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Nonparametric Dynamic Screening System for Monitoring Correlated

Longitudinal Data

Jun Li1 and Peihua Qiu2

1Department of Statistics, University of California at Riverside

2Department of Biostatistics, University of Florida

Abstract

In many applications, including disease early detection and prevention, and performance eval-

uation of airplanes and other durable products, we need to sequentially monitor the longitudinal

pattern of certain performance variables of a subject. A signal should be given as soon as possible

once the pattern becomes abnormal. Recently, a new statistical method called dynamic screening

system (DySS) has been proposed to solve this problem. It is a combination of longitudinal data

analysis and statistical process control. However, the current DySS method can only handle cases

when observations are normally distributed and within-subject observations are independent or fol-

low a specific time series model (e.g., AR(1) model). In this paper, we propose a new nonparametric

DySS method which can handle cases when the observation distribution and the correlation among

within-subject observations are arbitrary. Therefore, it broadens the application of the DySS method

greatly. Numerical studies show that the new method works well in practice.

Key Words: Cholesky decomposition; Dynamic screening; Longitudinal data; Process monitoring;

Standardization; Statistical process control; Unequal sampling intervals.

1 Introduction

In practice, we often need to detect significant difference between the longitudinal pattern of some

performance variables of a given subject and the regular longitudinal pattern of some well-functioning

subjects as soon as possible so that unpleasant consequences can be avoided. This dynamic screening

(DS) problem is popular in our daily life. For instance, individual people’s medical indices (e.g., blood

pressure and cholesterol level) need to be checked regularly. If their observations are significantly worse

than the values of a typical healthy person of the same age, then some proper treatments or interventions

should be made to avoid stroke and other deadly cardiovascular diseases. This paper proposes a flexible

and efficient method to solve the DS problem.

In the literature, there are two types of methods that are relevant to the DS problem. The first

type belongs to the research area of longitudinal data analysis (LDA). By an LDA method, we can
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construct confidence intervals for the performance variables at different time points based on an observed

dataset of some well-functioning subjects. Then, a new subject can be identified as the one who has

an irregular longitudinal pattern if its observed values of the performance variables fall outside the

confidence intervals. Some existing methods for constructing such confidence intervals include Chen

and Jin (2005), Li (2011), Liang and Zeger (1986), Ma et al. (2012), Wang (2003), Xiang et al (2013),

and Zhao and Wu (2008). This confidence interval approach is inefficient in handling the DS problem

because i) it does not make use of all historical data of the subject in question when making decisions

about its performance at the current time point, and ii) it cannot monitor a subject sequentially over

time. The second type of statistical methods relevant to the DS problem belongs to the research area of

statistical process control (SPC). By a SPC control chart, we can monitor each subject sequentially, and

a signal will be given as soon as the chart detects a shift in the longitudinal pattern of the performance

variables from an in-control (IC) status to an out-of-control (OC) status (cf., Montgomery 2009, Hawkins

and Olwell 1998, Qiu 2014). However, a conventional SPC chart is designed for monitoring a single

sequence of observations collected over time (a so-called single process here), and the distribution of

the process observations is assumed unchanged when the process is IC to use such a chart. In the DS

problem, however, if the longitudinal pattern of the performance variables of each subject is regarded

as a process, then there are many processes involved. Also, the observation distribution can change

over time even for a well-functioning subject (e.g., the mean cholesterol level of a healthy person would

change with age).

Recently, Qiu and Xiang (2014) suggested a so-called dynamic screening system (DySS) for solving

the DS problem. That method combines certain strengths of the LDA and SPC methods. It consists

of three main steps: i) a regular longitudinal pattern is estimated from an observed dataset (called

IC dataset hereafter) of a number of well-functioning subjects, ii) observations of a new subject under

study are standardized by the estimated regular longitudinal pattern, and iii) an SPC chart is used for

monitoring the standardized observations of the new subject. In this method, the approach for esti-

mating the regular longitudinal pattern in step one is completely nonparametric. But, in the remaining

two steps, it assumes that observations are normally distributed, and within-subject observations are

either independent or dependent following an AR(1) model. These assumptions greatly restrict its ap-

plications. In this paper, we propose a novel nonparametric DySS method for solving the DS problem

without the restrictive assumptions mentioned above. The major idea behind this method is that ob-

servations of a new subject are decorrelated sequentially each time when a new observation is obtained
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based on the covariance function estimated from the IC dataset. These decorrelated data would also be

asymptotically normally distributed.

The paper is organized as follows. Our proposed new methodology will be described in detail in

Section 2. A numerical study is presented in Section 3. Then, the proposed method is demonstrated

using a real-data example in Section 4. Some remarks conclude the article in Section 5. Some technical

details are given in the appendix.

2 Methodology

Our proposed nonparametric DySS method consists of three main steps. In the first step, the regular

longitudinal pattern of the performance variables needs to be estimated from an IC data. In this step,

we still use the nonparametric modeling approach described in Qiu and Xiang (2014) for analyzing the

Phase I longitudinal data. That approach is briefly described in Subsection 2.1. Then, the remaining

two steps for standardizing and monitoring the observations of a new subject are discussed in Subsection

2.2.

2.1 Phase I modeling of longitudinal data

Assume that we have m well-functioning subjects in the IC dataset. For the i-th (i = 1, ...,m) subject,

the measurements are taken at times ti1, ..., tini in the time period [0, T ], and the corresponding

measurements at those times are denoted by y(tij), for j = 1, ..., ni. The following model has been used

widely for modeling such longitudinal data in the literature:

y(tij) = µ(tij) + ε(tij), i = 1, ...,m, j = 1, ..., ni, (1)

where µ(·) is a smooth function and models the population mean curve, ε(·) is the error term with the

covariance function V (s, t) = cov(ε(s), ε(t)) for any s, t ∈ [0, T ].

Following the estimation procedure in Qiu and Xiang (2014), we can obtain the estimates of µ(t)

and V (s, t) by the algorithm below.

Step 1. Let Σi be the covariance matrix of yi = (y(ti1), y(ti2), ..., y(tini))
T , for i = 1, ...m. In this step, we
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assume Σi = Ini , where Ini is the ni-dimensional identity matrix. Define

Xi =


1 (ti1 − t) · · · (ti1 − t)p
...

...
. . .

...

1 (tini − t) · · · (tini − t)p


ni×(p+1)

,

and Kih(t) = diag(K((ti1 − t)/h), ...K((tini − t)/h))/h, where K(·) is a kernel function and h > 0

is a bandwidth. Let Ji = diag(I{|ti1−t|≤h}, ..., I{|tini
−t|≤h}), where I{A} is the indicator function

and takes the value of 1 if A is true and 0 otherwise. Then an initial pth-order local polynomial

kernel estimator of µ(t) is given by

µ̃(t) = eT1

(
m∑
i=1

XT
i WiXi

)−1( m∑
i=1

XT
i Wiyi

)
, (2)

where e1 is a (p + 1)-dimensional vector with 1 at the first component and 0 anywhere else,

Wi = K
1/2
ih (t)(JiΣiJi)

−1K
1/2
ih (t) with Σi = Ini .

Step 2. Based on the initial estimate µ̃(t), calculate the residuals

ε̃(tij) = y(tij)− µ̃(tij), i = 1, ...,m, j = 1, ..., ni.

For l1, l2 = 0, 1, 2, define

Sl1l2(s, t) =
1

Nh2

m∑
i=1

ni∑
j=1

∑
j′ 6=j

(
tij − s
h

)l1 ( tij′ − t
h

)l2

K

(
tij − s
h

)
K

(
tij′ − t
h

)
,

Vl1l2(s, t) =
1

Nh2

m∑
i=1

ni∑
j=1

∑
j′ 6=j

ε̃(tij)ε̃(tij′)

(
tij − s
h

)l1 ( tij′ − t
h

)l2

K

(
tij − s
h

)
K

(
tij′ − t
h

)
,

where N =
∑m

i=1 ni(ni − 1). Then, for s 6= t, an estimate of V (s, t) is given by

V̂ (s, t) = (A1(s, t)V00(s, t)−A2(s, t)V10(s, t)−A3(s, t)V01(s, t))B−1(s, t),

whereA1(s, t) = S20(s, t)S02(s, t)−S2
11(s, t), A2(s, t) = S10(s, t)S02(s, t)−S01(s, t)S11(s, t), A3(s, t) =

S01(s, t)S20(s, t)−S10(s, t)S11(s, t), B(s, t) = A1(s, t)S00(s, t)−A2(s, t)S10(s, t)−A3(s, t)S01(s, t).

Step 3. Since V (t, t), the variance of y(t), can be considered as the mean function of ε2(t), it can be
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estimated similarly by using (2). An estimate of V (t, t) is

V̂ (t, t) = eT1

(
m∑
i=1

XT
i WiXi

)−1( m∑
i=1

XT
i Wiε̃

2
i

)
,

where ε̃2
i = (ε̃2(ti1), ..., ε̃2(tini))

T , and the Wi are the same as those used in Step 1.

Step 4. Since

Σi =



V (ti1, ti1) V (ti1, ti2) · · · V (ti1, tini)

V (ti2, ti1) V (ti2, ti2) · · · V (ti2, tini)

...
...

. . .
...

V (tini , ti1) V (tini , ti2) · · · V (tini , tini)


,

based on the estimate of V (s, t) from Steps 2 and 3, we can obtain the estimate of Σi, denoted by

Σ̂i. Then, an updated and final estimate of µ(t) is

µ̂(t) = eT1

(
m∑
i=1

XT
i ŴiXi

)−1( m∑
i=1

XT
i Ŵiyi

)
,

where Ŵi = K
1/2
ih (t)(JiΣ̂iJi)

−1K
1/2
ih (t).

In all our numerical examples presented later, we choose p = 1, K(t) = 0.75(1 − t2)I{|t|≤1}, and

the bandwidth h in the above four steps are selected separately by the conventional cross-validation

method.

2.2 Phase-II monitoring of longitudinal data

In Phase II, the measurements of a new subject are sequentially collected. The task of Phase-II moni-

toring is to determine whether the new individual’s measurements are following the estimated regular

longitudinal pattern of the well-functioning subjects, described by the estimated mean function µ̂(t)

and the estimated covariance function V̂ (s, t). If not, then a signal should be given as early as possible.

Denote the times when the measurements are taken from the new subject by {t∗j , j = 1, 2, ...} and the

corresponding measurements are {y(t∗j ), j = 1, 2, ...}.

For the monitoring purpose, Qiu and Xiang (2014) further assumes that {y(t∗j ), j = 1, 2, ...} are

independent of each other. Under this independence assumption, they define the following standardized
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values,

ε̂(t∗j ) =
y(t∗j )− µ̂(t∗j )

V̂ (t∗j , t
∗
j )

, j = 1, 2, ..., (3)

which are then asymptotically i.i.d. random variables. The ε̂(t∗j ) are then used in a conventional control

chart, such as a CUSUM or EWMA chart.

From the above description, we can see that, in order for the procedure in Qiu and Xiang (2014)

to work, the independence among {y(t∗j ), j = 1, 2, ...} is a necessary assumption. However, if the

measurements from the new subject are IC, {y(t∗j ), j = 1, 2, ...} should follow the same IC model as in

(1). In other words, for j = 1, 2, ...,

y(t∗j ) = µ(t∗j ) + ε(t∗j ), (4)

and the covariance matrix of the ε(t∗j ) is V (s, t), which implies that the y(t∗j ) are correlated. Under this

situation, results from the procedure in Qiu and Xiang (2014) may not be reliable since the required

independence assumption could be violated. In the following, we introduce a new method to standardize

the data, and the resulting standardized values can be shown to be uncorrelated.

2.2.1 Standardization procedure

To facilitate the exposition, we treat µ(t) and V (s, t) as known by using their respective estimates

µ̂(t) and V̂ (s, t) from the Phase-I study described in the previous section. We start from the first

measurement y(t∗1). We calculate ε(t∗1) = y(t∗1) − µ(t∗1), then the variance of ε(t∗1) is σ11 = V (t∗1, t
∗
1).

Therefore, we can define its standardized value by

e∗(t∗1) =
ε(t∗1)
√
σ11

.

For the second measurement y(t∗2), we can also calculate ε(t∗2) = y(t∗2)−µ(t∗2). Now, ε(t∗2) is correlated

with ε(t∗1), and the covariance matrix of ε2 = (ε(t∗1), ε(t∗2))T is given by Σ22 =

σ11 σ12

σ12 σ22

, where

σ12 = σ21 = V (t∗1, t
∗
2), σ22 = V (t∗2, t

∗
2). Based on the Cholesky decomposition, if we define Φ2 = 1 0

−σ12σ
−1
11 1

 and D2 =

d2
1 0

0 d2
2

 = diag(d2
1, d

2
2), where d2

1 = σ11 and d2
2 = σ22 − σ21σ

−1
11 σ12, we

have

Φ2Σ22ΦT
2 = D2.
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This motivates us to define e2 = (e(t∗1), e(t∗2))T = Φ2ε2, i.e.,

e(t∗1) = ε(t∗1),

e(t∗2) = −σ12σ
−1
11 ε(t

∗
1) + ε(t∗2).

Then cov(e2) = D2, a diagonal matrix, which implies that e(t∗1) and e(t∗2) are uncorrelated. Noticing

that e(t∗1)/d1 = e∗(t∗1), the standardized value we define at the first measurement, we can define the

standardized value of the second measurement by

e∗(t∗2) =
e(t∗2)

d2
=
−σ12σ

−1
11 ε(t

∗
1) + ε(t∗2)

d2
.

Then {e∗(t∗1), e∗(t∗2)} are uncorrelated with variance 1.

Similarly, for the third measurement y(t∗3), we calculate ε(t∗3) = y(t∗3)−µ(t∗3). The covariance matrix

of ε3 = (εT2 , ε(t
∗
3))T is given by Σ33 =

Σ22 σ23

σT
23 σ33

, where σ23 = cov(ε2, ε(t
∗
3)) = (V (t∗1, t

∗
3), V (t∗2, t

∗
3))T ,

σ33 = var(ε(t∗3)) = V (t∗3, t
∗
3). It can be shown that the Cholesky decomposition of Σ33 leads to

Φ3Σ33ΦT
3 = D3.

where Φ3 =

 Φ2 0

−σT
23Σ−1

22 1

, and D3 = diag(d2
1, d

2
2, d

2
3), d2

3 = σ33 − σT
23Σ−1

22 σ23. Therefore, if we define

e(t∗3) = −σT
23Σ−1

22 ε2 + ε(t∗3),

then e3 = (eT2 , e(t
∗
3))T = (e(t∗1), e(t∗2), e(t∗3))T = Φ3ε3 and cov(e3) = D3, which implies that e(t∗3) is

uncorrelated with e(t∗1) and e(t∗2). The standardized value of the third measurement is then defined as

e∗(t∗3) =
e(t∗3)

d3
=
−σT

23Σ−1
22 ε2 + ε(t∗3)

d3
,

which is uncorrelated with {e∗(t∗1), e∗(t∗2)} and has variance 1.

Following the same procedure we can define the standardized value sequentially after a new mea-

surement is collected from the new subject. More specifically, at the j-th measurement, we calculate
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ε(t∗j ) = y(t∗j )− µ(t∗j ). Then, the covariance matrix of εj = (εTj−1, ε(t
∗
j ))

T is Σjj =

Σj−1,j−1 σj−1,j

σT
j−1,j σjj

,

where εj−1 is the residual vector from the first j − 1 measurements, Σj−1,j−1 = cov(εj−1), σj−1,j =

cov(εj−1, ε(t
∗
j )) = (V (t∗1, t

∗
j ), ..., V (t∗j−1, t

∗
j ))

T , σjj = var(ε(t∗j )) = V (t∗j , t
∗
j ). It can be shown that the

Cholesky decomposition of Σjj is given by

ΦjΣjjΦ
T
j = Dj ,

where Φj =

 Φj−1 0

−σT
j−1,jΣ

−1
j−1,j−1 1

, Dj = diag(d2
1, ..., d

2
j ) with d2

j = σjj − σT
j−1,jΣ

−1
j−1,j−1σj−1,j , Φj−1

and diag(d2
1, ..., d

2
j−1) are the Cholesky decomposition of Σj−1,j−1. Therefore, if we define

e(t∗j ) = −σT
j−1,jΣ

−1
j−1,j−1εj−1 + ε(t∗j ),

then ej = (e(t∗1), ..., e(t∗j ))
T = (eTj−1, e(t

∗
j ))

T =

 Φj−1 0

−σT
j−1,jΣ

−1
j−1,j−1 1


εj−1

ε(t∗j )

 = Φjεj and cov(ej) =

Dj . This implies that, if we define the standardized value of the j-th measurement by

e∗(t∗j ) =
e(t∗j )

dj
=
−σT

j−1,jΣ
−1
j−1,j−1εj−1 + ε(t∗j )

dj
,

e∗(t∗j ) is uncorrelated with {e∗(t∗1), ..., e∗(t∗j−1)} and has variance 1.

Based on the above standardization procedure, we are able to transform the correlated {y(t∗j ), j =

1, 2, ...} to the uncorrelated {e∗(t∗j ), j = 1, 2, ...}. Because e∗(t∗j ) is a linear combination of observa-

tions y(t∗1), y(t∗2), ..., y(t∗j ), its distribution would be asymptotically normal. Therefore, the sequence

{e∗(t∗j ), j = 1, 2, ...} would be asymptotically i.i.d. with the common distribution N(0,1). In such

cases, the regular CUSUM chart is reasonable to use. For example, to detect upward mean shifts in

{y(t∗j ), j = 1, 2, ...}, we can define the CUSUM charting statistic by

S+
j = max(0, S+

j−1 + e∗(t∗j )− k), for j ≥ 1, (5)

where S+
0 = 0 and k > 0 is the allowance constant. The corresponding CUSUM chart is to monitor S+

j

and it triggers an alarm when S+
j exceeds some control limit l. To detect downward mean shifts, we
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can define the CUSUM charting statistic by

S−j = min(0, S−j−1 + e∗(t∗j ) + k), for j ≥ 1,

where S−0 = 0 and k > 0 is the allowance constant. The corresponding CUSUM chart is to monitor S−j

and it triggers an alarm when S−j < −l. To detect an arbitrary mean shift, we can combine S+
j and

S−j , and the procedure triggers an alarm when S+
j > l or S−j < −l. For simplicity, henceforth we use

the CUSUM charting statistic in (5) as an example of our general CUSUM charting statistic.

Remark 1 In the standardization procedure we propose above, at the j-th measurement, we need to

calculate Σ−1
j−1,j−1. To avoid calculating the inverse matrix directly, we suggest using the following

recursive formula:

Σ−1
j−1,j−1 =

Σ−1
j−2,j−2 + Σ−1

j−2,j−2σj−2,j−1D
−1
j−1σ

T
j−2,j−1Σ−1

j−2,j−2, −Σ−1
j−2,j−2σj−2,j−1D

−1
j−1

−D−1
j−1σ

T
j−2,j−1Σ−1

j−2,j−2, D−1
j−1

 ,

where Dj−1 = σj−1,j−1−σT
j−2,j−1Σ−1

j−2,j−2σj−2,j−1 = d2
j−1, and σj−2,j−1 = cov(εj−2, ε(t

∗
j−1)) = (V (t∗1, t

∗
j−1),

..., V (t∗j−2, t
∗
j−1))T . This result provides us a convenient way to calculate Σ−1

j−1,j−1 recursively to simplify

the computation.

Remark 2 Based on Remark 1, the computation associated with our proposed procedure should not be

a big problem when j is relatively small. In practice, the ATS0 value (see its definition in the next

section) is often chosen to be a relatively small number (e.g., 50). In such cases, the control chart

usually gives a signal at a time that is smaller than 3 or 4 times the chosen ATS0 value. So, the

computation and storage of Σ−1
j−1,j−1 should not be a problem. However, in certain applications with

very stable processes, j could be potentially large. In such situations, the computation and storage of

Σ−1
j−1,j−1 could be a problem because Σ−1

j−1,j−1 is a large matrix, even after the recursive formula in

Remark 1 is used. In such cases, we suggest the strategy briefly described below. First, we notice that

the uncorrelated residuals e(t∗j ), for j ≥ 2, can also be computed recursively by

e(t∗j ) = ε(t∗j )−
j−1∑
k=1

d−2
k σ∗jke(t

∗
k),

where d2
k = var(e(t∗k)), σ∗jk = cov(ε(t∗j ), e(t

∗
k)), and the standardized residuals e∗(t∗j ) = e(t∗j )/dj. In

practice, the correlation between ε(t∗i ) and ε(t∗j ) would become weaker when t∗i and t∗j are farther apart.
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Therefore, when j is large, we can set σ∗jk to be 0 for those t∗k that are much smaller than t∗j . As a

result, we only need to calculate the summation in the above formula over the e(t∗k)’s that are relatively

close to t∗j , which makes the computation and data storage feasable and convenient.

As we can see from the above, our proposed CUSUM chart is capable of dealing with any covariance

structure. Next, we will show that, when the error term follows an AR(1) model, our proposed CUSUM

chart is similar to the second CUSUM chart proposed in Qiu and Xiang (2014). More specifically, under

the AR(1) model, the ε(tij) (j = 1, ..., ni) in the model (1) are assumed to follow

ε(tij) = φε(tij − ω) + e(tij), (6)

where ω is the basic time unit defined in Qiu and Xiang (2014), which is the largest time unit that

the observation times {tij} are all its integer multiples, e(tij) is a white noise process with mean 0 and

variance σ2
e . Under this AR(1) model, the standardization procedure in (3) is not efficient. Therefore,

they proposed another CUSUM chart in order to take into account the AR(1) error structure. Their

proposed CUSUM charting statistic is defined by

C+
j = max

[
0, C+

j−1 +
(
ε∗(t∗j )− φ

∆∗j−1,j ε∗(t∗j−1)
)
/

√
1− φ2∆∗j−1,j − k

]
, for j ≥ 2, (7)

where ε∗(t∗j ) = (y(t∗j )− µ(t∗j ))/σy(t∗j ), σy(t∗j ) =
√
σ2
e/(1− φ2), and ∆∗j−1,j = (t∗j − t∗j−1)/ω.

Proposition 1 Under the AR(1) model in (6), e∗(t∗j ) in our proposed CUSUM charting statistic in (5)

is equal to
(
ε∗(t∗j )− φ

∆∗j−1,j ε∗(t∗j−1)
)
/

√
1− φ2∆∗j−1,j in the CUSUM charting statistic in (7), for j ≥ 2.

2.2.2 Determining the control limit

As pointed out in Qiu and Xiang (2014), in most longitudinal data studies, the observation times

{t∗j , j = 1, 2, ...} may not be equally spaced. Under this situation, the average run length (ARL)

commonly used in the SPC applications to evaluate the performance of control charts may not be

appropriate. Instead, Qiu and Xiang (2014) proposed using the concept of average time to the signal

(ATS) when evaluating the performance of control charts on longitudinal data. To calculate the ATS,

the observation times t∗j are expressed in terms of the basic time unit ω, by n∗j = t∗j/ω. The ATS is

then defined as the expected time to a signal in the basic time unit ω. In this paper, we also follow this

idea and use ATS for evaluating the performance of our proposed control chart.
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In the following we discuss how to determine the control limit l such that the IC ATS (denoted by

ATS0) of our CUSUM procedure in (5) is controlled at the desired level. From the development of our

proposed procedure in Section 2.2.1, we know that {e∗(t∗j ), j = 1, 2, ...} in (5) are uncorrelated. If it

is reasonable to assume that the error term ε(·) in (1) follows a normal distribution, then {e∗(t∗j ), j =

1, 2, ...} are a sequence of i.i.d. standard normal random variables if the observations are in control.

Therefore, determining the control limit l in our proposed CUSUM procedure can be achieved by

simulating data from the standard normal distribution as {e∗(t∗j ), j = 1, 2, ...} and finding l to obtain

the desired ATS0 for any given k through a bi-section search. The bi-section search algorithm runs as

follows:

Step 1. For any control limit l, we simulate 10,000 IC sample paths. In each of the IC sample paths,

{e∗(t∗j ), j = 1, 2, ...} are simulated from the standard normal distribution. The corresponding

ATSl
0 for the given l is determined by averaging out the time to a signal in the basic time unit ω

from these 10,000 sample paths. Based on this approach, we first find l1 such that ATSl1
0 < ATS0,

and l2 such that ATSl2
0 > ATS0.

Step 2. Find ATSl3
0 where l3 is the midpoint of l1 and l2.

Step 3. If ATSl3
0 < ATS0, assign l1 = l3. If ATSl3

0 > ATS0, assign l2 = l3;

Step 4. Repeat Steps 2 and 3 until ATSl3
0 is sufficiently close to ATS0;

Step 5. Use l3 as the control limit.

As mentioned earlier, the observation times in most longitudinal data studies may not be equally

spaced. Following Qiu and Xiang (2014), we specify the distribution of the observation times by the

sampling rate d, which is defined to be the number of observation times every 10 basic time units here.

The calculated control limits l using the above bi-section search algorithm for various values of d and k

in our proposed CUSUM procedure (5) with ATS0 = 25 or 50 are given in Table 1.

Table 1: Control limits l for different d and k values when observations are normally distributed.

ATS0 = 25 ATS0 = 50
k d = 2 d = 5 d = 10 d = 2 d = 5 d = 10

0.1 0.969 2.031 3.125 1.750 3.125 4.563
0.2 0.828 1.734 2.609 1.500 2.625 3.688
0.5 0.431 1.106 1.625 0.938 1.645 2.227
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If the distribution of the error term ε(t) in (1) is unknown but the number of observations for each

subject is large, we can still use the above method to determine the control limit, since the standardized

residual, e∗(t∗j ), is simply a linear combination of observations and its distribution is asymptotically

normal. If the distribution of the error term ε(t) is unknown and the number of observations for

each subject is not large, e∗(t∗j ) might not be asymptotically normally distributed. In this case, we

can resort to the bootstrap procedure for determining the control limit. More specifically, we assume

that the IC dataset consists of m well-functioning subjects. We first use the observations from m1

(m1 < m) subjects in the IC dataset to obtain the estimates of the mean function and covariance

function, µ̂(t) and V̂ (s, t), as discussed in Section 2.1. Based on these µ̂(t) and V̂ (s, t), we apply the

standardization procedure described in Section 2.2.1 to the remaining m−m1 subjects in the IC dataset

and obtain the standardized residuals {e∗(tij), i = m1+1,m1+2, ...,m, j = 1, ..., ni}. Those residuals are

asymptotically uncorrelated and can be used to approximate the distribution of e∗(t∗j ) in our proposed

CUSUM procedure in (5). Therefore, to determine the control limit l to achieve the desired ATS0

for any given k and d, we can follow the same bi-section search algorithm as the above except that,

in each of the IC sample paths, {e∗(t∗j ), j = 1, 2, ...} are now drawn from the bootstrap resamples of

{e∗(tij), i = m1 + 1,m1 + 2, ...,m, j = 1, ..., ni}.

3 Numerical Study

In this section, we present some simulation studies to evaluate the performance of our proposed CUSUM

procedure. Our first study considers cases when the IC mean function µ(t) and the IC covariance

function V (s, t) are both known. In particular, we assume that µ(t) = sin(2πt). For V (s, t), we consider

two scenarios. In the first scenario, V (s, t) is the covariance function of ε(tij) generated from the

following mixed effect model

ε(tij) = ξ0,ij +
3∑

l=1

ξl,iφl(tij), (8)

where ξ0,ij and the ξl,i are independent random variables from N(0, 0.3), and φ1(t) = t2 + 0.5, φ2(t) =

sin(3πt), φ3(t) = cos(3πt). The above mixed effect model was used in the simulation study of Li

(2011). In the second scenario, V (s, t) is the covariance function of ε(tij) generated from the following

ARMA(2,1) model

ε(tij) = 0.5ε(tij − ω) + 0.2ε(tij − 2ω) + e(tij) + 0.2e(tij − ω),
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where ω is the basic time unit, e(tij) is the white noise from N(0, 0.25).

As described earlier, the observation times for each new individual is specified by the sampling rate

d. Throughout all the simulation studies presented in this section we choose the basic time unit ω to

be 0.01, and d is chosen to be 2, 5, or 10. For our proposed CUSUM procedure (5), we fix the nominal

ATS0 value at 25 or 50, and the allowance constant k is chosen to be 0.1, 0.2 or 0.5.

Using the control limits reported in Table 1, we apply our proposed CUSUM procedure (5) to the

new subject’s observations generated from the IC mean function µ(t) and the IC covariance function

V (s, t) described above (the two scenarios for generating V (s, t) are denoted by Mixed Effect Model

and ARMA(2,1), respectively), and obtain the time to the signal. This is repeated 1,000 times and the

average of the 1,000 times to the signal is the simulated ATS0 of our proposed CUSUM procedure. We

repeat this simulation 100 times. Table 2 shows the average simulated ATS0 of our proposed CUSUM

procedure along with their corresponding standard errors (in the parentheses) under different settings

over the 100 replications. From Table 2, we can see that all the simulated ATS0 can achieve the nominal

Table 2: Simulated ATS0 for different d and k values when µ(t) and V (s, t) are both known.

ATS0 = 25
Mixed Effect Model ARMA(2,1)

k d = 2 d = 5 d = 10 d = 2 d = 5 d = 10

0.1 24.898(0.074) 25.008(0.063) 24.924(0.077) 24.878(0.073) 25.009(0.071) 25.164(0.077)
0.2 25.341(0.073) 25.072(0.067) 25.073(0.073) 25.337(0.077) 25.126(0.074) 25.252(0.071)
0.5 25.340(0.077) 25.178(0.065) 24.578(0.074) 25.294 (0.078) 25.163(0.067) 24.648(0.080)

ATS0 = 50
Mixed Effect Model ARMA(2,1)

k d = 2 d = 5 d = 10 d = 2 d = 5 d = 10

0.1 50.164(0.152) 49.475(0.139) 49.812(0.131) 49.943(0.145) 49.631(0.141) 50.022(0.134)
0.2 50.248(0.149) 50.210(0.134) 50.102(0.130) 50.021(0.142) 50.560(0.141) 50.471(0.143)
0.5 50.068(0.161) 49.905(0.143) 50.010(0.161) 49.757(0.155) 49.980(0.152) 50.126(0.143)

level, which indicates that our standardization procedure can successfully decorrelate the data.

As a comparison, we also apply the three CUSUM procedures proposed by Qiu and Xiang (2014) to

the new subject’s observations generated in the same way as in Table 2. Their first CUSUM procedure

assumes independence among the standardized values in (3), the second one assumes an AR(1) model

for those standardized values, and the third one does not assume any particular error structure and

uses block bootstrap to determine the control limit. When the true covariance structure of within-

subject observations follows the Mixed Effect Model, the Qiu and Xiang’s first two CUSUM procedures

sometimes do not alarm. To make the calculation of ATS still feasible in this situation, we set ATS =
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200 in those situations. The simulated ATS0 values for different CUSUM procedures in Qiu and Xiang

(2014) are reported in Tables 3-5. All the values are calculated based on 100 replicated simulations.

As we can see from those tables, the simulated ATS0 values for their first two procedures are quite off

from the nominal levels. This is not surprising since it has been well demonstrated in the literature

that the actual control chart performance would be quite different from the expected performance if

the data correlation is not properly accommodated (cf., Kim et al. 2007, Runger and Willemain 1995).

This example demonstrates that the first two methods by Qiu and Xiang (2014) may not be reliable

to use in cases when the within-subject observations are correlated and the correlation is not properly

accommodated, and our proposed method in this paper is reliable in such cases.

Table 3: Simulated ATS0 of Qiu and Xiang’s independent CUSUM procedure for different d and k
values.

ATS0 = 25
Mixed Effect Model ARMA(2,1)

k d = 2 d = 5 d = 10 d = 2 d = 5 d = 10

0.1 49.453(0.216) 52.089(0.191) 51.404(0.207) 29.023(0.091) 25.876(0.086) 21.269(0.063)
0.2 51.592(0.228) 55.358(0.184) 55.308(0.214) 29.905(0.098) 26.738(0.094) 21.690(0.063)
0.5 54.820(0.232) 65.618(0.226) 67.795(0.217) 31.082(0.107) 30.807(0.111) 24.920(0.080)

ATS0 = 50
Mixed Effect Model ARMA(2,1)

k d = 2 d = 5 d = 10 d = 2 d = 5 d = 10

0.1 74.082(0.231) 67.936(0.224) 62.847(0.224) 49.582(0.157) 38.186(0.137) 29.178(0.089)
0.2 77.019(0.239) 71.428(0.224) 66.355(0.230) 50.590(0.162) 38.665(0.140) 28.741(0.087)
0.5 85.352(0.243) 84.325(0.242) 81.230(0.221) 54.574(0.161) 42.981(0.155) 31.724(0.098)

Table 4: Simulated ATS0 of Qiu and Xiang’s AR(1) CUSUM procedure for different d and k values.

ATS0 = 25
Mixed Effect Model ARMA(2,1)

k d = 2 d = 5 d = 10 d = 2 d = 5 d = 10

0.1 50.344(0.187) 53.601(0.216) 65.479(0.245) 30.446(0.070) 28.220(0.071) 27.377(0.071)
0.2 51.940(0.193) 54.529(0.210) 69.392(0.232) 30.911(0.072) 28.492(0.069) 27.816(0.078)
0.5 53.093(0.199) 52.647(0.171) 53.772(0.238) 30.953(0.071) 29.008(0.075) 27.537(0.079)

ATS0 = 50
Mixed Effect Model ARMA(2,1)

k d = 2 d = 5 d = 10 d = 2 d = 5 d = 10

0.1 80.790(0.225) 82.128(0.235) 88.887(0.273) 55.968(0.139) 52.672(0.123) 52.315(0.126)
0.2 83.145(0.226) 87.235(0.244) 99.761(0.243) 56.275(0.138) 54.080(0.145) 53.602(0.138)
0.5 88.859(0.244) 93.335(0.242) 108.614(0.248) 56.446(0.140) 55.519(0.157) 55.934(0.174)

As expected, Qiu and Xiang’s third CUSUM procedure can achieve the desired nominal ATS0 as
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seen in Table 5, since this procedure does not assume any particular error structure. Besides being more

computationally intensive than our proposed method, this procedure also requires that the sampling

scheme in Phase I should be exactly the same as the sampling scheme in Phase II. To show the im-

portance of this sampling scheme requirement for Qiu and Xiang’s third CUSUM procedure, we carry

out another simulation using different sampling schemes for Phase I and Phase II. The sampling rate

d for Phase I and Phase II are denoted by d1 and d2, respectively. The simulated ATS0 for Qiu and

Xiang’s block bootstrap CUSUM procedure for different d1 and d2 are shown in Table 6. As we can see

from the results, even when d1 and d2 are slightly different, the simulated ATS0 can be quite off from

the nominal level. In contrast, our proposed method does not have this sampling scheme requirement,

and the sampling scheme in Phase I can be totally different from that in Phase II for our method.

This makes our method more broadly applicable in many real applications, since the Phase-I data and

Phase-II data in many situations might not follow the same sampling scheme (for example, see our real

application in Section 4).

Table 5: Simulated ATS0 of Qiu and Xiang’s block bootstrap CUSUM procedure for different d and k
values.

ATS0 = 25
Mixed Effect Model ARMA(2,1)

k d = 2 d = 5 d = 10 d = 2 d = 5 d = 10

0.1 25.052(0.239) 24.882(0.224) 25.114(0.249) 25.112(0.175) 25.296(0.206) 25.166(0.190)
0.2 25.187(0.227) 24.902(0.206) 24.923(0.264) 25.145(0.184) 25.389(0.193) 25.096(0.170)
0.5 25.633(0.195) 24.975(0.226) 25.145(0.248) 25.172(0.178) 25.244(0.195) 25.066(0.171)

ATS0 = 50
Mixed Effect Model ARMA(2,1)

k d = 2 d = 5 d = 10 d = 2 d = 5 d = 10

0.1 50.457(0.302) 49.674(0.281) 50.039(0.301) 50.132(0.276) 50.372(0.284) 49.985(0.257)
0.2 50.503(0.328) 49.644(0.308) 49.836(0.334) 50.243(0.283) 50.363(0.278) 50.127(0.259)
0.5 50.500(0.307) 49.737(0.328) 49.981(0.301) 49.908(0.288) 50.469(0.280) 49.958(0.289)

Next, we consider the situation when the IC mean function µ(t) and the IC covariance function

V (s, t) are both unknown and they need to be estimated from an IC dataset. We assume that we have

m = 1, 000 subjects in the IC dataset, their observations are generated from the IC mean function µ(t)

and the IC covariance function V (s, t) described above with the same sampling rate d as that of the new

subject for online monitoring. The IC data usually have a fixed time frame. Without loss of generosity,

we assume that the domain of the observation times {tij} for the IC data is [0, 1]. Therefore, the IC mean

function and the IC covariance function estimated from the IC data are only appropriate for use within
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Table 6: Simulated ATS0 of Qiu and Xiang’s block bootstrap CUSUM procedure when d differs in
Phase I and Phase II.

ATS0 = 25
Mixed Effect Model ARMA(2,1)

k d1 = 2/d2 = 3 d1 = 5/d2 = 6 d1 = 5/d2 = 4 d1 = 2/d2 = 3 d1 = 5/d2 = 6 d1 = 5/d2 = 4

0.1 19.497(0.185) 23.154(0.226) 27.755(0.245) 18.979(0.133) 22.134(0.150) 29.979(0.208)
0.2 19.390(0.180) 23.090(0.226) 27.721(0.245) 19.091(0.125) 22.249(0.159) 29.611(0.220)
0.5 19.717(0.156) 23.134(0.232) 27.719(0.240) 19.418(0.137) 22.575(0.163) 29.369(0.226)

ATS0 = 50
Mixed Effect Model ARMA(2,1)

k d1 = 2/d2 = 3 d1 = 5/d2 = 6 d1 = 5/d2 = 4 d1 = 2/d2 = 3 d1 = 5/d2 = 6 d1 = 5/d2 = 4

0.1 41.461(0.244) 46.961(0.299) 54.452(0.301) 37.704(0.215) 44.161(0.224) 58.640(0.295)
0.2 41.855(0.271) 47.100(0.306) 54.006(0.293) 38.065(0.223) 44.331(0.232) 58.545(0.308)
0.5 42.393(0.299) 47.605(0.340) 53.150(0.322) 39.562(0.219) 44.953(0.237) 57.692(0.302)

the domain [0, 1]. As a consequence, when using those estimates in our proposed CUSUM procedure

to monitor the observations from a new subject, even if our CUSUM procedure has not signaled when

we reach the last observation of the individual within the domain [0, 1], we cannot continue to monitor.

When this happens, we can only know that the actual time to the signal is greater than 1/ω, and we

would not know the exact time to the signal. To make the calculation of ATS still feasible in this

situation, we let the time to the signal to be 1/ω when our CUSUM procedure has not signaled at the

last observation of the individual within the domain [0, 1]. In other words, the time to the signal in this

simulation study is right truncated at 1/ω. Using this truncated time to the signal, we also adjust the

control limits l in our CUSUM procedure accordingly for various d and k values and they are listed in

Table 7.

Table 7: Control limits l for different d and k values when the time to the signal is truncated at 100.

ATS0 = 25 ATS0 = 50
k d = 2 d = 5 d = 10 d = 2 d = 5 d = 10

0.1 0.991 2.039 3.149 1.938 3.375 4.937
0.2 0.828 1.750 2.633 1.688 2.875 3.984
0.5 0.431 1.109 1.648 1.092 1.820 2.406

We apply the estimation procedure described in Section 2.1 to the IC dataset, and obtain the

estimated IC mean and IC covariance functions, µ̂(t) and V̂ (s, t). Throughout the simulation study,

the bandwidths we use in our estimation procedure are h = 0.1 when d = 2, h = 0.05 when d = 5

and h = 0.02 when d = 10. Using those µ̂(t) and V̂ (s, t) in our proposed CUSUM procedure (5), we
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can do the online monitoring for the new subject. We first apply this CUSUM procedure using the

control limits in Table 7 to the 1,000 new subjects generated from the IC mean function µ(t) and the

IC covariance function V (s, t), and obtain the average time to the signal from these 1,000 new subjects.

The average time to the signal is the simulated ATS0 of our proposed CUSUM procedure from one

single IC dataset. We repeat this simulation with 100 different IC datasets. Table 8 shows the average

simulated ATS0 of our proposed CUSUM procedure along with their corresponding standard errors (in

the parentheses) under different settings over the 100 IC datasets. As we can see from Table 8, all

the simulated ATS0 are within 10% of the nominal ATS0 value. This indicates that the estimation

procedure described in Section 2.1 provides reliable estimates of the IC mean and covariance functions.

Table 8: Simulated ATS0 for different d and k values when µ(t) and V (s, t) are both estimated.

ATS0 = 25
Mixed Effect Model ARMA(2,1)

k d = 2 d = 5 d = 10 d = 2 d = 5 d = 10

0.1 26.109(0.089) 25.246(0.079) 25.030(0.077) 24.913(0.086) 24.237(0.071) 24.085(0.079)
0.2 26.053(0.085) 25.498(0.080) 25.199(0.078) 24.991(0.085) 24.836(0.078) 24.161(0.082)
0.5 26.212(0.084) 25.474(0.082) 24.911(0.078) 25.528(0.090) 26.467(0.090) 24.630(0.084)

ATS0 = 50
Mixed Effect Model ARMA(2,1)

k d = 2 d = 5 d = 10 d = 2 d = 5 d = 10

0.1 50.770(0.125) 49.396(0.125) 49.535(0.116) 47.592(0.136) 46.388(0.111) 48.343(0.120)
0.2 51.694(0.126) 50.795(0.133) 49.611(0.116) 48.362(0.138) 47.338(0.109) 47.794(0.120)
0.5 52.421(0.134) 51.269(0.133) 49.575(0.121) 49.580(0.141) 48.623(0.115) 47.012(0.105)

We next apply our CUSUM procedure with µ̂(t) and V̂ (s, t) estimated from the IC dataset to the

1,000 new subjects whose observations are generated from the same IC covariance function V (s, t)

but different mean functions. Following Qiu and Xiang (2014), we consider two cases for the mean

functions. In the first case, the mean function of the 1,000 new subjects is µ1(t) = µ(t) + δ, which

represents a step change of size δ. In the second case, the mean function of the 1,000 new subjects

is µ2(t) = µ(t) + δ(1 − exp(−10t)), which represents a nonlinear drift from µ(t). In both cases, we

choose δ to be 0.25, 0.5, 0.75, and 1. We apply our CUSUM procedure to those 1000 new subjects and

obtain their average time to the signal. The average time to the signal is the simulated ATS1 of our

proposed CUSUM procedure from one single IC dataset. We repeat this simulation with 100 different IC

datasets. Tables 9 and 10 show the average simulated ATS1 values of our proposed CUSUM procedure

along with their corresponding standard errors (in the parentheses) under different settings over the 100
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IC datasets. As can be seen from those tables, as δ increases, the ATS1 value of our proposed CUSUM

procedure decreases quickly, which indicates that our CUSUM procedure has a good detection power.

Table 9: Simulated ATS1 for different d and k values when µ1(t) = µ(t) + δ.

Mixed effect model

d ATS0 k δ = 0.25 δ = 0.5 δ = 0.75 δ = 1

25 0.1 19.355(0.070) 14.159(0.057) 10.422(0.045) 7.866(0.029)
0.2 19.361(0.070) 14.146(0.056) 10.360(0.044) 7.780(0.029)
0.5 19.588(0.075) 14.409(0.063) 10.487(0.047) 7.837(0.033)

2 50 0.1 39.114(0.120) 28.743(0.102) 20.594(0.081) 14.745(0.065)
0.2 40.077(0.131) 29.431(0.108) 20.902(0.085) 14.736(0.068)
0.5 41.525(0.139) 30.960(0.115) 21.937(0.098) 15.234(0.073)

25 0.1 19.030(0.069) 14.077(0.057) 10.363(0.039) 7.685(0.031)
0.2 19.334(0.068) 14.227(0.056) 10.367(0.043) 7.597(0.031)
0.5 19.607(0.070) 14.582(0.061) 10.571(0.048) 7.591(0.036)

5 50 0.1 38.338(0.121) 28.366(0.102) 20.407(0.082) 14.700(0.066)
0.2 39.825(0.121) 29.630(0.106) 21.161(0.091) 14.883(0.071)
0.5 41.496(0.133) 31.774(0.123) 22.942(0.101) 15.881(0.083)

25 0.1 19.188(0.065) 14.451(0.048) 10.800(0.041) 8.044(0.031)
0.2 19.430(0.062) 14.593(0.051) 10.777(0.043) 7.913(0.033)
0.5 19.616(0.063) 14.924(0.053) 11.065(0.048) 7.920(0.039)

10 50 0.1 38.895(0.111) 29.082(0.099) 21.140(0.076) 15.400(0.062)
0.2 39.472(0.109) 29.806(0.095) 21.602(0.082) 15.382(0.070)
0.5 41.067(0.124) 32.347(0.111) 23.985(0.095) 17.008(0.081)

ARMA(2,1)

d ATS0 k δ = 0.25 δ = 0.5 δ = 0.75 δ = 1

25 0.1 16.934(0.059) 11.930(0.046) 8.724(0.032) 6.680(0.024)
0.2 16.963(0.060) 11.875(0.044) 8.640(0.031) 6.598(0.024)
0.5 17.344(0.063) 12.070(0.046) 8.698(0.032) 6.575(0.024)

2 50 0.1 31.615(0.094) 21.160(0.070) 14.949(0.048) 11.093(0.036)
0.2 32.359(0.097) 21.377(0.075) 14.853(0.050) 10.833(0.036)
0.5 34.051(0.114) 22.382(0.087) 15.035(0.057) 10.550(0.043)

25 0.1 16.568(0.048) 11.699(0.032) 8.439(0.023) 6.250(0.019)
0.2 16.952(0.048) 11.815(0.033) 8.402(0.026) 6.107(0.019)
0.5 18.211(0.060) 12.468(0.040) 8.642(0.029) 6.069(0.021)

5 50 0.1 30.621(0.090) 20.385(0.059) 14.311(0.041) 10.569(0.031)
0.2 31.659(0.101) 20.856(0.061) 14.335(0.044) 10.316(0.033)
0.5 33.929(0.106) 22.623(0.078) 14.997(0.055) 10.174(0.038)

25 0.1 17.107(0.053) 12.004(0.041) 8.716(0.024) 6.504(0.019)
0.2 17.288(0.057) 12.063(0.042) 8.610(0.027) 6.278(0.022)
0.5 17.601(0.063) 12.341(0.048) 8.646(0.035) 6.084(0.023)

10 50 0.1 32.806(0.097) 21.437(0.063) 14.882(0.045) 10.947(0.032)
0.2 33.629(0.102) 21.851(0.068) 14.784(0.047) 10.519(0.034)
0.5 35.952(0.105) 24.273(0.091) 16.116(0.061) 10.897(0.043)

It is easy to see that the performance of our proposed method depends on the accuracy of the
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Table 10: Simulated ATS1 for different d and k values when µ2(t) = µ(t) + δ(1− exp(−10t)).

Mixed effect model

d ATS0 k δ = 0.25 δ = 0.5 δ = 0.75 δ = 1

25 0.1 21.311(0.067) 17.566(0.054) 14.765(0.050) 12.663(0.041)
0.2 21.326(0.069) 17.570(0.058) 14.761(0.053) 12.621(0.043)
0.5 21.551(0.074) 17.856(0.066) 14.999(0.054) 12.793(0.046)

2 50 0.1 41.225(0.111) 32.904(0.100) 26.425(0.077) 21.641(0.059)
0.2 42.222(0.125) 33.753(0.103) 26.999(0.080) 21.940(0.063)
0.5 43.761(0.128) 35.537(0.113) 28.495(0.088) 22.964(0.067)

25 0.1 20.470(0.069) 16.724(0.054) 13.846(0.042) 11.723(0.036)
0.2 20.810(0.066) 16.990(0.054) 14.039(0.044) 11.829(0.035)
0.5 21.134(0.072) 17.483(0.064) 14.552(0.050) 12.251(0.040)

5 50 0.1 39.822(0.117) 31.404(0.095) 24.777(0.079) 19.895(0.060)
0.2 41.311(0.121) 32.648(0.106) 25.696(0.084) 20.466(0.067)
0.5 43.040(0.124) 34.990(0.116) 27.911(0.095) 22.175(0.078)

25 0.1 20.197(0.064) 16.348(0.050) 13.337(0.040) 11.044(0.032)
0.2 20.514(0.063) 16.613(0.055) 13.548(0.044) 11.169(0.033)
0.5 20.785(0.068) 17.228(0.057) 14.268(0.052) 11.867(0.043)

10 50 0.1 39.873(0.112) 31.178(0.089) 24.216(0.072) 19.138(0.058)
0.2 40.321(0.107) 31.711(0.089) 24.619(0.075) 19.302(0.061)
0.5 42.059(0.125) 34.408(0.108) 27.425(0.089) 21.713(0.074)

ARMA(2,1)

d ATS0 k δ = 0.25 δ = 0.5 δ = 0.75 δ = 1

25 0.1 19.137(0.061) 15.534(0.044) 13.154(0.035) 11.496(0.030)
0.2 19.198(0.061) 15.537(0.046) 13.117(0.037) 11.422(0.032)
0.5 19.617(0.066) 15.836(0.049) 13.265(0.042) 11.462(0.035)

2 50 0.1 34.452(0.093) 25.787(0.068) 20.588(0.049) 17.352(0.039)
0.2 35.234(0.093) 26.193(0.070) 20.740(0.052) 17.297(0.039)
0.5 37.030(0.113) 27.521(0.087) 21.386(0.057) 17.501(0.042)

25 0.1 18.515(0.048) 14.899(0.033) 12.574(0.027) 10.898(0.023)
0.2 18.943(0.050) 15.162(0.037) 12.709(0.029) 10.950(0.024)
0.5 20.346(0.060) 16.171(0.042) 13.383(0.034) 11.418(0.026)

5 50 0.1 33.121(0.090) 24.488(0.057) 19.355(0.043) 16.169(0.031)
0.2 34.199(0.103) 25.171(0.063) 19.624(0.046) 16.210(0.034)
0.5 36.534(0.105) 27.246(0.079) 20.999(0.057) 16.944(0.040)

25 0.1 18.886(0.056) 14.962(0.042) 12.421(0.035) 10.677(0.029)
0.2 19.118(0.061) 15.115(0.044) 12.488(0.038) 10.654(0.031)
0.5 19.380(0.066) 15.519(0.050) 12.840(0.042) 10.929(0.035)

10 50 0.1 35.144(0.097) 25.375(0.066) 19.634(0.049) 16.174(0.039)
0.2 36.037(0.106) 25.937(0.075) 19.805(0.054) 16.055(0.040)
0.5 38.278(0.111) 28.555(0.091) 21.763(0.068) 17.320(0.050)
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estimated IC mean and IC covariance functions, µ̂(t) and V̂ (s, t). In general, the larger the IC sample

size of m, the better those estimates. In our previous simulation setting, we set m = 1000. As we can

see from the above results, our proposed procedure performs well based on this choice of m. To further

investigate how large m has to be in order to ensure reliable performance of our proposed procedure,

we run another simulation to evaluate the simulated ATS0 of our procedure when m = 500, and the

results are listed in Table 11. As we can see from the table, some of the results are slightly worse than

those reported in Table 8, but the majority of them are still within 10% of the nominal ATS0 value.

This makes us to conclude that our proposed procedure can still perform well when m = 500.

Table 11: Simulated ATS0 for different d and k values when µ(t) and V (s, t) are both estimated with
m=500.

ATS0 = 25
Mixed Effect Model ARMA(2,1)

k d = 2 d = 5 d = 10 d = 2 d = 5 d = 10

0.1 24.698(0.091) 24.969(0.100) 24.708(0.090) 23.179(0.098) 24.113(0.083) 23.857(0.082)
0.2 24.696(0.088) 25.214(0.101) 24.772(0.089) 23.298(0.097) 24.690(0.086) 23.848(0.088)
0.5 24.959(0.090) 25.235(0.113) 24.415(0.099) 23.861(0.098) 26.276(0.084) 24.314(0.090)

ATS0 = 50
Mixed Effect Model ARMA(2,1)

k d = 2 d = 5 d = 10 d = 2 d = 5 d = 10

0.1 48.274(0.125) 48.886(0.145) 49.068(0.151) 44.180(0.142) 46.220(0.133) 47.661(0.137)
0.2 49.172(0.128) 50.229(0.152) 48.900(0.149) 45.032(0.145) 47.173(0.138) 46.991(0.131)
0.5 50.271(0.128) 50.494(0.158) 48.610(0.153) 46.639(0.146) 48.304(0.147) 46.186(0.140)

In Section 2.2.2, when the distribution of the error term is unknown, we propose a bootstrap pro-

cedure to determine the control limit. In the following, we report some simulation study to evaluate

the performance of our bootstrap procedure. More specifically, for each simulation we first generate an

IC data set with m = 1000 subjects from the mixed effect model in (8) with ξ0,ij and the ξl,i being

independent random variables from the t distribution with 3 degrees of freedom and with variance 0.3.

We then use the data from the first 800 subjects to obtain the estimates of the IC mean and covariance

functions, µ̂(t) and V̂ (s, t). Based on these µ̂(t) and V̂ (s, t), we calculate the standardized residuals

from the remaining 200 subjects. The control limit is then determined using the bootstrap resamples of

those standardized residuals as described in Section 2.2.2. We apply our CUSUM procedure with this

determined control limit to the 1000 new subjects generated from the mean function µ1(t) or µ2(t) (as in

the previous simulation study) and the IC covariance functions V (s, t). The average time to the signal

from these 1000 new subjects is the simulated ATS. We repeat this simulation 100 times. Table 12
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shows the average simulated ATS along with their standard errors (in the parentheses) under different

settings over the 100 simulations. When δ = 0 in µ1(t) or µ2(t), the new 1000 subjects are generated

from the IC mean and covariance functions. Therefore the column corresponding to “δ = 0” in Table

12 represents the simulated ATS0. When δ 6= 0, the values in Table 12 represents the simulated ATS1.

As we can see from the table, all the simulated ATS0 are close to their nominal values, which indicates

the validity of our bootstrap procedure. When δ increases, the ATS1 value decreases quickly, which

indicates a good detection power of our bootstrap procedure.

4 Real application

In this section we use a data set from the SHARe Framingham Heart Study of the National Heart,

Lung and Blood Institute to demonstrate the application of our proposed CUSUM procedure. The data

set consists of the systolic blood pressure (mmHg) of 1028 non-stroke patients and 27 stroke patients.

The systolic blood pressure of each patient was measured at 7 different times. Figure 1 shows the

data from 10 randomly selected non-stroke patients (thin solid line) and 10 randomly selected stroke

patients (dashed line). It seems that the stroke patients have higher systolic blood pressure than those

non-stroke patients.

To develop a control chart that can monitor a patient’s systolic blood pressure, we use the data

of the 1028 non-stroke patients as the IC data, and then apply the estimation procedure described in

Section 2.1 to the first 800 non-stroke patients to obtain the estimated IC mean function µ̂(t) and the

estimated IC covariance function V̂ (s, t). In our estimation, we set the bandwidth to be h = 0.15. The

estimated IC mean function µ̂(t) is shown as the dark solid curve in Figure 1. Based on these µ̂(t) and

V̂ (s, t), we apply our standardization procedure to the remaining 228 non-stroke patients to obtain the

standardized residuals. The control limit is then determined by the bootstrap procedure described in

Section 2.2.2. Since each stroke patient has an average of 2.3 observations every 10 years, we choose

d = 2 and the basic time unit is a year. Following Qiu and Xiang (2014), we use k = 0.1 and ATS0 = 25

in our proposed CUSUM procedure. The corresponding control limit l determined from our bootstrap

procedure is 0.763. We then apply our CUSUM procedure with this control limit to the 27 stroke

patients. The results of our CUSUM procedure for monitoring the 27 stroke patients are presented in

Figure 2. As we can see from there, 23 out of the 27 stroke patients are detected to have upward mean

shifts, and among those patients that our CUSUM procedure fails to signal, the charting statistics S+
j
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Table 12: Simulated ATS for different d and k values when ξ0,ij and the ξl,i in the mixed effect model
are from the t distribution.

µ1(t) = µ(t) + δ

d ATS0 k δ = 0 δ = 0.25 δ = 0.5 δ = 0.75 δ = 1

25 0.1 24.560(0.164) 17.197(0.119) 11.828(0.087) 8.338(0.062) 6.241(0.043)
0.2 25.053(0.171) 17.561(0.130) 11.973(0.094) 8.339(0.066) 6.193(0.042)
0.5 25.610(0.189) 18.199(0.147) 12.438(0.114) 8.530(0.074) 6.242(0.047)

2 50 0.1 47.990(0.266) 34.750(0.272) 23.834(0.233) 16.339(0.180) 11.596(0.123)
0.2 48.726(0.268) 35.945(0.279) 24.494(0.250) 16.382(0.187) 11.283(0.131)
0.5 49.944(0.296) 38.861(0.304) 27.407(0.287) 17.906(0.234) 11.508(0.162)

25 0.1 24.585(0.158) 17.881(0.126) 12.475(0.104) 8.646(0.080) 6.098(0.063)
0.2 24.916(0.154) 18.353(0.134) 12.763(0.110) 8.658(0.085) 5.923(0.064)
0.5 25.498(0.176) 19.654(0.163) 14.017(0.150) 9.417(0.118) 6.120(0.082)

5 50 0.1 48.763(0.248) 37.047(0.231) 25.962(0.200) 17.679(0.160) 12.373(0.124)
0.2 48.871(0.239) 38.171(0.245) 27.137(0.233) 18.135(0.191) 12.166(0.141)
0.5 49.631(0.240) 41.631(0.252) 32.349(0.273) 22.688(0.263) 14.541(0.210)

25 0.1 23.666(0.118) 17.840(0.103) 13.046(0.098) 9.355(0.090) 6.670(0.073)
0.2 23.634(0.146) 18.160(0.127) 13.352(0.119) 9.434(0.108) 6.476(0.085)
0.5 24.205(0.144) 19.773(0.135) 15.280(0.132) 11.049(0.127) 7.415(0.110)

10 50 0.1 47.662(0.215) 36.868(0.222) 26.450(0.216) 18.560(0.193) 13.271(0.169)
0.2 47.404(0.211) 38.003(0.215) 28.106(0.218) 19.585(0.212) 13.418(0.181)
0.5 48.069(0.204) 42.011(0.215) 34.714(0.243) 26.676(0.272) 18.738(0.261)

µ2(t) = µ(t) + δ(1− exp(−10t))

d ATS0 k δ = 0 δ = 0.25 δ = 0.5 δ = 0.75 δ = 1

25 0.1 24.560(0.164) 19.242(0.125) 15.442(0.094) 12.812(0.073) 11.006(0.061)
0.2 25.053(0.171) 19.624(0.134) 15.683(0.102) 12.911(0.079) 11.024(0.065)
0.5 25.610(0.189) 20.306(0.147) 16.293(0.123) 13.317(0.094) 11.223(0.076)

2 50 0.1 47.990(0.266) 37.123(0.256) 28.261(0.225) 22.192(0.188) 18.100(0.156)
0.2 48.726(0.268) 38.266(0.266) 29.122(0.233) 22.573(0.202) 18.146(0.165)
0.5 49.944(0.296) 41.147(0.295) 32.300(0.276) 24.881(0.244) 19.337(0.208)

25 0.1 24.585(0.158) 19.460(0.126) 15.441(0.106) 12.513(0.085) 10.447(0.066)
0.2 24.916(0.154) 19.958(0.133) 15.895(0.114) 12.790(0.091) 10.567(0.072)
0.5 25.498(0.176) 21.241(0.159) 17.375(0.145) 14.159(0.126) 11.590(0.107)

5 50 0.1 48.763(0.248) 38.596(0.211) 29.406(0.187) 22.610(0.155) 17.855(0.128)
0.2 48.871(0.239) 39.628(0.223) 30.497(0.206) 23.290(0.170) 18.159(0.141)
0.5 49.631(0.240) 43.024(0.246) 35.481(0.234) 28.182(0.229) 21.935(0.205)

25 0.1 23.666(0.118) 18.870(0.106) 14.903(0.100) 11.940(0.092) 9.848(0.080)
0.2 23.634(0.146) 19.210(0.126) 15.338(0.115) 12.292(0.105) 10.027(0.091)
0.5 24.205(0.144) 20.788(0.132) 17.448(0.118) 14.482(0.112) 11.908(0.109)

10 50 0.1 47.662(0.215) 37.870(0.212) 28.797(0.197) 21.911(0.194) 17.023(0.195)
0.2 47.404(0.211) 38.847(0.202) 30.160(0.190) 22.870(0.188) 17.518(0.189)
0.5 48.069(0.204) 42.720(0.206) 36.338(0.211) 29.665(0.209) 23.402(0.206)

22



Figure 1: Systolic blood pressure (mmHg) of 10 randomly selected non-stroke patients (thin solid line)
and 10 randomly selected stroke patients (dashed line). The dark solid curve is the estimated IC mean
function µ̂(t) using the 1028 non-stroke patients as the IC data.

of Patients 18 and 22 are also very close to the control limit. The signal times of the 23 stroke patients

are reported in Table 13, and their average is 9.96 years.

Table 13: Signal times (years) of the 23 stroke patients by our proposed CUSUM procedure.

Patient ID Signal time Patient ID Signal time

1 16 13 7
2 12 14 8
3 0 16 26
4 23 17 0
5 0 19 8
6 15 20 24
7 0 21 16
8 0 23 0
9 19 24 12
10 0 25 19
11 0 26 12
12 12

We also consider applying the three CUSUM procedures proposed in Qiu and Xiang (2014) to this

systolic blood pressure data set. We first run the Box-Pierce test of independence on the standardized

values defined in (3) and the residuals after fitting an AR(1) model on those standardized values, respec-
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Figure 2: The proposed CUSUM chart for monitoring the 27 stroke patients. The dashed horizontal
lines denote the control limit of l = 0.763.

tively. Both tests yield significant p-values, indicating that the standardized values defined in (3) are

significantly associated and the AR(1) model cannot describe the association in this data set. There-

fore, to accommodate this arbitrary error structure, we can only apply the block bootstrap CUSUM

procedure in Qiu and Xiang (2014) to the systolic blood pressure data. The results are presented in

Figure 3. The control limit l of their block bootstrap CUSUM procedure is 4.675. As we can see from

there, this CUSUM procedure can only detect 10 out of 27 stroke patients. The signal times of the

10 stroke patients are reported in Table 14, and they are much larger than those in Table 13 by our

CUSUM procedure.

The reason why Qiu and Xiang’s block bootstrap CUSUM procedure does not perform well might

be explained by the following. As mentioned in our numerical study in Section 3, to ensure the block

bootstrap CUSUM procedure to achieve the desired nominal ATS0, the sampling scheme in Phase I has

to be the same as the sampling scheme in Phase II. To investigate the sampling schemes in both non-

stroke patients (Phase I) and stroke patients (Phase II), we plot the histograms of the times (in ages)
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Figure 3: The CUSUM chart for monitoring the 27 stroke patients using the block bootstrap method
proposed in Qiu and Xiang (2014). The dashed horizontal lines denote the control limit of l = 4.675.

when the 7 measurements of systolic blood pressure were taken from the non-stroke patients and stroke

patients (see Figure 4). The average times when the 7 measurements were taken from the non-stroke

patients and stroke patients are reported in Table 15. As seen from those results, the stroke patients

tend to be observed at later ages, compared to the non-stroke patients, indicating that the sampling

scheme for the non-stroke patients (Phase I) is indeed quite different from that for the stroke patients

(Phase II). This might explain why the block bootstrap CUSUM procedure does not work well in this

situation.

5 Concluding Remarks

In practice, there are many applications in which our main concern is to detect irregular longitudinal

patterns of certain performance variables of a subject as soon as possible, so that some unpleasant conse-

quences can be avoided. To solve this problem effectively, statisticians have developed a new statistical
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Table 14: Signal times (years) of the 10 stroke patients given by Qiu and Xiang’s block bootstrap
CUSUM chart.

Patient ID Signal time Patient ID Signal time

3 20 11 8
5 7 12 24
7 24 13 19
8 15 14 13
10 28 23 19

Figure 4: The histogram of the times (in ages) when the systolic blood pressure were taken from (a)
the non-stroke patients ; (b) the stroke patients.

method called dynamic screening system (DySS). This method combines cross-sectional comparison

with sequential monitoring, and it tries to make use of all available data about the subject in question,

including those observed at the current time and all historical data. However, the current DySS method

can only handle cases when observations are normally distributed and within-subject observations are

independent or follow a specific time series model. In this paper, a novel nonparametric DySS method

have been proposed which does not require restrictive assumptions on the observation distribution, and

it allows arbitrary correlation among within-subject observations. A major feature of the method is the

use of the Cholesky decomposition in data standardization (cf., Section 2.2.1). After this step, within-

subject observations are decorrelated and the decorrelated observations are asymptotically normally

distributed. It has been demonstrated that this new method performs well in various different cases.

In this paper, we only consider cases when observations are univariate. In many applications,
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Table 15: The average times (in ages) when each of the seven measurements was taken from the non-
stroke patients and stroke patients.

Measurement 1 2 3 4 5 6 7

Non-stroke patients 35.37 43.21 47.62 51.06 54.72 58.75 61.61
Stroke patients 41.89 49.81 53.93 57.59 61.15 65.37 67.93

multivariate performance variables are involved. In multivariate cases, the model for describing the

IC data can be defined as follows. Let y(tij) = (y1(tij), y2(tij)..., yq(tij))
T denote the q-dimensional

measurement collected at time tij . Then, the natural multivariate extension of the nonparametric

model in (1) is

y(tij) = µ(tij) + ε(tij), i = 1, ...,m, j = 1, ..., ni,

where µ(·) = (µ1(tij), µ2(tij), ..., µ3(tij))
T is the population mean function of y(tij). Estimation of this

multivariate model has been discussed in Xiang, Qiu and Pu (2013), and a multivariate EWMA chart has

been proposed by Qiu and Xiang (2015) for solving the multivariate DS problem. As in univariate cases

discussed by Qiu and Xiang (2014), this multivariate EWMA chart determines its control limit using

the block bootstrap procedure. We believe that the proposed method in this paper can be generalized

to multivariate cases and the resulting method can improve the performance of the multivariate EWMA

chart by Qiu and Xiang (2015), which will be investigated in our future research.
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Appendix

Proof of Proposition 1 Instead of directly proving

e∗(t∗j ) =

(
ε∗(t∗j )− φ

∆∗j−1,j ε∗(t∗j−1)
)

√
1− φ2∆∗j−1,j

,
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we prove that for any j ≥ 2,

σT
j−1,jΣ

−1
j−1,j−1εj−1 = φ∆∗j−1,j ε(t∗j−1),

d2
j = σjj − σT

j−1,jΣ
−1
j−1,j−1σj−1,j = σ2

e(1− φ2∆∗j−1,j )/(1− φ2). (9)

It is easy to see that if the equations in (9) are true for any j ≥ 2, our proposition holds for any j ≥ 2.

We prove (9) by induction. We first show that (9) holds when j = 2. Under the AR(1) model in (6),

when j = 2, we have σ11 = σ2
e/(1−φ2), and σ12 = σ2

eφ
∆∗1,2/(1−φ2). Therefore, σ12σ

−1
11 ε(t

∗
1) = φ∆∗1,2ε(t∗1).

Also, d2
2 = σ22 − σ21σ

−1
11 σ12 = σ2

e(1− φ2∆∗1,2)/(1− φ2). Hence, (9) holds for j = 2.

Next we show that, given that the two equations in (9) hold for j = k, they hold for j = k+ 1. First

we notice that

Σ−1
k,k =

Σ−1
k−1,k−1 + Σ−1

k−1,k−1σk−1,kD
−1
k σT

k−1,kΣ−1
k−1,k−1 −Σ−1

k−1,k−1σk−1,kD
−1
k

−D−1
k σT

k−1,kΣ−1
k−1,k−1 D−1

k

 , (10)

where Dk = σkk − σT
k−1,kΣ−1

k−1,k−1σk−1,k = d2
k. Also, under the AR(1) model in (6), σk,k+1 =

(φ∆∗k,k+1σT
k−1,k, σk,k+1)T . Then,

σT
k,k+1Σ−1

k,kεk

=(φ∆∗k,k+1σT
k−1,k, σk,k+1)

Σ−1
k−1,k−1 + d−2

k Σ−1
k−1,k−1σk−1,kσ

T
k−1,kΣ−1

k−1,k−1 −d−2
k Σ−1

k−1,k−1σk−1,k

−d−2
k σ

T
k−1,kΣ−1

k−1,k−1 d−2
k


εk−1

ε(t∗k)


=
{
φ∆∗k,k+1σT

k−1,k

(
Σ−1
k−1,k−1 + d−2

k Σ−1
k−1,k−1σk−1,kσ

T
k−1,kΣ−1

k−1,k−1

)
− d−2

k σk,k+1σ
T
k−1,kΣ−1

k−1,k−1

}
εk−1

+
{
−φ∆∗k,k+1d−2

k σ
T
k−1,kΣ−1

k−1,k−1σk−1,k + σk,k+1d
−2
k

}
ε(t∗k) (11)

Since the two equations in (9) hold for j = k, we have

σT
k−1,kΣ−1

k−1,k−1εk−1 = φ∆∗k−1,kε(t∗k−1),

d2
k = σ2

e(1− φ2∆∗k−1,k)/(1− φ2),

σT
k−1,k−1Σ−1

k−1,k−1σk−1,k = σ2
eφ

2∆∗k−1,k/(1− φ2),

σk,k+1 = σ2
eφ

∆∗k,k+1/(1− φ2). (12)
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Plugging (12) into (11), we have

{
φ∆∗k,k+1σT

k−1,k

(
Σ−1
k−1,k−1 + d−2

k Σ−1
k−1,k−1σk−1,kσ

T
k−1,kΣ−1

k−1,k−1

)
− d−2

k σk,k+1σ
T
k−1,kΣ−1

k−1,k−1

}
εk−1 = 0,{

−φ∆∗k,k+1d−2
k σ

T
k−1,kΣ−1

k−1,k−1σk−1,k + σk,k+1d
−2
k

}
ε(t∗k) = φ∆∗k,k+1ε(t∗k).

Therefore,

σT
k,k+1Σ−1

k,kεk = φ∆∗k,k+1ε(t∗k).

Similarly,
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k−1,k, σk,k+1)

Σ−1
k−1 + d−2

k Σ−1
k−1σk−1,kσ

T
k−1,kΣ−1

k−1 −d−2
k Σ−1

k−1σk−1,k

−d−2
k σ

T
k−1,kΣ−1

k−1 d−2
k


φ∆∗k,k+1σk−1,k

σk,k+1


=φ2∆∗k,k+1σT

k−1,k

(
Σ−1
k−1 + d−2

k Σ−1
k−1σk−1,kσ

T
k−1,kΣ−1

k−1

)
σk−1,k − 2φ∆∗k,k+1d−2

k σk,k+1σ
T
k−1,kΣ−1

k−1σk−1,k

+ d−2
k σ2

k,k+1,

where Σk−1 = Σk−1,k−1. Plugging (12) into the above expression, we have

σT
k,k+1Σ−1

k,kσk,k+1 = σ2
eφ

2∆∗k,k+1/(1− φ2).

Therefore,

d2
k+1 = σk+1,k+1 − σT

k,k+1Σ−1
k,kσk,k+1 = σ2

e(1− φ2∆∗k,k+1)/(1− φ2).

This completes our proof.
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