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Abstract

Comparing the relative fit of competing models can be used to address many different scientific 

questions. In classical statistics one can, if appropriate, use likelihood ratio tests and information 

based criterion, whereas clinical medicine has tended to rely on comparisons of fit metrics like C-

statistics. However, for many data adaptive modelling procedures such approaches are not suitable. 

In these cases, statisticians have used cross-validation, which can make inference challenging. In 

this paper we propose a general approach that focuses on the “conditional” risk difference 

(conditional on the model fits being fixed) for the improvement in prediction risk. Specifically, we 

derive a Wald-type test statistic and associated confidence intervals for cross-validated test sets 

utilizing the independent validation within cross-validation in conjunction with a test for multiple 

comparisons. We show that this test maintains proper Type I Error under the null fit, and can be 

used as a general test of relative fit for any semi-parametric model alternative. We apply the test to 

a candidate gene study to test for the association of a set of genes in a genetic pathway.
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1 Introduction

An important question in statistical medicine is whether the addition of a set of predictors 

improves the predictive accuracy of an outcome. Often in these scenarios the unit of interest 

is not a single predictor but instead a set of predictors (e.g. SNPs in a gene, a set of 

laboratory values). Numerous metrics and procedures have been developed to assess 

prediction. Discrimination and reclassification statistics are often used to assess an added 

predictor to a model. Model building tools such as likelihood ratio tests and Akaike 

Information Criterion/Bayesian Information Criterion (AIC/BIC) can be used to choose 

between a model with and without an added predictor. Furthermore, many fields have 

developed domain specific tests (e.g. gene based tests). While numerous, these methods are 

all somewhat specialized. Evaluation metrics like C-statistics [1] and Net Reclassification 

Improvement (NRI [2]); often require the outcome to be categorical. Model building tools 

while more general require one to be able to specify the number of degrees of freedom, not 

always feasible when more complicated learning algorithms are used. While domain specific 

tests are able to leverage specific data structures, they may not always generalize well to 

other data settings.

In these scenarios a common alternative is to use cross-validation (CV) to compare the fits 

of two proposed models. Here, one computes the estimated cross-validated risk (average 

loss), on the two (or more) proposed models. As in information based approaches, one 

prioritizes the model with smallest estimated risk. One drawback of this approach is that 

there is typically no accounting for the sampling distribution of these risk estimates. In many 

medical scenarios there is clearly a simpler (null) model and a more complex (alternative) 

one. Moreover, there is often a cost associated with the more complex model either via 

needing to collect additional data (e.g. biomarkers, genes) or computation (e.g. a simple 

score vs. a more complex one). In these cases, in addition to asking whether one model fits 

better than another, it is also worthwhile to estimate the probability of an observed 

difference if the two fits were equally good, i.e. estimating a p-value.

With this in mind, we propose a general test for comparing two model fits. The test can be 

used to answer one of two related questions: (1) does a set of predictors improve model 

performance?; (2) is one predictor “better” than another? In addition, the proposed test 

allows the user to specify their own loss-function of interested instead of relying on specific 

definitions of loss. As more and more studies move from traditional parametric models with 

clear modes of inference, to the use of supervised semi-parametric (machine learning) 

approaches for high dimensional problems, demand for such testing procedures will grow.

The paper starts with a definition of the parameter of interest, the conditional risk, and we 

present this first in the context where one has an independent validation set. In Section 3 we 

then place this test within the context of estimating generalized semi-parametric models. We 

discuss the motivation for using the super learner [3] procedures for constructing predictors. 

In Section 4 we introduce our procedure for drawing inferences on the risk differences via 

cross-validation. We report the results of a simulation study in Section 5 and illustrate a 

potential use of the proposed procedure via an application to genetic data in Section 6; we 

end with a conclusion section.
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2 Estimation and inference of conditional risk

Before deriving the formalities of the statistical procedure, we intuitively describe the 

analytic problem. We start by considering a set of predictors and candidate fitting procedure. 

We divide the sample randomly (and appropriate to the design) into V training and 

corresponding validation samples. Next, we derive the estimated risk for the fitted model in 

each validation sample, where the model has been fit on the corresponding training sample. 

This results in a set of cross-validated predictions, through which we can derive cross-

validated losses. The mean of these cross-validated losses, the risk, is an unbiased estimate 

for the risk on an independent validation set [4]. If we wanted to get a standard error along 

with the estimate (for example to derive a confidence interval), we may consider applying 

asymptotic normality and dividing the sample standard deviation by , the square root of 

the sample size. However, as others have shown [5], this does not provide an unbiased 

estimate of the standard deviation on an independent validation set. The goal of this work, 

then, is to resolve this problem. However to do so, we begin with the easier scenario where 

one has an independent validation set and generalize to the case where one only has a cross-

validated dataset.

Define the observed data as Oi = (Yi, Xi)~P, i = 1, …, n where Yi is the outcome of interest 

and can be a real number or class variable and Xi are a p-dimensional vector of predictors. 

The unknown model representing E(Y|X) is denoted by m(X). The model’s functional form 

is defined by the data adaptive learning algorithm. Depending on the nature of the algorithm, 

all, some or none of the input vectors may be used to estimate E(Y|X).

Once the learning algorithm is fit to the data, define m̂(X) to be a prediction based on this 

model for a randomly drawn (new) X. We call this the conditional risk, where one fixes the 

prediction model, m̂(·), and looks at its performance in future random draws from the target 

population. We define it as:

(1)

for a user-chosen loss function, L, where the expectation is taken w.r.t P0, the observed data, 

O. Possible loss functions include standard ones like squared-error (ℓ2), absolute error (ℓ1), 

or less common ones such as negative log-likelihood, and AUC based loss [6]. The only 

requirement is that the loss function is convex which excludes missclassification loss [4].

Let the plug-in estimate of the risk be, for an i.i.d. sample of Oi of size n (independent of 

that used to derive m̂) be:

where Pn is defined as the empirical distribution. In this case, because the estimator is just a 

simple average of i.i.d. random variables the asymptotic normality of this estimator is 

trivially established. More generally (and relevant to the average risk), the asymptotic 
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normality can be established by showing the estimator is an asymptotically linear estimator, 

and therefore can be written as:

(2)

This is the standardized difference between the estimated and true risk of predictor m̂(·). If 
we can write this as a sum of i.i.d. random variable called the influence curve (IC), IC(Oi;m̂) 
plus a second order term, then, the asymptotic variance of the estimated risk is:

In the case of average risk, or the case of risk within each validation fold, the IC is simply 

IC(O;m̂) = L(Y, m̂(X)) − θ(m̂).

For our purposes, the goal is to develop a test of two competing models for estimating m(·). 

There are a wide variety of scenarios where one would be interested in comparing models 

fits. Two general cases that we focus on are: the added improvement of a set of predictors of 

one model fit relative to another, and the relative fit between two competing fitting 

procedures (e.g., parametric versus data adaptive procedure).

Regarding a statistical test, it is clear that a null of equality will never be true unless one uses 

the same set of predictors and the same fitting procedure; otherwise one model will always 

fit better. Thus, for the implied nulls, of whether a data adaptive procedure provides a 

significantly improved fit relative to a pre-specified parametric model, one can never hope 

for perfect type I error rate under the null. However we can consider a base model or fitting 

procedure as the referent (i.e. “null”) and construct a one-sided test of the form:

(3)

with null (typically simpler) model m̂0(·) and alternative m̂1(·). Here, the null hypothesis 

implies that m̂1(·) has a larger risk (i.e. worse fit) than m̂0(·).

The parameter of interest which motivates the test is Ψ{θ(m̂0), θ(m̂1)} = θ(m̂0) − θ(m̂1), 

estimated by plug-in estimator Ψ{θn(m̂0), θn(m̂1)}, or Ψn for short, which leads naturally to a 

Wald-type statistic:

(4)

where ÎC(O;m̂1) = L(Y, m̂1(X)) − θn(m̂1).

As Dudoit and van der Laan ([4]) showed, under the null, Ψn will by asymptotically 

normally distributed with variance 1. An equivalent level confidence interval for this risk 

difference is:
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(5)

where z1 − α/2 is the 1 − α/2 quantile of the standard normal distribution.

Before we turn to the specific implementation using cross-validation, we first discuss using 

the super learner (SL) theory for estimating when the goal is either a test of association of a 

vector of covariates and outcome in a semi-parametric model or to have a standard by which 

to compare a smaller sub-model via a goodness-of-fit test using the inferential procedure 

implied by the previous discussion.

3 Optimal estimation of semi-parametric models

As suggested in the outset, the proposed test is most useful in the scenario where one does 

not have a pre-specified model for m1 and m0, and instead needs to estimate them 

adaptively. When the functional form of m1 and m0 are known and the parameters can be 

estimated using a parametric model, a likelihood ratio test or information based criterion can 

be optimal and sufficient. However, in the more common scenario where they are unknown, 

a range of machine learning algorithms are available.

Ideally, we want to choose a procedure for deriving m̂1 that is not arbitrary, but has some 

optimality properties with regards to doing “as good as job as possible” at fitting the true 

model of E(Y|X). Therefore, when compared to a fit from a null model (or some smaller 

model), we want to have maximal power for detecting departures from this null. Though no 

theory exists for deriving an optimal estimator of the predictor among all possible estimators 

in a semi-parametric model, we can at least define a gold standard among a finite set of 

competitors. As others have done [3] we define the gold standard as: given the data, the 

algorithm that chooses the estimator with the lowest true risk among all tried competitors 

(indexed by j). This is referred to as the “Oracle Selector”:

We define the risk of the Oracle Selector as θ(m*̂) based on an independent training sample 

of size nTr. An estimator that converges in risk to the Oracle Selector will result from 

maximizing the true Ψj ≡ θ(m̂0) − θ(m̂j) over different competing estimators. Thus, such a 

procedure should also result in a relatively powerful test compared to other procedures used 

to derive m1̂.

As shown in van der Laan et al. [3] stacking procedures [7, 8] (particularly those that 

combine a wide variety of algorithms from very simple/smooth to highly data-adaptive), as 

implemented in the SL algorithm, meet this criterion. In stacking one typically uses a V-fold 

cross-validation procedure to combine a user-specified set of candidate prediction 

algorithms. The SL algorithm is available as a statistical package [9] in the R programming 

language. The SL performs asymptotically equivalently (w.r.t. expected risk difference), up 

to a second order term, to the oracle selector. In addition, an Oracle Inequality suggests that 
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this relative optimality occurs if the number of learning algorithms included as candidates in 

the SL is polynomial in sample size, and none of its candidate learners (and oracle 

estimator) converges at a parametric rate [3]. If one of the candidate learners is actually the 

true model, however, and thus converges at a parametric rate, the SL will converge at a close 

to parametric rate, implying there is not much cost for building the predictor within a much 

bigger model (assuming the loss function is bounded). Thus theory on stacking procedures 

suggests the use of a very large number of possible learning algorithms. If stacking is used 

to derive m̂1 then the Oracle Inequality can be invoked as a heuristic argument as to why the 

resulting test is relatively powerful compared to other procedures that would use a different 

procedure for estimating m̂1.

4 Cross-validated multiple testing procedure

Given a procedure described (for simplicity) as designed for an independent test set, we now 

turn to the more relevant situation where a single data set must serve multiple purposes: 

construction of the m̂0, m̂1 models, subsequent estimation of the cross-validated risk, and the 

calculation of the its sampling variability. As is typical, we use V-fold cross-validation, 

where the data are divided into V equal-sized testing sets. For each independent test set 

indexed by v, the prediction models, (m̂0, m̂1), are fitted (trained) on the corresponding 

training set and then the test statistic (4), is constructed on the test set. Thus, both , and 

 represent fits on the vth training sample where those observations labelled (randomly) v 
have been removed. We can then define:

(6)

where we have indexed (6) to emphasize that the relevant predictor models are fit on the 

training data, but the difference in the risk estimates,  is performed on the testing data, 

which has sample size nV = n/V. We first discuss a procedure, where the Central Limit 

Theory follows without any special conditions – that is, we treat each validation sample as 

the basis of a separate test and estimate, and combine them only via standard multiple 

testing procedures. We then discuss estimating an average risk across the folds which does 

require some mild conditions for the asymptotic distributional results to hold.

4.1 Estimates by validation sample

For each of the v = 1, …, V test statistics, , we can derive a corresponding p-value of the 

null as , where Φ(·) is the standard normal distribution function. To draw 

inference we can perform a multiple testing correction across the V tests, rejecting the null 

hypothesis if the minimum corrected p-value is less than the prescribed α. In practice, due to 

the relatively few number of tests, we find that the standard Bonferonni correction is not 

overly conservative – obviously it could be generalized to other procedures. Therefore, in the 

same way that we derive inference from the fold with the greatest association (i.e. risk 

difference) in eq. (6), we can similarly choose that same fold as our estimate of the risk 

difference. To get appropriate coverage we calculate Bonferonni corrected confidence 
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intervals. This leads to a global confidence interval for the set of Confidence Intervals (CIs) 

across folds, giving global coverage 1 − α of

(7)

Thus, by defining the parameter of interest as the conditional risk, one gets V-different 

estimates of an experiment where two different competing procedures are used to generate 

predictors for which the risks are estimated. However, in practice it makes the most sense to 

use the cross-validated estimated of the risk, as this will converge to the true risk faster.

4.2 Averaging across validation samples

Instead of joint inference across the V-folds keeping the validation estimates separate, we 

can also combine them into an average conditional risk:

(8)

Dudoit and van der Laan ([4]) showed that the normalized estimator  converges 

to a normal distribution with mean 0 and variance, . We define 

where

and  is the estimated variance of [ ] within each validation 

fold. Thus, one can derive a Wald-type confidence interval and test statistic just as above:

This provides a single overall test and/or confidence interval that might be a more efficient 

summary of the evidence related to the guiding hypothesis of interest. However, it does 

require more assumptions, and these are not trivial. For instance, it is possible that under H0, 

as the sample size gets large , and the asymptotic linearity will no 

longer hold. However, in these cases, it is because the null is “too” true, resulting in a point 

mass at 0. In this degenerative case where m̂1 gets very close m̂0, one can simply choose the 

null model. Therefore, the situation hurts the asymptotics, but in practice it does not impact 

inference on the conditional risk differences.
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4.3 Finite sample considerations

While the asymptotic statistical inference is straightforward when one views the parameter 

of interest as the difference in conditional risks, there is still the question of finite sample 

performance. For such considerations, the primary tuning parameter is the number of splits, 

V, one should choose. The performance of the test will be a function of two competing 

goals: 1) having the training samples as large as possible in order to get closer convergence 

of the fit,  to its limit, and 2) having the validation samples as large as possible in order 

to get estimates of  with variances as small as possible as well as being able to invoke 

the asymptotic sampling distribution under the null. Therefore, V must be small enough to 

invoke asymptotic normality of Tv. Through our simulations we noted that it is typically 

necessary to have a validation sample size of at least 30. While we did not explicitly seek to 

derive such limits, this is worthy of further research.

4.4 “Marginal” risk differences

In this work, we focus on comparing risks conditional on the fitting procedure. One might 

want to instead derive a test of competing procedures, where one does not condition on the 

estimates of the predictors, but measure the performance of competing procedures 

(algorithms) in repeated experiments. So, as opposed to average conditional risk, the 

parameter of interest is the average unconditional risk difference. In this case, in addition to 

estimating the risk from a fixed prediction model, the experiment also involves re-fitting of 

the prediction model as well, something we will refer to as average marginal risk 

differences. The most complete discussion of this problem was performed by Bengio and 

Grandvalet [5]. The authors showed that the variance of the loss can be broken down into 

three components:

1. The variability of the prediction within each validation block

2. The covariance between predictions within each block

3. The covariance between predictions in different blocks

The first value is the parameter of interest, however the empirical variance of m̂(Xi) is 

confounded by the other two values. In later work the authors estimated the maximum 

between block variance as 0.7 and suggested a t-statistic with a correction based on this 

value [10]. In our own previous work we suggested a Wald test that also required a 

correction to maintain proper error control [11]. Markatou et al. [12] presented a method of 

moments estimator that while nearly unbiased, depends on the distribution errors and 

knowledge of the learning algorithm.

Therefore this work is important in that it circumvents these issues by proposing a type of 

random parameter, the conditional risk, which both has some appeal as the quantity of 

interest (typically, for practical performance of an estimated predictor, one is interested in 

how a fixed model fit will do in the future) and also avoids these intractable problems.
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5 Simulation

Simulations were performed to examine 1) the asymptotic sampling distribution of the cross-

validated risk estimates, 2) the type I error rate when the base model provides a better fit, 

and 3) the coverage of the confidence interval. The simulations all had the same structure, 

which complies with the experiment under which the theory is developed for the asymptotic 

distribution of the risk estimator.

5.1 Methods

1. Generate a random sample of size n from the data generating distribution and break 

into V equal validation samples of size nV = n/V with corresponding training 

samples of size n − n/V;

2. For each training sample, estimate the models using both the base model and the 

alternative model, resulting in V pairs of model fits. These are the sets ( , 

v = 1, .., V) discussed above, and are considered the set of fixed predictors of which 

we evaluate the sampling distribution of the risk estimates in future draws from the 

target population;

3. For each of the V leave-out sets, calculate the risk difference,  and associated 

standard error;

4. Calculate the Wald test from (6) and the associated p-value (using a Bonferonni 

correction). Using the most significant Wald test and the average of the 

calculate the corresponding CI from (7);

5. As opposed to deriving the “true” risk parameter analytically, we did so 

empirically. For each of these 2 × V predictors (V prediction for m0 and m1), we 

draw a very large sample (100,000 observations) using the same distribution. This 

represents the target population and is used to calculate the true risk and the 

parameters of interest:  for each v, the corresponding risk 

differences, , the average risk and the difference of these 

average risk differences;

6. To estimate the sample distribution and performance repeat (1)–(4) 1,000 times, 

drawing new samples and generating new fits. Compare the mean of the risk 

differences, coverage probabilities for confidence intervals, and rejection (at 0.05 

level) probability, to the true risk difference from (5).

We present results for two sample sizes (n = 100, 1000) and V equal to 5 (though other n and 

V were explored) within four simulations.

• Simulation I: The base dataset contains variables, X = (x1, x2). Conditional on X, 

Y~N(x1β, 1). The alternative dataset contains 8 additional variables such that: X = 

(x1 … x10), where the additional variables are not associated with Y, i.e. a null 

association. Both models are estimated using basic linear regression and the risk is 

calculated under squared-error loss;
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• Simulation II: Like Simulation I, the base dataset contains X = (x1, x2) and the 

alternative dataset contains X = (x1 … x10). Y is binary such that logit(P(Y = 1|

X))~x1β1 + x3β3. Therefore the alternative model, with both x1 and x3, should 

provide a better fit for estimating Y. Both models are estimated using basic logistic 

regression and the risk is calculated under absolute-error loss;

• Simulation III: Both the base and alternative datasets contain only x1 and x2, with 

linearly x1 associated with a continuous outcome Y: E(Y) = βX1. The base model 

was estimated using linear regression. The alternative model was estimated using a 

SL with linear regression, general additive model, decision tree and an intercept 

model, i.e. an overly complex model. Absolute-error loss was used to calculate the 

risk;

• Simulation IV: Both datasets contain only x1 with the true E(Y|X) shown in Figure 

1, based on a piecewise constant model. The base fit is mis-specified using only 

linear regression where the alternative is fit under a SL using linear regression, 

general additive model, decision tree and an intercept function. The risk is 

calculated under squared-error loss.

1,000 simulations were performed. We report bias (estimated risk difference vs. “true” risk 

difference, type 1 error (based on a 1 sided test), and coverage probability. Since simulations 

I & II involve comparison of parametric fits we also report the results of a likelihood ratio 

test and AIC.

5.2 Results

Tables 1 and 2 show the results, and are as predicted based on the theory: 1) the coverage 

probabilities of the risk differences with independent validation samples achieve close to the 

specified coverage rate, 2) when the base model is correctly specified (and is a simple 

parametric model) then the procedure has a very high probability of failing to reject the null 

hypothesis (that is, it suggests the simpler model is a sufficient/superior fit), 3) if the null 

model is mis-specified, the procedure has very high power.

When looking across the validation folds, the Bonferonni corrected statistic provides slightly 

conservative coverage and type 1 error rate. However the need for such a statistic is seen 

when one simply takes the empirical variance across the validation folds. In this scenario the 

coverage is not always appropriate particularly when the base model is correctly specified 

(simulations I & III), as discussed in Section 4.3. As noted by Bengio and Grandvalet [5] 

there are additional correlation components embedded in V-fold CV. These correlation 

components likely add second order terms to the IC calculation (eq. (2)).

We note, that when the sample size is relatively small, so the validation sample is very small 

(20 in this case), then borrowing across the validation samples to get an average risk gives 

better performance, both with respect to type I error (Simulations 1 & III) and power 

(Simulations II & IV). This is the major advantage of performing CV as opposed to a simple 

sample split.
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Since simulation II consisted in comparison of two parametric fits we were able to explicitly 

compare the power of the proposed method to both a likelihood ratio test (LRT) as well as a 

model choice via AIC. For the LRT we rejected the null at an α level of 0.05 and for the AIC 

we chose the model that minimized the AIC. Results are shown in Figure 2. With the smaller 

sample, the parametric methods show more power (0.859 and 0.845, respectively), while all 

methods maintain full power with the larger sample size.

6 Data application

Gene based tests represent a particular application of this procedure. Genes are comprised of 

individual bases of DNA referred to as single nucleotide polymorphisms (SNPs). Most genes 

consist of 10s or 100s of SNPs. Typical methodology involves testing individual SNPs in a 

gene to determine whether variation in the gene as a whole may be associated with the 

outcome (typically disease) of interest. The goal of gene based tests is to associate the set of 

SNPs comprising the gene with some outcome, with many different proposed procedures 

[13]. Of particular relevance to the present discussion is that the unit of interest in a gene 

based test is the collection of SNPs instead of any individual SNP. Therefore we are not 

interested in defining a model that estimates a parameter for each individual SNPs. Instead 

we want to globally assess the association of a set of SNPs.

To illustrate the flexibility of the proposed method we will show how it can be used as a 

gene based test for association. We return to a data analysis we previously performed where 

we explored whether genes from the stress response pathway, a set of predefined genes, are 

associated with Multiple Sclerosis (MS) [14]. Using a combination of machine learning 

procedures and logistic regression we identified one gene, CRHR1, to be associated with 

disease. However, at the time we were unable to formally test this association. Using the 

proposed method, we revisted this analysis.

The data consist of a candidate gene study on 2,722 people. The stress response pathway 

consists of 10 genes, which are comprised of 409 SNPs across the genome. In univariate 

testing rs171442 in CRHR1 has the smallest p-value (p < 0.003). However the association is 

no longer significant after controlling for multiple testing using the Benjamini-Hochberg 

[15] method to control the False Discovery Rate (padjusted = 0.42).

Since our unit of interest were the 10 genes (and not the 409 SNPs), we tested each gene 

individually. The outcome Y is MS disease state and the X are the set of SNPs in each of the 

genes. In this case m̂0 is the baseline fit with no genes (SNPs) in the model. We tested each 

of the 10 genes: , where  is the fit for the ith gene. In addition we assessed the 

full pathway, fitting a global model m̂1 for all the genes. We used squared-error loss as the 

primary loss function (L), though other loss functions resulted in similar conclusions. A 

SuperLearner was fit using a library consisting of RandomForests [16], LASSO [17], GLM 

and K-Nearest Neighbours [18] along with an intercept. Twenty-fold cross-validation was 

performed and the p-value based on (6) was calculated in each fold. The results for the entire 

pathway and each individual gene is shown in Table 3.
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The overall pathway had a significant association (p < 0.012) as did the CRHR1 gene. To 

examine whether all of the association resided in the CRHR1 gene we compared the overall 

pathway to just the CRHR1. In this case, m̂0 is the fit based on just CRHR1 and m̂1 is the fit 

based on all SNPs. Not surprisingly there was no added benefit of any individual gene above 

and beyond that of CRHR1 (p = 1.0), suggesting that CRHR1 is the only gene in the stress 

response pathway associated with MS. Overall, this formally confirms the conclusions in the 

original paper that we were only able to make by suggestion [14].

7 Conclusion

In this paper we have implemented an estimation and inferential procedure based on the 

theory developed in Dudoit and van der Laan [4] for testing the risk difference in two 

competing fitted prediction models. The proposed test can be interpreted as a comparison of 

the fit of two models or test of association for a set of predictors. It can also be used as a 

goodness of fit test for a semi-parametric or data adaptive model. This test of risk difference 

can be based upon almost any bounded loss function. In constructing the test we utilized the 

independent validation sets that exist within V-fold cross-validation. This work then also 

addresses an open question in statistical learning: how to derive estimators and inference for 

cross-validated risk, and use those to make decisions about competing models.

The procedures proposed have important application to statistical medicine. Many studies 

are interested in whether a set of values (e.g. biomarkers, clinical measurements etc.) 

improve the assessment of an outcome. Typical methods for such assessment (e.g. ROC, 

recalibration statistics), rely on the outcome being binary (generally disease state). However, 

this is not always the case as one may want to predict a continuous outcome such as a 

laboratory value or a survival outcome. Moreover these methods each use a specific loss 

function that the user has little control over. The proposed method allows one to use any 

convex loss function. The test can be interpreted as a test of association for the set of 

predictors, similar to likelihood ratio tests or information based methods, but not restricted 

to nested models or models where one knows the degree of freedom. This allows one to use 

any semi-parametric model to estimate the functional form and derive inference on the 

overall fit. If that model has certain optimality properties, as does the SL stacking based 

algorithm, then the test represents an asymptomatically most powerful goodness of fit test 

for semi-parametric models.

In our example we applied the test to a previous analysis of a candidate gene study. The 

scientific question was the association of particular genes with disease state, as opposed to 

simply individual SNPs. A previous analysis concluded that only the CRHR1 gene in the 

stress response pathway was associated with MS, but this could not be quantified. Our 

formal test, confirmed this conclusion.

This procedure also presents a means to test a group of variables for association with an 

outcome. Pepe et al. [19] showed that if any of the variables in a prediction model are 

associated with the outcome then a test for prediction will always be significant. However, as 

our data analysis shows, often no individual predictor will be associated. This may be due to 

issues of multiple testing or because a parametric model cannot be adequately specified. In 

Goldstein et al. Page 12

Int J Biostat. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



this case, semi-parametric methods, like SuperLearner, become more valuable. In our 

presented data analysis, the unit of interest for inference was less focused on the individual 

SNPs, but more focused on the gene and pathway level, for which no general test would 

exist.

While this test has great application and is fairly intuitive, it is limited by the ability to derive 

a strong predictive model. Depending on the learning algorithm used one may reach 

different conclusions. It is for this reason that we framed the test within the context of semi-

parametric models with optimality properties. While the test is robust to the size of the 

validation set, too small of a set size will result in an anti-conservative test.

In all, this test fills a gap both in the machine learning literature as well as the statistical 

medicine literature.
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Figure 1. 
The true model is Simulation IV: E(Y|X) and closest quadratic approximation.
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Figure 2. 
Comparison of power (rejection rate) of proposed method to parametric method in 

Simulation II.
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