trying to “vaccinate” predictive 
DSMs, have the potential to introduce new mechanisms for 
artificial learning, assisting with new technological advances 
that require sequential learning and providing a framework 
for learning that does not exhibit the downfalls brought on by 
predictive DSMs.  
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