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Abstract 

We investigate how human choosers adapt their value 
encoding strategy to the statistics of the choice environment. 
Specifically, we ask whether the human value encoding 
mechanism exhibits divisive normalization only in the Pareto-
distributed environments in which it is information-
maximizing. To test this theory, we conduct a risky choice 
experiment in which subjects are presented with blocks of 
choice stimuli drawn from either a Pareto-distributed 
environment or a uniform-distributed environment. Our results 
show that subjects exhibit some degree of normalization 
regardless of whether it is efficient or not, but do adapt the 
curvature of their encoding function to the environment. These 
findings suggest that human value coding mechanisms are 
flexible but biologically constrained to be perfectly efficient 
only in specific environments. This study provides new 
insights into the neural mechanism of human decision-making 
and the role of environmental statistics in shaping it.  

Keywords: efficient coding; divisive normalization; 
stochastic choice; neuroeconomics; risky choice 

Introduction 
The divisive normalization (DN) encoding function is 

often viewed as a canonical encoding mechanism (Carandini 
& Heeger, 2012) and has been implicated in a wide array of 
cognitive functions from visual stimuli (Carandini et al., 
1997; Heeger, 1992), through auditory (Schwartz & 
Simoncelli, 2000), olfactory (Olsen et al., 2010) sensory 
processing, and even in high cognitive functions, such as 
value and reward representation (Louie et al., 2011; Webb et 
al., 2021). The main advantage of this encoding mechanism 
is that it allows an informationally-limited cognitive system 
to efficiently encode input stimuli from naturalistic 
environments (Heeger, 1992), and it is thus often considered 
a form of efficient code (Schwartz & Simoncelli, 2001; 

Steverson et al., 2019). Furthermore, the divisive formulation 
allows for scale-invariance in the representation of natural 
environments (Chater & Brown, 1999; Kello et al., 2010).     

DN maximizes mutual information, and is therefore 
efficient, only for environments characterized by certain 
classes of input stimulus distributions (Bucher & 
Brandenburger, 2022). Therefore, different optimization 
criteria and stimuli distributions (Heng et al., 2020; Steverson 
et al., 2019), may imply the implementation of other 
encoding mechanisms (Bhui & Gershman, 20181115; Heng 
et al., 2020). Whether human behavior relies on a divisive 
form of normalization regardless of the environment, or 
whether it only arises in environments in which it is efficient, 
remains unknown.  

Here, using behavioral experiments and computational 
modeling, we asked whether humans use a DN-like 
mechanism to encode the values of rewards when making 
choices among classical economic lotteries. Similarly to 
Kutzner et al. (2017), we manipulate the statistics of the 
choice environment. Subjects made choices when these 
lotteries were drawn from environmental distributions for 
which DN is provably efficient, and for environmental 
distributions for which it is inefficient. This allowed us to ask 
if choices are constrained by an encoding mechanism that can 
only operate using some divisive form, or whether the 
encoding mechanism adapts across different choice 
environments to whatever form is maximally efficient 
(Figure 1A).  

Our main findings suggest that subjects exhibit a divisive 
form of normalization both when it is, and when it is not, 
efficient. At least over the timescale we examined, subjects 
employed normalized value encoding regardless of the 
distribution of the input stimuli they were facing. 
Nonetheless, the precise curvature of the DN function did 
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vary as a function of the environment. This indicates that 
subjects do adapt to the different choice environments, 
although that adaptation appears constrained by the divisive 
mechanism even when that is not an efficient strategy.   

Methods 

Experimental Design 
The task consisted of two stages, which took place on 
separate days. 
 
BDM Task (STAGE I). To eliminate the effect that risk 
preferences may induce on subjects’ choices, we aimed to 
generate the environmental statistics in the expected utility – 
or subjective-value (SV) – space (as opposed to, say, the 
monetary prizes). Thus, we first utilized a bidding experiment 
in STAGE I for eliciting subjects’ risk preferences. STAGE I 
comprised 33 bid trials, in which subjects reported their 
willingness to pay to participate in a lottery. On each bid trial, 
subjects were presented with a visualization of a 50-50 lottery 
on the computer screen and had to type in their willingness to 
pay to participate in it in a dollar amount (Figure 1B). For 
each lottery, the bid could range between its minimal and 
maximal payoff in $0.1 increments. All subjects completed 
the same 33 trials in an order randomized at the subject level. 
At the end of the session, the realization of a randomly 
selected bid trial was implemented for payment, using a 
Becker–DeGroot–Marschak (BDM) auction, a mechanism 
designed to elicit an individual’s truthful SV for an item 
(Becker, DeGroot & Marschak 1964). 
 
Choice Task (STAGE II). In STAGE II of the study, our aim 
was to test whether the distribution of lottery valuations in 
the choice environment affected choice mechanisms. 
Subjects were asked to choose the 50-50 lottery they 
preferred to play from two available options that varied from 
trial-to-trial. Lottery payoffs ranged between $0 and $60 in 
$0.1 increments. Overall, subjects made 640 binary choices 
that were divided into two blocks of 320 trials each and 
presented on subsequent days. Our experimental 
manipulation was that in each block, the lotteries were drawn 
either from a uniform distribution (all valuations equally 
likely) or from a Pareto type III distribution of SVs for which 
DN is efficient-code (Bucher & Brandenburger, 2022). The 
order of the treatments was counter-balanced across subjects. 
One trial was randomly selected for payment at the end of 
each experimental session.1   
 
Sessions. Experimental sessions were carried out online via 
Zoom while subjects completed the task on a website. We ran 
eight sessions of the experiment between May 2022 and 
August 2022. After instruction, subjects had to successfully 

                                                           
1 Subjects also faced an additional 640-trials with six-option 

choice sets. Thus, in each environment subjects encountered two 
320 choice blocks presenting two-option and six-option conditions. 
The six-option blocks were designed to examine another research 
question that goes beyond the scope of the current study and will be 

answer a set of comprehension questions about the procedure 
before starting STAGE I. They could participate in STAGE 
II of the study only if they completed all trials in STAGE I. 

Subjects received all payments after completing both 
STAGE I and STAGE II. Subjects received a $10 
participation fee and on average $24.5 in STAGE I (range $0-
60) and $76.02 in STAGE II (range $7.3-120)1 from the 
decision task. All parts of the experiment were self-paced. 
Both the BDM and the choice tasks were programmed in the 
oTree software package (Chen et al., 2016). 

 
Participants. We recruited 130 participants from various 
departments at the University of Sydney. Subjects gave 
informed written consent before participating in the study, 
which was approved by the local ethics committee at the 
University of Sydney. Fourteen subjects failed 
comprehension questions and were dropped from the study. 
Twenty-eight participants did not show up to STAGE II, and 
thus were also dropped from the study. Five additional 
subjects started STAGE II but decided to drop out. Hence, we 
report the results from the remaining 83 participants (49 
females, mean age=21.8, std: 3.34, range: 18-30). 
 
Risk Preferences Estimation. Following STAGE I, we used 
subjects’ bids to estimate their risk preferences using a power 
utility function:  

(1) 𝑆𝑉௧ = 𝐸ൣ𝑉௧
ఘ

൧,          0 ≤ 𝜌,  

such that the subjective valuation for a lottery in trial 𝑡 =
1, … ,33 is given by the expected utility of the lottery. If the 
risk curvature parameter 𝜌 < 1, this indicates that the subject 
is risk-averse. When 𝜌 = 1, the subject is risk-neutral. If 𝜌 >
1, the subject is risk-seeking. 

 
Figure 1: (A) Research question. (B) Experimental design.  

reported in a separate paper. Blocks were presented in random order 
across subjects but on a given day, all blocks were drawn from the 
same distribution. Payments for STAGE II also included a 
realization of one choice from the six-options sets. 
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We used a non-linear least-squares (nls) regression to 
estimate the 𝜌 parameter separately for each subject, using 
the following specification –  

(2) 𝑏𝑖𝑑௧ = ቀ0.5൫𝑥ଵ,௧
ఘ

+ 𝑥ଶ,௧
ఘ

൯ቁ

భ

ഐ
, 

where 𝑏𝑖𝑑௧ is a subject’s bid in trial 𝑡 (the certainty 
equivalent of the lottery in trial 𝑡), and 𝑥ଵ,௧ and 𝑥ଶ,௧ are the 
lottery payoffs. Subjects in our sample exhibited 
heterogeneity in their risk preferences, as evident in the 
distribution of estimated 𝜌′s in Figure 2.  

Using estimated 𝜌′s, we could compute the SV for any 
combination of 𝑥, which allowed us to generate sets of 
lotteries whose implied SV distributions matched our target 
distributions (see below), regardless of individual differences 
in risk attitudes. This step was crucial for STAGE II of the 
study, where we aimed to control the environmental statistics.  
 
Generating Uniform Distributions of SVs. For each 
subject, we computed the upper bound of the distribution as 
the SV of the maximal possible winning amount in the study, 
which was $60 (i.e., 𝒔𝒗𝒎𝒂𝒙 = 𝟔𝟎𝛒). We then divided the 
range [𝟎, 𝒔𝒗𝒎𝒂𝒙] into 40 equally-spaced SV increments. For 
each of the increments, we created eight different lotteries, 
which would give the subject this exact subjective value (for 
a total of 320 lotteries). Since the joint distribution of a two-
dimensional uniform distribution is independent, hence 
determined by its marginals, it follows that we could 
replicate and randomize the SVs-grid twice for generating 
binary choice sets.  

 
Generating Pareto Type III Distributions of SVs. The DN 
encoding function is information-maximizing for a bivariate 
Pareto distribution with a joint pdf (Bucher & 
Brandenburger, 2022; Eq. 7 with 𝝁𝒊 = 𝟎)2:  

 

(3) 𝑓௦௩(𝑠𝑣ଵ, 𝑠𝑣ଶ) = 𝛽ଶ
ଶቆ ∏

భ


൬

ೞೡ


൰
ഁషభ

మ
సభ ቇ

ቆଵା∑ ൬
ೞೡ


൰
ഁ

మ
సభ ቇ

య  , 

and the marginal pdf being a univariate Pareto type III pdf:  

(4) 𝑓௦௩
= 𝛽

భ


൬

ೞೡ


൰
ഁషభ

ቆଵା൬
ೞೡ


൰
ഁ

ቇ

మ , 

where 𝑖 ∈ {1,2} indicates the dimension of interest, and the 
number of choice options in the choice sets (𝑛 = 2) 
determines the dimension of the distribution. 𝛽 > 0 is a shape 
parameter, while 𝜎 are scale parameters. We set 𝜇 = 0, and 
based on previous empirical estimates (Webb et al., 2021),  

                                                           
2 We set the location parameter 𝜇 = 0 to match the lower bound 

of the uniform distribution, and to avoid negative valuations. 

 
Figure 2. Distribution of the ρ parameter, capturing elicited 

risk preferences from STAGE I of the study. 
 
we set 𝛽 = 3. Note that for this parametrization, the 
correlation coefficient across dimensions is analytically 
given (Bucher & Brandenburger, 2022; eq. 11) and equal to 
0.7049. Scale parameters 𝜎 were chosen at the subject-level 
in a manner such that the conditional expectation of the 
Pareto distribution, which is given by (Bucher & 
Brandenburger, 2022):   

(5) 𝐸൫𝑠𝑣ห𝑠𝑣൯ = 𝜎 ቈ1 +  ൬
௦௩ೕ

ఙೕ
൰

ఉ



ଵ/ఉ

 
(ଶି

భ

ഁ
)(

ഁశభ

ഁ
)

(ଶ)
 , 

would match the expectation of the uniform distribution, 
where Γ indicates the gamma function.  

Following Proposition 4 of Bucher & Brandenburger 
(2022), as well as Arnold (Arnold, 2015), and using the 
subject-specific parameterization, we generated the Pareto 
type III distributions as a scale mixture of transformed 
exponential (or Weibull) random variables, so that: 

(6) 𝑠𝑣 =  𝜎 ቀ



ቁ

భ

ഁ
,       𝑓𝑜𝑟 𝑖 = 1, … 𝑛, 

where 𝑈~𝐸𝑥𝑝(𝜆 = 1) and 𝑍~𝐸𝑥𝑝(𝜆 = 1) independently of 
all 𝑈. Note that small 320-draws experimental sets lead to 
under-sampling of the distributions. Therefore, to fully 
capture the shape of the distribution, for each subject, we first 
generated joint Pareto distributions with 100K draws. We 
then created small 600-draw experimental distributions that 
matched the large 100k-draw distributions, allowing a 
deviation of up to 0.2 utils from the actual first and second 
moments (mean and standard deviation) of the large 100k-
draws sets. Finally, we truncated the long tail of the Pareto 
type III distributions at 𝑠𝑣௫  (eliminating 6.5 to 23.83 
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percent of the distribution, depending on the risk parameter 
𝜌), to match the upper bound of the uniform distribution and 
to avoid extreme reward amounts. We then cast 320 SVs at 
random from the remaining valuations, which constituted the 
experimental subject-specific Pareto distributions.  
 
Generating Lotteries from SV Distributions. The final step 
in our design was to generate lotteries in dollar amounts from 
the SV distributions (which were created in utility space). For 
each lottery 𝒊 = 𝟏, 𝟐 in trial 𝒕 = 𝟏, … , 𝟑𝟐𝟎 with a given 𝒔𝒗𝒊,𝒕, 
valuation, 𝒙𝟏𝒊,𝒕

 was randomly drawn uniformly in the range 

[𝟎, 𝟔𝟎] with 0.1 increments. We then solved for 𝒙𝟐𝒊,𝒕
, giving 

rise to the desired 𝒔𝒗𝒊,𝒕, and rounded to one decimal place, 
using the following equation: 

(7) 𝑥ଶ,
= ቀ2𝑠𝑣,௧ − 𝑥ଵ,

ఘ
ቁ

భ

ഐ. 

In practice, we had to restrict the upper range of 𝑥ଵ′s to 

൫2𝑠𝑣,௧൯
భ

ഐ to avoid negative values within the parentheses in 
eq. 7, and then determined the maximal value of 𝑥ଵ,

using the 
minimum function:    

(8) 𝑥ଵ,

௫ = min {൫2𝑠𝑣,௧൯
భ

ഐ, 60}. 

We restricted the share of trials with first-order stochastic 
dominance (FOSD) (trials on which both amounts of one 
lottery were higher or equal to the other lottery) to 45 percent. 
For subjects with 𝜌 → 0 , we could not generate experimental 
sets with only 45 percent of the trials taking this easy form. 
Therefore, we fixed 𝜌=1, for all subjects with 𝜌 < 0.1 (a total 
of 6 subjects), limiting the interoperability of data from this 
small number of subjects.  

Model Fitting 
DN models. To test whether subjects employed 
normalization under both experimental treatments, we 
considered a class of divisive functions, which capture both 
temporal and spatial contexts of choice (Khaw et al., 2017; 
Schwartz et al., 2007).  All functions share the following 
general formulation: 

(9) 𝑧(𝑠𝑣) =
௦௩

ഀ

ఋା
 ,  

 
such that 𝑧 is the normalized value of the subjective 
valuation 𝑠𝑣 . The parameter 𝛼 ≥ 0 is a curvature parameter, 
while the parameter D∈ ℝ is the normalization factor, which 
could be either temporal, spatial, or both (see below). 𝛿 is the 
so-called “semi-saturation parameter” (Heeger, 1992). 

We estimated twelve specifications of eq. 9, which varied 
by their definition of the normalization factor D, and then 
divided into two groups, each comprising six different 
models. In Group 1, we set 𝛼 = 1, assuming no additional 
curvature to the function. In Group 2, we estimated 𝛼 as a 
free parameter. In the econometric estimation, a coefficient 
𝜔 ∈ [0,1] determines the degree of the normalization. When 
𝜔 → 0, there is no normalization. Within each group, in 
models I-II, we focus on spatial normalization. In model I, we 
estimated symmetric 𝜔 weights and in model II, we estimated 
asymmetric weights across the choice set elements within a 
trial, 𝑠𝑣  and 𝑠𝑣:  

I. 𝑧(𝑠𝑣) =
௦௩

ഀ

ఋାఠ(௦௩
ഀା௦௩ೕ

ഀ)
, ∀𝑖 ≠ 𝑗, 

II. 𝑧(𝑠𝑣) =
௦௩

ഀ

ఋାఠ(௦௩
ഀ)ାఠೕ(௦௩ೕ

ഀ)
, ∀𝑖 ≠ 𝑗, 

In model III, we relaxed the spatial normalization in the 
denominator, and solely examine temporal normalization 
(Khaw et al., 2017):  

III. 𝑧(𝑠𝑣) =
௦௩

ഀ

ఋାఠ(ெഀ)
 . 

The parameter 𝑀 captures the temporal normalization across 
trials (Khaw et al., 2017). We do not estimate 𝑀, instead 
plugging-in the median of each distribution, which was 
uniquely defined for each subject and distribution. 

In models IV-V, we tested both spatial and temporal 
normalizations, with symmetric and asymmetric weights on 
the denominator:  

IV. 𝑧(𝑠𝑣) =
௦௩

ഀ

ఋାఠ(ெഀା௦௩
ഀା௦௩ೕ

ഀ)
, ∀𝑖 ≠ 𝑗, 

V. 𝑧(𝑠𝑣) =
௦௩

ഀ

ఋାఠ(ெഀ)ାఠ(௦௩
ഀ)ାఠೕ(௦௩ೕ

ഀ)
 , ∀𝑖 ≠ 𝑗, 

Finally, in model VI, we also directly estimated a classical 
random utility model (RUM), which precludes any type of 
normalization, where: 

VI. 𝑧(𝑠𝑣) =
௦௩  

ഀ

ఋ
 .    

Maximum Likelihood Estimation of the DN Function. 
Models I-VI were estimated via a maximum likelihood 
procedure (MLE). Our main goal was to test whether the 𝝎 
parameters were significant, implying normalization, under 
both experimental treatments, and across several 
specifications of the divisive model.    
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Table 1:  DN pooled estimates, Group 1, 𝛼 = 1. Up: Pareto distribution, bottom: uniform distribution. 
+ p<0.1, * p<0.05, ** p<0.01, *** p<0.001. Nuniform = 24,527. NPareto = 24,405. 

 

 

 

Table 2: DN pooled estimates, Group 2, 𝛼  is a free parameter. Up: Pareto distribution, bottom: uniform 
distribution. + p<0.1, * p<0.05, ** p<0.01, *** p<0.001. Nuniform = 24,527. NPareto = 24,405. 

 

 
For this aim, we imposed stochasticity in the choice 

process (Webb, 2019; Webb et al., 2021) with an additive 
noise term 𝜂, drawn from a Gumbel distribution: 

(10) 𝑢 = 𝑧(𝑠𝑣) + 𝜂 . 

Subjects chose the option with the highest utility 𝑢: 

(11) 𝑢 > 𝑢  ↔  𝑧(𝑠𝑣) + 𝜂 > 𝑧(𝑠𝑣) + 𝜂, ∀𝑖 ≠ 𝑗. 

The probability of choosing option 𝑖 is given by the logit 
choice probability, denoted by 𝑃(𝑧(𝑠𝑣)). 

 
 

 
We estimated 𝑃(𝑧(𝑠𝑣)) for subjects’ aggregated choice data 
via a logistic function with MLE (Harrison, 2008), clustering 
standard errors on the subject level. Thus, in our estimation, 
subjects are treated as one representative decision-maker. 
Since specifications with spatial normalizations are defined 
for all ∀𝑖 ≠ 𝑗, we omitted trials in which 𝑠𝑣 = 𝑠𝑣. We 
evaluated goodness-of-fit using the Bayesian information 
criterion (BIC). 

Finally, to test whether the statistical environment had an 
effect on subjects’ coding mechanisms, we estimated another 
set of regressions with random effects (RE) by distributions 
for 𝛼, the functional “predisposition” curvature (Glimcher & 
Tymula, 2023). 

Group 1 (I) (II) (III) (IV) (V) (VI) 
Pareto 

𝛿 -0.0781*** -0.0791*** -0.2555** -0.1799*** -0.2539** 202.9793 
𝜔 0.1168***   0.0785***   
𝜔  0.1257***   0.0257  
𝜔  0.1080***   0.0246  
𝜔௧   0.2471***  0.1927***  

BIC 20699.1501 20704.4042 20111.2270 20268.0400 20088.8229 33418.2735 
Uniform 

𝛿 -0.2211*** -0.2211*** -0.4191*** --- -0.4319*** 62.5630 
𝜔 0.1311***   ---   
𝜔  0.1313***  --- -0.0342+  
𝜔  0.1308***  --- -0.0314  
𝜔௧     0.2361*** --- 0.3046***  

BIC 15070.0649 15080.1609 13724.2675  13696.8862 31085.6892 

Group 2 (I) (II) (III) (IV) (V) (VI) 
Pareto 

𝛼 5.4073*** 5.4151*** 0.7377*** 2.0270*** 5.5053*** ---- 
𝛿 0.0832 0.0829 -0.1697* -0.5181** 0.0872 --- 
𝜔 0.3682***   0.1337***   
𝜔  0.3784***   0.3813***  
𝜔  0.3585*** 

 

  0.3613***  
𝜔௧   0.1919***  -0.0000  

BIC 20222.0127 20252.5092 20040.7668 20126.495 20230.0258  
Uniform 

𝛼 9.7419*** 9.7388*** 0.9267*** --- --- -0.0556 
 

𝛿 0.3901 0.3908 -0.3816*** --- --- -0.0126 
 

𝜔 0.3400***      
𝜔   0.3411***  --- ---  
𝜔   0.3389***   ---  
𝜔௧   0.2254***  ---  

BIC 13430.1533 13440.167 13728.6665   15889.877 
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Results 
Tables 1-2 summarize the pooled estimates for Groups 1 and 
2 (respectively). For some specifications, the MLE algorithm 
did not converge. There, we report null findings. In all, we 
report a total of seventeen regressions of DN models and 
additional three regressions of the classical Random Utility 
model (RUM) (McFadden, 2001). 

Our results show that across all divisive models, regardless 
of the exact specification examined, the normalization 
coefficients (𝜔’s) are significant and positive (p<0.001), 
indicating normalized value coding. This is true for both the 
Pareto and uniform distributions. The degree of 
normalization is of the same magnitude in both 
environments.  

Next, we turn to look at model fits for the classical RUM. 
We find that model parameters are not significant, and that 
goodness-of-fit measures (BIC scores) of all the DN models 
are substantially lower (better) than those of the RUM 
estimates. This suggests, again, that divisive coding is a better 
fit for subjects’ choices even in environments where it is not 
an efficient strategy.  

Taken together, these findings imply that subjects’ value 
coding is bounded by cognitive constraints, since subjects 
exhibit divisive value coding even in statistical environments 
for which division comes at the expense of efficiency. 

Finally, Table 3 shows the results from a combined 
regression of the full sample, and reports estimates for 
constant and random effects of 𝛼, the functional 
predisposition curvature. Our main goal here was to test 
whether the value coding mechanism responds at all to the 
statistical structure of the environment. We thus ran the 
random effects model only for specifications I, II, and III for 
which the MLE algorithm converged in the separate 
distribution-specific regressions (presented in Tables 1 and 
2). Our results show that in spatial normalization models, the 
parameter 𝛼 is significantly higher by 5.3 in the uniform 
distribution compared with the Pareto distribution (p<0.001). 

In comparison, when modeling temporal normalization 
across trials, the parameter 𝛼 is lower by 0.18 in uniform than 
in Pareto (p<0.001). This shows that even though subjects are 
constrained to a divisive coding mechanism, they do still 
adapt their value representations to the statistical structure of 
their environment, suggesting that value coding is context 
dependent (Louie et al., 2013; E. Shafir et al., 1993; S. Shafir 
et al., 2002), if not always efficient.  

Conclusions 
In a choice experiment, we tested whether decision-makers’ 
value coding is obliged to employ a divisive coding 
mechanism even when it is inefficient. Leveraging recent 
theoretical results (Bucher & Brandenburger, 2022), we 
examined how two environmental statistics influenced value 
coding in risky choice. We estimated subjects’ risk 
preferences in a biding experiment, and used the elicited risk 
preferences to generate continuous Pareto and uniform 
distributions of valuations for each individual subject. This 

unique design allowed us to eliminate effects that risk 
preferences might have had on subjects’ choices. We then 
used these distributions to create binary lottery choice sets, 
where we compared subjects’ choices across two statistical 
environments. While for Pareto-distributed environments, 
DN is an efficient code, in uniformly-distributed 
environments we would expect to encounter a near-linear 
coding of inputs without any divisive element. Using MLE 
model-fitting, we found evidence for DN value coding 
regardless of the statistics of the environment. Nevertheless, 
subjects did adapt to the statistical environment by calibrating 
the curvature of the encoding function, showing that they 
were clearly sensitive to environmental statistics, even if they 
could not adopt a fully efficient encoding strategy. 

Our results suggest that subjects are obliged to employ a 
divisive form of normalized value coding, even at the cost of 
an embedded inefficiency in choice. These findings are in 
line with previous empirical results (Carandini & Heeger, 
2012; Louie & Glimcher, 2012), which suggest that DN is a 
canonical encoding mechanism. 

In fact, many real-world naturalistic stimuli have long-
tailed asymmetric distributions (Simoncelli & Olshausen, 
2001), and hence are, at least approximately, encoded 
efficiently with a DN-like function. This perhaps implies an 
evolutionary origin of the value-encoding mechanism.   

In our model of choice under risk, contextuality is achieved 
by treating the lotteries as ordinary economic “goods” and 
then applying a DN valuation to these goods.  That is, the 
inner structure of a lottery is not used in the contextualization 
step.  This is different from how Frydman and Jin (2022) 
handle context dependency in that their model makes use of 
this inner structure.  

We note that our findings do not necessarily imply the 
classical form of the DN function, suggested by Heeger 
(Heeger, 1992), since some of the specifications tested in this 
study diverge from the classical formulation. Thus, our 
results rather suggest a more general form of divisive 
computations (Steverson et al., 2019).  

The main limitation of our study is its relatively short 
timescale. It is reasonable to wonder whether adaptation on a 
longer timescale might have allowed the subjects to more 
closely approximate a non-divisive representation when that 
representation was efficient. Future longitudinal studies will 
be required to address this important issue.   

 
 
Table 3: RE of 𝛼 by distribution for Models I, II and III. 

Standard errors are clustered at the subject-level,  
+ p<0.1, * p<0.05, ** p<0.01, *** p<0.001. N=48,932 

 

 (I) (II) (III) 
Constant 𝛼 4.8215*** 4.8350*** 0.9785*** 

𝛼 Uniform (RE) 5.3152*** 5.2980*** -0.1827* 

BIC 33678.97 33676.53 33890.89 
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