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Abstract—We study the capacity of random wireless ad hoc
networks when nodes are capable of multi-packet transmission
and reception (MPTR). This paper extends the unified frame-
work of (n,m, k)-cast by Wang et al. [6] for single-packet
reception (SPR) at each node to the case of MPTR. (n,m, k)-
cast considers all types of information dissemination including
unicast routing, multicast routing, broadcasting and anycasting.
In this context, n,m, and k represent the total number of
nodes in the network, the number of destinations for each
communication group and the actual number of destinations that
receive the packets, respectively. We show that the capacity of
a wireless ad hoc network of n nodes in which nodes have a
communication range of r(n) and engage in an (n,m, k)-casting
scales as Θ(n

√
mr3(n)/k), Θ(nr2(n)/k) and Θ(nr4(n)) bits

per second when m = O(1/r2(n)), Ω(k) = 1/r2(n) = O(m)
and k = Ω(1/r2(n)), respectively. We show that the use of
MPTR leads to a gain of Θ(logn) compared to the capacity
attained with multi-packet reception (MPR), and to a gain of
Θ((logn)2) compared to the capacity attained with SPR, when
Ω(

√
logn/n) = r(n) = O(

√
loglogn/3logn).

I. INTRODUCTION

Gupta and Kumar [1] computed the throughput capacity of
wireless networks with unicast traffic when nodes are endowed
with single-packet reception (SPR) capability. Li et al. [4]
studied the multicast capacity of wireless networks and proved
that the per-node multicast capacity is Θ(1/

√
nklogn) and

Θ(1/n) for k = O(n/logn) and k = Ω(n/logn) respectively,
where k is the number of communication sessions in the
network. Keshavarz et al. [8] focused on the broadcast capacity
of wireless networks and observed that the capacity does not
change with the transmission range.

Wang et al. in [6] presented a unified framework for
the computation of throughput capacity of these networks
and introduced the (n,m, k)-casting as a generalization of
unicasting, multicasting, broadcasting and anycasting. In this
framework, n is the total number of nodes in the network, m
is the number of destinations for each communication group,
and k is the actual number of destinations in each group
that receive the packets. (n,m, k)-cast capacity was computed
in [2] when nodes are only capable of SPR communications
and the authors showed that the capacity is Θ(

√
m/nkr(n)),

Θ(1/nkr2(n)), Θ(1/n) for m = O(1/r2(n)), Ω(k) =
1/r2(n) = O(m) and k = Ω(1/r2(n)) respectively.

Multi-packet reception (MPR) has been introduced to in-
crease capacity. It can be implemented by allowing a node to
decode multiple concurrent packets using multiuser detection
and directional antennas [9], [10], or distributed multiple input
multiple output (MIMO) techniques. Wang et al. studied this
technique and proved that a gain of Θ(logn) is achieved by
using MPR instead of SPR [3].

The other way to increase the throughput order is to let all
the nodes decode correctly multiple packets, and transmit con-
currently multiple packets to different nodes. This multi-packet
transmission and reception (MPTR) model was introduced in
[5] and was shown to increase the unicast capacity by a factor
of Θ(logn) in comparison with MPR model.

In this paper, we use the framework presented by Wang et
al. and compute the (n,m, k)-cast throughput capacity when
the nodes have the MPTR capability. Further, the relationship
between capacity and delay as a function of transmission range
and group size is derived.

The rest of the paper is organized as follows. In section II,
we introduce the model which is used for the network, and the
main results of our work on capacity and delay with MPTR
are shown in section III. Section IV discusses the results.

II. PRELIMINARIES

We first define the notations used throughout this paper. |R|
indicates the area of a continuous region R and #S shows
the cardinality of a set S. The distance between two nodes
x and y is denoted by |x − y|. The probability of event E
is represented by Pr(E) and if Pr(E) > 1 − 1/n holds for
sufficiently large n, the event E is assumed to occur with high
probability (w.h.p.). Also the standard notations of Ω,Θ, and
O are employed in this paper.

The protocol model defined in [7] is based on single-packet
reception. The transmission range r(n) is common for all
nodes in the network. Node i at position Xi can successfully
transmit to node j at position Xj if for any node k at
position Xk, k #= i, that transmits at the same time as i,
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then |Xi −Xj | ≤ r(n) and |Xk −Xj | ≥ (1 +∆)r(n), where
Xi, Xj and Xk are the cartesian positions in the unit square
network for these nodes.

The protocol model for MPR is defined in [3]. In the MPR
model, all nodes use a common transmission range R(n) for
all their communications. The network area is assumed to be
a unit square area. In wireless networks with MPR capability,
the protocol model assumption allows simultaneous decoding
of packets for all nodes as long as they are within a radius of
R(n) from the receiver and all other transmitting nodes have
a distance larger than (1 + ∆)R(n).

In this paper the combination of MPR and multipacket
transmission (MPT) is utilized for all nodes as defined in [5].
This model restricts the nodes to operate in a half-duplex mode
(like all the other methods mentioned earlier), and similar to
MPR model prohibits the transmission from a node k in the
region r(n) < |Xi − Xk| ≤ (1 + ∆)r(n). The difference
between MPTR and MPR protocol models is that, under the
MPTR model, a node i transmitting a packet to node j can
concurrently transmit packets to other nodes in the network.

This paper uses the concept of Total Active Area
(TAA(∆, r(n))) which is defined in [3] as the total area of
the network multiplied by the average maximum number of
simultaneous transmissions and receptions inside a communi-
cation region of Θ(r2(n)).
Minimum Area (n,m, k)-cast Tree (MAMKT (r(n))) in a
(n,m, k)-cast tree is the total area covered by the circles with
radius r(n) centered on sources and relays in the wireless
ad hoc network, and #MEMKTC is defined as the average
total number of cells that contain all the nodes in an (n,m, k)-
cast group.

III. THROUGHPUT CAPACITY OF NETWORK WITH MPTR
MODEL

A. Upper Bound
A common technique to find the upper bound on the capac-

ity of networks is to calculate the total number of simultaneous
transmissions possible in the network area and we use this
value to compute the upper bound throughput capacity for
each (n,m, k)-cast group.

Lemma 1: The maximum number of simultaneous trans-
missions in a network with MPTR capability is O(n2r2(n)).

Proof: We divide the network area into equal-size
cells each with a side-length of r/

√
5. Define the sub-graph

G1 = (V1, E1) with V1 including all the nodes as the network
(V1 = V ) and use the subset of edges E1 such that each edge
connects the nodes in adjacent cells; i.e., E1 = {e ∈ E :
e+ = e− ∓ 1}. In this new graph the total number of cells is
proportional to Θ(1/r2(n)), and the number of nodes in each
cell is Θ(nr2(n)), so the total number of edges coming from or
to a cell is Θ(nr2(n))×Θ(nr2(n)) = Θ(n2r4(n)). Therefore,
the maximum number of simultaneous transmissions in the
network is Θ(1/r2(n)) × Θ(n2r4(n)) = Θ(n2r2(n)). Note
that this is the total number of simultaneous transmissions in
sub-graph G1, and as the maximum number of simultaneous

transmissions in graph G is at most a constant multiple of
this value, which does not change the order, it would also be
Θ(n2r2(n)).

Lemma 2: The maximum rate that can be
reached in a network with MPTR-capable nodes is
O(nr2(n)/#MEMKTC).

Proof: There are n multicast groups each sending data
at rate λ, and the maximum average number of cells each
bit has to travel to reach all destinations is #MEMKTC.
Thus, the total number of simultaneous transmissions in such
a network would be nλ#MEMKTC, which cannot be larger
than Θ(n2r2(n)).

nλ#MEMKTC ≤ n2r2(n)

Then,

λ ≤ nr2(n)

#MEMKTC
.

Lemma 3: The #MEMKTC is tight bounded as

#MEMKTC(r(n)) =





Θ( k
r(n)

√
m
) , for m = O( 1

r2(n) )

Θ(k) , for Ω(k)= 1
r2(n) = O(m)

Θ( 1
r2(n) ) , for k = Ω( 1

r2(n) )

Proof: The proof is given in Lemma 4.7 and 5.5 in [6].

Theorem 4: In wireless ad hoc networks with MPTR, the
upper bound on the per node throughput capacity of (n,m, k)-
cast is:

Cm,k(n) =






O(n
√
mr3(n)
k ) , for m = O( 1

r2(n) )

O(nr
2(n)
k ) , for Ω(k)= 1

r2(n) = O(m)

O(nr4(n)) , fork = Ω( 1
r2(n) )

Proof: Combining the results of Lemma 3 and 2 will
lead to the result.

B. Lower Bound
To obtain a lower bound on capacity, we can use the TDMA

scheme similar to the one used in [3] for MPR model. It has
been shown [3] that there exists at least )1/ (Lr(n)/

√
2)

2
⌉

simultaneous circular regions each one containing Θ
(
nr2(n)

)

nodes w.h.p.. Note that the TDMA factor L is only a constant
value and not a function of n.

Lemma 5: For any r(n) = Ω(
√
log n/n),

lim
n→∞

Prob(sup{Number of trees intersecting cell Sk,j})

= O(nr2(n)#MEMKTC(r(n)))
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Proof: The proof of this lemma is provided in [3].

Lemma 6: The achievable lower bound for the (n,m, k)-
cast capacity with MPTR is

Cm,k(n) = Ω(nr2(n)×#MEMKTC(r(n))
−1

).

Proof: There exists a transmitting schedule such that in
every L2 (L is constant) slots, each cell transmits or receives at
rate W bits/second with maximum transmission distance r(n).
Therefore, the number of packets transmitted to and from a
cell is Θ(n2r4(n)W/L2). From Lemma 5, each cell needs to
transmit at rate (Cm,k(n)nr2(n)#MEMKTC(r(n))) w.h.p..
In order to accommodate this requirement by all cells, we
need Cm,k(n)nr2(n)#MEMKTC(r(n)) ≤ n2r4(n) which
proves the lemma.

Theorem 7: In wireless ad hoc networks with MPTR, the
lower bound of the per node throughput capacity for (n,m, k)-
casting is given by

Cm,k(n) =






Ω(n
√
mr3(n)
k ) , for m = O( 1

r2(n) )

Ω(nr
2(n)
k ) , for Ω(k) = 1

r2(n) = O(m)

Ω(nr4(n)) .for k = Ω( 1
r2(n) )

Proof: Combining the results of lemmas 3 & 6 proves the
theorem.

The obtained throughput capacity has been calculated with-
out considering the maximum number of simultaneous re-
ceivers and transmitters that a node can accommodate. Ac-
cording to the bins and balls theorem, the maximum number
of destinations which can be related to a single node is at
most 3 log n

log log n . The maximum rate at which a node can send
or receive data cannot be less than the total traffic load that
a node is required to accommodate. This constraint requires
that,

nr2(n) ≥ Cm,k(n)×
3log n

log log n
.

It can be proved that if r (n) = O(
√

log log n
3logn ) , then the

above inequality holds in all regions of throughput capacity.
We show the proof for region 1 as an example, i.e., Cm,k (n) =

O(n
√
mr3(n)
k ).

nr2(n) ≥ A1
n
√
mr3(n)

k
× 3 log n

log log n
(1)

1 ≥ A1

√
mr(n)

k
× 3 log n

log log n
log log n

3A1 log n
√
m
k ≥ r(n)

In the first capacity region, m follows the following inequality.

A2/r
2(n) ≥ m ≥ k

Now, we use this bound for m and k in eq. (1).

r(n) ≤ log log n

3A1 log n
√
m
k (2)

a
≤ log logn

3A1 log n

√
m

b
≤

√
A2

log log n

3A1 log n r(n)

r(n) ≤ A3

√
log log n

3 log n

(a) is derived by replacing k with its upper bound m and (b)
is derived by using the upper bound for m. The same results
can be obtained for the other two capacity regions.

The above criterion gives us an upper bound on commu-
nication range, r(n), such that the obtained capacity can be
achieved without any congestion for each node. On the other
hand, the connectivity criteria requires that r(n) = Ω(

√
log n
n ).

Thus, it is concluded that r(n) should be in the region of
Ω(

√
log n
n ) = r(n) = O(

√
log log n
3 log n ).

Combining Theorems 4 and 7 provides a tight bound on
the throughput capacity of the network when each node is
endowed with MPTR capability.

Cm,k(n) =






Θ(n
√
mr3(n)
k ) , for m = O( 1

r2(n) )

Θ(nr
2(n)
k ) , for Ω(k) = 1

r2(n) = O(m)

Θ(nr4(n)) , for k = Ω( 1
r2(n) )

C. Delay Analysis

In this section, we discuss the delay of (n,m, k)-casting
and its relationship with the capacity.

Lemma 8: The delay of (n,m, k)-cast in a random dense
wireless ad hoc network is

Dm,k(n) = Θ(#MEMKTC(r(n)))

Proof: The average total number of cells containing all
the nodes in an (n,m, k)-cast group, #MEMKTC(r(n))),
is proportional to the average number of hops traveled by the
information from source to reach all its destinations. Thus it
is the same order bound as the total delay. Complete proof is
given in Lemma 4.7 in [2].

Lemma 9: The relationship between delay and capacity
for (n,m, k)-casting is as follows:

Dm,k(n)Cm,k(n) = Θ(nr2(n))

Proof: The proof follows immediately by combining Lem-
mas 6 and 8.
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IV. DISCUSSION

In this paper we focused on the capacity of (n,m, k)-casting
when the nodes are endowed with multi-packet transmission
and reception capabilities. The capacity and delay have been
obtained for different (n,m, k)-casting including unicast, mul-
ticast, broadcast and anycast communications.

A. Capacity as a function of transmission range and group
size

The relationship between capacity and group size (m) as
a function of communication range r(n) is shown in figure
1. As can be seen, the throughput capacity does not change
with the group size when 1 ≤ m ≤ Θ(1). In this region the
capacity is only a function of n and r3(n) and an increase in
transmission range will increase the capacity.

Furthermore, when the number of receivers exceeds a
threshold, the throughput capacity will be independent of m
and it is just a function of n and r4(n).

In the first capacity region and for the multicast (k = m <
n) communications, the throughput capacity has its minimum
value and decreases with the increase of m, (Θ(nr3(n)/

√
m)).

In the same capacity region and for anycast communication,
i.e., k = 1, the capacity reaches its maximum value and
increases with the increase of m, (Θ(nr3(n)

√
m)).

Fig. 1. The relationship between throughput capacity of (n,m, k)-cast and
m as a function of r(n).

B. Capacity and Delay Tradeoff

The tradeoff between delay and capacity using MPTR
capability in the first (unicast), second (multicast), and third
(broadcast) capacity regions are illustrated in figures 2, 3,
and 4, respectively. In the unicast region, (m = O(r−2(n))),
as r(n) increases, delay decreases and capacity increases,
so to have the minimum delay and maximum capacity, we
just need to increase r(n) to the maximum allowable value
(O(

√
loglogn/3logn)). This condition clearly requires an

increase in the computational complexity of the nodes in the
network.

In the multicast region (Ω(k) = r−2(n) = O(m)), the
delay does not change with r(n) and to achieve the maximum
capacity, the maximum r(n) should be selected.

The broadcast region (k = Ω(r−2(n))) has almost the
same capacity-delay tradeoff similar to the unicast region,
as we observe that by decreasing the delay, the capacity
increases when the transmission range increases. Therefore,
the maximum acceptable transmission range will result in
minimum delay and maximum capacity.

Finally, our results demonstrate that in networks with MPTR
capability, there is no need to sacrifice capacity to achieve
lower delay. The main reason is the fact that MPTR takes
care of interference and by increasing r(n), more nodes can
simultaneously communicate with each other.

Fig. 2. Capacity and delay tradeoff in the first (unicast) capacity region.

Fig. 3. Capacity and delay tradeoff in the second (multicast) capacity region.

V. APPENDIX

We compute the upper bound using another technique in
this appendix. We introduce a circular cut of radius r(n) as
shown in figure 5 that divides the network into two regions of
S and Sc. To compute the upper bound throughput capacity,
we utilize the concepts of the average total active area and the
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Fig. 4. Capacity and delay tradeoff in the third (broadcast) capacity region.

total area required to transmit information in an (n,m, k)-cast
tree.

S
C

S     

r(n)

Fig. 5. A circular cut that divides the network into two regions of S and
Sc.

Lemma A1: The maximum number of transmitters in S
is Θ(nr2(n)).

Proof: In MPTR model, each node can receive from
multiple nodes, so the existence of a transmitter in this circle
does not prohibit the transmission from other nodes in this
region. Thus, the maximum number of transmitters in this
region equals to the maximum number of nodes that contains
in this region which is equal to Θ(nr2(n)).

Lemma A2: The maximum number of transmissions per
node is Θ(nr2(n)).

Proof: MPTR model allows each node to transmit to
several nodes at a time. So the number of transmissions per
node equals to the number of receivers in the circle with radius
r(n) centered on that node, which equals to the total number
of nodes in this region (Θ(nr2(n))).

Lemma A3: The Average Total Active Area,
TAA(*, r(n)), in networks with MPTR is Θ(n2r4(n)).

Proof: The radius of region S is r(n). Let’s consider all
the nodes that are within a ring of greater than r(n)/2 and
r(n) with respect to the center of the circle. The number of
nodes in this ring is proportional to (Θ(nr2(n))). Because
of the uniform distribution of nodes, there is on average
(Θ(nr2(n))) nodes in SC that are within the communication

range of the nodes inside this ring. Thus it can be assumed
that each transmission from any transmitter inside this ring
will pass through the cut, leading to a maximum flow equal
to the multiplication of the number of transmitters in this ring
and the number of transmissions per node in the ring which
is equal to Θ(nr2(n))×Θ(nr2(n)) = Θ(n2r4(n)).

Lemma A4: In random dense wireless ad hoc networks,
the per-node throughput capacity of (n,m, k)-cast with MPTR
is given by O( 1n × TAA(%,r(n))

S(MAMKT (r(n)))
).

Proof: With MPTR, we observe that
S(MAMKT (r(n))) represents the total area required
to transmit information from a multicast source to all its
m destinations. The ratio between average total active area,
TAA(*, r(n)), and S(MAMKT (r(n))) represents the
average number of simultaneous (n,m, k)-cast sessions that
can occur in the network. Normalizing this ratio by n provides
per-node throughput capacity which proves the Lemma.

Lemma A5: In (n,m, k)-cast applications, the average
area of a (n,m, k)-cast tree with transmission range r(n),
S(MAMKT (r(n))) has the following lower bound as:

S(MAMKT (r(n))) =






Ω(kr(n)√
m

) , for m = O( 1
r2(n) )

Ω(kr2(n)) , for Ω(k) = 1
r2(n) = O(m)

Ω(1) , for k = Ω( 1
r2(n) )

Proof: Note that S(MAMKT (r(n))) is the same value
for MPTR, MPR and SPR, and they only depend on the
communication range in the network. This value is derived
in [2], [3].

Theorem A6: In wireless ad hoc networks with MPTR, the
upper bound on the per node throughput capacity of (n,m, k)-
cast is:

Cm,k(n) =





O(n
√
mr3(n)/k) , for m = O( 1

r2(n) )

O(nr2(n)/k) , for Ω(k) = 1
r2(n) = O(m)

O(nr4(n)) , for k = Ω( 1
r2(n) )

Proof: The proof follows immediately by combining
Lemmas A3, A4, and A5.
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