UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Abstraction of Sensory-Motor Features

Permalink
https://escholarship.org/uc/item/7ch1z974

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 16(0)

Author
Hiraki, Kazuo

Publication Date
1994

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/7ch1z974
https://escholarship.org
http://www.cdlib.org/

Abstraction of Sensory-Motor Features

Kazuo Hiraki
Electrotechinal Laboratory
1-1-4 Umezono, Tsukuba, Ibaraki, 305 Japan
khiraki@etl.go.jp

Abstract

This paper presents a way that enables robots to learn
abstract concepts from sensory/perceptual data. In or-
der to overcome the gap between the low-level sensory
data and higher-level concept description, a method
called feature abstraction is used. Feature abstraction
dynamically defines abstract sensors from primitive sen-
sory devices and makes it possible to learn appropriate
sensory-motor constraints. This method has been im-
plemented on a real mobile robot as a learning system
called ACORN-II. ACORN-II was evaluated with some
empirical results and shown that the system can learn
some abstract concepts more accurately than other ex-
isting systems.

Introduction

All of existing intelligent agents can use sensory infor-
mation for interacting with the external world, but on
the other hand they are suffering the limitation from
their hardware constraints. The representation of the
perceived world depends on the type and capability of
sensory devices of each agent. The perceived world of
dogs that have a keen nose might be quite different from
the one perceived by human beings. We could ask here
interesting but difficult questions:

o What representation can be formed by using limited
sensory devices?

o Can agents, each of them having different sensory de-
vices, share knowledge?

The goal of this paper is to present the system that
enables robots to learn abstract knowledge, such as natu-
ral language like commands, by interaction with human
beings. To this end, we focus on abstraction of infor-
mation from primitive sensors to enable to share the
knowledge between humans and robots. A robot that
is equipped with sensors must have a base representa-
tion language that is grounded in the available sensors.
However, many tasks that the robot required to learn
will need higher-level features that cannot be perceived
directly by the sensors and may not appear in the initial
representation language. Thus the abstraction of prim-
itive features plays an important role for learning from
sensory/perceptual information.

The recent progress in robot learning has given impor-
tant results particularly in reinforcement learning(e.g.
Lin, 1991; Mahadevan & Connell, 1991; Whitehead &
Ballard, 1990). Through reinforcement learning under

415

suitable conditions, a robot can optimally choose an ac-
tion based on its current and past sensor values such
that it maximizes over time a reward function measuring
its performance. This approach seems to be attractive
because robots can learn their behavior by using data
only from primitive sensors. However, this approach still
has the problem of abstraction of features. In reinforce-
ment learning, features used for perception are carefully
selected and defined a priori. The system designer is
sometimes made uneasy with preparing appropriate fea-
tures with respect to the target knowledge.

In order to resolve the problem of abstracting features,
we have implemented ACORN-II, a system that learns
robot-commands from positive and negative instances’.
AcORN-II uses a combination of two different learning
algorithms - generalization to interval(GTI) and feature
abstraction(FA) - for learning from sensory/perceptual
information. GTI is an incremental algorithm that gen-
eralizes over numeric attributes, and makes algebraic ex-
pressions that represent the constraints among sensors
and actuators. FA is responsible for the discovery of
adequate features in GTI's generalization.

The idea of feature abstraction is inspired from the
recent progress of constructive induction or feature con-
struction. Feature construction is a method to discover
appropriate features for representing instances in induc-
tive learning. Several researchers have shown the im-
portance of constructing new features in the various
fields (e.g. Aha, 1991b; Bala, Michalski & Wnek, 1992;
Fawcett & Utgoff, 1992; Matheus, 1991; Muggleton,
1987). However, not much has been said yet about its
application to appropriate domains. We claim that ab-
stracting features in robot learning is indeed one of the
most suitable domains where feature construction can be
applied. The reason of this claim is that defining appro-
priate features in robot learning is often more difficult
than other domains. We believe that the idea proposed
in this paper could contribute not only to the field of ma-
chine learning, but also to problems in robotics, partic-
ularly in multi-sensor fusion and sensor integration (e.g.
Durrant-Whyte 1987; Shafer, Stentz & Thorpe, 1986).

! Because we are much concerned with the interaction be-
tween human beings and robots(Anzai, 1993) more than self-
governing of robots, the current system uses learning-from-
example framework(i.e. assuming teacher). However, it could
be possible to extend the idea of Acorx-II to unsupervised
framework, such as reinforcement learning,

AcornN-1I is implemented on real autonomous mobile
robots shown in Figure 1. This robot is a small au-
tonomous mobile robot with the size of approximately 30
cubic cm, controlled by a Toshiba TMP68301-16F pro-
cessor. The robot is equipped with four sonar sensors to
measure the distance, and two pulse motors for wheels.
AcoRrN-II can use data those sensors and actuators, but
does not assume any unrealistic sensors/actuators that
can detect high-level descriptions.

Figure 1: One of autonomous mobile robots developed
in our laboratory.

The following sections describe ACORN-II's idea and
empirical evaluation of the system. The next section
gives the concept of feature abstraction with a simple
example for illustrating the problems in learning higher-
level knowledge from low-level data. Section 3 elabo-
rates ACORN-II's learning in detail. Section 4 evaluates
AcoRrN-II by comparing the system with other existing
systems. Finally, Section 5 concludes with some discus-
sions and future work.

Situated Concept and Feature
Abstraction

An Example

Meanings of abstract concepts sometimes depend on sit-
uations, and higher-level features are needed for realiz-
ing those situations. Suppose that a robot has two sonar
sensors for detecting distances and also has two actua-
tors for wheels. Also assume that this robot is to learn
the natural language-like command “Big Turn”. Figure
2 shows positive instances((A) ~ (C)) and a negative
instance(D) for learning the command. A circle repre-
sents a locus of the robot and a square represents a room
in which the robot is located. Note that Figure 2(D) is
a negative instance even though its radius is larger than
(A)’s because the actual curvature for a “Big Turn” de-
pends on the size of the room.

Table 1 shows the primitive features and the time se-
ries values of those features?. We suppose that primitive
features, each of which corresponds to a sensor or an ac-
tuator, are given. In Table 1, sensor, and sensor; denote

*It is not so simple to define sampling intervals and the
correspondences between sets of sampled data. For simplic-
ity, we assume that all instances can be represented with the
same number of samples.

416

QO

(A)

(B)

(C) (D)

Figure 2: Positive instances (A)-(C) and negative in-
stance (D) for command “Big Turn”

the primitive features for the data from the robot’s right
and left sonar sensor, and motor, and motor; denote
those for the speed of right and left wheels, respectively.

Table 1: (a) Primitive features of positive instances (A)-
(C) and negative instance (D) for “Big Turn”.

(Il

[sensory [sensor; | motors | motor] |

(A) o 5.000 165.000 0.000 0.000
1 17.293 176.762 5.965 4.080
2 5.086 165.005 5.965 4.080
3 21.668 181 068 5.965 4.080
(B) 0 15.000 305.000 0.000 0.000
1 36.864 326.259 10.046 8.162
2 15.150 304.999 10.046 8.162
3 43.643 332.989 10.046 8.162
(C) 0 20.000 350.000 0.000 0.000
1 44.589 373.973 11.302 9.418
2 20.173 350,008 11.302 9418
3 52 809 482.133 11.302 9.418
(D) 0 85.000 285.000 0.000 0.000
1 109.557 309.006 7.221 5.336
2 85.139 285.040 7.221 5.336
3 117.775 31T7.166 7.221 5.336 |

An important problem in this example is that the di-
rect use of primitive features often causes generation of
a huge number of disjunctions, even if a good general-
ization algorithm is available. For example, if we use
the “hyper-rectangle method”(Salzberg, 1991) (one of
exemplar-based learning approaches), in which concepts
are represented with hyper-rectangles in Euclidean n-
space, the method generates a huge number of disjunc-
tions such as:

s

{(17.293 < sensor! < 44,589) A (sensor] = 176.762) A (motor
5.965) A (motor] = 4.080)} v
{(17.293 < sensor! < 44.589) A (326.259 < sensor}
(motor! = 5.965) A (motor} = 4.080)} v
{(17.293 < x:nsnr‘l_ < 44.589) A (lensurll
motor! <]1.3I]2)!\(rrr.ah'n-"1 = 4.080)} v
{(17.293 < scnsori < 44.589) A (326.259 < unsor‘l < 373,973) A
(10.04 < motor! < 11.302) A(motor] = 4.080)} v --- v{(17.203 <
unsor,l_ < 44.589) A (326.259 < ul'um-"I < 373,973) A (10,04 <

motor! < 11.302) A (8.162 < motor] < 9.418)})

< 373,973) A

176.762) A (10.04 <

This accurs because of the lack of appropriate features to

Table 2: Possible higher-level features

molor
motor m_ﬂ,—,“'
+‘!'ll0l‘l

(A) 1 | 0.684079 194.056 0.004024

2 0.684079 170.002 0.004024

3 0.684079 202.737 0.004024

(B) 3 0.812416 363.124 0.0025388
2 0.812416 320.15 0.0025388

3 0.812416 376.634 0.0025388
() 1 0.833258 418.564 0.00225205
2 0.833258 370.182 0.00225205
3 0.833258 434.943 0.00225205
(D) 1 0.739018 418.564 0.00199735
2 0.739018 370.18 0.00199735
3 0.739018 434.941 0.00199735

represent the relative size of a locus with respect to the
size of a room, nevertheless the meaning of the command
“Big Turn” depends on the size of a room.

In order to avoid inappropriateness as in the example
“Big Turn”, one would consider to use higher-level fea-
tures for representing instances given to the generaliza-
tion procedure. Table 2 shows some possible higher-level
features that could be used for representing instances.

motor,
motor,

Note that the feature ———=2*"= - represents the ra-
sensor +sensor;

tio of the radius of a circle (2227 to the size of a room

(sensor? + sensory). This is a missing feature hidden in
the given primitives for the situated concept “Big Turn”.

Using this new feature, a generalization method will
be able to generate appropriate constraints between the
sensors and actuators from the data as follows:

motor
motory

0.00225205 < -5 i < 0.004024

se naor‘}-&—senaorl

The problem is that the robot cannot directly perceive
molorl

higher-level features such as ﬁm for given in-
stances.

We can consider here two alternative ways for resolv-
ing this problem.

1. Taking account of all of possible situations to be rec-
ognized, prepare a huge number of primitive features
with respect to the situations.

2. Dynamically construct new features from the existing
features when a situation needs to be recognized.

Obviously, the first way is unrealistic in real-world do-
mains because we have to consider virtually infinite sit-
uations. As for the example “Big Turn” in the previous
section, it is impossible to know all of the sizes of rooms
in the world. In this paper we choose the second way,
constructing new features from existing ones.

Sensor Integration and Abstract Sensors

As shown in the example “Big Turn”, one could consider
a variety of features such as the size of the room or the
radius of the circle. There are two important aspects in
these features. First, we do not have to prepare any extra
sensors for defining the features. These features can be
defined only by using primitive features that correspond

to each sensory devices on the robot. Second, these fea-
tures may be more abstract than primitive features, since
these features are constructed by applying some opera-
tors to primitives. In the example “Big Turn”, ahstract
features are constructed by using arithmetic operators
such as {—.+,*,/} to the primitive features.

In general, possible abstract features derived from
primitives can be formed a tree structure such as shown
in Figure 3. In this tree, there are four primitive fea-
tures, A, B, C, D, and four operators {—,+,x,/}. The
top node represents the set of primitive features, and
each node at other levels represents the set of features
that includes new features constructed from primitives.
An interesting point is that the depth of the tree cor-
responds to the level of sensory abstraction. The level
of a node in the tree matches the number of operations
that are applied to the primitive features. For example,
the node {4 = C, D} exists in the second level, since the

A
feature 5 * C' in this node is constructed by applying an
operator twice.

low-level sensor

higher-level
sensory information

Figure 3: Search depth and level of sensor abstraction

As shown in Figure 3, abstract features play the role
of abstract sensors that do not actually exist as sen-
sory devices. This characteristic leads to the possibility
of automatic sensor fusion or automatic sensor integra-
tion. In general, integrating sensory information needs
the prior knowledge such as the relationship between sen-
sory devices(e.g. Durrant-Whyte, 1987; Shafer, Stentz,
& Thorpe, 1986). However, if particular procedures for
exploring the tree are available, sensory information can
be automatically integrated depending on the situation.

Feature Abstraction

Formally, the tree of a possible feature set can be de-
fined by primitive features (fy,..., f,) which correspond
to initial sensory devices, operators (ops,...,op,,) for
constructing new features, and criteria for selecting fea-
tures. Now we call this tree as the feature space, and the
procedure for exploring this tree feature abstraction.

In general, it is one of the most difficult task to define
features for learning systems. In the robot domain, how-
ever, primitive features are easily determined because
they correspond to sensory devices on the robot.

For operators, we could assume many possibilities.
We used only four operators, {—, +, *, /} in the example

417

“Big Turn”, but in general we can use many other opera-
tors such as sin, cos,log and so on. Practically, however,
we should select a small subset of operators from the
infinite set of potential ones.

Criteria for selecting features that will be applied to
operators also has many possibilities. As for the tree
in Figure 3, we removed two selected features used to
construct a new feature. However, one would consider
to keep those features. Changing a criterion for selecting
features often causes the change of computational costs.
For example, if we use the former criterion, the size of
the feature space is

m

H N* % C;

i=2
where N is the number of primitive features and m is
the number of operators. But the size becomes infinite
if we take the latter criterion.

The concept of feature abstraction is analogous to the
one in scientific discovery systems such as Bacon (Lan-
gley, Bradshow, & Simon, 1983) and ABACUS (Falken-
hainer, & Michalski, 1986). Those scientific discovery
systems try to discover mathematical expressions that
summarize a body of data. However, feature abstraction
differs from those systems in the purpose of discovering
expressions. Feature abstraction generates the expres-
sions as just “features” for representing instances. So,
one would need another procedure(e.g. generalization
module) that makes use of the result of feature abstrac-
tion. But, on the other hand discovery systems generally
seek expressions that summarize given data and these
expressions are never used for any other purpose.

Learning Sensory-Motor Constraints

According with the concept of feature abstraction, we
have implemented ACORN-II. Learning in ACORN-II is
divided into two parts, GTI for generating hypotheses
and FA for feature abstraction. This section elaborates
the relationship between the two procedures with a con-
crete example.

Generalization in Acorn-II

There are two important characteristics that should be
considered in a robot learning system. First, its general-
ization method must deal with numeric features. Since
most perceptual /sensory information is expressed in con-
tinuous, numerical form, a learning system of an intelli-
gent agent has to transform continuous values into dis-
crete ones for symbolic reasoning. Second, the system
should use an incremental algorithm for learning because
it is difficult for an autonomous agent to have an entire
set of instances at the same time.

To deal with these issues, ACORN-II uses the gener-
alization method called GTI. GTI is one of algorithms
that are used in families of ezemplar-based systems (e.g.
Aha, Kibler & Albert, 1991a; Salzberg, 1991). GTI is
a simple version of “hyper-rectangle method” (Salzberg,
1991) that generates hyper-rectangles on n-dimensional
space, where n denotes the number of features. The pri-
mary difference between GTI and Salzberg(1991)’s pro-

418

gram is that our method has the interface between the
procedure for feature abstraction described below?.

A Procedure for Feature Abstraction

For discovering appropriate features from primitives,
ACORN-II uses the feature abstraction method called
FA. As mentioned in Matheus(1991), all of the systems
that try to construct new features must take account
of the appropriate time and the conditions for invoking
the procedure for constructing new features. Figure 4
illustrates the relationship between GTI and FA. When
the number of GTI’s disjunctive regions* is over a given
threshold, FA is invoked and constructs new features.
After that, GTI re-represents regions by using these new
features. FA uses arithmetic operators in order to con-
struct higher-level features from numeric ones.

Invoke
disjuncts > threshold
— o
GTI FA

e

Re-represent arithmeiic operator
with (#,%/)

new feature

Figure 4: The relation between GTI and FA

Table 3 illustrates the algorithm of FA, where
make_new_features selects two existing features and ap-
plies an operator from {—,+, %, /} to these two features.
This algorithm explores the search space that consists
of operators and primitive features until the number of
regions becomes under a given threshold 7.

This algorithm does not use ecological constraints such
as the functional similarity of sensors and/or motors.
For a practical search, however, we need to extend the
current algorithm to more efficient one that can use eco-
logical constraints.

Evaluation of Acorn-II

In this section, we evaluate ACORN-II with empirical re-
sults on robot-command learning. We created a data
set for the situated command “Big Turn” described in
previous sections. The data set contained 100 instances
and was divided into two subsets. One subset was used
for training, and the other for testing. Each subset had
50 positive or negative instances. Those instances were
represented by four primitive features that correspond
to two sonar sensors for detecting distances and two ac-
tuators for wheels, respectively.

Figure 5 shows the comparison of learning perfor-
mance between ACORN-II, CN2 (Clark & Niblett 1989)
and C4 (Quinlan, 1993). All of the three systems can

*We used GTI for learning spatial relations from images in
our previous system(Hiraki et.al., 1991a,1991b). This system
enable to perform a variety of performance tasks by using
constraint logic programming (Leler, 1988).

*We use the words, region, hyperrectangle, constraint ez-
pression, in the same meaning.

Table 3: FA: Feature abstraction algorithm in ACORN-
11

Let N be the number of regions constructed by GTI,
F be the set of existing features F = {fy,...,fa}, 7
be a positive integer and OP be the set of operators
{= 4%/} and L= {}
1 N>y
Then L:= L + make new features(F,0P)
2 If L = null Then stop.
3 Select Fp,y from L, L:= L - F,.
M := number of new regions re-represented with
Fnew
4 If M < 4 Then Return M, Fyew

5 Else L:= L + make_new _features(Fnew,OP) and
goto 2.

make_new_features(F,0P)
Let FF be a set of pairs of two features (fi, f;) (fi, fj €
F, f; # f;), MF = {}

1 If FF is null Then return M F

Select a pair (fi, fi), FF := FF - {(fx, /i)}
2 If OP is null Then goto 1.

3 Select an operator op,, from OP, OP - {op,, }
frew := New feature obtained by applying opm,
to fr, fi

NEF:=F- {fkv.fl} s {fn:w}
MF := MF U NF and goto 2.

deal with numeric features, but CN2 and C4 do not sup-
port automated feature abstraction. These three sys-
tems were trained by instances taken from the training
subset, then predicted an unseen instance taken from the
testing subset. The result shows that AcorN-II's per-
centage accuracy is superior to CN2 and C4, even though
CN2 and C4 use non-incremental methods and ACoRrRN-
Il has to take incremental input of instances. This is
because the meaning of the command “Big Turn” de-
pends on situations and only ACORN-II is able to cope
with it by using appropriate features generated by fea-
ture abstraction.

After training instances were given, ACORN-II con-
structed a new feature (s, + 8; + m,)/m; and generated
constraint expression:

{40.50 < (s, + 51 + m,)/m; < 43.14}.
Note that the feature used in the {"m_'?‘.}L constraint ex-
pression is different from the feature —='— described in

a + 8
Section 2. We can interpret this feature as follows:

oyt

+1

When (s,.+s;) > m,, 5-!—"—:““1'& = —"‘é‘_— =~ 5‘;""—';

This is just the reverse version of the denominator and
Ll

numerator in !r—':_‘TI

One of the remarkable characters of ACORN-II is its in-
cremental learning. To illustrate this advantage, we first
gave the system 30 instances from the “large-size room”,

and then gave instances from the “small-size room”®.

$We prepared five sizes of room for each.

419

PerCeRInge BT CurReY

L - —_—)

VI
Y|

70,00

000

o —

|

s
|
\
|
]
|
|

300

0.00 10.00 000 oo 4000 000

Number of fralning insiunces

Figure 5: Learning curves of ACORN-II, CN2 and C4

Figure 6 shows the result of this experiment. The re-
sult suggests ACORN-II's robustness against the change
of environments.

Conclusion

In this paper, we described AcoRN-II that can learn sit-
uated robot-commands from primitive sensor/actuator
data. In order to overcome difficulties in learning ab-
stract commands from low-level data, AcorN-II con-
structs new features by using feature abstraction. Em-
pirical results suggest that ACORN-II is superior to well-
known existing systems.

The result of this research demonstrates the usefulness
of feature abstraction in robot learning. The algorithms
used in ACORN-II can be regarded as automatic sensor
fusion. By using feature abstraction, the robot can inte-
grates the sensory information without prior knowledge
such as the relationship between each sensory device.

Problems of inventing an efficient search method for
exploring the feature space is opened to our future works.
For the implemented example described in this paper,
the robot has only 4 sensors/actuators, and thus the size
of the space is not so large. However, in case the number
of sensors/actuators is large, we need more sophisticated
criterion for selecting features. One of the possible ap-
proaches for avoiding combinatorial explosion would be
using feature selection method (e.g. Kira & Rendell,
1992) before invoking FA.

The current version of FA does not have operators for
symbolic features. The use of symbolic operators such
as logical and and or is also opened to our future works.

The concept of feature abstraction could be thought
as a kind of conceptual change (Ram, 1993). We will
investigate the generality of our method in other domains
as well as in learning more complex robot-commands.

This paper concentrated to develop the way to share
knowledge between human and robot. So, we took the

PECCEIIREE BOCUT BT Y

b

.....

.......

Sumber of irsiming instances

Figure 6: Learning curve of ACORN-II: First 30 in-
stances are taken from ‘“large-size room”, remainders
from “small-size room”

supervised approach, i.e. positive and negative instances
are given by human. However there is no doubt that the
concept of feature abstraction is useful also in unsuper-
vised learning. Combining feature abstraction and some
unsupervised learning is our next step.

Acknowledgements

The author would like to thank Yuichiro Anzai for com-
ments and suggestions, and Toyoshi Okada for his help
in the implementation.

References

Aha,D.W., Kibler,D. & Albert, M.K. (1991a). Instanced-
based learning algorithms, Machine Learning, Vol. 6,
pp. 37-66.

Aha,D. W, (1991b). Incremental Constructive Induc-
tion: An Instance-Based Approach, In L. Birnbaum
and G. Collins, editors, Proc. of Eighth International
Machine Learning Workshop ML'91, pp. 117-121.

Anzai,Y. (1993). Human-Computer Interaction in Mul-
tiagent Environment, In Proc. of HCI International
'93, pp. 2-7.

Bala,J.W., Michalski,R.S. & Wnek,J. (1992). The
Principal Axes Method for Constructive Induction,
In Proc. of Ninth International Workshop ML’92,
pp. 20-29.

Clark,P. & Niblett,T. (1989). The CN2 Induction Algo-
rithm, Machine Learning, Vol. 3, pp. 261-283.

Durrant-Whyte H.F. (1987). Sensor Models and Multi-
Sensor Integration, In Proc. of Spatial Reasoning and
Multi-Sensor Fusion, pp. 303-312.

Falkenhainer,B. C. & Michalski,R. S. (1986). Intergrat-
ing Quantitative and Qualitative Discovery: The Aba-
cus system, Machine Learning, Vol. 1, pp. 367-401.

Fawcett,T. E. & Utgoff,P. E. (1992). Automatic Feature
Generation for Problem Solving Systems, In Proc. of
Ninth International Workshop ML'92, pp. 144-153.

Hiraki,K. Gennari,J., Yamamoto,Y. & Anzai,Y. (1991a).
Encoding Images into Constraint Expressions, In
Proc. of Thirteenth Annual Conference of Cognitive
Science Society, pp. 31-36.

Hiraki,K., Gennari,J., Yamamoto,Y. & AnzaiY.
(1991b). Learning Spatial Relations from Images, In
L. Birnbaum and G. Collins, editors, Proc. of Eighth
International Machine Learning Workshop ML 91,
pp- 407-411.

Kira,K. & Rendell,L. A. (1992). A Practical Approach
to Feature Selection, In Proc. of Ninth International
Workshop ML’92, pp. 249-256.

Langley,P., Bradshow,G. L. & Simon H. A. (1983). Re-
discovering chemistry with Bacon system, In Machine
Learning: An artificial intelligence approach(Vol.1),
Morgan Kaufmann.

Leler,W. (1988). “Constraint Programming Languages:
Their Specification and Generation ”, Addison-
Wesley.

Lin, L. (1991). Programming Robot Using Reinforce-
ment Learning and Teaching, In Proc. of Tenth Na-
tional Conference on Artificial Intelligence, pp. 781~
786.

Matheus,C. J. (1991). The Need for Constructive Induc-
tion, In L. Birnbaum and G. Collins, editors, Proc.
of Eighth International Machine Learning Workshop
ML’91, pp. 173-177.

Mahadevan,S. & Connell J. (1991). Automatic Pro-
gramming of behavior-based robots using reinforce-
ment learning, In Proc. of AAAI'91, pp. 768-773.

Muggleton,S. (1987). Duce: An Oracle Based Approach
to Constructive Induction, In Proc. of Tenth Inter-
national Joint Conference on Artificial Intelligence,
pPp. 287-292.

QuinlanJ. R. (1993). “C4.5: Programs for Machine
Learning”, Morgan Kaufmann.

Ram, A. (1993). Creative Conceptual Change, In Proc.
of Fifteenth Annual Conference of Cognitive Science
Society, pp. 17-26.

Salzberg,S. (1991). A Nearest Hyperrectangle Learning
Method, Machine Learning, Vol. 6, pp. 251-276.

Whitehead,S. & Ballard,D. (1990). Active Percep-
tion and Reinforcement Learning, In Proceedings Sev-
enth International Conference on Machine Learning,
pp. 179-188.

Shafer,S.A., Stentz,A. & Thorpe,C. (1986). An Architec-
ture for Sensor Fusion in a Mobile Robot, In Proc. of
IEEE International Conference on Robotics and Au-
tomation, pp. 2002-2011.

420

	cogsci_1994_415-420

