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Review 

Oxylipin transport by lipoprotein particles and its functional implications 
for cardiometabolic and neurological disorders 

Nuanyi Liang a, Brian A. Harsch b, Sitong Zhou c, Alison Borkowska b, Gregory C. Shearer b, 
Rima Kaddurah-Daouk d, John W. Newman a,e,f, Kamil Borkowski a,* 

a West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA 
b Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA 
c Department of Pathology and Laboratory Medicine, University of California Davis, Davis, CA 95616, USA 
d Department of Psychiatry and Behavioral Sciences, Duke Institute for Brain Sciences and Department of Medicine, Duke University, Durham, NC 27708, USA 
e Department of Nutrition, University of California - Davis, Davis, CA 95616, USA 
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A B S T R A C T   

Lipoprotein metabolism is critical to inflammation. While the periphery and central nervous system (CNS) have 
separate yet connected lipoprotein systems, impaired lipoprotein metabolism is implicated in both car-
diometabolic and neurological disorders. Despite the substantial investigation into the composition, structure 
and function of lipoproteins, the lipoprotein oxylipin profiles, their influence on lipoprotein functions, and their 
potential biological implications are unclear. Lipoproteins carry most of the circulating oxylipins. Importantly, 
lipoprotein-mediated oxylipin transport allows for endocrine signaling by these lipid mediators, long considered 
to have only autocrine and paracrine functions. Alterations in plasma lipoprotein oxylipin composition can 
directly impact inflammatory responses of lipoprotein metabolizing cells. Similar investigations of CNS lipo-
protein oxylipins are non-existent to date. However, as APOE4 is associated with Alzheimer’s disease-related 
microglia dysfunction and oxylipin dysregulation, ApoE4-dependent lipoprotein oxylipin modulation in neuro-
logical pathologies is suggested. Such investigations are crucial to bridge knowledge gaps linking oxylipin- and 
lipoprotein-related disorders in both periphery and CNS. Here, after providing a summary of existent literatures 
on lipoprotein oxylipin analysis methods, we emphasize the importance of lipoproteins in oxylipin transport and 
argue that understanding the compartmentalization and distribution of lipoprotein oxylipins may fundamentally 
alter our consideration of the roles of lipoprotein in cardiometabolic and neurological disorders.   

1. Introduction 

Biologically active oxygenated products of polyunsaturated fatty 
acids (PUFA), i.e., oxylipins, regulate many biological processes, 
including inflammation [1,2], energy metabolism [3–5], cell prolifera-
tion [6], differentiation [7] and senescence [8]. Throughout the animal 
kingdom, four primary routes of oxylipin generation occur, which 
include 1) lipoxygenases (LOXs), yielding fatty acid hydroperoxides 
leading to various downstream products, including hydroxy and keto 
fatty acids and numerous enzymatic rearrangements and secondary 
products, such as leukotrienes, lipoxins, resolvins and maresins [9,10]; 
2) cyclooxygenases (COXs), producing prostaglandins and thrombox-
anes [11]; 3) cytochrome P450s (CYPs) responsible for the generation of 

omega-hydroxy and epoxy fatty acid leading to the epoxide hydrolase 
(EH)-dependent dihydroxy metabolites [12]; and 4) enzyme and/or 
autoxidation initiated reactive oxygen species (ROS)-mediated forma-
tion of fatty acid peroxides, and their respective rearrangement products 
including isoprostanes, isofurans and hydroxy fatty acids [13–15]. 

Since the discovery of prostaglandins in seminal fluid in the 1930s 
[16,17], the study of these and other oxylipins has been both extensive 
and fruitful, where oxylipins are found to be key players in both typical 
and pathophysiological conditions. Alterations in oxylipin metabolism 
have been identified in many inflammation-related disorders and dis-
eases, including cancer [18], type 2 diabetes [19], metabolic syndrome 
[20,21], cardiovascular disease (CVD) [22,23], coronavirus disease 
(COVID)-19 [24–26], spontaneous preterm birth [27,28] and 

* Corresponding author at: 430 West Health Sciences Drive, Davis, CA 95616, USA. 
E-mail address: kborkowski@ucdavis.edu (K. Borkowski).  

Contents lists available at ScienceDirect 

Progress in Lipid Research 

journal homepage: www.elsevier.com/locate/plipres 

https://doi.org/10.1016/j.plipres.2023.101265 
Received 3 June 2023; Received in revised form 17 October 2023; Accepted 13 November 2023   

mailto:kborkowski@ucdavis.edu
www.sciencedirect.com/science/journal/01637827
https://www.elsevier.com/locate/plipres
https://doi.org/10.1016/j.plipres.2023.101265
https://doi.org/10.1016/j.plipres.2023.101265
https://doi.org/10.1016/j.plipres.2023.101265
http://crossmark.crossref.org/dialog/?doi=10.1016/j.plipres.2023.101265&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Progress in Lipid Research 93 (2024) 101265

2

Alzheimer’s disease (AD) [29]. Early studies identified free oxylipins as 
active agents, and the study of free oxylipins dominates the literature to 
date [30]. However, oxylipins, like their precursor fatty acids, are also 
incorporated into complex lipids, including phospholipids, cholesterol 
esters and triglycerides [31–37] and in plasma the majority are esteri-
fied within lipoprotein particles [32]. While the free oxylipins are 
clearly important in inflammation [2,17,38], the composition and roles 
of the esterified oxylipins are poorly understood, despite impaired li-
poprotein metabolism being implicated in several inflammation-related 
diseases, such as atherosclerosis [39,40], COVID-19 [41,42], AD and 
AD-related dementia [43,44]. Meanwhile, evidence has emerged that 
acyl oxylipins can also elicit biological responses, or at least serve as a 
ready-to-access storage and transport reservoir for bioactive oxylipins 
[45–47]. Importantly, the interaction of immune cells and lipoproteins, 
which plays an impotent role in immunity adaptation [48,49], involves 
the exchange of esterified lipids [50,51]. Recent findings have pointed 
out the involvement of esterified oxylipins in immune tolerance [52], as 
well as the involvement of free oxylipins in trained immunity [53–55]. 
These findings suggest that a closer interrogation on the importance of 
esterified oxylipins in immune regulation, especially the regulation 
across the periphery and the brain, are warranted [56]. 

The functional role of lipoproteins for signaling molecule delivery to 
tissues has been well established over the past 2 decades, including roles 
for ceramides and sphingolipids in both high-density lipoprotein (HDL) 
and low-density lipoprotein (LDL) functions [57–60]. As considerable 
quantities of oxylipins are transported in esterified forms in lipoproteins 
[21,31,32], their impact on lipoprotein-metabolizing tissues also merits 
attention. For example, in plasma, over 90% of oxylipins are esterified 
into complex lipids, with the reminder in the non-esterified pool either 
within particles or adsorbed to circulating proteins [31,32]. Notably, 
density and size fractionation of lipoproteins yields particles with 
unique lipid mediator profiles that can be manipulated by both dietary 
patterns and health status [21,61,62]. Moreover, changes in lipoprotein 
oxylipin profiles can modulate the inflammatory responses of exposed 
cells [34,61]. The current review consolidates what is currently known 
regarding the methodologies of lipoprotein oxylipin analysis, the dietary 
patterns- and health status-specific composition and regulation of lipo-
protein oxylipins, followed by the impact of lipoprotein oxylipin pay-
loads on lipoprotein-metabolizing cells. The importance of lipoprotein 
oxylipins is emphasized by their implications on cardiometabolic and 
neurological disorders in the periphery and CNS. The current review 
therefore proposes that oxylipin transport via lipoproteins provides an 
endocrine mechanism of intercellular communication that may have 
important roles both in the periphery and in the CNS. 

2. A brief review on the isolation, extraction, and analysis of 
lipoprotein oxylipins 

Prior to exploring the biological significances of oxylipin transport 
by lipoproteins, it is important to consider the methods currently 
available for lipoprotein isolation and oxylipins quantification within 
those isolates, as it reveals key considerations for data interpretation, 
while highlighting innovation opportunities associated with techno-
logical knowledge gaps. 

2.1. Lipoprotein particle isolation 

Lipoprotein particle isolations have been reported using sequential 
flotation ultracentrifugation (SF-UC) classically using NaCl/KBr step 
gradients [63], size exclusion chromatography (SEC) [64], semi-
preparative asymmetric flow field-flow fractionation (SP-AF4) [65], 
affinity chromatography [66], or hybrid approaches mixing techniques 
[62,67,68]. SF-UC is most often used as it allows for the isolation of large 
quantities of lipoproteins. This technique separates lipoprotein based on 
density in a scalable manner, but its relatively lengthy separation time, 
high shear forces, and use of high salt concentration may damage the 

structures and composition of lipoproteins [63,69–74]. In contrast, SEC, 
SP-AF4 and AF separations generally have lower capacity but are gentler 
and faster than SF-UC methods, with plasma samples maintained in near 
physiologic conditions during separation by size or protein specific in-
teractions [65,69]. With proper care such as addition of antioxidant, 
usage of chelating agents as well as temperature control, and purging 
buffers/solvents with inert gases, even with SF-UC the level of lipid 
oxidation can be minimized, but the full extent of such protections are 
not clear [63]. 

A consideration for all isolation techniques is a preference for pre-
viously unfrozen samples, as one study pointed out the freezing at 
− 80 ◦C (2 h) and thawing on ice (30 min) before SF-UC separation 
significantly changed the lipid composition, such as cholesterol, 
cholesterol ester, phospholipids and acylglycerols in lipoproteins [75]. 
When samples are handled in a uniform fashion, meaningful differences 
between study groups on lipoprotein oxylipins can be observed in pre-
viously frozen samples, but until studies are performed that empirically 
determine the effect size of freeze-thaw dependent changes, such im-
pacts should be acknowledged and considered when interpreting study 
results. 

To our knowledge, oxylipin determinations have only been reported 
with SF-UC using NaCl/KBr step gradients and SEC isolates using 
Superose™ 6 columns from GE Healthcare to date. Both Superose™ 6 
and/or Superdex 200 SEC columns are often used for lipoprotein particle 
isolation [69,70,76,77]. Such a system is useful to separate lipoproteins 
of various sizes, but as with density, particles with different natures may 
overlap by size [69,78]. For instance, using the classic Superose 6 col-
umns, HDL and albumin are only partially resolved [69,78]. The use of 
Superdex 200 columns can yield clean HDL fractions but result in sig-
nificant overlap of very-low-density lipoprotein (VLDL) and LDL frac-
tions. The HDL/albumin overlap using Superose 6 separation is likely to 
have a larger effect on non-esterified oxylipins than on esterified oxy-
lipins within that pool, as albumin acts as a fatty acid binding protein 
with seven moderate-to-high-affinity binding sites (reviewed in [79]). 
Albumin binding of non-esterified oxylipins is likely, and it is likely to 
supersede levels in HDL, however their distribution between these pools 
remains unknown [78,80]. Lipoproteins are the major transporters of 
esterified lipids [81–86], and most circulating oxylipins exist in esteri-
fied forms [31,32]. While albumin can bind lysophospholipids and 
acylglycerols [80,87], such binding is limited to their structural simi-
larity to free fatty acids and therefore less efficient compared to free 
fatty acids [86]. Moreover, these lipid classes are only minor compo-
nents of HDL where 30–70% of the mass is lipid and dominated by 
phosphatidylcholines, cholesteryl esters, triacylglycerides, steroids and 
sphingomyelins [88,89]. Therefore, the impact of albumin contami-
nated HDL on HDL esterified oxylipin profiling efforts are likely limited. 
Moreover, the compartmentation of albumin and HDL is well distin-
guished from other lipoproteins such as LDL and VLDL, which has 
important biological implication mentioned later in the present review. 

Recently, by coupling Sepharose 6 and Superdex 200 Increase col-
umns, we have substantially enhanced chromatographic separations of 
particles, at the expense of extended processing times from 60 to 120 
min (Fig. 1). Since functional and structural variations in sub-particles 
exist, and particle subclassifications varies by characterization/separa-
tion technique [90], higher resolution in particle separations is expected 
to provide a more nuanced view of the system being interrogated. Un-
fortunately, current techniques do not allow for the direct SEC-MS/MS, 
and high-resolution SEC analyses will ultimately require the analysis of 
large numbers of collected fractions for every sample processed, 
increasing the burden and cost of these analyses. 

For research interested in oxylipin in extracellular vesicles (EVs), a 
technical challenge is the separation of lipoproteins and extracellular 
vesicles (EVs), as EVs has the similar size as LDL/VLDL and the similar 
density as HDL [91], and both lipoproteins and EVs are carriers of 
oxylipins [76,92]. However, both the particle concentration (with the 
estimated magnitude of >107 times in differences [91]) and lipid 
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contents (with the magnitude of >8 times in differences [93]) of EVs are 
much less abundant compared to lipoproteins in human blood samples. 
The lower lipid content of EVs compared to lipoprotein reflects the na-
ture of EV where a hydrophilic core is present and the nature of lipo-
protein with a lipidic core [91,93]. Therefore, though a further 
improved method is encouraged, the commonly used SF-UC and/or SEC 
method for lipoprotein separation should be sufficient to discuss the 
biological relevance of lipoprotein oxylipins, but it will require the use 
of hybrid SF-UC/SEC, AF or novel technologies to allow careful exami-
nation of endogenous EV oxylipins as well as studies with interest in 
more hydrophilic compounds such as proteins and miRNA [92,94]. 

2.2. Lipoprotein oxylipin quantification 

Approaches and pitfalls to MS-based oxylipin profiling have been 
extensively reviewed elsewhere [95]. In general, free oxylipins within 
separated lipoprotein fractions can be extracted directly with organic 
solvent prior to UPLC-MS/MS-MRM analysis as described in detail 
[34,96], while esterified oxylipins can be extracted and released by 
alkaline hydrolysis [97,98]. Solid phase extraction (SPE) clean-up pro-
cedures are then used to concentrate and purify extracts prior to the LC- 
MS/MS analysis of free oxylipin [19,96,97]. Factors affecting the re-
covery of oxylipins, such as stability of oxylipins during hydrolysis and 
potential sample loss due to liquid transferring, can be corrected by the 
usage of surrogates composite of deuterated oxylipins with similar 
chemical structures added to the total lipid extract prior to hydrolysis 
[99]. Currently, isotopically labeled oxylipins esterified in complex 
lipids are not commercially available, and such materials would greatly 
benefit the field. After alkaline hydrolysis and SPE clean-up, oxylipins 
such as alcohols, diols, triols, and epoxides can be reliably measured 
with surrogate correction [32,98,100], but many prostaglandin, ketone- 
prostaglandin and leukotrienes are completely degraded during hydro-
lysis [100–102]. This methodology therefore provides comprehensive 
and sensitive quantification of alkaline-stable esterified oxylipins, which 
covers a wide arrange of chemical structures relevant for the LOX, COX, 
CYP, sEH and nonenzymatic oxylipin pathways. Moreover, an interna-
tional round robin exercise has demonstrated that this approach is 
reproducible if appropriate care is taken [103]. Alternatively, enzymatic 
hydrolysis of oxylipins can be performed prior to analysis, however such 
approaches will be subject to variability in substrate specificity of the 
enzyme used, which could have both advantages and disadvantages. 

Another line of work uses LC-MS/MS to directly quantify the ester-
ified oxylipins without hydrolysis [104]. Currently, less commercial 
analytical standards are available for esterified oxylipins compared to 
non-esterified oxylipins, so this quantification mainly relies on 1) in- 
house production and purification of analytical standards [105], 2) in 
silico prediction [106,107] and/or 3) semi-quantitative analysis using 

external standards of similar structures [108,109]. Direct quantification 
of esterified oxylipins without hydrolysis offers advantages such as 
shorter sample preparation time and the potential for imaging mass 
spectrometry [110,111]. Therefore, it is an important direction to 
advance our understanding on esterified oxylipin. 

3. The presence of oxylipins in lipoproteins 

3.1. The differential profile of lipoprotein esterified oxylipins and non- 
esterified oxylipins in plasma 

In plasma, ~90% of oxylipins are present in esterified lipids, which 
are transported by lipoproteins [31,32], such as VLDL, LDL and HDL; 
meanwhile, there are both esterified and free, non-esterified oxylipin 
present within lipoprotein particles [34,78]. A previous study (Clinical 
Trial No. NCT00286234) inspected plasma oxylipins while investigating 
the impact of pharmaceutical grade omega-3 fatty acid supplementation 
(P-OM3) and niacin on insulin-resistance [21]. By comparing the oxy-
lipin compositions in the plasma non-esterified and lipoprotein- 
esterified pools from healthy controls, it becomes clear that plasma 
sub-compartments are compositionally unique (Fig. 2 and Table 1-2). 
Compared to VLDL and LDL, the HDL fraction is enriched in 20 to 22 
carbon (i.e. C20-C22) polyunsaturated oxylipins, consistent with the 
higher phospholipid content of HDL compared to other lipoproteins 
[112]. As particle density decreases, HDL > LDL > VLDL, triglyceride 
content increases [112], accompanied an increase in eighteen carbon (i. 
e. C18) oxylipins as a percentage of the total oxylipin pools (Table 1). 
Free oxylipins have the same percentage level of C18 and C20–22 oxy-
lipins compared to LDL. Mid-chain alcohols dominate the oxylipin 
profile of all particles in this healthy cohort (Fig. 2); similar trends are 
also reported in rats [99]. 

It should be emphasized that such results were reported as the per-
centage composition of oxylipins in each lipoprotein fraction, and the 
direct comparisons on the oxylipins distribution among different lipo-
proteins also requires the absolute quantitation of lipoproteins concen-
trations in these subjects. For such a comparison, a rodent study on 
healthy and nephrotic rats has indicated that HDL carries the majority of 
mid-chain alcohols (hydroxyeicosatetraenoic acids (HETEs) and 
hydroxyoctadecadienoic acids (HODEs)) in rats, while VLDL carries 
more epoxides and diols but only in nephrotic rats [99]. However, the 
same comparison is not yet available in human study. 

3.2. The source of lipoprotein oxylipins 

Oxylipins can be formed by oxygenation of precursor fatty acids or 
through the direct oxygenation of lipids within membranes. Therefore, 
multiple routes for their incorporation into lipoprotein particles exist. 

Fig. 1. Size exclusion chromatography of 35 μL of healthy human plasma using different column configurations. A) Superose 6 Increase; B) 10 × 300 cm Superdex 
200 Increase; C) tandem 10 × 300 cm Superose 6 Increase and Superdex 200 Increase columns (GE Health Care). The apolipoprotein contents within these systems 
remains to be confirmed. Data are not published. 
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The COX- and CYP-derived oxylipins are formed from free fatty acid, 
with substrate availability regulated by phospholipase A2 (PLA2) acti-
vation [113–117]. In contrast, LOX-derived oxylipin can be generated 
through both direct and indirect oxidation [47]. Specifically, the direct 
oxidation of cellular membrane unsaturated fatty acids can be stimu-
lated by the calcium-dependent translocation of LOX and activation of 
their oxidase activity [118–120]. Conversely, LOX metabolism of non- 
esterified fatty acid can lead to the formation of non-esterified LOX 
oxylipins [121]. Notably, both CYP-derived epoxy and LOX-derived 
hydroxy fatty acids are substrates of long-chain acyl-coenzyme A syn-
thases (ACSLs) [122], and can thus participate in the Land cycle, leading 
to their incorporation into phospholipid membranes [121,123–126]. 

In addition, different lipid pools may exchange oxylipins. For 
instance, cholesterol esters can be oxidized by LOX directly to generate 
oxylipins in the cholesterol pools, which are then hydrolyzed and re- 
incorporated into the phospholipid pool through the Land cycle [36]. 
Meanwhile, non-esterified oxylipins can be incorporated into cellular 
esterified lipids, and different incorporation levels occur depending on 
the oxylipin structures, cell types and growth conditions [33]. For 
example, free 12-HETE is incorporated into the triacylglycerol fraction 
in 7 times of the amount into phospholipid in human neutrophils [35], 
while free 14(15)-epoxyeicosatrienoate (EpETrE) is incorporated into 
the phospholipids fraction 2.4-fold of the amount into the neutral lipids 
of porcine aortic smooth muscle cells [37]. However, it is not clear how 
these incorporation preferences of oxylipins into different lipid classes 
affect or reflect the overall distribution of oxylipins in lipoproteins. 

3.3. Lipoprotein-mediated oxylipin transport 

The current consensus view of oxylipin production and transport 
pathways are outlined in Fig. 3. Oxylipins can be incorporated into li-
poproteins during lipid transport (reviewed in [127–131]). In humans, 
VLDL and LDL are responsible for transporting triacylglycerol and 
cholesterol/cholesterol esters from liver to other tissues under the 
regulation by an array of enzymes (e.g., lipoprotein lipase (LPL), hepatic 
lipase, cholesteryl ester transfer protein (CETP) and cell surface 

receptors (e.g., LDL receptor (LDL-R), LDL-R related protein, scavenger 
receptor class B type I (SR-B1)). On the other hand, nascent HDL phos-
pholipid disks released from the liver accumulate non-hepatic choles-
terol and phospholipid from peripheral cells, which are then taken up by 
the liver (i.e., the process of reverse cholesterol transport, reviewed in 
[127–131]). In a tracer study of perfused rat liver [97], oxylipins 
generated from deuterated free linoleic acid were incorporated into 
newly formed VLDL, where CYP derivatives (epoxy-octadecenoic acid, 
EpOMEs) were estimated to have a higher rate of incorporation than 
LOX derivatives (HODEs). This preference of epoxides over hydroxides 
does not explain the higher amount of HODEs compared to EpOMEs in 
VLDL, suggesting an additional regulation on the oxylipin profiles in rat 
liver. In the same study, VLDL oxylipins profile was altered by LPS 
stimuli of the liver, which also suggests the potential of VLDL oxylipin to 
reflect metabolic state of the liver. Since CYP [132] and LOX [133] 
oxylipin regulations are species-specific, the translation of such kinetic 
results from rodents to human are yet to confirm. 

Macrophage, one of the essential components in inflammatory re-
sponses (reviewed in [134]), effluxes phospholipids and cholesterol to 
preβ-1-HDL to form nascent (immature) HDL via ATP-binding cassette 
transporter A1 (ABCA1) [50,127]. In addition, macrophages efflux 
cholesterol to mature HDL via ATP-binding cassette transporter G1 
(ABCG1) and SR-B1 and to extracellular space via aqueous diffusion, 
which then get incorporated into HDL (reviewed in [127,135,136]). Our 
preliminary data has suggested the movement of esterified oxylipins 
from macrophage to ApoA1 protein is mediated by ABCA1 (Fig. 4). This 
finding indicates that machinery needed for the HDL trafficking of 
oxylipins from periphery exists. However, questions remain whether the 
inflammatory state of the periphery, for example due to low grade sys-
temic inflammation, changes oxylipin composition in HDL and whether 
impaired HDL oxylipin efflux can influence peripheral inflammatory 
burden and modulate cardiometabolic risks. Similarly, ApoA1 can also 
directly bind free oxylipins, including both fatty acids hydroperoxides 
and alcohols, as well as oxidized phospholipids [137]. In contrast, 
ApoA1 cannot bind cholesterol and its oxidized derivatives [137]. Even 
though the binding of oxidized oxylipins is much weaker compared to 
the binding to free long-chain fatty acids [137], these findings suggest 
the potential role of ApoA1 and ApoA1-HDL in oxylipins clearance and 
by doing so – potentially modulating inflammation. 

In addition to the incorporation of oxylipins into the lipoproteins, 
oxylipins profiles in lipoproteins can be altered by the direct modifica-
tion of lipoproteins. LDL can be converted into oxidized LDL (oxLDL) by 
LOX [138], CYP [139] and other non-enzymatic oxidative reagents 
[140]. Oxylipins, both esterified [141] and non-esterified [142], are 
generated to various degrees during the formation of oxLDL. In non- 
enzymatic oxidation of LDL, the majority of the non-esterified oxy-
lipins formed during the process switched from AA-derived oxylipins to 
the LA-derived oxylipins as the oxidation time progressed within 30 h 
[142]. Nonenzymatic formation of oxLDL also changes its content of 
isoprostanes (IsoP) and prostaglandins (PGs) [143]. Interestingly, while 

Fig. 2. Oxylipins percentage composition in HDL, LDL, VLDL and free plasma oxylipin fraction in human. Figure reproduced from the data of healthy participants (n 
= 14, aged 40–69) from a previous study [21]. Significant differences are indicated in Tables 1 and 2. 

Table 1 
C18 and C20–22 oxylipins concentration percentage composition (%) in HDL, 
LDL, VLDL and free oxylipin fraction in human plasma. Table reproduced from 
the data of healthy participate (n = 14, aged 40–69) from a previous study [21]. 
Tukey HSD post hoc analysis was done using the concentration percentage of 
oxylipin groups after Johnson normalization. Different letters indicate different 
significant levels of the same oxylipin group among different pools.  

Fractions C18 oxylipin (%) Sig level C20–22 oxylipin (%) Sig level 

HDL 76% ± 6% C 24% ± 6% A 
LDL 84% ± 3% B 16% ± 3% B 

VLDL 90% ± 2% A 10% ± 2% C 
Free 83% ± 4% B 17% ± 4% B  
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Table 2 
Oxylipins composition (%) in HDL, LDL, VLDL and free oxylipin fraction in human plasma. Table reproduced from the data of healthy participate (n = 14, aged 40–69) 
from a previous study [21]. Tukey HSD post hoc analysis was done using the percentage of oxylipins after Johnson normalization. Different letters indicate different 
significant levels of the same oxylipin among different pools.      

Percentage (%Average ± %Standard deviation) Sig level* 

Chemical 
Class 

Source Parent 
FA 

Oxylipins HDL LDL VLDL Free HDL LDL VLDL Free 

Epox CYP C18:2n6 12(13)-EpOME 1.39 ± 0.424 1.22 ± 0.341 1.59 ± 0.701 2.22 ± 2.03 A A A A 
Epox CYP C18:2n6 9(10)-EpOME 1.43 ± 0.518 1.36 ± 0.495 1.45 ± 0.616 2.08 ± 1.53 A A A A 
Epox CYP C18:3n3 12(13)-EpODE 0.0131 ±

0.00784 
0.0134 ± 0.00956 0.0563 ±

0.0297 
0.0355 ±
0.0397 

C C A B 

Epox CYP C18:3n3 15(16)-EpODE 0.142 ± 0.0751 0.151 ± 0.106 0.344 ± 0.162 0.344 ± 0.364 B B A AB 
Epox CYP C18:3n3 9(10)-EpODE 0.156 ± 0.0662 0.155 ± 0.0962 0.344 ± 0.133 0.312 ± 0.266 B B A AB 
Epox CYP C20:4n6 11(12)-EpETrE 0.947 ± 0.484 0.557 ± 0.204 0.346 ± 0.145 1.25 ± 1.19 A A B A 
Epox CYP C20:4n6 14(15)-EpETrE 0.628 ± 0.239 0.397 ± 0.153 0.276 ± 0.113 1.14 ± 1.28 A AB B A 
Epox CYP C20:4n6 8(9)-EpETrE 0.373 ± 0.16 0.228 ± 0.106 0.164 ± 0.0782 0.55 ± 0.515 A AB B A 
Epox CYP C20:5n3 17(18)-EpETE 0.0781 ± 0.0525 0.0558 ± 0.0377 0.0333 ±

0.0294 
0.136 ± 0.187 A AB B A 

Epox CYP C22:6n3 16(17)-EpDPE 0.192 ± 0.0901 0.107 ± 0.0638 0.114 ± 0.0566 0.283 ± 0.255 AB B AB A 
Epox CYP C22:6n3 19(20)-EpDPE 0.229 ± 0.152 0.119 ± 0.0649 0.132 ± 0.0898 0.285 ± 0.238 A A A A 

vic-Diol sEH C18:2n6 12,13-DiHOME 0.0687 ± 0.0781 0.0461 ± 0.0269 0.0688 ±
0.0507 

0.0817 ±
0.0894 

A A A A 

vic-Diol sEH C18:2n6 9,10-DiHOME 0.416 ± 0.198 0.289 ± 0.112 0.476 ± 0.303 0.742 ± 0.397 AB B AB A 
vic-Diol sEH C20:4n6 11,12-DiHETrE 0.00697 ±

0.00393 
0.00575 ±
0.00514 

0.00265 ±
0.00166 

0.0116 ±
0.0143 

A A B A 

vic-Diol sEH C20:4n6 14,15-DiHETrE 0.00496 ±
0.00127 

0.00405 ±
0.00188 

0.00285 ±
0.00128 

0.0066 ±
0.00436 

A AB B A 

vic-Diol sEH C20:4n6 5,6-DiHETrE 0.0674 ± 0.0514 0.0457 ± 0.0416 0.0245 ±
0.0172 

0.0689 ±
0.0735 

A AB B A 

vic-Diol sEH C20:4n6 8,9-DiHETrE 0.0361 ± 0.037 0.0145 ± 0.0118 0.00778 ±
0.00414 

0.0278 ± 0.027 A BC C AB 

vic-Diol sEH C20:5n3 14,15-DiHETE 0.00636 ±
0.00657 

0.0063 ± 0.00635 0.00571 ±
0.00467 

0.0118 ±
0.0137 

A A A A 

vic-Diol sEH C20:5n3 17,18-DiHETE 0.0183 ±
0.00974 

0.0114 ± 0.00613 0.0293 ±
0.0192 

0.0275 ±
0.0354 

AB B A AB 

vic-Diol sEH C22:6n3 19,20-DiHDPA 0.00162 ±
0.000852 

0.000883 ±
0.000485 

0.00167 ±
0.0013 

0.00265 ±
0.00191 

AB B AB A 

R = O ADH C18:2n6 13-KODE 10.1 ± 5.56 10.8 ± 9.41 10.1 ± 7.29 23.3 ± 18.4 AB AB B A 
R = O ADH C18:2n6 9-KODE 1.92 ± 0.684 1.94 ± 0.777 1.76 ± 0.548 1.88 ± 0.722 A A A A 
R = O ADH C18:2n6 EKODE 0.747 ± 0.749 0.6 ± 0.469 0.606 ± 0.203 0.664 ± 0.333 A A A A 
R = O ADH C20:4n6 15-KETE 1.05 ± 0.698 0.724 ± 0.676 0.435 ± 0.456 2.24 ± 2.16 A AB B A 
R = O ADH C20:4n6 5-KETE 0.387 ± 0.25 0.184 ± 0.097 0.117 ± 0.0902 0.337 ± 0.224 A AB B A 
R-OH LOX C18:2n6 13-HODE 47.4 ± 7.38 53.7 ± 9.44 58 ± 8.53 40.8 ± 19.7 B AB A B 
R-OH LOX C18:2n6 9-HODE 12 ± 1.66 13.1 ± 2.08 14.7 ± 1.99 9.81 ± 4.34 B AB A B 
R-OH LOX C18:3n3 13-HOTE 0.0922 ± 0.0535 0.109 ± 0.0485 0.306 ± 0.099 0.107 ± 0.0442 B B A B 
R-OH LOX C18:3n3 9-HOTE 0.121 ± 0.0478 0.166 ± 0.0635 0.424 ± 0.179 0.16 ± 0.0806 B B A B 
R-OH LOX C20:3n6 15(S)-HETrE 0.932 ± 0.236 0.666 ± 0.206 0.446 ± 0.137 0.568 ± 0.337 A AB B B 
R-OH LOX C20:4n6 12-HETE 2.34 ± 0.896 1.45 ± 0.279 0.801 ± 0.263 1.16 ± 0.586 A B C BC 
R-OH LOX C20:4n6 15-HETE 4.17 ± 0.824 2.96 ± 0.733 1.67 ± 0.411 2.44 ± 1.36 A B C BC 
R-OH LOX C20:4n6 5-HETE 3.11 ± 0.597 2.26 ± 0.447 1.22 ± 0.317 1.82 ± 0.789 A B C B 
R-OH LOX C20:4n6 8-HETE 1.88 ± 0.616 1.39 ± 0.344 0.768 ± 0.242 1.05 ± 0.545 A AB C BC 
R-OH LOX C20:5n3 12(S)-HEPE 0.211 ± 0.186 0.148 ± 0.0979 0.11 ± 0.0862 0.0957 ±

0.0683 
A A A A 

R-OH LOX C20:5n3 15(S)-HEPE 0.12 ± 0.136 0.0824 ± 0.0743 0.0631 ±
0.0459 

0.0568 ±
0.0289 

A A A A 

R-OH LOX C20:5n3 5(S)-HEPE 0.237 ± 0.18 0.147 ± 0.0797 0.111 ± 0.0751 0.116 ± 0.0676 A A A A 
R-OH LOX C22:6n3 17(R)-HDoHE 1.47 ± 0.782 0.816 ± 0.445 0.689 ± 0.267 0.742 ± 0.546 A AB B B 
R-OH COX C20:4n6 11-HETE 2.32 ± 0.593 1.64 ± 0.371 0.898 ± 0.221 1.34 ± 0.715 A B C BC 
R-OH Autoox C20:4n6 9-HETE 2.89 ± 1.34 2.06 ± 0.869 1.05 ± 0.529 1.45 ± 0.972 A AB C BC 
Diol LOX C20:4n6 5,15-DiHETE 0.0197 ± 0.0176 0.0175 ± 0.00754 0.00772 ±

0.00582 
0.0112 ±
0.00951 

A A B AB 

Diol LOX C20:4n6 6-trans-LTB4 0.0148 ±
0.00627 

0.0159 ± 0.00955 0.00481 ±
0.00504 

0.00874 ±
0.0085 

AB A C BC 

Diol LOX C20:4n6 8,15-DiHETE 0.0545 ± 0.0575 0.0385 ± 0.0134 0.0163 ±
0.00848 

0.023 ± 0.0151 A AB C BC 

Diol LOX C20:4n6 LTB4 0.00725 ±
0.00259 

0.00709 ± 0.0049 0.0124 ±
0.0123 

0.00397 ±
0.00217 

A AB A B 

Triol LOX C20:5n3 Resolvin E1 0.00417 ±
0.00408 

0.00321 ±
0.00212 

0.00535 ±
0.00866 

0.00315 ±
0.00188 

A A A A 

Triol Autoox C18:2n6 9,10–13-TriHOME 0.0884 ± 0.0363 0.0956 ± 0.0304 0.119 ± 0.0759 0.0765 ±
0.0172 

A A A A 

Triol Autoox C18:2n6 9,12,13-TriHOME 0.129 ± 0.0621 0.136 ± 0.0289 0.17 ± 0.119 0.114 ± 0.0251 A A A A 
PG COX C20:4n6 PGF2a / 

(isoprostanes) 
0.0326 ± 0.0161 0.0238 ± 0.00742 0.016 ±

0.00717 
0.0213 ±
0.0131 

A AB B AB  

N. Liang et al.                                                                                                                                                                                                                                   



Progress in Lipid Research 93 (2024) 101265

6

CYP can modify LDL [139], oxLDL can in turn suppress the expression of 
CYP [144]. As a result of these modifications, the functions of lipopro-
teins can be changed, which will be considered in detail in the later 
section. 

Other lipoprotein metabolism regulators may also modulate their 
oxylipin composition. For example, lecithin-cholesterol acyltransferase 
(LCAT) converts free cholesterol and phosphatidylcholine into choles-
terol esters and lysophosphatidylcholine mainly during the process of 
HDL maturation (reviewed in [145]). CETP exchange cholesterol ester 
and triacylglycerol between HDL and other lipoproteins that contain 
ApoB (reviewed in [146,147]). Plasma phospholipid-transfer protein 
(PLTP) mediates the exchange of phospholipid and cholesterol between 
HDL and triacylglycerol-rich lipoproteins (reviewed in [148]). These 
regulations can potentially exchange oxylipins among lipoproteins, as 
well as incorporating oxylipins from cellular lipids into lipoproteins, 
which requires further investigation. 

Furthermore, other elements regulating lipid homeostasis, such as 
liver X receptors (LXR) (reviewed in [149]), sterol response element 
binding protein 2 (SREBP-2) [150,151], other scavenger receptors (e.g. 
SR-A1 and CD36)(reviewed in [152,153]), patatin-like phospholipase 
domain-containing protein 3 (PNPL3) [154–156], lipase E, hormone 
sensitive type (LIPE) [157,158] and neutral cholesterol ester hydrolase 1 
(NCEH1) [159] should be closely investigated in the context of oxylipin 
transport via lipoproteins as well as intracellular lipid droplets. 

In summary, evidence has suggested that the oxylipins originated 
from oxylipin-producing cells can be incorporated into lipoproteins and 
participate in circulation. In addition, oxylipins can be formed by direct 
modification of lipoproteins. However, the detail fractionation and 
analysis of oxylipins in each lipoprotein particle, as well as the charac-
terization of their trajectories across periphery, liver, brain, and other 
lipoprotein-metabolizing locations, are still largely unexplored. 

Fig. 3. Proposed overview of oxylipin production in cells and their transportation between cellular membranes and lipoproteins. Oxylipins are transported along 
lipid metabolizing pathways. The liver exports oxylipins to VLDL and subsequently LDL, with the composition reflecting the inflammatory state of the liver. Upon 
incorporation via LDL receptor (LDL-R), oxylipins in LDL can modify the inflammatory response of peripheral cells. Peripheral cells export oxylipins to ApoA1 or HDL 
through ABCA1 and ABCG1 complexes or SR-B1. HDL oxylipin composition reflects the inflammatory state of the periphery. Abbreviation: ABCA1: ATP-binding 
cassette transporter A1; ABCG1: ATP-binding cassette transporter G1; ACSL: long-chain acyl-coenzyme A synthase; ApoA1: apolipoprotein A-1 (Apo-AI); CETP: 
cholesteryl ester transfer protein; COX: cyclooxygenase; CYP: cytochrome P450; HDL: high-density lipoprotein; LCAT: lecithin cholesterol acyl transferase; LIPE: 
lipase E, hormone sensitive type; LDL: low-density lipoprotein; LDL-R: low-density lipoprotein receptor; LOX: lipoxygenase; LPL: lipoprotein lipase; NCEH1: neutral 
cholesterol ester hydrolase 1; PLA: phospholipase; PLTP: phospholipid-transfer protein; PNPLA3: patatin-like phospholipase domain-containing protein 3; PUFA: 
polyunsaturated fatty acid; SR-B1: scavenger receptor class B type I; sEH: soluble epoxide hydrolase; VLDL: very-low-density lipoprotein. 

Fig. 4. ABCA1 mediated transfer of lipid mediators from macrophages to 
ApoA1 particle. Raw 264.7 macrophage (n = 3), wild type (WT) or ABCA1 
knock down (KD) were treated with 100 ng/mL of LPS for 60 min and subse-
quently exposed to 40 μg/mL ApoA1. The graph shows concentration of 
esterified LOX metabolites of arachidonic acid in cell media. Error bars repre-
sent 95%CI. Data are not published. 
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4. The effect of lipoprotein oxylipins on lipoprotein- 
metabolizing cells 

Esterified oxylipins are present in lipoproteins in non-pathological 
conditions [32], suggesting their availability to participate in homeo-
static regulation. In contrast, modified lipoproteins, especially oxLDL, 
and their cellular functions has been investigated extensively due to 
their importance in vascular injury and inflammatory-related disorders 
(reviewed in [160]). The modification to convert LDL to oxLDL is an 
important process for their uptake by macrophages [51,161,162]. 
OxLDL can be taken up by macrophages and induces expression of 
specific inflammatory and oxidative stress biomarkers in macrophages 
[143]. However, the esterified oxylipins profile of oxLDL, as well as 
other modified lipoproteins, has only been linked to their functional 
characteristics to a very limited degree. 

A few studies indeed demonstrated the critical composition-function 
relationship of lipoproteins oxylipins and lipoprotein-metabolizing cells. 
For example, one study utilized lipoproteins from subjects with pro- and 
anti-atherogenic phenotypes. The pro-atherogenic phenotype was 
defined by their triglyceride-rich lipoproteins (TGRL) ability to cause 
>10% increased expression of vascular cell adhesion molecule (VCAM)- 
1 in TNFα-treated human aortic endothelial cells (HAEC); the anti- 
atherogenic phenotype was defined by TGRL inducing >10% 
decreased expression VCAM-1 [34]. As results of a standard meal high in 
saturated fat, the postprandial TGRL from pro-atherogenic subjects 
further increased ~50% of the expression of VCAM-1 in TNFa-treated 
HAEC, while the one from anti-atherogenic subjects further decreased 
~40% of this expression. Accordingly, the postprandial shift of oxylipin 
profile in TGRL, mainly the sEH-derived diols in esterified and non- 
esterified pools and non-esterified LOX-derived alcohols, were well 
discriminated between the pro- and anti-atherogenic subjects. Mean-
while, the oxylipin composition of TGRL predicted VCAM-1 expression 
in HAEC. Consistently, the representative oxylipins of the pro- 
atherogenic TGRL, methyl ester of 9-HODE and 12,13-DiHOME (ana-
logues of their free oxylipin forms) reduced VCAM-1 expression in TNFa- 
treated HAEC, where the low abundance of these two oxylipins in the 
pro-atherogenic fasting TGRL was associated with the high VCAM 
expression. Another study has demonstrated a similar finding: after 4- 
weeks of 40 g/day dietary walnut intervention, plasma LDL from hy-
percholesterolemic, postmenopausal female subjects decreased 
inflammatory-related IL-8 and IL-6 production in the TNFα-stimulated 
primary human diabetic adipocytes [76]. Meanwhile, among the ester-
ified oxylipins, the LDL from such dietary intervention had higher ALA 
and its epoxide contents, but lower levels of monounsaturated fatty 
acids and AA/DGLA-derived mid-chain alcohols. The esterified oxylipin 
composition of LDL was strongly correlated with the TNFα-stimulated 
cell secretion of IL-6 and IL-8, including negative association with ALA 
epoxides and positive association with AA/LA alcohols, but not their 
precursor fatty acids. These studies indicated that the lipoprotein oxy-
lipins can be well correlated with the level of cellular inflammatory 
response. The evidence here also suggested LDL oxylipins are not only 
the products of an anti− /pro-inflammatory environment, but also a 
trigger for further inflammatory-related responses. 

Altered oxylipin profiles of HDL is as well associated with the 
alteration of its function, which may have implication for inflammation. 
For example, the HDL from patients with Type 2 diabetes (T2D) had 
increased free HETEs (5-HETE, 15-HETE, and 12-HETE) and HODEs (9- 
HODE and 13-HODE) compared to the healthy controls [78]. This 
accompanied a high HDL inflammatory index in the patient groups, 
which was measured as the effect of HDL on the LDL-triggered monocyte 
migration using a monocyte chemotactic activity (MCA) assay. The free 
oxylipin contents were significantly associated with the decreased HDL 
antioxidant activity in a cell-free assay. Similar relationship between 
increased free LOX oxylipins in HDL and the increased pro-inflammatory 
properties of HDL were reported in heart failure [163], active rheuma-
toid arthritis (RA) [164] and idiopathic inflammatory myopathies 

[165]. These studies suggested the important composition-function 
relationship of oxylipins in HDL. However, these studies are limited to 
free oxylipin contents; it is also not clear if the detection of these HDL 
oxylipins is due to HDL’s removal of inflammatory-related compounds 
from cells and/or the in-situ production of oxylipins in HDL triggered by 
various types of modification [166]. As another example, 15-lipoxyge-
nase-treated HDL3 increased the apoptotic effect of oxLDL on human 
primary coronary artery endothelial cells, where the native HDL3 can 
reduce this effect [167]. Though the oxylipin profile of HDL was not 
investigated in this study, the NF-κB pathway mediating this process is 
also regulated by the LOX-derived oxylipins such as 13S-HOTE, 13S- 
HODE and 15S-HEPE [168], and thus the involvement of oxylipins can 
be speculated. Therefore, a closer investigation on the oxylipins in HDL 
and its potential contribution on the inflammatory-related properties of 
HDL [169] is warranted. 

The functional changes of lipoproteins with altered oxylipins are also 
strongly indicated by another line of work, where the formation and 
bioactivities of non-enzymatically and enzymatically oxidized phos-
pholipids in cell membranes were extensively investigated [47]. 
Phospholipid-oxylipins are produced by immune cells in response to 
stimulation and participate in inflammation regulation 
[47,52,119,120]. Free oxylipins can function intracellularly (e.g. via 
nuclear receptors (peroxisome proliferator-activated receptors, PPAR) 
[170,171]) or extracellularly by interacting with cell membrane asso-
ciated G protein–coupled receptor (GPCR) [170,172]; differently, 
esterified oxylipins in phospholipids are likely to remain associated with 
cellular membranes [120] prior to the action of PLA2 and the release of 
oxylipins from phospholipids. They are likely to mediate inflammatory 
environments by altering the structures of the membrane and thus the 
functions of membrane-associated proteins [47,52,173]. In particular, 
phospholipid-esterified oxylipin 15-HETE-phosphatidylethanolamine 
(PE) is a structural analog to the pro-inflammatory LPS and therefore 
compete with LPS to bind toll-like receptor 4 (TLR4) [174]. Interest-
ingly, the production of 12/15 LOX-derived phosphatidylethanolamine 
(PE) allows the clearance of apoptotic cells in noninflammatory (resi-
dent) macrophages and limits the uptake of apoptotic cells in the in-
flammatory monocytes [52]. Such regulation is critical to maintain the 
self-immunologic tolerance. Furthermore, phospholipid oxylipins have 
other functions that contributes to homeostasis, such as promoting 
coagulation [175] and regulating ferroptosis [176]. The studies in this 
area highlight the extensive involvement of esterified oxylipins in 
phospholipids within and beyond the scope of inflammation. Consid-
ering the phospholipid contents in lipoproteins [112], HDL in particular, 
as well as the frequent lipid exchanges between lipoproteins and cell 
membranes [127], these studies can be highly translatable to esterified 
oxylipins in lipoproteins, which emphasizes the need for further 
investigation. 

Additionally, the release of oxylipins from VLDL via LPL [32] sug-
gests the potential for endocrine nature of oxylipin regulations, in 
addition to its autocrine and paracrine functions [177]. The release of 
oxylipins from lipoproteins by LPL showed preferences on the oxylipin 
species: LPL released all species of mid-chain hydroxides from VLDL to 
certain degrees, but not all species of epoxides and diols, and no ketones 
[32]. However, there are limited data on the uptake and release of 
oxylipins from other lipoprotein particles. 

The migratory nature of macrophages [178] as well as its production 
of oxylipin [55,179–181] further support the hypothesis of paracrine or 
endocrine functions of oxylipins in regulating immunity. The polariza-
tion of macrophage into the M1/M2 phenotypes results in pro- or anti- 
inflammatory properties (reviewed in [134]), a process accompanied 
by the production of distinguished oxylipins (reviewed in [55]). Both 
M1 and M2 macrophage produced 5-LOX products such as 5-HETE and 
LTB4 and COX products such as TXB2 and PGE2, but M2 was distin-
guished from M1 with the up-regulated 15-LOX-1 expression and high 
concentration of 15-LOX products under bacterial co-incubation, 
including 15-HETE, 5,15-dihydroxyeicosatetraenoic acid (DiHETE), 
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17-hydroxydocosahexaenoic acid (HDHA), Resolvin D5 (7,17-dihy-
droxydocosahexaenoic acid), and Maresin 1 (7,14-dihydrox-
ydocosahexaenoic acid) [55,179–181]. Similarly, astrocyte, one of the 
neuroinflammation-responsible cells, was polarized into pro− /anti-in-
flammatory (A1/A2) phenotype under different stimuli (LPS, IL-4, and 
IL-10), and these phenotypes had different oxylipin profiles from each 
other; these oxylipin profiles also reflect their further inflammatory 
adaptation in response to a second stimuli [182]. These studies indicate 
that the oxylipin profiles may play a role in the inflammation regulation 
in these migrating immunologically important cells. 

In addition, immune cells play a role in lipoprotein metabolism 
[127,183–185], and the interaction between these cells and lipopro-
teins, such as exposure of oxLDL to macrophages, is crucial in immune 
adaptation [48,49]. While the lipid transfer between these cells and li-
poproteins is critical for their interaction [50,51], the direct involve-
ment of lipoprotein oxylipins in these processes are unclear, despite that 
the involvement of esterified oxylipins in immune tolerance [52] and the 
involvement of free oxylipins in trained immunity [53–55,182] have 
been reported. Therefore, considering the composition of lipoprotein 
oxylipins is closely associated with the functions of lipoprotein- 
metabolizing cells [34,76,78], understanding how oxylipin exchanges 
occur between cells and lipoproteins is highly warranted. It will also be 
important to clarify if these oxylipin exchanges modifies the inflam-
matory characters of the cells and the lipoproteins, and whether these 
characters affect immunity adaptation processes, such as immune 
tolerance [52] and trained immunity [53–55]. Such investigations 
centering the role of lipoprotein oxylipins will provide deeper insight 
into the functions of these inflammatory cells and the involvement of 
impaired lipoprotein metabolism in inflammatory disorders across the 
periphery and the CNS [56]. 

In summary, the lipoprotein functionality is closely associated with 
their oxylipin composition [34,76,78]. Evidence has suggested that li-
poprotein oxylipins are not only the products of inflammatory-related 
stimulus, but also triggers for further inflammatory-related responses 
[76]. Furthermore, the involvement of lipoprotein oxylipins in paracrine 
or endocrine functions have been indicated by their regulation via LPL 
and migrating immunologically important cells [32,134,182]. Their 
direct participation in various aspects of immunity warrants further 
investigation. [52–55,182] 

5. Lipoprotein oxylipins in lipoprotein-associated disorders 

5.1. Interplay between cardiometabolic disorders and oxylipin 
composition of lipoproteins 

Evidence suggests that oxylipins in lipoproteins can influence 
inflammatory-related responses in cells, supporting an interplay be-
tween the inflammatory environment of cardiometabolic disorders and 
shifts in lipoprotein oxylipin profiles [34,76]. Moreover, the oxylipin 
composition of plasma lipoproteins reflect changes in metabolic status. 
For example, metabolic syndrome (MetSyn) is a metabolic state char-
acterized by abdominal obesity, high triglycerides, high blood pressure, 
high fasting glucose, and low HDL-cholesterol. MetSyn uniquely 
changed oxylipin composition of all lipoprotein fractions. For example, 
HDL was reportedly increased most in mid-chain alcohols (LOX and 
autooxidation products) from DGLA and AA; LDL was increased in diols 
(sEH metabolites) and ketones from AA; VLDL has increased in the 
precursor fatty acids but most oxylipins, regardless of their precursors, 
were decreased, while AA-derived oxylipins were largely unchanged 
and LA and AA-ketones increased [21]. This may reflect the differential 
trafficking of oxylipins via various lipoproteins within a pro- 
inflammatory environment associated with this disorder. Such differ-
ential trafficking of pro- and anti-inflammatory oxylipins in lipoproteins 
has also been reported in a nephrotic rodent model, where HODEs and 
HETEs were increased in VLDL and HDL but decreased in LDL [99]. 

Accordingly, external stimuli such as dietary patterns can alter both 

cardiometabolic status and change peripheral lipoprotein oxylipins. 
Oxylipins are derived from polyunsaturated fatty acids and thus the 
oxylipin composition within lipoproteins generally reflects the dietary 
patterns induced changes in fatty acids composition [76]. Sixteen-week 
of prescription omega-3 fatty acids ethyl esters (P-OM3, 4 g/day) 
intervention resulted in reduced triglycerides and VLDL-C in serum, as 
well as reduced heart rate for MetSyn patients [21]. These changes were 
accompanied by reduced n-6 oxylipins and increased n-3 oxylipins to 
varying degrees in each lipoprotein, with substantially less n-6 oxylipin 
reduction in VLDL compared to HDL and LDL [21]. Interestingly, the 
changes in precursor fatty acids in lipoprotein didn’t correlate with their 
oxylipins, suggesting regulation of oxylipin production beyond precur-
sor fatty acid availability. Another study investigated the effect of di-
etary walnuts supplements (40 g/day, 4 weeks), a food source of high 
omega-3 ALA, on the plasma lipoprotein oxylipins in hypercholesterol-
emic, postmenopausal female subjects [76]. As a result of the dietary 
supplements, there were differential changes in oxylipins across lipo-
proteins. For example, several CYP-epoxides increased in HDL but 
showed decrease trends in LDL and VLDL. Meanwhile, across all lipo-
proteins, there was a preferential increase in ALA metabolites only in the 
CYP pathway but not the LOX pathway. On the contrary, all LOX and 
autoxidation oxylipins derived from other precursor fatty acids were 
reduced, possibly due to the polyphenol content of walnuts, serving as 
antioxidant and/or LOX inhibitors. These changes in lipoprotein oxy-
lipins by dietary walnut intervention were accompanied by the 
improvement of microvascular functions associated with enrichment in 
HDL epoxy fatty acids [186]. These studies have emphasized the po-
tential roles of lipoprotein oxylipins in mediating the relationship be-
tween inflammatory status and dietary intervention in the context of 
cardiometabolic disorders. Even more, the fractionation of lipoproteins 
unmasks the differential changes in oxylipins, which may also have 
biological implication in these disorders. 

5.2. New area of interest: oxylipin’s involvement in neurological disorders 
under the mediation of lipoproteins—indications and future prospective 

Recent studies have linked the peripheral systemic metabolic dys-
regulation to the central pathologies across blood-brain/CSF barriers in 
neurological disorders, such as AD [187] and Parkinson’s disease (PD) 
[188,189], as well as mental health disorders such as major depression 
[190] and Schizophrenia [191]. Meanwhile, the biosynthesis of the key 
components for the circulating lipoprotein metabolism are dysregulated 
in those neurological disorders, such as fatty acids, phospholipids, 
cholesterol, and apolipoproteins (reviewed in [44,192–195]). In light of 
the recently reported association between neurological disease risks and 
esterified/non-esterified oxylipins [196–199], we argue in the following 
sessions that oxylipins are likely to play its important role in neurolog-
ical diseases under the mediation of lipoprotein metabolism, and thus 
it’s crucial to interrogate the composition and functions of lipoprotein 
oxylipins in the context of neurological disorders, such as neurodegen-
erative diseases and infectious diseases that cause both peripheral and 
CNS symptoms. 

5.2.1. The interplay between oxylipins and apolipoproteins/lipoproteins: an 
important target to understand neurodegeneration 

Similar to cardiometabolic disorder, the development and progres-
sion of neurodegenerative diseases are often accompanied by the dys-
regulation in inflammation [200,201] as well as alternation of oxylipin 
profiles [196,197]. For example, compared to the healthy controls, the 
plasma free oxylipin profile in AD subjects indicate the upregulation of 
CYP450/sEH pathways and the downregulation of fatty acid ethanol-
amine pathway [196]. Consistently, plasma sEH metabolites (i.e., 
dihydroxy oxylipins) were associated with the lower perceptual speed in 
elderly subjects [198]. Meanwhile, AD associated lower fatty acids 
ethanolamides were also observed in cerebrospinal fluid (CSF), and CSF 
EpOMEs were associated with better cognitive performance in AD 
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subjects [196]. AD-associated changes are also reflected on the LOX 
pathways both in periphery and CNS: in the same study, several plasma 
LOX oxylipins decreased in AD patients compared to the healthy con-
trols [196]. In certain affected areas of the AD post-mortem brain, LOX 
[202] and COX pathways [203,204] were upregulated. In contrast to 
these patterns of oxylipins between periphery and CNS, the non- 
esterified oxylipins in plasma and CSF are not well correlated to each 
other [196], and it remains unclear for esterified oxylipins between 
plasma and CSF. Therefore, questions remain on the precise nature of 
the oxylipin regulations across periphery and CNS, under normal and 
neurodegenerative pathologies. 

Meanwhile, lipoprotein profiles and metabolism are associated with 
the risk for neurodegeneration [43,205,206]. Most importantly, the 
major genetic risk factor of neurodegeneration, the APOE4 gene, en-
codes an isoform of the ApoE apolipoprotein (ApoE4) critically involved 
in lipid trafficking and lipoprotein formation [193–195]. Compared to 
other isoforms, the expression of ApoE4 apolipoprotein increases 
neuronal amyloid beta (Aβ) synthesis [207], and the ApoE4 lipoprotein 
reduces the microglial efficiency to uptake Aβ and the capacity to 
improve Aβ’s detrimental effect on cognition [208]. APOE4 is also 
associated with increased tau pathologies [209] and the leakage of 
blood-brain barrier [210]. Very interestingly, the prone-to-aggregation 
lipid-poor ApoE4 protein causes poor recycling of ABCA1 from late- 
endosomes to cell membrane, resulting in poor ABCA1 functions of 
lipid efflux [211]. Furthermore, APOE4 caused lipid profile changes in 
astrocytes, including increased level of unsaturation in fatty acids, 
intracellular triacylglycerol level and the storage of lipid droplets [212]. 
Meanwhile, apolipoprotein E4 alone also has the least protective effect 
on cells against oxidative stress [213] and the lower activity to inhibit 
Cu2+-induced LDL oxidation [214], compared to other isoforms. 
Accordingly, the association between the APOE4 genotype and the high 
oxLDL level was observed in human studies [215]. Additionally, APOE 
also interacts with another risk factor for neurodegeneration [216] and 
microglia inflammatory regulator [217], triggering receptor expressed 
on myeloid cells 2 (TREM2) in a APOE isoform-specific manner [208]. 
Both TREM2 and APOE are critical for the barrier functions of microglia 
around the amyloid plague [218,219], where TREM2-apolipoprotein/ 
lipoprotein binding is essential for the microglia’s uptake of the com-
plex of lipoproteins and β-amyloid peptide (Aβ) [220]. 

Recent studies have drawn connections between the regulation of 
oxylipins and APOE4 in neurodegeneration. Free oxylipins analysis on 
human post-mortem dorsolateral prefrontal cortex revealed that 
APOE3/4 carriers, compared to APOE3/3, had oxylipin profiles that 
correlated more strongly to cognitive functions and AD pathologies 
[199]. In the same study, when modeling the cognitive and pathological 
outcomes, the APOE genotypes have significant interaction with the 
amount of omega-3 fatty acids and several oxylipins, including prosta-
glandins, lipoxins, neuroprotectin D1 (NPD1) and 12-hydroxyheptade-
catrienoic acid (12-HHT); however, in this study, the APOE genotypes 
didn’t seem to alter sEH activities, measured as the product-precursor 
ratio in the sEH pathways, indicating that the APOE4-speicifc changes 
in oxylipins are enzyme-specific [199]. In addition, another study in 
periphery indicated that APOE isoforms altered oxylipin profile [221]: 
in this double-blinded, parallel randomized controlled trial of omega-3 
fatty acids (in their triglyceride form) dietary intervention, the plasma 
hydroxy and dihydroxy oxylipins of EPA and DHA were increased in the 
APOE4 carriers compared to the APOE3 carriers after 12 months of 
supplementation of EPA and DHA [221]. Though not yet investigated, 
such isoform-specific dietary lipid regulation by APOE may have im-
plications in the CNS, suggested by the fact that the alternation of both 
peripheral [222,223] and brain oxylipin [223–226] by dietary inter-
vention has been demonstrated in animal models. These studies also 
indicated that the interplay of oxylipin regulation and isoform-specific 
APOE functions may affect risks factors of neurodegeneration pre-
sented in both CNS and peripheral. Therefore, such an interplay of 
oxylipins and APOE has important implication in neurodegenerative 

disorders. Whether the oxylipin-APOE relationship is mediated by the 
esterified oxylipins in ApoE-lipoproteins is yet to be investigated; 
however, it is clear that reduced HDL ApoE levels are associated with 
HDL oxylipin enrichment in periphery, suggesting a plausible link be-
tween ApoE functionality and lipoprotein oxylipin content [99,227]. 

5.2.2. The composition-function relationship of HDL can be one of the keys 
to understand the separate yet interconnected apolipoprotein/lipoprotein 
system in peripheral and CNS 

The CNS and the periphery have a separate yet interconnected li-
poprotein formation and transport systems [228], and both are impor-
tant to many disorders including neurodegenerative diseases (reviewed 
in [229,230]). In both periphery and CNS, HDL can be formed through 
the cholesterol efflux and incorporation of cellular lipids by the func-
tions of ABCA1 [231] and ABCG1 [232,233], followed by further 
maturation by LCAT transesterification [234]. Some of the major dif-
ferences between the 2 systems include: ApoA1 is the major apolipo-
protein in peripheral HDL [235], and ApoE is much less abundant 
components compared to ApoA1 in periphery overall [236] even though 
about half of peripheral ApoE is distributed in HDL [237,238] in a 
isoform-specific manner [237]. Differently, both ApoE and ApoA1 are 
major apolipoproteins in CSF participating in forming lipoproteins with 
the size ranging from HDL to LDL [239–241]. Brain ApoA protein are 
mainly produced outside of the brain, but they enter the CNS from blood 
[228,242,243]; a portion of them can also be produced by the brain 
capillary endothelial cells [244,245]. Differently, ApoE from peripheral 
(produced in liver and other sites [243,246]) cannot enter CNS 
[247,248]. In terms of lipoproteins, only small HDL can cross the blood 
brain barrier (BBB) [249], which may have important implication in 
peripheral-CNS connections [228]. Peripheral apolipoprotein/lipopro-
tein components, such as HDL-cholesterol, ApoE, ApoA and ApoJ can be 
associated with the level of brain disorders (reviewed in [44]). However, 
a clearer understanding on the connections between the periphery and 
the CNS is yet to obtained. 

To address this, it is important to investigate how the lipoprotein- 
related neurodegeneration risks factors, on both sides of BBB, can be 
altered by the lipoprotein’s compositions, particularly oxylipins. 
Recently, a study pointed to the lipid signatures of AD human brain from 
APOEε3/3, APOEε3/4 and APOEε4/4 carriers, where the presence of 
APOE4 isoforms was associated with higher phosphatidylglycerol but 
lower in other phospholipid species, such as phosphatidylethanolamine, 
phosphatidylinositol, phosphatidylserine, sphingomyelin, lysophospha-
tidylethanolamine, and phosphatidic acid [208]. The phospholipid 
profile in APOE3 and APOE4 mice astrocytes-derived lipoproteins had a 
similar trend except for phosphatidylglycerol. In the same study, APOE4 
lipoprotein with changed lipid composition have worse microglia 
regulation on Aβ and the capacity to improve Aβ-induced cognitive 
impairment compared to APOE3 lipoprotein in a rodent model [208]. 
Though it is not known whether this APOE and phospholipid-related 
functional change of lipoprotein is also mediated by their oxylipins, 
the incorporation and the release of oxylipins from phospholipid are 
varied by the phospholipid classes as well as the oxylipin species 
[124,125] and APOE genotype indeed change overall oxylipin compo-
sitions in brain and periphery [199,221]. Therefore, the specific distri-
bution of oxylipins in lipoproteins may play a role in their AD-related 
and APOE-related functional changes, and thus the investigation on the 
composition-function relationship for lipoprotein oxylipins are war-
ranted in the context of neurodegenerative disorders. Currently, such 
investigation is highly limited in the field of neurodegeneration. Even 
so, the functional changes of HDL due to their compositional changes, 
especially their oxylipin compositions, are demonstrated in other con-
texts, as described in the previous sessions [78,163–165]. The 
composition-function relationships of HDL in periphery may be trans-
latable in the context of neurodegeneration, especially considering that 
the small HDL can cross over peripheral and CNS [228,249]. Though 
ApoE-lipoprotein cannot cross BBB [247,248], its production in CNS and 
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potential change of functions due to the incorporation of oxylipins have 
important implications on APOE isoform-specific lipid metabolism in 
CNS [208,211,212] and other AD-related pathological mechanisms 
[207–210], considering ApoE-lipoprotein can be formed both in CNS 
and periphery [228,250,251]. 

5.2.3. The unexplored yet exciting area: The unknown lipoprotein oxylipins 
in CNS and their potential implications in neurodegeneration 

Though oxylipin transport via brain lipoproteins has not been char-
acterized, one may find inspiration on the similarity between microglia 
and macrophages due to their highly equivalent functions in the brain 
and in peripheral, respectively, in both immune response and lipid 
transport. Though peripheral macrophages and microglia (i.e. resident 
macrophages of central nervous system) have different origins, the 
former can also infiltrate the brain; they both have important functions 
in phagocytosis and secretion of inflammatory regulating compounds 
[252–256], and they shared many biomarkers [257,258]. What’s more, 
both microglia and macrophages participate in the cholesterol efflux 
through ABCA1 and ABCG1 [231–233,259] and the production of 
apolipoproteins [260–262] for lipoprotein formation. In pathological 
scenarios, the abnormal lipid accumulation in macrophage after ab-
sorption of LDL or oxLDL results in foam cells, whose aggregation is 
critical in forming the proinflammatory atherosclerotic plaque and 
damaged artery (reviewed in [40]). Similarly, the abnormal lipid 
accumulation in microglial can be caused by inflammatory stress [263] 
and the lipid droplet accumulating microglia is highly pro-inflammatory 
[264]. Both macrophage and microglia are essential for vascular func-
tions [40,265]. As mentioned above, evidence showed that oxylipins can 
be effluxed from macrophages to ApoA1 through the ABCA1 complex. 
The transportation of cellular oxylipins from microglia to ApoE or ApoE- 
lipoprotein is expected to be similar to the one from macrophage to 
ApoA or ApoA-lipoprotein, but it requires further investigation to test 
such hypothesis. Such investigation can be important to explain why the 
alternation of microglial APOE gene expression and protein expression 
are critical for neural assaults (e.g. inflammatory stimuli of LPS [266], 
traumatic brain injury [267] or neurodegenerative diseases [268]), even 
though microglia is not the main producer of ApoE in the CNS system 
[183,266]. Such investigation may also provide critical insight into why 
such responses can be APOE isoform-specific [266]. 

5.2.4. The potential roles of lipoprotein oxylipins in the peripheral-central 
connection in infectious diseases: a possible component to bridge peripheral 
and CNS symptoms 

Infectious diseases like COVID-19 can cause both peripheral and CNS 
symptoms [269,270]; its pathologies also involves dysregulation in both 
oxylipins [24,25] and lipoproteins [41,42], which makes it an inter-
esting disease model to investigate the roles of lipoprotein oxylipins 
across periphery and CNS. Considering the potential roles of lipoprotein 
oxylipins in immune regulation [76] [78], their involvement in the 
peripheral and central symptoms in COVID-19 is highly likely. 

Prolonged neurologically related symptoms as a part of “post-acute 
sequelae of SARS-CoV-2 infection (PASC)” (i.e., “long COVID” or “long- 
haul COVID”) include fatigue sensation, headache, dysregulation in ol-
factory, gustatory and sleep functions, anxiety, depression and cognitive 
impairment [271–274]. The chronic PASC neurological symptoms have 
been associated with abnormal resolution in systemic inflammation 
[275,276], dysregulation in vascular functions [277,278] and the viral 
infection targeting the lipoprotein-producing choroid plexus epithelial 
cells across blood-CSF barriers [279]. Consistent with these character-
istics linking COVID-19 peripheral and central symptoms, the correla-
tion of altered circulating oxylipin profile and COVID-19 severity points 
to the dysregulation of inflammation resolution [25,26]. Mechanisti-
cally, the oxylipin composition of circulating lipoproteins can modify 
the interaction between lipoproteins and endothelial cells, which is 
therefore implicated in their impact on vascular functions [34]. 
Furthermore, the incorporation of esterified and free oxylipins in 

lipoproteins can change the characteristics of lipoproteins 
[34,76,78,163–165], and virus infections are often closely associated 
with the cellular production of lipoproteins of the hosts, not only in 
periphery [280,281] but also across periphery and CNS [279]. In addi-
tion, relatable to neurodegenerative diseases, APOE genotype is also a 
risk factor for the COVID susceptibility and severity [278,282,283], 
which may be related to how APOE affect lipoprotein lipid compositions 
[99,208], the oxylipin composition in particular [199,221], and their 
resulting change of functionality [34,76,78,163–165,227] while inter-
acting with viral receptor ACE2 [283]. Therefore, the involvement of 
lipoprotein oxylipins in infectious diseases like COVID is warranted, but 
it requires careful experimental confirmation. This investigation may 
introduce opportunities such as accurately predicting the severity of 
infectious diseases based on lipoprotein oxylipins or developing novel 
treatments targeting lipoprotein oxylipins for these diseases. 

6. Conclusion 

Oxylipins in free or esterified forms can originate from various 
pathways. The important autocrine function of oxylipins has been 
established, but it is not enough to explain their intriguing involvement 
in the systematic disorders related to inflammation in peripheral and 
CNS. Evidence has shown that lipoprotein can incorporate cellular 
oxylipins in esterified forms, which may enable oxylipins to become 
endocrine regulators for inflammatory responses mediated by lipopro-
tein transport and lipase-mediated mechanisms. This may explain the 
heavy involvement of lipoproteins and oxylipins in disorders both in 
periphery and in brains, which has important implications in both car-
diometabolic and neurological disorders. 

As for future directions, a lipoprotein isolation method that can 
achieve higher resolution, shorter experiment time, and good compati-
bility to other detection tools such MS/MS will be highly desired. In 
addition, the synthesis of isotopically labeled oxylipins esterified in 
complex lipids will highly benefit the analysis of esterified oxylipin not 
only in lipoproteins but also in other biological samples. Furthermore, 
the esterified oxylipins in lipoproteins and other compartments should 
be profiled in bigger, well-characterized cohorts to connect this area of 
biology with other parts of metabolism, genetic makeup, and car-
diometabolic and neurological disease outcomes. Such studies are crit-
ical to link the inflammatory dysregulation in the peripheral to the one 
in CNS, as well as to link the potential biomarkers and actionable 
intervention related to oxylipins and lipoproteins to the precision 
medical care to target the so-far untreatable neurodegenerative diseases. 
This approach will provide data-driven target selection for more 
detailed studies in models in vitro and in vivo. 
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