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ARTICLE

Stratification of risk of progression
to colectomy in ulcerative colitis via
measured and predicted gene expression

Angela Mo,1,25 Sini Nagpal,1,25 Kyle Gettler,2 Talin Haritunians,3 Mamta Giri,2 Yael Haberman,4,5

Rebekah Karns,4 Jarod Prince,6 Dalia Arafat,1 Nai-Yun Hsu,2 Ling-Shiang Chuang,2 Carmen Argmann,7

Andrew Kasarskis,7 Mayte Suarez-Farinas,7 Nathan Gotman,8 Emebet Mengesha,3

Suresh Venkateswaran,6 Paul A. Rufo,9 Susan S. Baker,10 Cary G. Sauer,6 James Markowitz,11

Marian D. Pfefferkorn,12 Joel R. Rosh,13 Brendan M. Boyle,14 David R. Mack,15 Robert N. Baldassano,16

Sapana Shah,17 Neal S. LeLeiko,18 Melvin B. Heyman,19 Anne M. Griffiths,20 Ashish S. Patel,21

Joshua D. Noe,22 Sonia Davis Thomas,23 Bruce J. Aronow,4 Thomas D. Walters,20

Dermot P.B. McGovern,3 Jeffrey S. Hyams,24 Subra Kugathasan,6 Judy H. Cho,2 Lee A. Denson,4

and Greg Gibson1,*
Summary
An important goal of clinical genomics is to be able to estimate the risk of adverse disease outcomes. Between 5% and 10% of individuals

with ulcerative colitis (UC) require colectomy within 5 years of diagnosis, but polygenic risk scores (PRSs) utilizing findings from

genome-wide association studies (GWASs) are unable to provide meaningful prediction of this adverse status. By contrast, in Crohn dis-

ease, gene expression profiling of GWAS-significant genes does provide some stratification of risk of progression to complicated disease

in the form of a transcriptional risk score (TRS). Here, we demonstrate that a measured TRS based on bulk rectal gene expression in the

PROTECT inception cohort study has a positive predictive value approaching 50% for colectomy. Single-cell profiling demonstrates that

the genes are active in multiple diverse cell types from both the epithelial and immune compartments. Expression quantitative trait lo-

cus (QTL) analysis identifies genes with differential effects at baseline and week 52 follow-up, but for the most part, differential expres-

sion associated with colectomy risk is independent of local genetic regulation. Nevertheless, a predicted polygenic transcriptional risk

score (PPTRS) derived by summation of transcriptome-wide association study (TWAS) effects identifies UC-affected individuals at 5-fold

elevated risk of colectomy with data from the UK Biobank population cohort studies, independently replicated in an NIDDK-IBDGC

dataset. Prediction of gene expression from relatively small transcriptome datasets can thus be used in conjunction with TWASs for strat-

ification of risk of disease complications.
Introduction

Genetic risk assessment in humans has to date focused

mainly on prediction of disease onset,1 whereas arguably

the greater clinical need is for prediction of disease progres-

sion.2,3 Polygenic risk scores (PRSs) may sometimes meet

both needs, such as the ability of a PRS for coronary artery

disease to stratify people with respect to the likely effective-

ness of statins or PCSK9 inhibitors.4–6 This is not generally

expected to be the case, however, and in the context of in-

flammatory bowel disease (IBD), there appears to be little
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influence of the heritability for disease on progression to

complicated disease.7 Because genome-wide association

studies (GWASs) sufficiently powered to develop accurate

PRSs for progression or therapeutic response are not yet

available, there is a need for alternative genomic strategies.

A promising approach is gene expression profiling, which

very often discriminates disease-affected and unaffected

groups. For both Crohn disease (MIM: 266600) and ulcera-

tive colitis (UC [MIM: 619398]), RNA sequencing (RNA-seq)

of ileal and rectal biopsies, respectively, generates

discriminators of disease severity and progression to
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complications or remission that are at least as good as clin-

ical indices.8–10 For example, the first principal component

(PC1) of the rectal transcriptome in the PROTECTstudy em-

bodies differential expression of genes related to mitochon-

drial function, mucosal healing, and antibacterial defense,

and PC1 also stratifies affected individuals with respect to

remission.11 Relatedly, calprotectin (S100A8/9 [MIM:

123885 and 123886]) expression is one of a handful of tran-

scriptional markers of failure to respond to anti-tumor ne-

crosis factor (anti-TNF) therapy.12 Because avoidance of co-

lectomy is a compelling therapeutic objective in IBD, we set

out to ask, again using the PROTECT study data, whether a

gene expression signature predictive of progression to this

adverse outcome could be developed.

Secondary to this clinical objective is the research ques-

tion of to what extent genetic variation contributes to the

differential expression and whether it alone might be used

for development of a predictor that rivals, or even improves

upon, standard PRSs. Considering that the vast majority of

signals fromGWASs localize to regulatory regions, it is gener-

ally accepted that polymorphisms oftenmediate disease risk

through their impact on gene expression. Such variants,

knownasexpressionquantitative trait loci (eQTLs), areubiq-

uitous, yet in IBD there is surprisingly small correspondence

between thefine-mapped identities of the variants that asso-

ciate with disease risk and transcript abundance.13,14

Conversely, the majority of genes that contribute to

signatures of disease do not appear to have GWAS signals

and hence may not be causal in pathology. We have there-

fore argued that genesharboring joint eQTL andGWASasso-

ciations might be used for development of transcriptional

risk scores (TRSs), namely weighted sums of polarized

Z scores of transcript abundance, that link expression to

pathology.15 Indeed, in the RISK pediatric Crohn disease

study,TRSsderived from26genespredict stricturingorpene-

trating outcomes whereas PRSs do not.16 Complicating the

picture, further analysis argued that incoherent associations

where the sign of the eQTL effect is opposite that of the ex-

pected effect on case gene expression imply that somediffer-

ential expression represents a protective response whose

magnitude ismodulated by eQTL effects. As profilingmoves

to the single-cell level, it is clear that geneexpressionwill also

define the identitiesof critical cell types inwhichpathogenic

alleles act17–19 and most likely refine transcript-based risk

assessment. Themain limitation of this approach is the abil-

ity to obtain appropriate tissue biopsies.

In parallel, transcriptome-wide association studies

(TWASs) have emerged as an alternative approach linking

genetic variation to disease-related gene expression.20,21

These are analyses that essentially sum the cis-eQTL effects

at a locus in a discovery cohort in order to predict gene

expression in a case-control cohort where only genotypes

are available. Rather than relying on marginal univariate

effects, a variety of Bayesian methods have been developed

that assign weights to all polymorphisms in an interval

and explainmore of the variance at each locus. Differential

expression predictions have been shown to highlight
1766 The American Journal of Human Genetics 108, 1765–1779, Sep
candidate genes for a range of disease.22 Here, we demon-

strate the further utility of TWASs to generate a predicted

polygenic transcriptional risk score (PPTRS) for UC, which

not only discriminates the UC from the non-IBD group but

also progression to major disease complication requiring

colectomy for up to 10% of affected individuals.23–25

Genomic analysis of just hundreds of individuals, pro-

jected onto the UK Biobank,26 supports polygenic risk

assessment that performs at least as well as the current

PRS for UC. Our analyses also provide insight into the

cell-type specificity in both epithelial and immune com-

partments for IBD-GWAS loci.
Subjects and methods

The PROTECT cohort
428 participants aged 4 to 17 years were enrolled from 29 centers

across North America into the PROTECT study27 upon clinical,

histological, and endoscopic diagnosis of UC. Affected individuals

with disease extent beyond the rectum, a pediatric ulcerative coli-

tis activity index (PUCAI) score of R10,28 no prior therapy for co-

litis, and negative enteric bacterial stool culture were eligible to

participate. All baseline assessments and sample collections were

performed prior to the initiation of therapy. Initial treatment

with mesalamine, oral corticosteroids, or intravenous corticoste-

roids was decided on the basis of mild, moderate, or severe PUCAI.

Following the baseline assessment, follow-up assessments were

performed at 4, 12, and 52 weeks and other therapeutic interven-

tions were administered on the basis of guidelines for need for

additional medical therapy. The study parameters are described

in further detail in Hyams et al. (2017).27 Each site’s institutional

review board approved the protocol and safety monitoring plan.

Informed consent or assent was obtained for each participant.

RNA-seq data processing and differential expression

analyses
RNAwas isolated from 340 rectal biopsies taken at baseline and 92

rectal biopsies taken at week 52 follow-up. RNA-seq was performed

with the Lexogen QuantSeq 30 platform.29 Single-end 150 bp reads

were trimmed, and adapters were removed with FastQC.30 Reads

were mapped to human genome hg19 via hisat2,31 and the

aligned reads were converted into read counts per gene with SAM-

tools and HTSeq in the default union mode.32,33 The raw read

counts were normalized via trimmedmean ofM-values normaliza-

tion with the edgeR R package.34

We used expression of the sex-specific genes RPS4Y1,DDX3Y, EI-

F1AY, KDM5D, and XIST (MIM: 470000, 400010, 400014, 426000,

and314670, respectively) to validate the gender of each individual,

resulting in the removal of two mismatches. Further adjustment

and removal of batch effects was performedwith surrogate variable

analysis (SVA)35 combinedwith supervisednormalization (SNM).36

Ancestry, gender, initial treatment group, time of sampling, and

week 52 colectomy status were modeled with the SVA R package

where initial treatment group, timeof sampling, andweek52 colec-

tomy status were protected variables, which resulted in the identi-

fication of 28 confounding factors. Of these, five variables signifi-

cantly correlated with protected variables were preserved, while

the remaining 23 were statistically removed with SNM. Because

PROTECT was predominantly European (see genotypic PCA in

Figure S1), ancestry did not have a significant impact on the
tember 2, 2021



eQTL analysis and very few genemodels were affected by exclusion

from the SNM. Two individuals that were outliers in a principal-

component analysis of total gene expression were removed.

Differential gene expression testing was performed on the basis

of colectomy status with the voom R package.37 Log fold change

and Benjamini-Hochberg adjusted p values were obtained for all

genes, and these are listed in Table S1. Because of high significance

levels despite p value adjustment, significant genes were pared

down to 150 following testing for robustness at multiple thresh-

olds. Although 2,188 transcripts significantly differentiate colec-

tomy status after Bonferroni adjustment, PC1 explains less of

the variance of these genes than when we contrasted PC1 scores

with 10, 100, 150, or 500 genes, and although these were all highly

correlated (r> 0.9), we found that the top 150 robustlymaximized

discrimination of colectomy cases while including diverse genes

and hence not being susceptible to a few outliers. The first PC of

these top 150 genes differentially expressed at baseline between

affected individuals who required colectomy by week 52 follow-

up (n¼ 21) and affected individuals who did not (n¼ 310) formed

the gene-expression-based risk score for colectomy (PC1col). This

score is moderately correlated (r ¼ 0.46) with PC1 of overall

expression of genes differentiating UC-affected individuals and

control individuals, reported by Haberman et al. (2019).11

We performed cross validation for PC1col by randomizing colec-

tomy status among individuals prior to differential gene expres-

sion testing and calculation of PC1colRand, as in the calculation

for PC1col. Analysis of variance (ANOVA) tests were performed be-

tween randomized colectomy and non-colectomy individuals,

and results from 1,000 such tests are reported in Figure S2.

We compared expression of the genes comprising PC1col at base-

line and week 52 withMayo score as a marker for mucosal healing.

PC1col was calculated as previously described in the subset of indi-

viduals with baseline gene expression. Additionally, we calculated

a restricted PC1col-week52 calculated by finding PC1 of the 150

genes used in the calculation of PC1col within the subset of indi-

viduals with week 52 gene expression. Change in PC1 score

was simply calculated as the difference between PC1col and

PC1col-week52. All p values were generated with ANOVA tests.

TRSs, introduced by Marigorta et al.16 for discriminating IBD-

affected individuals versus control individuals, capture the sum-

mation of polarized expression of genes incorporated on the basis

of both proximity to IBD-GWAS hits and presence of eQTL in

peripheral blood.We generated the TRSs with four different strate-

gies, all of which gave similar highly significant differentiation

between colectomy and no colectomy samples. Model 1 was a

generalized linear model (GLM) with nine genes, RGS14, APEH,

MRPL20, POP7, RORC, EDN3, PTK2B, STAT3, and CDC42SE2

(MIM: 602513, 102645, 611833, 606113, 602943, 131242,

601212, and 102582, respectively, CDC42SE2 does not have a

MIM entry), that in forward stepwise regression most strongly

differentiate affected individuals by colectomy status, essentially

the sum of the Z scores weighted by their magnitude of differential

expression.Model 2 was a GLMwith the ten genes discussed in the

text because of strong co-regulation and association with colec-

tomy. Models 3 and 4 were based on all 26 genes, generated

with a weighted GLM or simple PC1 score, respectively. All four

scores are highly correlated, r > 0.8, indicating that they are

capturing similar aspects of differential expression (Figure S3).

We report model 4 in the text. This TRS is highly correlated with

PC1col (r ¼ 0.64).

Relative proportions of epithelial and immune contributions to

total rectal gene expression reported in Figure S4 were evaluated by
The American Jour
contrasting PC1 of epithelial- and immune-enriched transcripts.

We first identified 200 genes upregulated (fold difference in

expression, regardless of significance) specifically in either the to-

tal epithelial or immune components of the single-cell gene

expression dataset reported by Smillie et al. (2019).19 Then we

computed PC1 for these two gene sets in the bulk RNA-seq data

and contrasted the mean scores at baseline and week 52. We

checked each PC to ensure that positive values associate with

elevated expression of the respective genes.

Replication of colectomy risk score and cell-type

enrichment
Surgical specimens from 210 UC-affected individuals undergoing

bowel resection for IBD at Mount Sinai Health System and affili-

ated clinicians were recruited to be part of the Mount Sinai

Crohn’s and Colitis Registry (MSCCR) between December 2013

and September 2016 as described.38,39 The protocol required writ-

ten informed consent that was approved by the Icahn School of

Medicine at Mount Sinai Institutional Review Board (HSM#14-

00210). Affected individuals who were enrolled in the study

were asked to provide blood and/or biopsies, which were collected

during a colonoscopy planned for regular care. Clinical and demo-

graphic information was obtained through a questionnaire.

Affected individuals were treated with a range of medications,

including corticosteroids, infliximab, azathioprine, and mesal-

amine. All macroscopically moderate-to-severely inflamed tissues

were confirmed as active colitis by pathology examination pro-

vided by the Mount Sinai Hospital (MSH) Pathology Department.

Freshly collected representative 0.5-cm-wide tissue fragments were

isolated from surgical specimen samples, flash frozen, and stored

at �80�C.
RNAwas isolated from frozen tissuewithQIAGENQIAsymphony

RNA Kit (cat. # 931636), and samples with RIN scores > 7 were re-

tained. One microgram of total RNA depleted of ribosomal RNA

via the Ribo-Zero Kit (Illumina cat. # MRZG12324) was used for

the preparation of sequencing libraries with RNA TruSeq Kits

(Illumina [cat. # RS-122-2001-48]). These were sequenced on the

Illumina HiSeq 2500 platform with 100 bp paired-end protocol.

Base calling from images and fluorescence intensities of the reads

wasdone in situontheHiSeq2500computerwith Illuminasoftware,

aiming for 70,000 paired-end reads per sample. Short reads were

mapped to the GRCh37/hg19 assembly (UCSC Genome Browser)

with two-pass spliced transcripts alignment to a reference (STAR)

and processedwith RAPiD,which is an RNA-seq analysis framework

developed andmaintainedby the technologydevelopment groupat

the Icahn Institute for Genomics and Multiscale Biology. Detailed

quality control (QC) metrics were generated with the RNASeQC

package. We pre-filtered raw count data to keep genes with CPM >

0.5 for at least 3% of the samples. After filtering, count data were

normalized via theweighted trimmedmeanofM-values and further

variance stabilized with a logarithmic transformation. Normalized

counts were further transformed into normally distributed expres-

sion values via the voom-transformation37 with a model that

included technical covariates (processing batch, RIN, exonic rate,

and ribosomal RNA rate) while accounting for the intra-individual

correlation across regions.

We repeated the transcriptional risk assessment analysis in this

external dataset after normalization for gender, age, exonic RNA

ratio, and rRNA expression levels by using the prcomp function

in R with the 150 genes from the PROTECT PC1col or the 26

gene TRS. We then used the R package ggplot240 to plot the distri-

bution of PC1 for affected individuals who did (ten individuals) or
nal of Human Genetics 108, 1765–1779, September 2, 2021 1767



did not (201 individuals) have follow-up colectomies (Figure S5).

Additionally, we performed hierarchical clustering of single-cell

gene expression data to identify cell types implicated by both

the PC1 and TRS gene sets. Cell types enriched for PC1 genes

included plasmacytoid dendritic cells, endothelial cells, group I

innate lymphoid cells, fibroblasts, and macrophages.
SNP data processing and eQTL studies
We used the Affymetrix UK Biobank AxiomArray to perform geno-

typing of 424 individuals across 800,000 SNPs. We performed

imputation by using IMPUTE2 software,41 after which we used

quality control performed with PLINK42 to remove SNPs not in

Hardy-Weinberg equilibrium at p< 10�3, SNPs with a minor allele

frequency < 1%, or a rate of missing data across individuals> 5%.

Approximately 7 million imputed SNPs passed these thresholds

andwere tested in theeQTLanalysis. SNPswithin250kbof the start

and stop sites of a gene were considered to be cis to the gene and

tested for a potential eQTL association. Mapping was performed

with the mixed linear modeling method in GEMMA,43 which

tested a set of approximately 12million SNP-gene pairs for associa-

tions at a common p value threshold of 1 3 10�5. Two separate

comparative analyses were performed: the initial set of eQTL

mapping was performed on all 330 baseline samples and all

87 follow-up samples acquired at week 52, and the secondary

analysis was performed on 78 samples matched between the two

time points. The initial full analysis yielded 98,491 significant

SNP-gene associations at baseline and 20,509 associations at week

52 follow-up, and the secondary matched analysis yielded 15,078

significant unique SNP-gene associations at baseline and 13,236

significant associations at week 52 follow-up. These were further

refined to 1,432, 432, 402, and 322 peak SNP to unique gene asso-

ciations, respectively, at FDR 5%.
Single-cell sequence analysis of the lamina propria
We analyzed a total of 34,157 cells from paired inflamed rectum (n

¼ 4) and uninflamed sigmoid colon (n ¼ 5) from four UC-affected

individuals undergoing treatment at MSH. Resected tissue biopsies

were collected in ice-cold RPMI 1640 (Corning.) and processed

within 1 h after termination of the surgery. To limit biased enrich-

mentof specific cell populations related to local variations in the in-

testinal micro-organization, we pooled twenty mucosal biopsies

sampled all along the resected specimens by using a biopsy forceps

(EndoChoice). Epithelial cellswere dissociatedby incubationof the

biopsies in a dissociation medium (HBSS without Ca2þ or Mg2þ

with HEPES 10 mM [Life Technologies]) and enriched with 5 mM

EDTAat 37�Cwith 100 rpmagitation for two cycles of 15min.After

each cycle, the biopsies were vortexed vigorously for 30 s and

washed in complete RPMImedia equilibrated at room temperature

(RT). They were transferred to digestion medium (HBSS with Ca2þ

Mg2þ, FCS 2%,DNase I 0.5mg/mL [Sigma-Aldrich] and collagenase

IV 0.5 mg/mL [Sigma-Aldrich]) for 40 min at 37�C with 100 rpm

agitation. After digestion, the cell suspension was filtered through

a 70 mm cell strainer, washed in DBPS/2% FCS/1 mM EDTA and

spun down at 400 g for 10 min. After red blood cell lysis (Bio-

Legend), dead cells were depleted with the dead cell depletion kit

(Miltenyi Biotec, Germany) following manufacturer’s recommen-

dations. Viability of the final cell suspension was calculated with

a Cellometer Auto 2000 (Nexcelom Biosciences) with AO/PI dye.

The exclusion was routinely 70% or higher live cell rate.

Single cells were processed through the 103Chromiumplatform

via the Chromium Single Cell 30 Library and Gel Bead Kit v.2 (103
1768 The American Journal of Human Genetics 108, 1765–1779, Sep
Genomics, PN-120237) and the Chromium Single Cell A Chip Kit

(103 Genomics, PN-120236) as per the manufacturer’s protocol.

In brief, 10,000 cells from single-cell suspension were added to

each lane of the 103 chip. The cells were partitioned into gel beads

in emulsion in the Chromium instrument in which cell lysis and

bar-coded reverse transcription of RNA occurred, followed by

amplification, fragmentation, and 50 adaptor and sample index

attachment. Libraries were sequenced on an Illumina NextSeq 500.

We aligned reads to the GRCh38 reference with the Cell Ranger

v.2.1.0 Single-Cell Software Suite from 103 Genomics. The unfil-

tered raw matrices were imported into R Studio as a Seurat object

(Seurat v.3.0.1).44 Genes expressed in fewer than three cells in a

sample were excluded, as were cells that expressed fewer than

500 genes and with unique molecular identifier (UMI) count less

than 500 or greater than 60,000. We normalized by dividing the

UMI count per gene by the total UMI count in the corresponding

cell and log transforming. We used the Seurat integrated model44

to generate a combined UC model with cells from both inflamed

and uninflamed samples retaining their group identity. We per-

formed unsupervised clustering with shared nearest-neighbor

graph-based clustering by using from 1 to 15 PCs of the highly var-

iable genes; we also accordingly tuned the resolution parameter to

determine the resulting number of clusters. Cell types were

assigned with known markers previously described for the

gut.17–19,45 Visualization of relative abundance of specific genes

in each cell type was performed with Seurat functions in conjunc-

tion with the ggplot2.40
Gene expression imputation and prediction models
We performed a TWAS for association between the imputed cis-ge-

netic component of gene expressionwith UC status.We used PRO-

TECTas the prediction studywith both genetic and transcriptomic

data from which we estimated cis-eQTL effects,10 which we then

used to impute gene expression in the UK Biobank validation data-

set.26 Subsequently, these predicted gene expression models were

associated with UC status in the UK Biobank, and the significant

ones were combined into a weighted predicted polygenic tran-

scriptional risk score (PPTRS), which was itself evaluated for asso-

ciation with UC, and secondarily with colectomy status, in PRO-

TECT.27

Before building the gene expression imputation models, we

ensured that thepredictionandvalidation studieswereharmonized

such that the allele frequencies are correlated by requiring that the

genotypematrix accounts correspond to the same allele in both da-

tasets. Gene expression imputation models were built with a non-

parametric Bayesian Dirichlet process regression (DPR) method46

in TIGAR,47 which assumes a Dirichlet process prior on the effect

size variance to estimate cis-eQTL effect sizes. A linear regression

model was assumed for estimating cis-eQTL effect sizes:

Eg ¼ wX þ ε; ε � N
�
0; s2

�
;

where Eg is the gene expression for a gene g, X is the genotype ma-

trix for all cis-genotypes (SNPs within 1 Mb of the flanking 50 and
30 ends), w is the vector of cis-eQTL effect sizes, and e is the error

term assumed to be normally distributed with a mean of zero.

The predicted (imputed) gene expression for gene g is computed

as follows:

Eg�pred ¼ w3Xnew;

where Xnew is the cis-genotypematrix of the new genotype data or

GWAS samples and Eg-pred is the predicted gene expression of the
tember 2, 2021



new data. The imputed gene expression is the cis-genetic compo-

nent of the total gene expression derived from common cis-eQTLs

and does not include the trans-component or environmental ef-

fects. TIGAR47 has been shown to generate a 2-fold improvement

in variance explained by multi-SNP models relative to just

capturing the top cis-eQTLs, more than with similar imputation

methods such as Predixcan and FUSION.48–50As prediction data-

sets, we initially utilized the PROTECT cohort (rectal gene expres-

sion, n ¼ 331),27 confirmed with GTEx transverse colon gene

expression (n ¼ 368),51 and contrasted with GTEx muscle gene

expression (n¼ 706) and cortex gene expression (n¼ 205) negative

controls. Sigmoid colonhas fewer samples, so it was underpowered

for these analyses despite its being closer to the rectum than trans-

verse colon.We used threshold of 5% imputation R2 to select genes

withvalid imputationmodels thatwere taken forward for testing in

the UK Biobank and PROTECT (Figure S6 shows boxplots of impu-

tation R2 for all tissues and Table S2 shows the number and identity

of genes in each tissue with imputation R2 > 5%). Note that colec-

tomy status was not used in the modeling of either the cis gene

expression or generation of the PPTRS, so prediction of colectomy

in PROTECT from the UK Biobank score should not be circular.

However, use of theGTEx colon expression to generate the imputa-

tionmodels ensures that prediction, validation, and testing are per-

formed with three independent datasets (GTEx, UK Biobank, and

PROTECT). Further, we also replicated these results on a larger

and completely independent European subset of NIDDK IBD Ge-

netics Consortium colectomy cohort,52 wherein the rectum- and

colon-based PPTRS discriminated UC from colectomy, while the

muscle- and cortex-based PPTRS were negative controls. Finally,

we also generated the PPTRS on a subset of the UK Biobank, testing

it on a held-out sample with similar results.

TWAS and PPTRS
For the validation dataset, the genotype data of UK Biobank was

used, including 4,112 UC-affected individuals and 402,994 non-

IBD control individuals. The gene expression of 407,106 white

British individuals was predicted via gene expression imputation

models for genes with imputation R2 > 5%. Subsequently, we per-

formed a gene-based association test by fitting a logistic regression

model of the predicted gene expression against UC versus non-IBD

status to determine the weight (log odds ratio) and p value for each

gene.

We then built a TWAS-based polygenic risk score, which we call

a predicted polygenic transcriptional risk score (PPTRS). To assess

the full polygenic architecture of the predicted cis-component of

gene expression, we adopted an inclusive TWAS threshold for

differentially expressed genes with TWAS p value < 0.05. Similar

to PRS computation, inclusion of predictors that are not individu-

ally significant can nevertheless improve the score because false

negatives contribute signal. We constructed the PPTRS by

computing the weighted sum of the predicted gene expression,

where the weights are the log of odds ratio from TWAS of UC in

UK Biobank.26 This score, as expected, highly significantly differ-

entiates affected individuals and control individuals in the UK Bio-

bank and surprisingly also colectomy status. We then used the

same weights to generate the PPTRS in PROTECT and NIDDK co-

horts and to evaluate association with colectomy status. This pro-

cedure was repeated with the GTEx eQTL models.51 The contrast-

ing PRS derived from GWAS weights, PRSUC, was constructed via

6,396 UC SNPs from summary statistics of the European UC

GWAS meta-analysis53 (pruned with PLINK at p value < 0.001,

LD r2 > 0.5 in 10 kb windows with a five-SNP sliding step).
The American Jour
NIDDK-IBDGC colectomy cohort
Samples were genotyped on the Illumina Global Screening Array at

Feinstein Institute for Medical Research (Manhasset, NY) or at the

Broad Institute (Boston, MA) as a part of the National Institute of

Diabetes and Digestive and Kidney Diseases Inflammatory Bowel

DiseaseGenetics Consortium (NIDDK-IBDGC). Following stringent

pre-imputation QC metrics as previously described,52 genotypes

were phased with Eagle254 and imputation was performed

with the Michigan Imputation Server and HRC r1.1 reference

panel.55,56 Variants with estimated imputation accuracy (R2 < 0.3)

andminor allele frequency> 0.1%were excluded after imputation,

leaving 21.9 million variants available for analysis. Of the total

16,024 NIDDK-IBDGC samples available after QC, 14,659 were of

European ancestry (defined as EUR Admixture proportion R

0.70).57 These included 2,838 non-IBD control individuals,

2,298 UC-diagnosed individuals (1,325 established non-colec-

tomy), and 753 individuals with known colectomy. The predicted

polygenic risk score for colectomy was computed on these samples

withpredictedgeneexpression fromthe cis-eQTLweights calculated

with DPR on the rectal gene expression from PROTECT or, alterna-

tively, colon, cortex, and muscle gene expression from GTEx. The

TWAS weights for inclusion in the PPTRScol from the UK Biobank

are reported in Table S2; code was provided by S.N. to T.H.
Results

PROTECT is a multicenter pediatric inception cohort study

of response to standardized colitis therapy.27 We have pre-

viously shown that a signature of rectal mucosal gene

expression at diagnosis, prior to therapeutic intervention,

associates with corticosteroid-free remission with mesal-

amine alone observed in 38% of 400 affected individuals

by week 52 of follow-up.10 A signature of rectal mucosal

gene expression associated with week 4 corticosteroid

response in PROTECT is related to one indicative of

response to anti-TNFa and anti-a4b7 integrin therapy in

adults,11 and reciprocally, active pediatric UC was associ-

ated with suppression of mitochondrial gene expression

and increasing disease severity with elevated innate

immune function. In order to more explicitly model pro-

gression to colectomy observed in 6% (25 of 400) of the

UC-affected individuals within 1 year of diagnosis, we per-

formed differential expression analysis between baseline

rectal RNA-seq biopsies of 21 affected individuals who pro-

gressed to colectomy and 310 who did not. The volcano

plot in Figure 1A shows downregulation of 783 transcripts

in the individuals who underwent colectomy and upregu-

lation of 1,405 transcripts at the experiment-wide

threshold of p < 4 3 10�6.

Gene set enrichment analysis58 summarized in Figure 1B

highlights engagement of multiple pathways previously

implicated in adverse outcomes in IBD, including TNF

and interferon signaling, and various signatures of inflam-

mation and immune response.59,60 We recently showed in

an admixed population that African ancestry also up-

wardly biases gene expression in several of these path-

ways61 but was not found to be driving the rectal profiles

in this largely European ancestry dataset.
nal of Human Genetics 108, 1765–1779, September 2, 2021 1769



Figure 1. Differential expression associated with colectomy in the PROTECT study
(A) Volcano plot of significance (negative log10 of the p value) against difference in expression on log2 scale; genes upregulated in co-
lectomy are in blue.
(B) Six pathways highlighted by gene set enrichment analysis as upregulated in colectomy. Each bar represents a gene in the indicated
pathway, and position along the axis is representative of rank order of differential expression. From left to right and top to bottom FDR<
10�4, < 10�4, < 10�4, < 10�4, < 2.4 3 10�4, and < 2.0 3 10�4. A full list of pathways can be found in Table S5.
(C–E) PC1 of the differentially expressed genes as a function of (C) colectomy status at week 52, p ¼ 23 10�45; (D) initial treatment, p ¼
5 3 10�20; and (E) baseline or week 52 follow-up biopsy profile, p ¼ 23 10�7. All boxplots indicate 1st and 3rd quartile as box ends, and
center median line and whiskers extend to farthest point within 1.5 times the interquartile range.
The first principal component (PC1col) of the top 150 of

these differentially expressed genes has a weak negative

correlation with our previously reported signature of

remission detected in a subset of 206 affected individuals

via a different RNA-seq protocol.11 With very high signifi-

cance, it distinguishes the affected individuals who pro-

gressed to colectomy from non-progressors, as all but one

individual have PC1 scores greater than 12, a value ex-

ceeded by only 20 of the 317 non-colectomy affected indi-

viduals (Figure 1C). This PC1col predictor is orders of

magnitude more significant than observed with similar

scores derived by 1,000 permutations of the data

(Figure S2). All of the high PC1col individuals were placed

initially on corticosteroids, the majority intravenously

(Figure 1D); the score also correlates with a gradient of dis-

ease severity indicated by baseline PUCAI28 and initial

treatment. We also obtained rectal biopsy RNA-seq data

for 92 affected individuals at week 52 and observed signif-

icant depression of the score (Figure 1E), indicative of

mucosal healing even in the affected individuals with

elevated initial gene activity (none of the follow-up cases
1770 The American Journal of Human Genetics 108, 1765–1779, Sep
were colectomy because the surgical procedure had been

performed earlier than week 52). Figure S7 shows that

PC1 remains associated with Mayo endoscopic score62

even at week 52 and that the change in PC1 molecular

score over time correlates with the degree of mucosal

healing.

Given the marked shift in gene expression at follow-up,

we next asked whether local regulation of the gene expres-

sion might contribute by performing comparative eQTL

analysis. Figure 2A indicates generally high concordance

in the effect sizes (betas) at both time points, with slight

inflation of the estimates at baseline (1,416 blue effects)

or week 52 (421 magenta effects), most likely due to win-

ner’s curse. There were 72 eSNPs significantly regulating

308 genes at both time points, and the smaller number

of eQTLs at week 52 was attributable to the smaller sample

size. One quarter of the baseline eQTLs are at least 2-fold

greater than at week 52, and one third of the follow-up

eQTLs are at least 2-fold greater than at baseline. Examples

of baseline- and follow-up-specific eQTLs affecting a vari-

ety of gene functions in immunity and epithelial cell
tember 2, 2021
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Figure 2. eQTL contrast between baseline and week 52 follow-up in the PROTECT study
(A) Comparison of effect sizes (betas) for the effect of the minor allele on gene expression. Blue eQTLs were discovered at baseline and
magenta only at week 52. All points along the diagonal have baseline point estimates within the 95% confidence interval of the week 52
estimate (~0.2 to 0.4 units). Dashed boxes represent 95% and 80% empirical ranges of effect estimates for the reciprocal time point for
non-significant estimates at the other time point.
(B) Examples of nine genes with differential eQTL effects at the two time points showing observed transcript abundance as a function of
genotype at baseline or week 52 follow-up. The bottom row are genes with eQTLs only at follow-up. All boxplots indicate 1st and 3rd

quartile as box ends, and center median line and whiskers extend to farthest point within 1.5 times the interquartile range. Note
that many of the genes with large negative follow-up betas in (A) have relatively small minor allele frequencies and hence insufficient
homozygous minor allele genotypes to plot. A full list of peak eQTLs can be found in Table S3.
biology are shown in Figure 2B. Some of the change in

eQTL profiles is most likely attributable to an increase in

the proportion of epithelial relative to immune cells at

week 52 (Figure S4).

Clearly visible in Figure 2A is a set of �50 apparently

week-52-specific effects that have beta estimates less than

�0.5 but lie close to the x axis, indicating little or no base-

line effect. Given the reduced sample size at week 52, there

was little power for estimation of significance of the differ-

ence, but in most of these cases, the baseline estimate lies

outside 95% confidence limits given the week 52 effect es-

timate. Because these limits vary by gene, to visualize this

approximately, the boxes in Figure 2A show the 90% and

95% empirical ranges of week 52 and baseline estimates

for genes that had truly null (p > 0.05) eQTL estimates at

the alternate time point as listed in Table S3. Of the

9,799 week 52 eQTL peaks that were non-significant at

baseline, 80% had week 52 effect size estimates in the

range �0.883 to 0.583, but of the 104 of these peaks that

were also highly significant at week 52 (p < 10�5), 52%

of the estimates were outside this range, a 2.53 enrich-

ment. Similarly, 27% were outside the 95% range of

�1.325 to 0.986, a more than 53 enrichment. The recip-

rocal analysis did not yield any enrichment (just 110 of

552 baseline-specific peaks are outside the 80% range

[�0.412 to 0.321], and 35 [6%] outside the 95% range
The American Jour
[�0.622 to 0.540]), implying that most baseline eQTLs

have comparable effect estimates at week 52, and failure

to replicate is often due to the reduction of power in the

smaller sample.

Next, we asked whether the intersection of GWASs and

eQTLs could be used for generation of a TRS that associates

differential expression with colectomy, analogous to the

one we recently developed for prediction of risk of progres-

sion to complicated Crohn disease.16 The heatmap in

Figure 3A showing the abundance of 26 transcripts

included in the TRSIBD derived with coloc63 overlap of

IBD-GWAS and peripheral blood eQTL signals indicates

striking enrichment for elevated or reduced expression of

a dozen transcripts in the baseline rectal biopsies of PRO-

TECT individuals destined for colectomy. The strongest

clusters include RGS14, MRPL20, PTK2B, TNFRSF4 (MIM:

600315), TNFRSF18 (MIM: 603905), and CDC42SE2 upre-

gulation and CISD1 (MIM: 611932), EDN3, RORC, and

PLA2R1 (MIM: 604939) downregulation. PC1 of the entire

set of 26 genes results in a TRSUC that discriminates colec-

tomy from non-progressors at p ¼ 1 3 10�28 (Figure 3B),

noting that only four of 26 genes overlap with the 150

used for deriving of PC1col. A score above 3.24 has a sensi-

tivity of 90% and specificity of 95% (Figure 3C), generating

a positive predictive value of 55%, which is nine times the

prevalence of the rate of progression in the study.
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Figure 3. Development of a transcrip-
tional risk score for colectomy
(A) Heatmap of baseline rectal expression of
26 genes with evidence that the GWAS peak
is the same as a blood eQTL (coloc H4> 0.8),
red representing high expression and blue
low. The bar at the top indicates non-colec-
tomy (gray) and colectomy (red) clinical
status, highlighting a cluster of affected in-
dividuals for whom most of the genes are
differentially expressed.
(B) PC1 of the genes generates a TRS that is
highly discriminatory between colectomy
and non-colectomy at baseline; p ¼ 1 3
10�28. Boxplots indicate 1st and 3rd quartile
as box ends, and center median line and
whiskers extend to farthest point within
1.5 times the interquartile range.
(C) Receiver operating characteristic curve
contrasting sensitivity and specificity for co-
lectomy, showing that both the TRS (green)
and PC1 of all differentially expressed genes
(red) have high accuracy (area under the
curve, AUC > 0.95) compared with PUCAI,
a commonly used clinical disease severity
index.
Corresponding likelihood ratios for positive and negative

prediction are 18 and 10, respectively. TRSUC also performs

as well as the composite PC1col.

We replicated these findings in an independent adult UC

cohort fromMount Sinai Medical School in New York.38,39

PC1 of the rectal expression of 146 of the 150 PROTECT

PC1col genes detected in the Mount Sinai dataset highly

significantly (p ¼ 0.0015) distinguished ten individuals

who have had colectomy from the remaining 201

(Figure S5), and themajority of genes were differentially ex-

pressed in the same direction. Similarly, a TRS derived from

the GWAS-associated 26 transcripts showed a strong trend

toward differentiation of colectomy status in the adult

cohort, whichwas also significant (p¼ 0.010) after removal

of two outliers characterized by aberrant expression of

CDC42SE2, the only transcript in the list above that dis-

agreed in direction of effect between the two studies.

Examination of the expression of colectomy-associated

genes in a single-cell RNA-seq dataset obtained from

rectal biopsies provides strong evidence that both epithe-
1772 The American Journal of Human Genetics 108, 1765–1779, September 2, 2021
lial and immune cells contribute to

the risk of disease progression

(Figure 4). Most of the genes are

strongly expressed in just one or two

of the 22 identified cell types, seven

of which are notable for an excess of

colectomy-associated genes: plasmacy-

toid dendritic cells, immunoregulatory

T cells, ILC1/3 innate immune cells,

and inflammatory macrophages from

the immune compartment and fibro-

blasts, secretory epithelial cells, and

endothelial cells from the gut itself.
Because each of these cell types is also represented in

the single-cell profiles of the TRS genes, which were

selected on the basis of joint eQTL and GWAS associa-

tions, it is quite likely that cis-regulatory effects partly

explain their relationship to the pathology. In both

panels, three-quarters of the indicated genes are among

the top FindMarker annotations for the observed cell

type, which in almost all cases, implies expression bias

in that cell type at p < 10�50 (Table S4). Prospective

scRNA-seq studies will most likely reveal more insight

into the cellular and genetic basis of the transcriptional

risk of adverse disease progression.

Much of the TRS reflects covariance of the expression of

the genes, most likely because of a combination of envi-

ronmental influences, variation in the proportions of

contributing cell types, and trans-acting genetic influences.

Cis-acting genetic effects will impact each gene indepen-

dently yet cumulatively contribute, and the conjunction

of GWAS and eQTL signals suggests that it may be possible

to also predict disease progression from genotypes alone.



Figure 4. Cell-type-specific expression of colectomy-associated genes
(A) Heatmap showing upregulation (red) of each gene contributing to PC1 in a rectal scRNA-seq dataset. Dozens of genes are enriched in
seven cell types.
(B) Similar analysis but for the TRSUC genes. Note the similarity of the cell types showing enrichment and the absence of B cell or plasma
cell signals in both. In (A), 99 of the 136 genes are highly significant FindMarker transcripts for the cell type highlighted in the heatmap;
exceptions are the fibroblast cluster and some of the endothelial/smoothmusclemarkers, whichmark both subsets. In (B), 20 of 26 genes
are similarly peak FindMarkers.
To evaluate this, we performed a TWAS20,21 by using DPR

implemented in TIGAR47 to capture the effects of all poly-

morphisms within 1Mb of each transcript expressed in the

PROTECT rectal biopsies and then used the weights to pre-

dict gene expression in the white British subset of the UK

Biobank.26We tested for differential predicted gene expres-

sion in 70% of the samples and discovered �800 genes

either up- or downregulated in UC-affected individuals

relative to non-IBD control individuals. A predicted poly-

genic transcriptional risk score (PPTRSUC) was then derived

as a weighted sum of the effect sizes of the minor alleles

(which polarizes effects of alleles that increase or decrease

expression in affected individuals) and applied to the

held-out 30% validation sample, as well as to the PROTECT

genotypes. Figure 5A shows that the PPTRS efficiently dis-

criminates UC-affected individuals from non-IBD control

individuals in UK Biobank (p < 10�219) and remarkably

that it also discriminates the indivduals who underwent

colectomy in both UK Biobank and PROTECT (p ¼ 0.002

and 0.006, respectively, p values computed with Kruskal-
The American Jour
Wallis test in R). That is to say, as with the observed gene

expression, individuals who underwent colectomy are

distinguished by a trend toward yet more extreme pre-

dicted gene expression. The same trend was replicated in

a larger and completely independent NIDDK-IBDGC

colectomy cohort,52 consisting of 2,838 non-IBD control

individuals, 2,298 individuals diagnosed as UC, and 753

individuals with known colectomy. The rectum-based

PPTRS in this cohort discriminates UC-affected individuals

from non-IBD control individuals (p ¼ 8.5 3 10�7) as well

as UC from colectomy (p ¼ 0.0025) (Figure 5A).

Furthermore, PPTRSUC provides enhanced discrimina-

tion of affected individuals and control individuals in the

UK Biobank, as shown in the prevalence versus risk score

percentile plots in Figure 5B. Whereas the top percentile

has 3-fold higher prevalence than the median via a PRS

with 6,396 UC SNPs from summary statistics of the Euro-

pean UC GWAS meta-analysis53 (pruned with PLINK42 at

p value< 0.001, LD r2> 0.5), the top percentile of PPTRSUC

is 4-fold higher, and higher prevalence is inferred for the
nal of Human Genetics 108, 1765–1779, September 2, 2021 1773
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Figure 5. Properties of a predicted polygenic transcriptional risk score (PPTRS)
(A) PPTRS developed from predicted gene expression in PROTECT used for identification of predicted differentially expressed genes in
the UK Biobank. The weighted sum of 820 predicted gene expression values clearly separates control individuals from UC-affected in-
dividuals in the UK Biobank, PROTECT, and NIDDK studies, while individuals with colectomy have evenmore highly elevated scores. In
standard deviation units, the effect sizes are as follows: UKB controls versus UC, 0.54; UKB UC versus colectomy, 0.16; PROTECT UC
versus colectomy, 0.58; NIDDK controls versus UC, 0.14; NIDDK UC versus colectomy, 0.13; p values derived from Kruskal-Wallis tests.
(B) Prevalence versus percentile plots for a PRS based on 6,396 genotypes for UC (red) and the PPTRS (green), showing enhanced prev-
alence for the upper deciles of the PPTRS. Whiskers show standard error of mean from 5-fold cross-validation.
top 20% of the entire cohort. Negative predictive values are

similar for both scores. Comparison of the percent variance

explained by PPTRSs for disease outcome (evaluated by

computing the out of sample Nagelkerke R2 of the logistic

regression between UC status and score at increasing inclu-

sion thresholds) was similar to the 0.005 observed for the

PRS when only highly significant predicted transcripts

were included but jumped to 0.021 with all predicted tran-

scripts at p < 0.05 (Figure S8).

Although colectomy status was not incorporated into

either the DPR-based prediction of gene expression or the

computation of PPTRSUC, the fact that the prediction and

testing datasets are both from PROTECT could confound

the interpretation with an element of circularity. We thus

used the GTEx study51 transverse colon samples (n ¼ 368)

to generate independent prediction models, which we

then ran through the same pipeline to generate a confirma-

tory PPTRSUC. Table 1 shows that this score was almost as

good as the PROTECT-derived one in predicting colectomy

in the UK Biobank, PROTECT, and NIDDK studies (p ¼
0.011, p¼ 0.007, and p¼ 0.006, respectively). Furthermore,

neither cortex- nor muscle-derived PPTRS fromGTEx signif-

icantly predicts progression to colectomy. Note that

discrimination of cases and controls at very high signifi-

cance levels is expected of any cumulative TWAS score in

this setting, regardless of the tissue, because the genes

were included precisely because of the differential expres-

sion. The observation that only the rectum and colon sam-

ple scores (not muscle or cortex) associate with colectomy

(which was not a term in the prediction model) confirms
1774 The American Journal of Human Genetics 108, 1765–1779, Sep
that disease-relevant tissue-specific cis-eQTL effects are

more informative for studying of disease progression.

Discussion

Our results highlight the potential of transcriptional

profiling for prediction of colectomy in UC. Direct mea-

surement of rectal biopsy RNA provides a replicated, high-

ly discriminatory signature observed in almost all children

who will need surgery. This signature has a positive predic-

tive value for the adverse outcome approaching 50% (18 of

38 individuals with a score greater than 12), yet the expres-

sion profile reverts to a healthier state regardless of immu-

nological therapy within 1 year. Although much of the

mis-expression is thus associated with disease status and

due to trans-regulation, we nevertheless show that predic-

tion of gene expression from cis-linked SNPs is sufficient

for generation of a PRS that outperforms one based purely

on GWAS associations.

The two types of TRS that we describe, namely measured

and predicted, are somewhat independent predictors of

risk because their correlation is just 0.08. This is unsurpris-

ing because the predicted score is the summation of hun-

dreds of independent models, one per transcript, whereas

the measured score largely reflects co-regulation of the

contributing transcript. This observation does, however,

raise the question of to what extent cis-acting eQTLs

contribute to the observed disease-associated expression

signatures. Several lines of evidence suggest that this

component of genetic risk, which is also the one typically
tember 2, 2021
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detected by GWASs, is modest. First, the discrimination of

affected individuals who underwent colectomy is much

greater for the measured score, as the median score is 4

standard deviations greater than the median of all other

affected individuals (Figure 3B), whereas the predicted

score difference is just 0.2 standard deviations

(Figure 5A). Second, the percent variance explained by

case status for the abundance of transcripts that are differ-

entially expressed at baseline in the colectomy subset is

typically three times greater than that explained by peak

eQTL genotype (Figure S9; conversely, genes with eQTL ef-

fects that explain more than 5% of the transcript variance

tend not to be differentially expressed in the colectomy

subset). Third, the overlap in identities of the 2,188 genes

contributing to the measured PC1col and 820 to the

PPTRScol is just 138 genes, consistent with the notion

that many of the dysregulated genes are correlated with

disease progression without having a measurable genetic

contribution to it.

Given this modest contribution of eQTL effects to tran-

scriptionally assessed risk, it is particularly remarkable

that the PPTRScol outperforms the PRS based on more

than 6,000 pruneþthreshold selected SNPs significant for

disease status at p < 0.001 in cross-validated prediction of

UC status. The most likely reason for this is that the DPR

used in our TWAS captures muchmore of the locally acting

regulatory variation than summation of marginal effects

and hence more efficiently combines the genetic signal at

each locus. Indeed, implementation of a Bayesian method

forpolygenic risk scoringusingcontinuous shrinkagepriors

on SNP effect sizes (PRS-CS)64 gives rise to stronger PRS that

has similar performance to the PPTRS (Figure S10). It re-

mains noteworthy that the score built from just 331 PRO-

TECT RNA-seq profiles and computed in 4,112 UC-affected

individuals performs as well as the PRS with weights from

meta-analysis of 20,000 affected individuals. Also notably,

gut gene expression models from a completely different

study (GTEx) have similar performance, and replication of

risk stratification was observed in an independent adult co-

lectomy cohort study. These data underscore the interpreta-

tion that it is the sum total of regulatory effects at a locus

that contribute to genetic risk and that this canbe evaluated

even without understanding the direct correspondence be-

tween eQTL and GWAS association.

An additional component of our study is the demonstra-

tion that multiple cell types in the rectal mucosa contribute

to pathology. In both the expanded set of 138 differentially

expressed genes represented in the single-cell dataset and

the focused set of TRS genes, immunoregulatory T cells,

innate lymphoid cells, plasmacytoid dendritic cells, endo-

thelial cells, secretory epithelial cells, and activated fibro-

blast cells are implicated by enrichment for expression of

subsets of the genes that are among the defining markers

of these cell types. That is not to say the genes are uniquely

expressed in thecell types (mostappear in twoor three types,

sometimes including both immune and epithelial cells), but

it does indicate that the signature of pathology involves
nal of Human Genetics 108, 1765–1779, September 2, 2021 1775



dysregulation in multiple cell layers. More extensive single-

cell profiling, combined with cell-type-specific genetic anal-

ysis of gene expression, is likely to lead to the development

of even better transcriptional risk signatures. It is also likely

that such focused and personalized analysis may highlight

specific pathological mechanisms active in particular

affected individuals.

Our results are limited by the relatively small sample size

of colectomies in the PROTECT study, which is neverthe-

less the largest treatment-naive inception cohort to date.

The clinical significance of the PPTRScol is limited at this

time because the precision remains low, but in the absence

of gene expression profiles, it should be further evaluated

as a component of total evidence models, supplementing

histology-based indices such as PUCAI. Validation of

cross-ancestry assessments should be a high priority, and

it will be interesting to evaluate to what extent gene

expression prediction is consistent across populations. It

is likely that more widespread sampling of this and other

forms of IBD will yield even more accurate predictors of

disease progression, influencing personalized therapeutic

decisions. Similar strategies might also be developed for

other complex diseases for which sampling of the relevant

tissue is impractical.
Data and code availability

ThebulkRNA-seqdata fromPROTECT for this studyhasbeendepos-

ited to the NCBI GEO database as GEO: GSE150961, and the single-

cell RNA-seqdata are available asGEO:GSE150516.No customalgo-

rithmsor softwarewereutilized for this study, but the corresponding

author will gladly share parameters used upon request. Code for

computation of the PPTRS is available at the following GitHub

link: https://github.com/sn-GT/Measured-and-predicted-TRS.
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