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Abstract

We present the results of a 100 participant study on the role
of a robot’s physical presence in a robot tutoring task. Partic-
ipants were asked to solve a set of puzzles while being pro-
vided occasional gameplay advice by a robot tutor. Each par-
ticipant was assigned one of five conditions: (1) no advice,
(2) robot providing randomized advice, (3) voice of the robot
providing personalized advice, (4) video representation of the
robot providing personalized advice, or (5) physically-present
robot providing personalized advice. We assess the tutor’s ef-
fectiveness by the time it takes participants to complete the
puzzles. Participants in the robot providing personalized ad-
vice group solved most puzzles faster on average and improved
their same-puzzle solving time significantly more than partic-
ipants in any other group. Our study is the first to assess the
effect of the physical presence of a robot in an automated tu-
toring interaction. We conclude that physical embodiment can
produce measurable learning gains.
Keywords: Robotics; Computer Science; Tutoring

Introduction
What kinds of human-robot interactions benefit from the
physical embodiment of a robot? For human-robot interac-
tions that require manipulating the physical world, a physical
robot is a necessity, but for those interactions where physi-
cal embodiment is optional, when is an embodied robot more
useful than an on-screen agent?

In this study, we explore the differences in task perfor-
mance of participants engaged in a cognitive learning task in
which a robot acts as a tutor. Participants were asked to play
a puzzle game while receiving strategy advice from either: a
physically-present robot, a video of the same robot, its disem-
bodied voice, a robot giving randomized advice, or no agent
at all. We use the resulting data to draw conclusions about the
effect of embodiment in robot tutoring tasks.

Previous work has investigated the social influence of a
robot’s embodiment. Does a robot engender more trust,
more compliance, more engagement, or more motivation by
its physical presence, more so than an on-screen agent or
a video representation of a robot would? Such questions
have been explored via two methodologies: self-report mea-
sures and task-performance measures. Using self-report mea-
sures, Kidd and Breazeal (2004) found that a physically-
present robot was perceived as more enjoyable, more cred-
ible, and more informative than an on-screen character in a
block-moving task. In Wainer, Feil-Seifer, Shell, and Mataric
(2007), an embodied robot was rated as more attentive and
more helpful than both a video representation of the robot

and a simulated on-screen robot-like character. Tapus, Tapus,
and Mataric (2009) found that individuals suffering from cog-
nitive impairment and/or Alzheimer’s disease reported being
more engaged with a robot treatment than a similar on-screen
agent treatment.

Kiesler, Powers, Fussell, and Torrey (2008) used task-
performance measures to find that participants who received
health advice from a physically-present robot were more
likely to choose a healthy snack than participants who re-
ceived the same information in robot-video or on-screen
agent conditions. In Bainbridge, Hart, Kim, and Scassellati
(2008), a physically-present robot yielded significantly more
compliance to its commands than a video representation of
the same robot.

No previous work has investigated whether learning out-
comes are affected by a robot’s physical presence. The closest
related work is in Intelligent Tutoring Systems (ITSś), which
are educational computer programs that produce individual-
ized lessons, advice, and questions usually in a workbook-
style or quiz-style environment (Nkambou, Bourdeau, &
Psyché, 2010). A parallel notion of embodiment called
“the persona effect” exists in ITS research. (See Dehn and
Van Mulken (2000) for an overview.) The persona effect is
the impact, if any, that an on-screen character has on students
using an ITS. The majority of research on the persona ef-
fect has shown no significant learning gains produced by on-
screen agents, although many studies note that students find
an ITS with an on-screen more engaging than one without
(Moundridou & Virvou, 2002).

Our study is the first to assess the effect of the physical
presence of a robot in an automated tutoring interaction. We
use the task-performance measure of puzzle solving time in
this work as well as several self-report measures.

Methodology
Participants
There were 100 participants in this study, between 18 and 40
years of age. The study was conducted in New Haven, Con-
necticut. Most participants were undergraduate and graduate
students of Yale University. Each participant was assigned
to one of five groups: (1) no lessons, (2) randomized lessons
from a physically-present robot, (3) personalized lessons from
a disembodied voice, (4) personalized lessons from a video
representation of the robot, and (5) personalized lessons from
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(a) Sample nonogram puzzle, blank. (b) Sample nonogram puzzle, solved.

Figure 1: A sample nonogram puzzle. The objective of nonograms is, starting with a blank board (see left figure), to find a
pattern of shaded boxes on the board such that the number of consecutively shaded boxes in each row and column appear as
specified, in length and order, by the numbers that are printed to the left of each row and above each column (see right figure).
For a more detailed explanation see the Domain section.

a physically-present robot. There were approximately 20 par-
ticipants in each group. Exclusion criteria for participants
were lack of English fluency or prior academic experience
with robotics or artificial intelligence.

Apparatus
In this experiment, participants were asked to solve a series
of logic puzzles. In the four experimental conditions with a
tutor, the tutor interrupted participants several times per puz-
zle to deliver puzzle-solving strategy lessons. The lessons
themselves were pre-recorded audio and synchronized visual
aids, between 21 and 47 seconds in length, that explained and
gave examples of the use of a single puzzle-solving strategy.
In the experimental conditions with personalized lessons, the
order of the lessons was determined by a skill assessment al-
gorithm that identified skills in which participants were weak;
see the Skills & Lessons section. In the randomized lessons
condition, the tutor chose a random lesson among the same
ones used in the personalized lessons conditions, such that it
was immediately applicable to the current state of the game-
board. We compare the puzzle solving time performance be-
tween participants in these groups to evaluate the effect of the
robot’s physical presence on the effectiveness of the tutoring.

Domain To minimize the influence of prior experience, we
chose a test domain to which participants likely had little pre-
vious exposure: a grid-based fill-in-the-blanks puzzle game
called “nonograms” (or “nonogram puzzles”) that resemble
crossword puzzles or Sudoku. Nonogram puzzles are a diffi-
cult cognitive task, one that requires several layers of logical
inferences to complete. Solving a nonogram puzzle of arbi-
trary size is an NP-complete problem (Nagao, Ueda, Ueda,
Sato, & Watanabe, 1996), meaning that no efficient computa-
tional solution is known.

The objective of nonograms is, starting with a blank board,
to shade in boxes on the board such that the number of con-
secutively shaded boxes in each row and column appear as

specified, in length and order, by the numbers that are printed
to the left of each row and above each column. (See Figures
1(a) and 1(b) for a sample puzzle and solution.) For instance,
a row marked as “4 2” must have 4 adjacent shaded boxes,
followed by 2 adjacent shaded boxes—in that order, with no
other boxes shaded, and with at least one empty box between
the sets of adjacent shaded boxes. We refer to these contigu-
ous sets of shaded boxes as “stretches” in this paper. For
instance, the row described above requires two stretches, one
of length 4, the other of length 2. One solves the puzzle when
one finds a pattern of blank and shaded boxes such that all of
the requirements for each row and column are satisfied.

In a typical puzzle, one cannot solve many rows or columns
independently. One must infer the contents of parts of rows
or columns and use previous inferences as the basis of sub-
sequent inferences. To that end, when a player has reasoned
that in some box or boxes there should not be shading, they
can mark such boxes with an ‘X’ for reference.

We created a full-screen nonograms computer program that
participants used via mouse and keyboard. The user interface
provided a timer and a count of how many lessons (called
“hints” in the interface) the participant had received and how
many they would receive; see Figure 2.

Participants were asked to play four puzzles on ten-by-ten
grids with a time limit of fifteen minutes per puzzle. The puz-
zles themselves were the same across all participants. The
fourth puzzle used the same board as the first, although dis-
guised in the fourth puzzle by rotating the board 90◦ (such
that the column stretch requirements were swapped with row
stretch requirements). This means that the first puzzle and the
last puzzle are of the exact same difficulty and require knowl-
edge of the exact same set of skills to solve. This manipu-
lation enables us to make within-subjects comparisons about
the extent to which each participant improved their skills over
the course of their participation in the study. There was no in-
dication that any participant was aware of this manipulation.
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(a) Experiment apparatus in the no lessons
condition and the personalized lessons
from a disembodied voice condition.

(b) Experiment apparatus in the personal-
ized lessons from a video representation of
the robot condition.

(c) Experiment apparatus in the random-
ized lessons from a physically-present robot
condition and the personalized lessons
from an embodied robot condition.

Figure 2: Experiment apparatus by condition.

Skills & Lessons In the four conditions with lessons, the tu-
tor interrupted the participant three times per puzzle, paused
the puzzle, and delivered a short lesson about nonograms.
The lessons ranged from 21 seconds to 47 seconds in length
and consisted of a voice recording and a set of animations
presented on screen during the lesson as well as a set of coor-
dinated robot motions specific to each lesson.

When beginning a lesson the tutor would turn to face the
participant (in the video and physically-present robot condi-
tions) and say “I have an idea that might help you,” or “Here’s
another hint for you.” During the lesson, the tutor bounced
subtly and looked back at the screen whenever, in the course
of the lesson, it would make reference to the example pre-
sented on screen. For instance, when in the audio of the les-
son the robot would say “Like in this example...” or “As you
see here...,” the robot would turn briefly to the screen and then
back to the participant.

Ten nonogram puzzle-solving skills were identified based
on the subjective experience of the authors; they are not uni-
versally identified skills or rules for nonograms. Each skill is
a set of row or column states in which one can logically fill in
some of the remaining empty boxes. For example, a stretch of
length 9 can fit in a blank row or column of 10 boxes in only
two ways. Either it fills the first box and 8 more, or it fills
those same middle 8 boxes and the last box. In either case,
the middle 8 boxes are shaded. One of the ten skills in this
experiment is that, for an empty row or column with just one
stretch requirement of n where n > 5, the middle (2n− 10)
boxes are shaded. See Figure 3 for examples and explana-
tions of this skill and two others.

There was one recorded lesson for each skill. Three lessons
were delivered per puzzle, for each of four puzzles. The num-
ber of lessons was constant for all participants regardless of
how long they needed to finish the puzzle. Lessons were trig-
gered either when a participant made no moves for 45 seconds
or as he or she filled the 25th, 50th or 75th box on the board

(of 100). The user interface displayed the number of lessons
remaining for each puzzle at all times.

In the personalized lesson conditions the lessons were cho-
sen based on a skill assessment algorithm. For each skill,
a weighted sum was calculated internally consisting of: (1)
the number of recent demonstrations of that skill (weighted
positively) and (2) the number of recent gameboard states
in which a skill could have been applied but no action was
taken (weighted negatively). These assessments were up-
dated for each skill separately throughout the game, and the
skill with the lowest assessment that was applicable to the
current gameboard was the skill for which a lesson was se-
lected. In this way, participants in the personalized lesson
conditions received lessons based on their individual perfor-
mance on the puzzles.

Alternatively, in the randomized lesson condition, lessons
were chosen among the same ten lessons at random each time,
such that the lesson chosen could be applied to the current
state of the gameboard. This ensures that although the lessons
were randomized, they would provide actionable information
every time.

Robot The robot we used, Keepon, is a small yellow
snowman-shaped robot; see Figure 2(c). Keepon has previ-
ously been used as an emotive non-threatening communica-
tion tool (Kozima, Nakagawa, & Yasuda, 2005; Leyzberg,
Avrunin, Liu, & Scassellati, 2011).

The robot operated in one of three modes. First, it refereed
the puzzle game: it welcomed participants when they started,
told them when they had finished or when they had run out of
time, and told them when the experiment was over. Second, it
“observed” the board during gameplay: the robot frequently
turned its head to face the location of the mouse cursor. Third,
it delivered short gameplay lessons three times per puzzle: it
“spoke” to the participant by turning to face him or her and
“bouncing” its body subtly while playing one of several pre-
recorded spoken messages. If a lesson needed to be repeated,
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the robot would first apologize for repeating itself (i.e., “I’m
sorry to repeat this hint but I think it might help.”).

To simplify the potential perception problems inherent in
real-world measurements, the robot in this study received per-
fect knowledge of the state of the game. We did not use a
robotic vision system to detect state changes.

Procedure
Participants were first asked to watch a five-minute instruc-
tional video and read a two-page instruction manual describ-
ing the rules of nonograms and how to use the computer in-
terface. In the video and in the text, participants were encour-
aged to use logical reasoning to make moves in the puzzle
rather than making moves by guessing. Potential questions
about the rules of the puzzle game were answered by the ex-
perimenter after the instructions.

During the experiment, participants were alone in a room
with the computer, the robot in conditions including the robot,
and a video camera positioned behind them; see Figure 2.
Participants would choose when they were ready to start each
new puzzle; each round would end either when the partici-
pant solved the puzzle or when fifteen minutes had elapsed,
whichever happened first.

After the conclusion of the final puzzle, participants were
asked to complete a survey consisting of five Likert-scale
questions with open-ended follow-up questions for each. The
questions were designed to assess whether the lessons were
helpful, clear, and influential, as well as the user’s perceptions
of the robot. We asked participants to rate: how relevant the
lessons were, how much the lessons influenced their game-
play, how well participants understood the lessons, and how
“smart/intelligent” and “distracting/annoying” they perceived
the robot to be.

Results
This study investigates the role of physical embodiment in a
robot tutoring system. The behavioral measure is the time in
which participants were able to solve each of the four puzzles.
For the purposes of calculating a mean, puzzles in which par-
ticipants ran out of time were evaluated as having solved the
puzzle when time ran out, fifteen minutes from the start of
each puzzle. This occurred in 12.4% of all puzzles.

Table 1: Mean Solving Time

Puzzle 1 Puzzle 2 Puzzle 3 Puzzle 4
None 13.6±2.2 13.0±2.3 12.3±2.5 11.6±2.7
Rand. 13.8±1.4 12.5±2.0 11.4±2.3 10.3±2.9
Voice 12.6±2.4 10.7±2.7 10.3±3.3 9.1±3.0
Video 12.8±2.1 11.1±2.6 9.9±2.6 8.7±2.4
Robot 12.7±2.6 10.0±3.5 9.4±3.0 7.6±3.1

Participants in the robot group performed better, on av-
erage, on the second, third, and four puzzles than partici-
pants in any other group. See Table 1 for means and stan-
dard deviations and see Figure 4(a). In the forth puzzle, the

(a) In this row, there must be one long stretch. By the
process of elimination one can infer that this stretch must
occupy at least the middle six boxes, no matter where in
the row it is placed.

(b) In this row, the first box is already shaded. Given
that, and that the first stretch must be 3 boxes long, one
can infer that the first three boxes must be shaded and the
fourth must be crossed out.

(c) In this row, there is only one short stretch and some
boxes are already shaded. One can infer that regardless
of where that one stretch is placed, it cannot occupy the
first two or the last two boxes in that row.

Figure 3: Examples of nonograms skills. Displayed are the
contents of a row before and after each skill is applied. Al-
though only rows are shown here, all nonograms skills apply
to columns as well.

mean solving time in the robot group (M = 7.6 minutes,SD=
3.1) is significantly better than in the video group (M =
8.7 minutes,SD = 2.4), t(36) = 0.03, and in the voice group
(M = 9.1 minutes,SD = 3.0) as well, t(36) = 0.02. These
data indicate that the robot’s physical presence made a signif-
icant learning impact on participants greater than that of an
disembodied voice and a video representation of a robot.

In this experiment, the first and fourth puzzles were 90◦

rotated variations of the same board. Thus they required ex-
actly the same skills to solve and the difference in their solv-
ing time is a measure of the participants’ acquired knowledge
over the course of the study. Participants in the robot condi-
tion improved (M = 5.8 minutes,SD= 3.5) their same-puzzle
solving time significantly more than those in both the video
condition (M = 3.9 minutes,SD = 2.3), t(36) = 0.048 and
voice condition, (M = 3.4 minutes,SD = 3.5), t(36) = 0.04;
see Figure 4(b). This data indicates that participants who re-
ceived lessons from the robot learned more effectively than
those who received only voice- or video-based lessons.

Survey results verify the following manipulation: par-
ticipants in the three personalized advice conditions rated
the lessons significantly more relevant (M = 6.0,SD = 1.4)
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(a) Mean solving time per puzzle. Participants in the robot condi-
tion solved each puzzle faster than participants in any other condi-
tion. In the fourth puzzle, significantly faster (p ≤ 0.03). See Table
1 for means and standard deviations.

(b) Mean improvement in solving time between puzzles #1 and #4.
These two puzzles were variations of the same gameboard, dis-
guised in the fourth puzzle by a 90◦ rotation. Participants in the
robot condition improved their solving time significantly more than
those in any other condition (p < 0.05).

Figure 4: Behavioral measure results: (a) participants who received personalized lessons from an embodied robot solved every
puzzle puzzle faster on average, the fourth significantly so (p ≤ 0.03) than participants in all other conditions; see Table 1. (b)
robot condition participants also improved on their same puzzle solving time significantly higher more than participants in all
other conditions (p < 0.05).

than participants in the randomized advice condition (M =
3.9,SD = 1.1), t(33) < 0.001. There was no significant dif-
ference in how highly participants rated their understand-
ing of the lessons between groups: (M = 6.0,SD = 1.4)
in the random condition,(M = 6.6,SD = 1.2) in the voice
condition, (M = 6.6,SD = 1.5) in the video condition, and
(6.4,SD = 1.2) robot condition; see Figure 5. These data in-
dicate that whatever social effect physical embodiment has on
this interaction, it does not influence the participants’ percep-
tion of their understanding of the lessons, despite the fact that
the behavioral measure indicates better learning in the robot
condition.

Discussion
Our results indicate that a physically-present robot tutor pro-
duces better learning gains than on-screen or voice-only tu-
tors. Further work is needed to identify the underlying social
factors and mechanisms that cause this effect.

One such factor may be the novelty of the stimulus. Robots
are an uncommon stimulus in the present day; we may expect
participants to be more attentive to the agent in the physically-
present condition. However, novelty can also be a distraction.
The physical presence of the robot during the game may di-
vert the participant’s attention from the puzzle solving task.
More work is needed to identify what effect, if any, a robot’s
novelty has on interactions such as these.

Physical presence may imbue the robot with more per-

ceived authority than an on-screen agent. Earlier work in
this area indicates that people are more likely to comply with
commands given by a physically-present robot than an on-
screen video of the same robot (Bainbridge et al., 2008). Em-
bodiment may cause participants to take the robot tutor’s ad-
vice more seriously. We are accustomed to receiving lessons
from teachers and authority figures who have physical bodies.
Perhaps a robot’s physical presence increases its authority or
social standing.

Participants, however, did not report having significantly
more difficulty understanding the lessons in any of the three
advice conditions. In fact, all four groups rated their level
of understanding of the lessons fairly highly (M = 6.3,SD =
1.3); see Figure 5(b). This may indicate that the embodiment
effect is so subtle that the participants did not notice its effect
on their learning.

Another social factor is the potentially increased sense
of peer pressure during the performance of the task itself.
The distinction between physically-present robot and on-
screen agent may parallel the way we perform tasks when
we think of ourselves as alone rather than in view of another
person. In person-person interactions, social presence can
lead to significantly worsened task performance, especially
in cognitively-demanding tasks (Short, 1976). More work is
needed to compare the potential effect of peer pressure caused
by a physically-present robot tutor to the peer pressure ex-
erted by a human tutor who observes as participants perform
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(a) Participants in the three personalized
advice conditions rated the lessons as sig-
nificantly more relevant than those in the
random condition, p < 0.001.

(b) There is no significant difference be-
tween groups in self-report of level of un-
derstanding of the lessons.

(c) Participants in the robot condition
rated the robot as significantly less “an-
noying/distracting” than those in the
other personalized advice conditions,
p < 0.01.

Figure 5: Results of self-report questionnaire measures completed after the interaction.

cognitively-demanding tasks.
Social presence effects may also be responsible for the

survey result in which participants in the physically-present
robot condition rated the robot (M = 4.7,SD = 1.8) as sig-
nificantly less “annoying/distracting” than participants in the
other advice conditions (M = 6.1,SD = 1.3), t(33) < 0.01;
see Figure 5(c). This may indicate that physical embodiment
produces a significantly greater sense of social acceptance
than an on-screen agent does.

Participants in the robot condition became better puzzle
solvers than those in the other conditions. Further research
is needed to identify the underlying social factors that con-
tribute to this empirically-observed effect.

Conclusion
This study investigates the role of physical embodiment of a
robot tutor in a cognitive skill learning task. Participants who
received personalized lessons from a physically-present robot
outperformed participants who received the same kind of ad-
vice from a video representation of the same robot as well
as participants who received the same kind of advice from a
disembodied voice on the last three puzzles. Participants in
the robot condition also improved their same-puzzle solving
time significantly more than those in any other group, which
is a direct measure of learning gains over the course of the
experiment. From these data we conclude that physical em-
bodiment can yield measurable learning gains in robot tutor
interactions.
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