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ARTICLE

Predicting optical coherence tomography-derived
diabetic macular edema grades from fundus
photographs using deep learning
Avinash V. Varadarajan1,8, Pinal Bavishi1,8, Paisan Ruamviboonsuk2,8, Peranut Chotcomwongse2,

Subhashini Venugopalan 3, Arunachalam Narayanaswamy3, Jorge Cuadros4, Kuniyoshi Kanai5,

George Bresnick4, Mongkol Tadarati 2, Sukhum Silpa-archa2, Jirawut Limwattanayingyong2,

Variya Nganthavee2, Joseph R. Ledsam6, Pearse A. Keane 7, Greg S. Corrado1, Lily Peng1,9* &

Dale R. Webster 1,9

Center-involved diabetic macular edema (ci-DME) is a major cause of vision loss. Although

the gold standard for diagnosis involves 3D imaging, 2D imaging by fundus photography is

usually used in screening settings, resulting in high false-positive and false-negative calls. To

address this, we train a deep learning model to predict ci-DME from fundus photographs,

with an ROC–AUC of 0.89 (95% CI: 0.87–0.91), corresponding to 85% sensitivity at 80%

specificity. In comparison, retinal specialists have similar sensitivities (82–85%), but only half

the specificity (45–50%, p < 0.001). Our model can also detect the presence of intraretinal

fluid (AUC: 0.81; 95% CI: 0.81–0.86) and subretinal fluid (AUC 0.88; 95% CI: 0.85–0.91).

Using deep learning to make predictions via simple 2D images without sophisticated 3D-

imaging equipment and with better than specialist performance, has broad relevance to many

other applications in medical imaging.
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D iabetic macular edema (DME) is a late stage of diabetic
eye disease that is characterized by retinal thickening in
the macula, often accompanied by hard exudate deposi-

tion, and resultant vision loss. It is one of the most common
reasons for referrals to diabetic eye clinics and affects 3–33% of
patients with diabetes1. The wide range of prevalences reflects the
varied bases for defining the condition and the varied composi-
tion of the populations studied. Currently, the first-line treatment
for DME is anti-vascular endothelial growth factor (anti-VEGF)
agents2–4. To determine eligibility for anti-VEGF treatment of
DME, most of the major clinical trials measured macular thick-
ening using optical coherence tomography (OCT) and initiated
treatment if a patient met the criteria for a particular type of
DME5,6. This type of DME is now commonly called center-
involved DME (ci-DME) in clinical practice. As such, findings on
OCT along with impaired visual acuity has become a widely
accepted standard of care for determining DME treatment7.

However, despite improvements in therapy, the detection of ci-
DME remains a challenge, because adding OCTs to the screening
process is too costly and logistically difficult to implement widely.
Globally, there are 425 million patients with diabetes8 and most
clinical guidelines recommend that all of them are screened
annually9. Currently, selection of patients who may meet treat-
ment criteria is performed during these screenings, which typi-
cally utilize monoscopic fundus images. These images are then
evaluated for the presence of hard exudates within one optic disc
diameter of the center of the macula, a proxy for ci-DME10.
However, this proxy was developed based on an older standard of
care and some studies have shown that hard exudates have both
poor positive predictive value and poor sensitivity for ci-DME.
MacKenzie et al.11 reported that only 42% of patients with hard
exudates were found to have DME on OCT and Wang et al.12

reported that a third of patient eyes with DME detected on OCTs
lacked features such as hard exudates on monoscopic fundus
photographs. Wong et al.13 reported a false-positive rate of 86.6%

for DME screening with existing strategies. As such, the potential
of Diabetic Retinopathy (DR) screening and timely referral for
DME is handicapped by an inability to reliably detect ci-DME via
human evaluation of fundus photographs alone.

A potential solution lies in the use of deep-learning algorithms,
which have been applied to a variety of medical image classifi-
cation tasks14–18, including for retinal imaging19–22. Encoura-
gingly, in addition to achieving expert-level performance for
grading fundus images, deep-learning algorithms are able to make
predictions for which the underlying association with fundus
images were previously unknown, such as cardiovascular risk
factors23 and refractive error24.

We hypothesized that deep learning could be leveraged to
directly predict the OCT-derived ci-DME grade using mono-
scopic fundus photographs. In this study we show that ci-DME
can be predicted with significantly higher specificity at the same
sensitivity as doctors, in two independent datasets, using deep
learning. In addition, the model also predicts the presence of
intraretinal and subretinal fluid, which are clinically relevant
tasks. Subsampling experiments show a likely increase in accuracy
when training includes additional data. Training on cropped
images of increasing sizes around the fovea and optic disc
demonstrate that the model is largely informed by the area
around the fovea.

Results
Deep learning can predict OCT features from fundus photo-
graphs. To leverage deep learning as a potential solution
to reliably detect ci-DME, we propose developing a model trained
on fundus photographs, but using ci-DME diagnoses
derived from expert inspection of OCT as labels (Fig. 1). To train
and validate the model, cases were gathered retrospectively from
the Rajavithi Hospital in Bangkok, Thailand. As these cases were
gathered from those referred into the retina clinic for further
evaluation, the disease distribution is consistent with a population
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Fig. 1 Illustration of our proposed approach for developing a ci-DME model. Ground truth for ci-DME were derived from a human grader analyzing the
OCT for each case. In addition, subretinal fluid and intraretinal fluid presence grades were also collected. These ground truth labels and corresponding color
fundus photos were used for model training. For clinical validation, the trained model takes in a new fundus photo and generates a predicted ci-DME grade,
predicted subretinal fluid, and intraretinal fluid presence grades.
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presenting to specialty clinics and are enriched for more severe
disease as compared with a DR screening population. Details of
the development and clinical validation datasets are presented in
Table 1. The development dataset consisted of 6039 images from
4035 patients and the primary clinical validation dataset consisted
of 1033 images from 697 patients. For some patients, only one eye
was included, because the fellow eye fell under the exclusion
criteria. ci-DME was conservatively defined as center point
thickness ≥250 μm measured via manual caliper measurements
excluding the retinal pigment epithelium25,26. We trained a
model using this development dataset to predict ci-DME using
fundus photographs as input.

Model predicts OCT-based DME features better than retinal
specialists. Our model showed a higher performance in detecting
cases with and without ci-DME from monoscopic fundus images
compared with manual grading of fundus images (Table 2 and
Fig. 2). For ci-DME, the model had a sensitivity of 85% at a
specificity of 80%. Three retinal specialists had sensitivities ran-
ging from 82% to 85% at specificities ranging from 45% to 50%
(Supplementary Table 1). The performance improvements held
true even if other common criteria for calling DME for mono-
scopic images were used (Supplementary Fig. 1), such as changing

the definition of DME based on the location of the hard exudates.
Additional analyses were also performed at other thickness
thresholds for ci-DME at center point thickness ≥ 280 μm and ≥
300 μm, which showed similar or better results compared with the
conservative ≥ 250 μm cutoff point without model retraining
(Supplementary Fig. 2). When compared with manual grading,
our model had a 30–35% absolute higher specificity at the same
sensitivity (p < 0.001 for comparison with each retinal specialist).
When matched to have the same specificity, the model had a
11–14% absolute higher sensitivity (96% vs. 82–85%, p < 0.001 for
all comparisons).

In addition to predicting ci-DME, our model was able to
predict presence of intraretinal and subretinal fluid. Our model
had an area under the curve (AUC) of 0.81 (95% confidence
interval (CI): 0.81–0.86) for detecting intraretinal fluid presence
and an AUC of 0.88 (95% CI: 0.85–0.91) for subretinal fluid
presence (Fig. 3).

Model generalizes to a secondary validation set. In addition to
the primary clinical validation dataset, the model was also applied
to a secondary validation dataset, EyePACS-DME, to examine the
model’s generalizability. This dataset consists of 990 images with
moderate, severe non-proliferative DR or proliferative DR, a

Table 1 Baseline characteristics of the development and clinical validation datasets.

Characteristics Development set Primary clinical
validation set

Secondary clinical
validation set

Dataset Thailand dataset Thailand dataset EyePACS-DME dataset
Number of patients 4035 697 554
Number of fundus images 6039 1033 990
Camera used for fundus images Kowa VX-10 Kowa VX-10 Canon CR-DGi
OCT device used for determining ci-DME Heidelberg Spectralis Heidelberg Spectralis Optovue iVue
Age: mean, years (SD) 55.6 (10.8)

n= 6038
55.8 (10.8)
n= 1033

62.0 (9.8)
n= 990

Gender (% male) 60.8%
n= 6036

62.4%
n= 1031

50.1%
n= 990

Central retinal thickness: mean, μm (SD) 263.8 (146.5)
n= 6039

258.4 (132.8)
n= 1033

254.4 (56.3)
n= 990

ci-DME, Center Point Thickness≥ 250 μm in Thailand dataset.
Central Subfield Thickness≥ 300 μm in the Eyepacs-DME dataset

28.3%
n= 6039

27.2%
n= 1033

7.8%
n= 990

Subretinal fluid presence 15.7%
n= 6039

15.1%
n= 1033

NA

Intraretinal fluid presence 45.5%
n= 6039

46.3%
n= 1033

NA

It is noteworthy that the difference between total n and subcategories is missing data (e.g., not all images had age or sex)

Table 2 Performance metrics of the model and retinal specialists on the primary clinical validation set.

Metric Model Specialist 1 Specialist 2 Specialist 3

Positive predictive value (%), 95% CI 61% [56–66%]
n= 1033

37% [33–40%]
n= 1004

36% [33–40%]
n= 987

38% [34–42%]
n= 1001

Negative predictive value (%), 95% CI 93% [91–95%]
n= 1033

88% [85–91%]
n= 1004

89% [85–92%]
n= 987

88% [84–91%]
n= 1001

Sensitivity (%), 95% CI 85% [80–89%]
n= 1033

84% [80–89%]
n= 1004

85% [80–89%]
n= 987

82% [77–86%]
n= 1001

Specificity (%), 95% CI 80% [77–82%]
n= 1033

45% [41–48%]
n= 1004

45% [41–48%]
n= 987

50% [47–54%]
n= 1001

Accuracy (%), 95% CI 81% [79–83%]
n= 1033

56% [52–59%]
n= 1004

56% [52–59%]
n= 987

59% [56–62%]
n= 1001

Cohen’s Kappa, 95% CI 0.57 [0.52–0.62]
n= 1033

0.21 [0.16–0.25]
n= 1004

0.21 [0.16–0.25]
n= 987

0.24 [0.19–0.28]
n= 1001

For the model we chose an operating point that matched the sensitivity of the retinal specialists to calculate the metrics. The performance metrics for the model were calculated on the entire primary
clinical validation set; for the retinal specialists it was calculated only on the images that they marked as gradable. Brackets denote 95% confidence intervals. n= number of images
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subset of data previously gathered during another DME study27.
The images were gathered using a Canon CR-DGi camera and
OCTs were taken with a Optovue iVue machine from a US-based
population (see Methods). There are some notable differences in
this dataset in comparison with the primary validation dataset,
particularly in terms of defining and measuring ci-DME based on
central subfield thickness and incorporation of inclusion/exclu-
sion criteria (Supplementary Table 2). Based on this different
definition and inclusion criteria, the number of ci-DME cases in
the secondary validation set was 7.8% compared with 27.2% in
the primary clinical validation set. Thus, the model performance
on the datasets cannot be compared directly in terms of absolute

values (especially for metrics such as positive predictive value
(PPV), which depend a lot on the priori distribution). However,
relative comparisons between the model and graders (in this
instance EyePACS certified graders) can be drawn (Fig. 4 and
Table 3). Similar to the results of the primary validation, our
model had a PPV roughly twice that of manual grading using
hard exudates as proxy (35% [95% CI: 27–44%] vs. 18% [95% CI:
13–23%]) and similar negative predictive value (NPV) (96% [95%
CI: 95–98%] vs. 95% [95% CI: 94–97%]). This translated to a
similar sensitivity (57% [95% CI: 47–69%] vs. 55% [43–66%]) but
higher specificity (91% [95% CI: 89–93%] vs. 79% [95% CI:
76–82%]).

More data leads to better model performance. Sub sampling
experiments, where new models were trained using titrated
fractions of the dataset, showed that model performance con-
tinued to increase with larger training sets (see Fig. 3—where
AUC increases with sample size). These results suggest that the
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Fig. 4 Receiver operating characteristic curve of the model compared
with eyepacs graders. The graders’ grades for predicting ci-DME on the
secondary clinical validation set are shown as a red dots. All methods (i.e.,
the model and eyepacs graders) rendered their grades using monoscopic
fundus images only. The ground truth for ci-DME was derived using OCT
(central subfield thickness≥ 300 μm).

Table 3 Performance metrics of the model and eyepacs
graders on the secondary clinical validation set.

Metric Model EyePACS Graders

Positive predictive value
(%), 95% CI

35% [27–44%] 18% [13–23%]

Negative predictive value
(%), 95% CI

96% [95–98%] 95% [94–97%]

Sensitivity (%), 95% CI 57% [47–69%] 55% [43–66%]
Specificity (%), 95% CI 91% [89–93%] 79% [76–82%]
Accuracy (%), 95% CI 88% [86–91%] 77% [74–80%]
Cohen’s Kappa, 95% CI 0.38 [0.29–0.47] 0.17 [0.11–0.24]

For the model we chose an operating point that matched the sensitivity of the eyepacs graders
to calculate the metrics. Brackets denote 95% confidence intervals. n= 990 images for all
calculations
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accuracy of this prediction will likely continue to increase with
dataset sizes larger than that in this study.

Features around the fovea are most relevant. Figure 5 presents
an analysis of the areas in the fundus image relevant for the
model. When the model was trained on cropped fundus images
containing only 0.25 optic disc diameter around the fovea (blue
line), it achieved an AUC of 0.75. When it had access to 1.0 optic
disc diameter around the fovea, the model achieved an AUC >
0.85, comparable with its performance on the full fundus image.
However, the model trained on the region around the optic disc
needed to see a lot more context (2.5 optic disc diameter) around
the optic disc center to achieve an AUC exceeding 0.8. Based on
these results, we believe the model primarily utilizes the area
around the fovea to make ci-DME predictions.

Discussion
Our previous work has shown that deep learning can be leveraged
to make predictions from fundus photographs, such as cardiovas-
cular risk factors and refractive error, which are not possible by
human experts23,24. This study describes a model that far exceeds
expert performance for such a prediction, but one that has high
clinical relevance and potentially important implications for
screening programs worldwide. The resultant model performed
significantly better than retinal specialists for detecting ci-DME
from fundus images in two datasets from very different populations.
DME is the major cause of visual loss from DR. Prior to the use of
anti-VEGF injections, the Early Treatment of Diabetic Retinopathy
Study (ETDRS) showed that treatment of a subtype of DME with

focal laser photocoagulation decreased the chance of vision loss28.
Today, with anti-VEGF injections, the treatment of ci-DME can
improve vision by ~10–13 letters as measured using the ETDRS
visual acuity chart5. Anti-VEGF injections are now largely con-
sidered the gold standard of care with evidence that shows that
delaying treatment of DME could lead to suboptimal visual
improvement29. However, the current grading guidelines in
screening programs were developed before the advent of anti-VEGF
therapy and are not specifically designed for detecting ci-DME. The
development of models that can better detect ci-DME in DR
screening programs using existing equipment (color fundus cam-
eras) is both scientifically interesting and clinically impactful.

For DR screening in particular, our model may lead to fewer
false negatives for DME. Decreasing missed referrals for patients
with ci-DME presenting with no hard exudates is a clear
advantage of such a system. Visual acuity alone is not enough to
rule out ci-DME, as baseline characteristics from some well-
known cohorts suggest that a substantial percentage of eyes with
ci-DME still have good vision30,31. In addition, decreasing false
positives is also important in resource-constrained settings.
Although many screening programs recommend closer follow-up
for patients with mild or worse DR, the urgency of follow-up
varies widely, especially in low resource settings. Per international
guidelines (International Council of Ophthalmology Guidelines,
American Academy of Ophthalmology), for patients with mild
DR and no macular edema, referral is not always required and
patients can be rescreened in 1–2 years in low/intermediate
resource settings and 6–12 months in high resource settings.
However, patients with suspected ci-DME need to be referred
within a month. For patients with moderate non-proliferative DR
and no macular edema, follow-up changes from 6 to 12 months
in low/intermediate resource or from 3 to 6 months in high
resource settings to 1 month (all resource settings) when there is
ci-DME32,33. In this study, roughly 88% of the moderate non-
proliferative patients from the EyePACS-DME dataset and 77% of
those from the Thailand dataset, who would have been referred
urgently (and unnecessarily) using a hard exudate-based referral
criterion did not have ci-DME. Higher urgency referral of
patients with moderate non-proliferative DR without DME (but
presenting hard exudates) can be a major issue where there are
limited resources for evaluation and treatment.

Furthermore, the center point thickness distribution of the
false-positive and false-negative instances is better for the model
when compared with retina specialists (Supplementary Fig. 3).
For the model, 28% of the false positives have thickness >225 μm
and 35% of the false negatives have thickness <275 μm. In com-
parison, for retina specialists, only 20% of the false positives have
thickness >225 μm and 17% of the false negatives have thickness
<275 μm. This shows that a significantly larger fraction of the
model false positives and negatives are borderline cases as com-
pared with retina specialists. In addition, the new model seems to
be able to detect the presence of intraretinal and/or subretinal
fluid, both of which merit closer monitoring and possibly treat-
ment34. The ability to detect these pathologies is not a task that
doctors can do accurately from fundus images.

Although the performance of the models on the secondary
dataset is lower than that of the models on the primary dataset,
the performance of the human graders on the secondary dataset is
proportionally lower as well. From the primary to secondary
dataset, PPV of the model decreased from 61% to 35%, whereas of
the graders decreased from 37% to 18%; sensitivity of the model
decreased from 85% to 57%, whereas of the graders decreased
from 84% to 55%. However, NPV of the model increased from
93% to 96%, whereas of the graders increased from 88% to 95%;
specificity of the model increased from 80% to 91%, whereas of
the graders increased from 47% to 79%. These results reflect the
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inherent differences between the two datasets but still support the
better performance of the model over graders on both datasets.
Although the models trained in this study are more accurate than
manual grading and the low PPVs are not inconsistent with what
has been reported for other applications in the literature35,36,
there is capacity for improvement. Given the results of the sub-
sampling experiments, it is likely that the accuracy of the model
may continue to increase with larger dataset sizes.

From a scientific point of view, this work demonstrates the
potential of deep learning to enable diagnostics from inexpensive
hardware, which was only previously possible from expensive
equipment. It also lays the groundwork for understanding how
the model makes these predictions. The explanation technique
employed in this study indicated that the region around the fovea
is more relevant than the region near the optic disc for DME
prediction from fundus images. Future work could involve diving
deeper into the features around this area that is picked up by deep
learning but overlooked by retinal specialists.

In a small non-randomized study, Scott et al.37 showed a
beneficial effect of focal and grid laser for eyes without central
involvement that meet an older criteria for treatment known as
clinically significant macular edema, similar to the initial ETDRS
findings. These patients need to be referred from a DR screening
program for closer follow-up. Our model does not evaluate such
cases. To address this, one would include stereoscopic imaging in
addition to OCT as ground truth to train model(s) to specifically
identify these cases. Although there is some evidence of gen-
eralization to a secondary dataset, the confidence intervals are
wide and the criteria for ci-DME for the EyePACS-DME dataset
were different from those of the Thailand dataset. Some of the
performance metrics reported in this study such as PPV and NPV
are relevant only to populations whose severity distribution is
similar to that of this study (e.g., patients referred to specialist
clinics). Further studies should validate the model on additional
larger datasets from other settings, including screening settings
from other regions or geographies. Future studies should also
include better standardization for ci-DME and inclusion/exclu-
sion criteria, as well as sub-analysis of patients who were treated
for DME. Moreover, additional data diversity such as the use of
ci-DME labels derived from other OCT devices by other manu-
facturers should be included in future work. As the model was
trained using treatment-naive fundus images, training on multi-
ple images per eye (including with stereo pairs), and on eyes that
have been treated for DME in the past could lead to better model
performance. Although our cropping experiments (Fig. 5) show
that the model looks at the region around the fovea for predicting
ci-DME, future work could further explore interpretability of the
model37. Lastly, future work could also include health economic
analysis to study the cost-effectiveness of such an approach.

Nevertheless, this study demonstrates that deep learning can be
leveraged to identify the presence of ci-DME using the cheaper and
more widely available fundus photograph, at an accuracy exceeding
that of manual grading using expert-derived rules. Similar
approaches could be particularly valuable for other medical images,
such as using radiographs or low-dose computed tomography to
detect conditions that would otherwise require more expensive
imaging techniques that expose patients to higher radiation doses.
Importantly, we also use crops around the fovea and optic disc to
explain how the model is making these predictions, lending con-
fidence that the predictions will generalize to new unseen datasets.

Methods
Ethics approvals. This study was approved by the Ethics Committees or Institu-
tional Review Boards of hospitals or health centers where retinal images of patients
with diabetes were used in this study, including the Rajavithi Hospital (Bangkok,
Thailand), Alameda Health Service (Alameda, CA, USA), and the University of

California, Berkeley (Berkeley, CA, USA) in accordance with the Declaration of
Helsinki. Patients gave informed consent allowing their retinal images to be used.
This study was registered in the Thai Clinical Trials Registry, Registration Number
TCTR20180818002.

Datasets. For algorithm development, 7072 images were gathered retrospectively
from diabetic patients presenting to the retina clinic at Rajavithi Hospital in
Bangkok, Thailand, from January 2010 to February 2018. Only cases that were
naive to treatment (both intravitreal injections and lasers) were included. Cases
where macular lesions may have hyporeflective spaces on OCT, such as Macular
Telangiectasia Type 2, may interfere with the diagnosis of DME, such as idiopathic
epimacular membrane, macular edema from other causes, or proliferative DR with
neovascular membrane affecting the macula, were excluded from analysis.

Retinal fundus images were obtained using Kowa color fundus camera (VX-10
model, Kowa, Aichi, Japan). A single macula-centered color fundus photograph per
eye was used in the study. If available, imaging from both eyes were included.
OCTs were obtained using the Heidelberg Spectralis OCT (Heidelberg Engineering
GmbH, Germany) and thickness measurements were measured manually (see
below for measurement procedures).

Of the 7072 images in the dataset, 6039 were used for development, whereas
1033 were set aside for clinical validation. All images from a patient was present in
either in development or validation sets, but not both. Fundus photographs in the
validation set were manually graded by US board-certified retinal specialists to
assess the presence and location of hard exudates (yes, no, ungradable, within 500
μm or 1 disc diameter or 2 disc diameters from the center of the macula) and focal
laser scars. In addition, retinal specialists provided their best clinical judgment of
the presence of DME that took into account all the pathology present in the image.

To study generalizability of the model, the algorithm was applied to another
dataset, EyePACS-DME, which is a subset of data that had been previously
gathered for another DME study27. This dataset consisted of 990 macula-centered
images from 554 patients with at least moderate DR based on grading by certified
EyePACS graders (to roughly match the population of those who would be
presenting to a retina clinic). No other exclusion criteria were applied to this
dataset (e.g., exclusion of epiretinal membrane, etc). Fundus images were taken
with a Canon CR-DGi camera (Ōta, Tokyo, Japan) and OCTs were taken with a
Optovue iVue machine (Fremont, CA, USA).

Measurement and assessment of OCT scans. For the Thailand dataset, central
subfield thickness, the value representing the thickness of the center of the macula
in clinical trials for DME26, was not available in all eyes in the developmental
dataset; therefore, center point thickness, which was found to have high correlation
with the central subfield thickness25, was measured for each eye to represent the
thickness of the center of the macula.

The center point thickness of an eye of a patient was manually measured on the
axis of the OCT scan where there was a slight elevation of the ellipsoid zone and
the gap between the photoreceptor layer outer segment tip and the ellipsoid zone
was the widest, indicating the center of the fovea where the cone cell density is the
highest. Manual measurement was conducted using the straight-line measurement
vector available with the Spectralis Eye Explorer software. The vector was put
perpendicular to the highly reflective band of retinal pigment epithelium with one
side of the vector rested on the highly reflective line of cone outer segment tip and
the other side on the internal limiting membrane. Retinal pigment epithelium
thickness was not included in this measurement. Intraretinal fluid was defined as
present when a cystoid space of hypo-reflectivity was found within 500 μm of the
foveal center of any OCT scans of a patient. Subretinal fluid was defined as present
when a space of hypo-reflectivity was found between the retina and retinal pigment
epithelium within 500 μm of the foveal center of any OCT scans of a patient.

The measurement of center point thickness and the assessment of presence of
intraretinal fluid and subretinal fluid were conducted by two medical doctors
experienced in clinical research and supervised by retinal specialists. Five percent of
patients were randomly selected to confirm all three measurements by a retinal
specialist with 20 years of post-certification experience.

Eyes were divided into cases of no ci-DME and ci-DME. ci-DME was
conservatively defined as eyes with ≥250 μm center point thickness, excluding the
retinal pigment epithelium based upon manual measurement25,26. In addition to
ci-DME, we also trained the model in a multi-task fashion to predict subretinal
fluid and intraretinal fluid (details below). Although cases with subretinal fluid and
intraretinal fluid were not strictly included in the criteria in the clinical anti-VEGF
trials for DME, referral for follow-up is warranted for these cases.

For the EyePACS-DME dataset, the manufacturer’s automated segmentation
algorithm was used to measure central subfield thickness. A cutoff of 300 μm
central subfield thickness was used as the cutoff point for ci-DME based on
machine-specific adjustments38. The presence of intraretinal and subretinal fluid
were not available in this dataset.

Model. Our deep learning algorithm for predicting ci-DME was built using the
methods described by Gulshan et al.19, using the Inception-v339 neural network
architecture. Briefly, we used a convolutional neural network40 to predict ci-DME
(center point thickness ≥250 μm), subretinal fluid presence and intraretinal fluid
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presence in a multi-task manner. The input to the neural network was a color
fundus photograph and the output was a real-valued number between 0 and 1 for
each prediction, indicating its confidence. For other hyperparameter and training
details see Supplementary Methods.

The parameters of the neural network were determined by training it on the
fundus images and OCT-derived ci-DME grades in the development dataset.
Repeatedly, the model was given a fundus image with a known output as
determined by a grader looking at the patient’s corresponding OCT. The model
predicted its confidence in the output, gradually adjusting its parameters over the
course of the training process to become more accurate. Itis noteworthy that the
model never sees the actual OCT image during training or validation.

Evaluating the algorithm. To evaluate the performance of the model, we used the
receiver operating characteristic (ROC) curve and calculated the AUC. The per-
formance of the retinal specialists was marked by points on this curve, indicating
their sensitivity and specificity (Fig. 2). The same model was also evaluated at
increasing thresholds of thickness for ci-DME, without retraining (Supplementary
Fig. 2). By choosing an operating point on the ROC curve that makes the model’s
specificity match that of retinal specialists, we also evaluated the model using
Sensitivity, Specificity, PPV, NPV, Accuracy, and Cohen’s Kappa score41 (Table 2).

Statistical analysis. To assess the statistical significance of these results, we used
the non-parametric bootstrap procedure: from the validation set of N images,
sample N images with replacement and evaluate the model on this sample. By
repeating this sampling and evaluation 2000 times, we obtain a distribution of the
performance metric (e.g., AUC) and report the 2.5 and 97.5 percentiles as 95%
confidence intervals. For statistical comparisons, the two-tailed paired permutation
test was used with 2000 random permutations42.

Model explanation. We performed two experiments to determine which regions
in a fundus image are most informative of DME. We focussed on two regions, the
macula and the optic disc. First, a group comprising ophthalmologists and opto-
metrists manually marked the fovea and disc for all images in the Thailand dataset.
We then trained and evaluated our model looking only at the region that is within a
factor of optic disc diameters around the fovea (or equivalently the optic disc) with
the rest of the fundus blacked out. We trained and evaluated different models for
different radii, increasing the area that the model looks at to understand the
importance of these regions in making the prediction (Fig. 5).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Code availability
We make use of the machine learning framework TensorFlow (https://github.com/
tensorflow/tensor-flow) along with the TensorFlow library Slim (https://github.com/
google-research/tf-slim), which provides an implementation of the Inception-V3
architecture (https://github.com/google-research/tf-slim/blob/master/tf_slim/nets/
inception_v3.py). Our experimental framework makes use of proprietary libraries and we
are unable to publicly release this code. We detail the experiments and implementation
details, including the details of data augmentation, model architecture, hyperparameters,
and weights initialization used, in the Methods and Supplementary Information, to allow
for independent replication.

Data availability
Data are available from the corresponding author(s) upon reasonable request.
Restrictions apply to the sharing of patient data that support the findings of this study.
This data may be made available to qualified researchers upon ethical approvals from
Rajavithi Hospital and EyePACS. The source data underlying Figs. 2–5, Tables 1 and 2,
and Supplementary Figs. 1–3 are provided as a Source Data file.
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