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ABSTRACT OF THE DISSERTATION 

Determining the mechanism of C-Raf driven metastasis 

by 

Lisa Hieu Ta 

Doctor of Philosophy in Molecular and Medical Pharmacology 

 University of California, Los Angeles, 2023 

 Professor Owen N. Witte, Chair 

Mutated Ras and Raf kinases are well-known to promote cancer metastasis via flux through the 

Ras/Raf/MEK/ERK (MAPK) pathway. A role for non-mutated Raf in metastasis is also emerging, 

but the driving mechanisms remain unclear. Elevated expression of any of the three wildtype 

Raf family members (C, A or B) can drive metastasis. Here, we utilized an in vivo model to show 

that wildtype C-Raf overexpression can promote metastasis of immortalized prostate cells in a 

gene dosage dependent manner. Analysis of the transcriptomic and phospho-proteomic 

landscape indicated that C-Raf driven metastasis is accompanied by upregulated MAPK 

signaling. Use of C-Raf mutants demonstrated that the dimerization domain, but not its kinase 

activity is essential for metastasis. Endogenous Raf monomer knockouts revealed C-Raf’s 

ability to form heterodimers with A-Raf and B-Raf are important for promoting metastasis. Taken 

together, these data identify wildtype C-Raf heterodimer signaling as a potential target for 

treating metastatic disease.  
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Chapter 1: Introduction 

1.1 Introduction to metastasis 

Metastasis is the development of secondary malignant growths at sites distant from the 

primary cancer and is responsible for >90% of cancer-related deaths 1. Tumor cells that spread 

to form metastases must undergo a complex multi-step process, including the degradation of 

the basement membrane, escaping from the primary organ of diagnosis, intravasation into the 

bloodstream and/or lymph, extravasation into the secondary organ, survival, adaptation in the 

secondary organ, and, finally, the formation of micro and macro metastases. Although many 

cancer cells are shed from primary tumors continuously, metastasis is still a highly inefficient 

process 2,3. To understand how this inefficient process still claims thousands of lives each year, 

we can take a reductionist approach and categorize metastasis as dependent on two main 

categories that mirror the classic nature vs. nurture argument: 1) environmental factors that 

affect and influence the cancer cell, and 2) intrinsic alterations that favor their survival. Likely, 

both points contribute to the success of a disseminated cancer cell. Over the years, concerted 

efforts have extensively explored the effect of the tumor microenvironment (TME) on 

metastasis. For this thesis, we will focus on the intrinsic alterations in the cancer cell that favor 

its survival. 

1.2. Alteration in the Ras/Raf/MEK/ERK pathway is a major driver of cancer metastasis. 

Cancer is primarily a genomic disease driven by alterations in tumor suppressor and oncogenes 

4. Over the decades, DNA and RNA sequencing studies with human samples have been able to 

pinpoint frequent alterations that confer malignant cancer phenotypes. Many of these alterations 

are in the Ras/Raf/MEK/ERK pathway, also known as the MAPK cascade. 

The primary role of the MAPK pathway is to convey mitogenic signals from the cell 

surface via the signaling cascade to the nucleus to produce widescale transcriptomic changes 5. 

This occurs through a relay of signals from ligand interaction to tyrosine kinase receptors, such 
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as the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 

(HER2), resulting in the recruitment of Ras and the activation of the MAPK cascade. 

Dysregulation of this pathway has been heavily implicated in cancer progression. 

Genetic amplifications in upstream controls of the pathway, such as receptor tyrosine kinases 

(altered in approximately 10% of cancers 6), and the Ras family (altered in 19% of cancers, 7) 

have been reported in various cancers including colorectal cancer, melanoma, and breast 

invasive ductal carcinoma.  The frequency of mutations progressively decreases among the 

pathway's downstream components. 8,9. Several prevalent mutations result in the constitutive 

activation of the pathway, which subjects the cells to continual growth promoting signals that 

facilitate unregulated proliferation. Prevalent mutations such as KRASG12C or BRAFV600E 

have been prime target of for small molecule development 10,11. Other genomic rearrangement 

events, such as activated fusion products in B-Raf and C-Raf, have also been demonstrated 12.  

Cancer dependency on the MAPK signaling is apparent through the acquired resistance 

mechanisms. Melanomas with activated B-Raf can genetically amplify MEK or ERK in response 

to B-Raf inhibitors as a compensatory mechanism to maintain flux through the pathway 13,14. 

Other ways cancers maintain flux through the MAPK pathway include dysregulation of negative 

feedback mechanisms, such as the activation of phosphatases 15,16. These biological findings 

highlight the MAPK cascade as a prominent signal transduction cascade driving various stages 

of cancer progression. These examples also demonstrate cancer's ability to hijack a highly 

conserved signaling cascade for survival and growth and explain the normal function of this 

pathway in biology. The Ras/Raf/MEK/ERK cascade is crucial for regulating complex processes 

in normal cell such as cell fate, proliferation, and differentiation 17.  

1.3. The underappreciated role of wildtype (WT) proteins in cancer 

While mutations in genes are often associated with the development and progression of cancer, 

it is also possible for wild-type, non-mutated genes to play a role. Firstly, many non-mutated 
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genes regulate critical cellular processes that are involved in tumor development, such as cell 

cycle regulation, DNA repair, and apoptosis. When these genes are altered or deregulated, cells 

can grow and divide uncontrollably, leading to the development and progression of cancer. For 

instance, the HER2 gene, which encodes a growth factor receptor, is overexpressed in about 

25% of breast cancers, leading to increased signaling through the HER2 pathway and 

promoting tumor growth 18. Alterations can occur in the regulation of gene expression, post 

translational regulation and epigenetic modifications (such as changes in DNA methylation 

patterns or alterations in histone acetylation). Some mutated genes are dependent on wild-type 

genes to contribute to cancer progression. Multiple examples have been described of critically 

retained signal transduction pathways that can be targeted by affecting non-mutated genes 

such as wild-type Ras in oncogene Ras-driven cancers, PDGFRa in non-small cell lung cancer, 

and BTK chronic myelogenous leukemia 19-23. Therefore, alterations in the expression or 

regulation of normal genes can contribute to the development and progression of cancer. 

Understanding the role of wild-type genes in cancer progression is crucial for developing 

effective treatments and prevention strategies. 

1.4. Kinases as successful drug targets in cancer and metastasis 

Here, we focus our attention on protein kinases, which are enzymes that transfer a γ-phosphate 

group from ATP to serine, threonine, or tyrosine residues. Protein kinases play a vital role in 

regulating numerous cellular processes, and mutations in their genes or changes in their 

expression can lead to cancer and other diseases. The human genome encodes 538 protein 

kinases, many of which are linked to cancer initiation and progression. Consequently, kinase-

inhibitors have proven successful in clinical therapy. Protein kinases are the second most 

targeted group of proteins, following G-protein-coupled receptors. Since the approval of imatinib 

in 2001, over 70 kinase inhibitors have been approved by the FDA. Given their success, 

dysregulated kinases are promising targets for cancer treatment. Therefore, it is crucial to 
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understand and investigate their mechanistic contribution to cancer, which could facilitate 

downstream therapeutic development. 

1.5. WT Raf family kinases drive metastasis in an in vivo screen.  

Though comprehensively studied, many of Raf’s contributions to malignant phenotypes 

have only been explored in the context of mutated Raf in in vitro systems and have yet to be 

evaluated in in vivo metastasis models. In fact, non-mutated Raf can also drive metastasis. A 

previous study from our group screened 125 non-mutated kinases and identified all three Raf 

kinases can independently drive metastasis in a mouse prostate cancer in vivo model 24. 

Interrogation of human tissue microarray samples demonstrated that there was increased Raf 

family accumulation in metastatic samples compared to localized disease and normal prostate 

tissue. C-Raf drove the most pronounced and malignant metastatic disease followed by B-Raf 

and A-Raf when overexpressed. Interestingly, other kinases part of the Ras/Raf/MEK/ERK 

pathway or kinases that feed into this pathway were also tested but did not drive metastasis 

when overexpressed. These data point to the uniqueness of Raf’s contribution to cancer 

progression in the context of metastasis and suggests its MAPK independent roles may be a 

contributor to Raf driven metastasis. Although much focus has been on Ras, this chapter aims 

to take a closer look at Raf signaling and its contribution to metastasis. Fully understanding the 

functions of Raf signaling in metastasis requires a thorough appreciation of its role and 

contribution to normal biology and its function in cancer development. 

1.6. Raf history, biology, regulation, and role in cancer 

1.6.1 The discovery of Raf 

Raf kinases are key gatekeepers of the MAPK cascade. The summers of the 1980s 

were historical times as the first Raf kinase, C-Raf or Raf1, was discovered in murine and avian 

viral variants by two different groups as retroviral oncogenes. 
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In 1983, Ulf Rapp and colleagues found that the murine retroviral variant 3611 was able 

to transform rodent fibroblasts and consequently named it Virus-induced Rapidly Accelerated 

Fibrosarcoma (v-raf) 25. The summer following the discovery of v-raf, the avian homolog, v-mil, 

was also discovered via the help of viruses 26. Rapp and Bister further report the cellular 

homologs are the same for v-mil and v-raf 27. Raf1 or C-Raf was soon discovered to be a 

serine/threonine kinase cellular homolog in which may be the reason it adopted the name C-Raf 

28,29. Shortly after, A-Raf and B-Raf were identified by Rapp and Kosei Toyoshima respectively 

30,31. Following these discoveries, cloning of the cellular homolog was performed to elucidate C-

Raf function. C-Raf was shown to be important in mediating growth factor induced effects 32.  

1.6.2. Establishing the framework of the MAPK pathway 

Early studies of invertebrate systems including c. elegans, drosophila and mammalian 

cell lines helped elucidate Raf’s role in the Ras/Raf/MEK/ERK pathway. In C. elegans and 

Drosophila, only one homolog of Raf was found. Work pioneered by Norbert Perrimon’s group 

found two Raf homologs in Drosophila via homology of the kinase domain sequence by in situ 

hybridization of v-raf to Drosophila DNA 33. Perrimon’s group was also the first to identify Raf to 

be downstream of Ras signaling in Drosophila 34. This was later confirmed in C. Elegans, where 

genetic knock out studies of Lin-45, the C. Elegan homolog for Raf, was shown to be 

downstream of let60 (the c. Elegan ortholog to Ras) 35. Following this discovery, Ernst Hafen 

and colleagues spearheaded many elegant molecular studies that uncovered the intricate Raf 

signaling network 36-38. Hafen and co-authors demonstrated that D-Raf was part of a pathway in 

Drosophila, downstream of Sevenless and Torso (drosophila tyrosine kinase receptor 

homologs) 38. Genetic knock out of D-Raf showed that it played a crucial role in embryogenesis 

34 and this function was later shown in mouse embryogenesis39.  

The basic structure of the MAPK cascade was delineated with Raf being oriented in the 

EGF receptor-Grb2-SOS-Ras-Raf pathway mainly through work in Drosophila. Hafen also 
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uncovered some of Raf’s mode of negative regulation via binding to 14-3-3 protein 40. 

Surprisingly, there are no Raf orthologs in yeast. Later, MEK1/2 were confirmed by multiple 

groups to be Raf’s substrates and the Ras/Raf/MEK/ERK cascade was established in the 

mammalian systems 41-45. 

1.6.3. Raf family kinases  

Raf isoforms play a crucial role in early biological processes. Knockouts of any of the 

three paralogs can lead to embryonic and post-natal lethality in mice 39,46,47. In the late 1990s, 

Ulf Rapp, Andreas Zimmer, and Manuela Bacarrini independently investigated the role of all 

three Raf paralogs in mouse embryogenesis. C-Raf was the first to be heavily studied of the 

three kinases. C-Raf knockout mice showed embryonic lethality and poor development of the 

placenta, liver, and hematopoietic organs 39,48.  This suggested that the presence of C-Raf 

counteracted apoptosis. B-Raf homozygous knockout mice demonstrated significant defects in 

neuronal, vascular, and endothelial cell development as well as irregular apoptosis compared to 

wildtype mice in the developing embryo 49. When knocked out, A-Raf, often deemed the “black 

sheep” of the Raf family, did not result in embryonic lethality when knocked out 46. However, A-

Raf knock out mice exhibited shortened post-natal survival, dying usually within a month after 

birth. Additionally, A-Raf-/- exhibited severe gastrointestinal defects and neurological 

abnormalities. Though these studies suggest that Raf family paralogs have distinct roles in 

development, combination knockouts highlight the compensatory roles that the paralogs 

possess. Double knock out studies of A-Raf and C-Raf exhibited the most severe phenotype 50. 

These compensatory roles among the Raf isoforms are observed beyond the scope of 

development. For example, regulatory mechanisms that are activated via dimerization will be 

addressed in section 1.3.6. In early 2000, Zimmer’s group demonstrated that all three paralogs 

are expressed ubiquitously throughout the developing embryo 47. Additionally, individual Raf 
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isoform knockouts did not alter the expression or activation of downstream MAPK, further 

supporting redundancy within the Raf family. 

Mechanistic studies determining the role of Raf isoforms conducted in eukaryotic cell 

culture models have mainly interrogated the effects of manipulating B-Raf and C-Raf. These 

studies have found that Raf regulates various cellular functions, including cell cycle progression, 

cell proliferation, and regulation of apoptosis 51,52. Initially, Raf’s function was thought to be 

confined to the MAPK linear cascade. However, subsequent work from multiple groups 

demonstrated that intricate post-translational modifications, protein-protein interactions, and 

feedback mechanisms render this pathway much more complex. This thesis will also focus on 

the uniqueness of C-Raf function and role in disease.  

1.6.4. C-Raf structure 

The activation mechanism of Raf has been the subject of a decade-long hunt. Many of the 

initial studies focused on C-Raf regulation. The three mammalian Raf members have three main 

conserved regions in their protein structure: 

1. CR1 - Contains the Ras binding domain, also annotated as RBD. It also contains a 

cysteine-rich domain (CRD) that doubles as a secondary Ras binding site and interacts 

with the kinase domain to enforce autoinhibition (part of the N-Terminal regulatory 

region) 53,54. 

2. CR2 – Contains inhibitory phosphorylation sites for regulating activation (part of the N-

terminal regulatory region), specifically phosphorylation of S259 (on C-Raf) facilitates 

binding with 14-3-3, an inhibitory scaffolding protein.  

3. CR3 – Contains the kinase domain, dimerization domain and the second 

phosphorylation site for 14-3-3 binding (S621 on C-Raf). 

1.6.5 Ras interaction 
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First observed in v-Raf, deletion of CR1 and CR2 (N-terminal regulatory domains) 

renders the protein constitutively active 55,56. Data from subsequent studies demonstrated that 

C-Raf’s N-terminus interacts with the kinase domain in an autoinhibitory loop 57,58. This 

inactivated state was hypothesized to be reinforced and stabilized through inhibitory binding of 

14-3-3 proteins on the S259 and S621 phosphorylation sites 59,60. S259 is phosphorylated by 

Protein Kinase A (PKA) and Akt 61-64. The Raf proteins mainly resides in the cytoplasmic space. 

Upon GTP loading of Ras, Raf gets recruited to plasma membrane microdomains where MAPK 

signaling components are present at higher concentrations 65. Ras can interact with Raf via two 

regions: the RBD and the cysteine rich domain (CRD). The CRD can interact with farnesyl 

groups attached to Ras’ C-terminus 66,67. Additionally, Raf’s CRD interacts directly with 

phosphatidyl-serine, stabilizing it at the plasma membrane 68,69. Ras activation promotes 

dephosphorylation of S259 and S621 by protein phosphatase 2A (PP2A) and PP1, thereby 

releasing 14-3-3 from the N-terminus 70,71. Ras has also been shown to promote dimerization 72. 

These interactions secure Raf, poising it for activation.  

1.6.6. Raf Dimerization 

The next crucial step in Raf’s activation sequence is dimerization with other Raf 

monomers. The importance of Raf dimerization became apparent when forced oligomerization 

of Raf via fusion with FKBP12 domains was found to promote Raf activity 73. The role of 

dimerization in Raf activation was further supported by the discovery that catalytically inactive B-

Raf mutants in melanoma were able to promote downstream MAPK signaling via association 

with endogenous kinase competent C-Raf 74-76. These findings showed that dimerization was 

important for downstream activation and that B-Raf was able to induce C-Raf catalytic function 

independent of B-Raf’s intrinsic kinase activity. Dimerization can be accomplished via the 

association of homodimers or heterodimers. Through intricate molecular studies, Walter Kolch 

and colleagues demonstrated that heterodimers and homodimers can spontaneously form 
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under physiological conditions; however, B-Raf:C-Raf heterodimers had higher activity 77. The 

work was further supported by Deborah Morrison and colleagues in the context of cancer and 

normal Raf signaling 78.  

Mutation of key residues in the kinase domain elucidated the dimer interface. In 

Drosophila, KSR, a close relative of Raf, serves to activate D-Raf via dimerization, required the 

kinase domain but not kinase activity to activate Raf in Drosophila 79. Further structural studies 

of human B-Raf kinase domain crystals revealed that the kinase domains formed side-to-side 

dimers 80. At the center of this dimerization interface is a key arginine residue (Braf Arg509 and 

C-Raf Arg401) in the kinase domain that is distant from the catalytic cleft. Mutation of this 

residue abolished Raf activity 78. 

Raf kinases are divided into the N-lobe and the C-lobe connected by a flexible hinge. 

The N-lobe contains a regulatory helix called alpha-C. The C-lobe contains the activation 

segment which presents in a key loop structure 81.  

Dimerization is thought to promote allosteric activation and conformational changes that 

stabilize the closed conformation of the kinase structure 82. This involves restriction of lobe 

movements. Generally, closed conformation for protein kinases is the active form and is more 

stable via alignment of two parallel columns of hydrophobic residues along the N and C-lobe, 

called the catalytic and regulatory spines, respectively 83. Interrogation of inactive and active 

states of Raf shows that the steps to activation involve various protein interactions and 

phosphorylation of the activation segment, resulting in spine alignment, kinase closure, and 

kinase activation 83. Upon dimerization, Raf kinases are activated upon the concerted inward 

movement of the alpha-C helix (containing the key Arginine residue) and the Phe residue part of 

the DFG motif in the N-terminal end of the activation segment 84.  

1.6.7 Key phosphorylation sites for Raf activation 
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Raf kinases require phosphorylation for their activation, which occurs in three regions of 

the protein: 1) the N-terminal region of the kinase domain, 2) the activation segment in the 

kinase domain, and 3) the C-terminal 14-3-3 binding site.  

The N-terminal region contains an SSYY motif spanning residues 338-341, and 

phosphorylation of Ser338 and Tyr341 is required for full activity 85,86. This region acquires a 

negative charge upon phosphorylation, explaining why B-Raf has a lower threshold for 

activation due to its inherent negative charge from residue Asp448 86,87. This also explains why 

B-Raf has a higher mutation frequency in cancer 88. Phosphomimic substitution in this region 

has shown that the negative charge can determine the direction of Raf dimer transactivation and 

create asymmetry 89. Phosphorylation allows Raf to act either as an activator (transactivate via 

phosphorylation) or a receiver, while non-phosphorylated and therefor uncharged alternates 

could only behave as a recievers 89. These residues are known substrates for SRC family 

kinases, PAK, and CK2 90-94.  

The activation segment requires phosphorylation at Thr491 and Ser494 for C-Raf 

95.These phosphorylation sites are hard to detect due to their transient nature, low levels, and 

unstructured nature in crystal structures. However, mutation of these sites prevents activation, 

and the responsible kinases are unclear. There are some data that suggests cis-

autophosphorylation may be a viable mechanism 89 

The C-terminal end is the last region to be phosphorylated for dimeric 14-3-3 binding. 

Phosphorylation of C-Raf at S291 promotes binding of Raf to ATP 96. This site was previously 

thought to be inhibitory, but it is hypothesized that phosphorylation of this site and binding of 

dimeric 14-3-3 stabilizes the Raf dimer interaction 80,97. 

1.6.8 C-Raf feedback inhibition 

C-Raf is subjected to feedback inhibition from the MAPK pathway. As a signal transduction 

cascade it is tightly regulated to ensure adequate signal attenuation in normal signaling. In 
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diseased states, where components of MAPK are constitutively active, feedback regulation is 

hindered 98. C-Raf is regulated by dephosphorylation of specific activation residues. All the 

phosphatases responsible for this process is still unclear, however there is some evidence that 

identifies protein phosphatase 5 (PP5) to be responsible for dephosphorylating S338 99. In 

addition to phosphatase activity for attenuation, downstream members of the pathway like 

ERK1/2, can deactivate C-Raf via phosphorylation to complete negative feedback loops and 

attenuate Raf signaling 100. ERK1/2 is responsible for S29, S43, S289, S296, S301, and S642 of 

which the consequence is disassociation of Raf heterodimers and perturbation of Ras binding 

101. Conversely, these phosphorylation sites need to be removed by PP2A dependent on 

peptidyl-prolyl-cis-trans isomerase NIMA-interacting 1 (PIN1) to allow for C-Raf to become 

activated again 100,102. The duration of the MAPK signaling module is dependent on upstream 

signals, where the active and inactive states of the signaling modules are often compared to a 

molecular switch.  

1.6.9 Crosstalk with PI3K-mTOR signaling 

 The MAPK and the phosphatidylinositol 3-kinase (PI3K)-mammalian target of rapamycin 

(mTOR) cascades are key pathways in the cell that control proliferation, metabolism, motility, 

and differentiation in response to extracellular signals 103. These two pathways are 

interconnected and can crosstalk with each other to regulate cell signaling. The PI3K-mTOR 

pathway activates downstream targets such as AKT and S6K, which can inhibit the 

Ras/Raf/MEK/ERK pathway through various mechanisms. On the other hand, the 

Ras/Raf/MEK/ERK pathway can also negatively regulate the PI3K-mTOR pathway by inhibiting 

the activation of PI3K. However, under certain conditions, the two pathways can also synergize 

and promote cell proliferation and survival.  

PI3K-mTOR pathway consists of lipid kinase sensor PI3K, which can be activated by 

growth factor receptors. Following recruitment to the plasma membrane, activated PI3K can 
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generate phosphatidylinositol 3,4,5 triphosphate (PIP3) which recruits Akt protein kinase. Akt 

can be activated by 3-phosphoinositide-dependent kinase 1(PDK1) and mTORC2 104. MAPK 

can be negatively regulated via cross inhibition by PI3K-mTOR pathway 105. For example, 

protein kinase A (PKA) can phosphorylate C-Raf at S259 residue for 14-3-3 binding and 

sequestration from MAPK members like Ras and MEK 61. Akt can also cross inhibit MAPK by 

phosphorylating inhibitory residues on C-Raf at the regulatory N-terminus 63,106. In terms of 

activation, elevated ERK (downstream MAPK) and RSK activity can lead to activated mTORC1 

via the TSC2. ERK and RSK also promote phosphorylation of RAPTOR (mTOR’s scaffolding 

protein) which then promotes mTORC1 to phosphorylate 4EB-P 107-109. ERK, RSK, AKT, and 

S6K are downstream effectors of both pathways and often act on the same substrates 

sometimes together to promote various pro survival cellular processes like proliferation, 

metabolism, and motility 110.  

1.6.10 Raf’s role in the hallmarks of cancer 

Over the past 20 years, Raf has been implicated in oncogenic disease 111. The somatic 

mutational landscape of various tumor types shows different mutation frequencies across A, B, 

and C-Raf, with B-Raf being the most frequently mutated, followed by the rare C-Raf mutations, 

and finally the even rarer mutations in A-Raf 112. This is often reflective of the mechanisms of 

activation for each isoform, with B-Raf being the easiest to activate due to fewer 

phosphorylation sites required for activation 113. B-Raf also has stronger affinity for MEK1/2, 

which are the main substrates for the Raf family 114. 

Tumorigenesis 

Mariano Barbacid and Manuela Baccarini both independently investigated the unique 

role of C-Raf in KRAS driven Genetically Engineered Mouse (GEM) cancer models, specifically 

lung and pancreatic cancer 115,116. Surprisingly, elimination of C-Raf does not affect MAPK 

activity in these models as assessed by downstream effector phosphorylation status 117. C-Raf 



 
 

14  

elimination resulted in a range of partial to complete tumor regression. This result is striking as it 

suggests the necessity for C-Raf in tumor growth and progression in this model independent of 

its role in relaying MAPK pathway activity. Elimination of C-Raf has also been shown to be 

detrimental to tumor initiation in KRAS-driven mouse models 116,117.  

Epithelial to Mesenchymal Transition (EMT) and Mesenchymal to Epithelial Transition (MET)  

There have been limited direct studies that implicate Raf’s role in metastasis, however 

the MAPK pathway has many pleiotropic effects which have been shown to regulate various 

phenotypes conducive of metastasis. Upregulation of the Ras/Raf/MEK/ERK pathway, 

specifically in Ras driven cancers has been implicated in contributing to the bi-directional 

epithelial mesenchymal transition (EMT) phenotype 118. EMT is often recognized as one of the 

pivotal steps and tumor cell characteristic in early metastasis 119. The EMT process allows tumor 

cells the ability to have enhanced plasticity by adoption of epithelial, mesenchymal or a hybrid 

phenotype 120. The flexibility of adopting any of these phenotypes can present favorably 

depending on tumor’s cell’s process in the metastatic cascade. Studies looking at the main 

effect of C-Raf on EMT demonstrated that C-Raf overexpression promoted downregulated 

adherens and tight junctions, and rearranged the actin skeleton aligning with a more EMT like 

process 121. Other studies have also shown that the MET process was enhanced in metastatic 

breast cancer cells following constitutive activation of C-Raf 122.   

Migration 

C-Raf specifically possesses several MEK/ERK independent roles that contribute to 

metastatic phenotypes. Much of the focus in scientific studies of C-Raf and its function has been 

on its role as a signaling module and scaffold in the MAPK pathway. In recent years, these 

specific additional functions specifically in C-Raf have been appreciated, suggesting that C-

Raf’s role in various aspects of cancer progression may extend beyond its canonical roles 

compared to the other Raf paralogs. 
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C-Raf has been shown to play a crucial role in normal wound healing in vivo and in vitro, 

specifically in keratinocyte migration 123. In addition to its role in wound healing and migration, 

these functions (based off studies mainly through Dr. Baccarini’s group) demonstrated prevalent 

MAPK independent roles in regulating migration though association with Rho-dependent kinase, 

Rok-a 124. These functions are mediated through MAPK-independent mechanisms, with studies 

from Dr. Baccarini's group demonstrating that C-Raf regulates migration by interacting with Rho-

dependent kinase, Rok-a 124. 

The association of C-Raf with Rok-a affects its localization and inhibits its activity, resulting in  

reduced cell motility and migration with a defected contractile appearance in C-Raf ablation 

models 123. In the absence of C-Raf regulation, Rok-a becomes hyperactive, preventing the 

activation of STAT3 and Myc, leading to cell cycle exit and subsequent differentiation. Elegant 

studies from Niault and colleagues showed that via physical association, C-Raf's N-terminal 

regulatory domain binds to Rok-a's kinase domain, providing trans-inhibition to Rok-a 

downstream signaling without phosphorylation 124.   

Apoptosis 

C-Raf has been shown to play a role in regulating apoptosis through interactions with 

various proteins. A subset of C-Raf molecules within cells have been demonstrated to localize 

to the mitochondria through their association with Bcl-2 and BCl-2 associated gene (BAG-1) 125. 

P21-activated kinase (PAK) can also promote C-Raf mitochondrial localization through 

phosphorylation at site S338 126. In addition to its recruitment to the mitochondria via association 

with the above molecules, the Bcl-2 family member Bcl-2 antagonist of cell death (BAD) has 

been demonstrated to be a substrate of mitochondrial C-Raf 126-128. This phosphorylation event 

prevents BAD from localizing to the mitochondria. Walter Kolch’s group uncovered additional C-

Raf anti-apoptotic roles via interaction and suppression of the MST2 protein in the Hippo 

pathway 129. Interestingly, C-Raf prevents dimerization and phosphorylation of MST2’s activation 
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loop in a kinase independent manner 130. C-Raf also interacts with apoptosis signal-regulating 

kinase 1 (ASK1) at the mitochondria and results in ASK1 inhibition 131-133.  

It is not clear whether this interaction is due to physical association or phosphorylation. Other 

Non-MAPK effectors of Raf include Rb. C-Raf has been shown to inactivate Rb via 

phosphorylation leading to cell cycle progression 134. Disruption of this interaction has been 

shown to inhibit tumor growth and angiogenesis 135. Altogether, Raf wears many hats and plays 

a part in multiple processes in the cell. To explore these concepts further, we first set out to 

understand the mechanism of C-Raf driven metastasis.   

1.6. Understanding the contribution of WT Raf in metastasis 

Mutated Raf kinases can have significant impacts on cancer, as mentioned earlier, 

although not all cancers exhibit these mutations. Our previous study revealed that, in addition to 

activating mutations, elevated levels of wild-type Raf kinases can drive aggressive metastatic 

behavior in an animal model 24. Investigating this mechanism can provide insights into the 

potential role of Raf in cancers with minimal alterations in the MAPK and other oncogenic 

pathways. 

Continuing our previous investigation, we have narrowed our focus to examine the 

mechanism of C-Raf-driven metastasis. Among the three Raf kinases, B-Raf is the most 

frequently mutated due to its lower activation threshold. Therefore, several studies have already 

highlighted the reliance of mutated B-Raf on wild-type (WT) C-Raf to propagate oncogenic 

signals 89,117.  

This unique relationship is also observed in K-Ras-driven tumor models, where mutated 

Ras depends on WT Raf for the persistence of advanced lung adenocarcinoma 116. We have 

found that an incremental increase in C-Raf protein levels drives metastasis in a dosage-

dependent manner.This increased C-Raf protein relies on the kinase activity of the MAPK 

pathway, exhibited through any of the Raf family kinases, and is not dependent on C-Raf's 
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inherent kinase activity. Our findings are supported by the work of Shiva Malek and colleagues, 

who have observed the same phenomenon in K-Ras-driven cancers. 

Other researchers, such as Manuela Baccarini's group, also suggest the dispensable 

nature of C-Raf's inherent kinase activity in various oncogenic and pro-survival behaviors. To 

further support the importance of kinase activity in the system, but not C-Raf's inherent kinase 

activity, we have discovered that dimerization is crucial for C-Raf-driven metastasis. 

Elimination of heterodimerization partners that cooperate through dimerization 

significantly dampened the metastatic phenotype, unlike homodimers. Notably, we observed the 

most significant extension in mouse survival when B-Raf was eliminated. These findings, along 

with the work of many others, highlight the nuanced role of Raf dimers and their implications for 

future dimer-specific inhibition in Raf-driven cancers. 
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Summary 

Mutated Ras and Raf kinases are well-known to promote cancer metastasis via flux through the 

Ras/Raf/MEK/ERK (MAPK) pathway. A role for non-mutated Raf in metastasis is also emerging, 

but the key mechanisms remain unclear. Elevated expression of any of the three wildtype Raf 

family members (C, A or B) can drive metastasis. We utilized an in vivo model to show that 

wildtype C-Raf overexpression can promote metastasis of immortalized prostate cells in a gene 

dosage-dependent manner. Analysis of the transcriptomic and phospho-proteomic landscape 

indicated that C-Raf driven metastasis is accompanied by upregulated MAPK signaling. Use of 

C-Raf mutants demonstrated that the dimerization domain, but not its kinase activity is essential 

for metastasis. Endogenous Raf monomer knockouts revealed that C-Raf’s ability to form 

heterodimers with A-Raf and B-Raf are important for promoting metastasis. These data identify 

wildtype C-Raf heterodimer signaling as a potential target for treating metastatic disease.  

Keywords: Metastasis, Raf, gene dosage, prostate cancer, dimerization, dimer pairs, wildtype, 

kinase 

 

INTRODUCTION 

 Metastasis is the primary cause of cancer related deaths and remains a significant 

clinical challenge 1. Tumor metastasis involves a multi-step cascade that requires tumor cells to 

survive a variety of environmental stressors. This process includes tumor cell invasion of the 

basement membrane, intravasation into the blood stream or lymphatic vessel, survival in the 

circulation, extravasation and, colonization at a secondary site 136. The Ras/Raf/MEK/ERK 

(MAPK) cascade is a well-studied mediator of metastasis. Ras and B-Raf are commonly 

mutated upstream regulators of MAPK signaling in cancer cells. 12,137. Targeting activating 

mutations like BRAFV600E with small molecule inhibitors have been successful and frames 

kinases as viable targets for therapeutic development 138-140.  
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Though much focus has been on mutated Raf, we and others have shown that wildtype 

(WT) Raf plays an important role in promoting cancer and metastasis 24,117,141,142. Using a 

functional screen, we previously found that all three wildtype Raf kinases (C, A and B-Raf) can 

promote metastasis of immortalized prostate cells in an in vivo metastatic model 24. In concert 

with the screen, interrogation of human tissue microarray samples demonstrated enrichment of 

Raf kinase proteins in metastatic samples compared to localized tumors and normal tissue 24. 

Among the three kinases, C-Raf drove the most penetrant metastatic phenotype. Whether C-

Raf drives metastasis via it’s gatekeeping role in the MAPK pathway or via other interactions 

remained unknown.  

Raf kinase activation is a complex process that requires a series of dephosphorylation 

and phosphorylation events that prime Raf molecules for dimerization with other Raf monomers 

143 (review). This homo or heterodimerization with other Raf kinase competent monomers is 

critical for propagating MAPK signaling. Specific dimer combinations can determine the 

aggressiveness of cancer phenotypes. Recent work pointed to wildtype A-Raf:C-Raf 

heterodimers as key regulators in K-Ras driven tumor growth 144. Venkatanarayan and 

colleagues found that K-Ras mutant cells contained more A-Raf:C-Raf than B-Raf:C-Raf 

dimers. Further work done by this group showed that C-Raf’s dimerization function, but not its 

kinase activity is important in driving malignant phenotypes in an in vitro setting. Their study 

extensively explored C-Raf dimerization in the context of Ras driven disease. However, the 

relevance of WT C-Raf’s role has not been explored in a non-mutant Ras context. Additionally, 

many of the key findings were modeled in a soft agar assay, necessitating further testing of C-

Raf’s dimerization and kinase functions in promoting metastasis in an in vivo setting.  

We performed a systematic investigation of wildtype C-Raf’s functions in driving cancer 

metastasis in a wildtype K-Ras context. We chose to interrogate C-Raf’s function as an 

archetype of the Raf kinases due to its more potent metastatic phenotype in our in vivo models 

24. To model metastasis, an intracardiac injection mouse model was used, which captures 
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multiple steps of the metastatic cascade, including resistance to anoikis and cell death, seeding 

ability in distant tissues, and most importantly bypasses sequestration of disseminated cells in 

the lungs 145 (review). Utilizing orthogonal mass spectrometry, transcriptomic analyses, various 

mutants targeting specific Raf functions, and select Raf monomer genetic deletions, we show 

that even subtle increases in C-Raf protein expression can drive metastasis. Exogenously 

added C-Raf driven metastasis is dependent on its dimerization domain. Overexpressed C-Raf 

dimerizes with endogenous A-Raf and B-Raf to drive metastasis. This work highlights the 

importance of C-Raf heterodimerization and gene dosage in driving metastatic cancer and 

points to the potential of perturbing these interactions for better therapeutic outcomes.  

 

RESULTS 

C-Raf overexpression enables transformation and metastasis of two immortalized 

prostate cell lines. 

To better understand the mechanism by which non-mutated C-Raf promotes metastasis, 

we tested C-Raf heightened expression in two immortalized prostate epithelial cell lines, BPH-1, 

and RWPE-1. These lines are immortalized by SV40 and HP18 respectively. Neither line forms 

metastasis in vivo. C-Raf overexpressing human cells were administered to immune defective 

NOD scid gamma (NSG) mice via intracardiac injection to monitor metastatic dissemination 

(Figure 1A). Both cell lines were engineered to express firefly and gaussia luciferase to track the 

spatial distribution of metastatic tumors 146 and to quantify whole body tumor burden, 

respectively (Figure 1A) 147. C-Raf overexpression did not result in significant changes in 

MEK1/2 and ERK1/2 phosphorylation levels (Figure 1B). This observation corroborates other 

studies that interrogated wildtype B-Raf and A-Raf overexpression 148,149. Naïve RWPE-1 and 

BPH-1 cells did not form tumors upon intracardiac injection for the duration of the study (100 

days). In contrast, C-Raf overexpression caused both cell lines to develop robust metastasis in 

all injected mice (Figure 1C and 1D). C-Raf drove metastasis to multiple visceral organs and 
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bone in both RWPE-1 and BPH-1 models (Figure 1E & 1F). The most common site of 

metastasis in prostate cancer patients is bone 150. Bone was consistently was one of the most 

common metastatic sites in our models, with greater than 60% of animals harboring metastatic 

tumors in this location in RWPE-1 and greater than 70% in BPH-1 model (Figure 1E & 1F). 

Whereas control mice survived for the duration of the study (100 days), Mice harboring RWPE-1 

C-Raf cells became moribund on average 42 days post injection (Figure 1G) and mice with 

BPH-1 C-Raf died on average 30 days post injection (Figure 1H). In summary, elevated C-Raf 

protein reproducibly drives metastasis in mice in two prostate cell lines to sites that resemble 

prostate cancer metastasis locations. 

 

C-Raf drives metastasis and mortality in a gene dosage dependent manner 

C-Raf protein can accumulate above normal levels via genetic amplification or 

dysregulation at the mRNA and protein levels 137,139,151. We chose to proceed with the BPH-1 

cell line for our mechanistic studies due to the expedited in vivo growth kinetics. To determine 

the threshold of C-Raf protein necessary to drive metastasis, C-Raf gene dosage was 

exogenously manipulated via various strength promoters in BPH-1 cells. C-Raf protein was 

expressed at approximate levels of ~2-fold, 3-fold and 4-fold above endogenous levels driven 

by EFS, PGK and Ub promoters, respectively (Figure 2A) (quantification in supplemental Figure 

3A). Increasing C-Raf protein expression did not increase downstream phospho-MEK1/2 and 

phospho-ERK1/2 levels as well as their corresponding total MEK1/2 and ERK1/2 (Figure 2A). 

This may be because MEK1/2 and ERK1/2 phosphorylation levels are likely constrained by 

negative feedback regulation 14.  

We performed cell cycle analysis by flow cytometry to check whether C-Raf 

overexpression enhanced cell proliferation to promote metastasis. C-Raf promoted 

accumulation of cells in the G1 phase of the cell cycle in a gene dosage-dependent manner 

under adherent conditions. Although dose dependent increase of C-Raf did not result in 
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significant growth differences under adherent conditions in vitro (Figure 2B & 2C), it significantly 

enhanced proliferation in an anchorage-independent environment (Figure 2D). To verify this 

dose-dependent effect in vivo, we injected mice and quantified metastatic tumor burden using 

gaussian blood measurements and bioluminescence imaging (BLI) (Figure 2E and 2F). 

Increasing dosage of C-Raf resulted in a dose-dependent increase in metastatic burden (Figure 

2E and 2F) and a concomitant decrease in survival (Figure 2G). Only two-fold higher expression 

above endogenous was sufficient to drive metastasis. Further increase in C-Raf levels conferred 

an additional advantage to cells and promoted more aggressive metastasis. These results 

indicate that even modest increases in C-Raf protein expression can promote malignancy and 

metastasis.  

 

C-Raf overexpression increases MAPK pathway flux and is associated with metastasis.  

C-Raf is a serine/threonine protein kinase and canonically functions via altering the 

phosphorylation status of downstream substrates and their physical association with other 

proteins 52 (review). To explore the activity and downstream effects of C-Raf overexpression, we 

analyzed the phosphoproteome of parental C-Raf overexpressing cells compared to vector 

control using tandem mass tag (TMT) isobaric labeling and phospho-proteomic analysis 152. 

TMT labeling coupled with phosphorylation enrichment and mass spectrometry allows 

quantification of the relative abundance of phosphorylated peptides 153 (Supplemental Figure 

1A). C-Raf induced drastic changes to the phosphoproteome as expected. The PC1 spread in 

principal component analysis (PCA) captured 57.7% of the variance that primarily separates C-

Raf and vector groups (Supplemental Figure 1B). 48,029 distinct phospho-peptides were 

detected in C-Raf cells compared to control when adjusted to their corresponding protein 

abundance, indicating a robust restructuring of the phosphoproteome (Supplemental Table 1).  

We performed inferred kinase activity (IKA) analysis 154 to identify kinases that have 

upregulated activity based on the quantification of known phosphorylated substrates 



 42 

(Supplemental Figure 1C). IKA analysis showed significant upregulation of C-Raf, CDK1 and 

CDK2, which are involved in cell division and proliferation. CDK2 has been shown to be 

regulated by MAPK activation 155-157 (Supplemental Figure 1D). VRK1 and VRK2, two 

serine/threonine kinases in the same family that regulate chromatin remodeling and cell cycle 

progression are also significantly enriched 158. Though neither kinase has been shown to have a 

strong relationship with C-Raf signaling, increased mTOR signaling via MAPK and PI3K 

pathway crosstalk has been shown to regulate VRK1 and VRK2 activity 159. IKA analysis also 

provided information on overall pathway/complex upregulation. C-Raf samples demonstrated 

significant upregulation of Ras/Raf signaling compared to vector control (Supplemental Figure 

1E). Other statistically significant pathways include several chromatin and histone modifying 

complexes, the DNA damage binding complex, and the ubiquitin E3 ligase complex 

(Supplemental Figure 1E). Increased flux through chromatin remodeling pathways coincides 

with increased VRK1 and VRK2 activity. Taken together, these data highlight that 

overexpression of C-Raf increases MAPK flux and downstream crosstalk with PI3K pathway 

effectors.  

 

Transcriptional targets of the MAPK pathway are upregulated in metastatic C-Raf driven 

tumors 

C-Raf signals through MEK and ERK to drive widespread transcriptional change 17,52 (review). 

mRNA sequencing was performed in vector control, parental C-Raf overexpressing cells, and C-

Raf metastasis derived cell lines to understand the transcriptomic changes induced by our C-

Raf model (Supplemental Figure 2A). Macroscopic tumors were resected from the bone, lymph 

node, spine, and thymus and cultured over a period of a week to establish metastasis derived 

lines. Differential expression analysis revealed that C-Raf drives a distinct transcriptional 

program, with over 650 differentially abundant genes compared to parental cells (Supplemental 

Figure 2B). Comparisons performed between pooled metastasis derived cell lines and their C-
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Raf-overexpressing parental lines identified over 600 differentially regulated genes. Combined 

analysis of vector control, parental C-Raf, and C-Raf metastasis derived lines demonstrated that 

46 genes were perturbed in the same direction (increasing or decreasing) in a stepwise fashion 

from vector control to parental C-Raf, and to C-Raf metastasis derived lines (Supplemental 

Figure 2C). Out of the 18 genes that demonstrated such step wise increase in expression, 9 

were known targets of Ras/Raf signaling (Supplemental Figure 2C). In concert with the 

phospho-proteomic data, transcriptional analysis of C-Raf overexpression demonstrated 

increased MAPK pathway activation. 

Each cell line was scored for key cancer hallmark signature gene sets to evaluate which 

biological processes are changed in C-Raf metastatic lines compared to the C-Raf parental and 

vector control lines 160,161. K-Ras signaling was upregulated in both the C-Raf parental and 

metastatic lines as compared to the vector control (Supplemental Figure 2D). TGFb signaling, a 

known downstream target of MAPK signaling 162, was also upregulated in both C-Raf parental 

and C-Raf derived metastasis lines (Supplemental Figure 2D). Notch signaling is significantly 

suppressed with C-Raf overexpression in C-Raf parental and metastasis derived lines 163.  

There was no clear evidence of MAPK independent C-Raf processes, like transcriptomic 

upregulation of anti-apoptotic pathways with MST2 or ASK1. Overexpression of C-Raf 

predominantly drives a MAPK transcriptional program associated with tumor metastasis.  

 

Mutation in the dimerization domain ablates C-Raf’s metastatic-promoting effects 

Dimerization is a crucial step in C-Raf’s activation sequence and is necessary for 

wildtype Ras dependent Raf kinase activation as reviewed in Lavoie et al. 2015 143. To test 

whether dimerization is necessary for C-Raf-induced metastasis, a dimerization null mutant, 

R401H was introduced into BPH-1 cells. R401H mutation is in the RKTR motif within the αC-

helix region of the dimerization interface 164. Mutation of arginine to histidine has been 

demonstrated to significantly diminish kinase activity and inhibit dimerization with other Raf 
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monomers 78,165,166. R401H expression resulted in decreased phospho-MEK1/2 and phospho-

ERK1/2 (Figure 3A). Importantly, cells expressing the C-Raf R401H mutant did not produce 

metastasis in vivo (Figure 3B). Mice harboring C-Raf R401H cells did not exhibit any metastatic 

burden at 10 weeks post injection (Figure 3C). Cell titration was performed in vitro using D-

luciferin substrate to ensure that the cells had adequate reporter gene output in vivo. All cells 

were positive for expression of firefly luciferase (Figure 3D). These results indicate that protein-

protein interactions at the dimerization interface are required for C-Raf’s ability to drive 

metastasis. 

 

Knock-out of Raf paralogs diminishes C-Raf driven metastasis  

 To determine which dimer pairs are necessary and sufficient to contribute to C-Raf 

driven metastasis, we knocked out multiple combinations of endogenous Raf kinases. We found 

that triple knockout of A, B & C-Raf was lethal to BPH-1 cells. As a follow up strategy, two 

combinations of knockouts were selected based on prior literature highlighting the importance of 

B-Raf:C-Raf and A-Raf:C-Raf heterodimers. B-Raf and C-Raf have been shown to be the most 

preferential dimer pair, while A-Raf and C-Raf dimerization has been shown to mediate K-Ras 

driven malignancy 72,76,144. Two combinations with knock-out of B-Raf were made. A clonal B-

Raf knockout line was first generated using CRISPR/Cas9 167 and sequentially modified by 

either A-Raf or C-Raf knock-out (Figure 4A & 4B). The resulting endogenous A-Raf-/-; B-Raf-/- 

and B-Raf-/- ; C-Raf-/- cell lines are subsequently referred to as AB KO and BC KO respectively. 

Exogenous C-Raf overexpression in AB KO and BC KO cell lines decreased phospho-MEK1/2 

and phospho-ERK1/2 levels (Figure 4B), indicating robust negative feedback relative to vector 

control. While AB KO cells proliferated at a slower rate than naïve BPH-1 cells, BC KO showed 

no growth difference in in vitro anchorage independent conditions (Figure 4C). Consistent with 

our previous results (Figure 2D), C-Raf overexpression significantly increased proliferation in 

ultra-low attachment conditions, which was not reduced by BA or BC knockout (Figure 4D).   
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Although BA and BC KO did not reduce C-Raf induced heightened proliferation in vitro, 

mice administered with either C-Raf AB KO or C-Raf BC KO cells exhibited drastically reduced 

metastatic burden compared to C-Raf overexpression only, as reflected in their survival (Figure 

4E). AB KO in C-Raf overexpressing cells, significantly extended survival by ~50 days 

compared to the C-Raf overexpression only group. BC KO in C-Raf overexpressing cells also 

extended survival compared to C-Raf overexpression only group by ~110 days (Figure 4E). 

Based on the combinatorial KO’s, in C-Raf BC KO cells, the only available monomers to form 

dimers are endogenous A-Raf and exogenous C-Raf. In the C-Raf AB KO cells, the only 

available monomers are endogenous and exogenous C-Raf. The metastatic phenotypes above 

suggest the ability to form either A-Raf:C-Raf heterodimers and/or C-Raf homodimers is 

sufficient to drive metastasis albeit with longer latency. The ablation of B-Raf in both KO groups 

severely dampened C-Raf driven metastasis. Therefore, these data demonstrate that the ability 

to form B-Raf:C-Raf dimers promotes the most aggressive metastatic disease in our model. 

 

Mutation of the DFG motif and the ATP binding site in C-Raf’s kinase domain result in 

different metastatic phenotypes  

To determine whether C-Raf’s kinase activity is required for the metastatic phenotype, 

cell lines expressing C-Raf, and two types of C-Raf kinase dead mutants (D486A and K375M) 

were generated. C-Raf D486A mutant alters a key aspartate residue responsible for 

coordinating Mg2+ for ATP binding in the activation segment/DFG motif of the kinase domain 

168. C-Raf K375M mutant targets a catalytic lysine in the kinase domain responsible for 

mediating ATP catalysis 77,141 (Figure 5A). Both mutations severely dampen C-Raf’s kinase 

activity 165,168-170. Surprisingly, C-Raf D486A did not significantly affect phospho-MEK1/2 and 

phospho-ERK1/2 levels compared to WT C-Raf (Figure 5B), while expression of C-Raf K375M 

diminished phospho-ERK1/2, but not phospho-MEK1/2 levels (Figure 5C). In vivo administration 

of C-Raf D486A resulted in robust metastasis, which significantly reduced survival to levels 
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comparable to WT C-Raf (Figure 5D & 5E). In contrast, injection with C-Raf K375M expressing 

cells resulted in significantly delayed metastatic latency compared to WT C-Raf, with some 

animals surviving until the end of the study (Figure 6E). These differing results for the two C-Raf 

kinase deficient mutants indicate functional nuances in C-Raf’s kinase domain that may be 

independent of its kinase activity.  

 

Overexpression of C-Raf DFG kinase dead mutant requires endogenous A-Raf and B-Raf 

to drive metastasis 

Mutation of the catalytic lysine K375 is within the region of reported high affinity for B-Raf 

binding, while the DFG motif is reported to have medium binding affinity 77. Since dimerization 

precedes kinase activation, the differences in metastatic phenotypes between these two 

mutants may be due to their differential effect on C-Raf’s ability to heterodimerize with B-Raf. 

Studies have shown that A and B-Raf kinase mutants can interact with endogenous kinase 

competent C-Raf monomers to drive aberrant signaling in cancer 75,114,171. We hypothesize that 

the C-Raf D486A mutation ablates kinase activity but does not detrimentally affect B-Raf 

binding. Endogenous B-Raf may dimerize with C-Raf D486A and compensate for its 

compromised kinase activity. To test this hypothesis, C-Raf D486A was expressed in BC KO 

cells and evaluated for its effect on metastatic output (Figure 6A). Mice harboring C-Raf D486A 

BC KO cells had significantly delayed metastatic growth and survived ~110 days longer relative 

to C-Raf D486A (Figure 6B & 6C). While ablation of endogenous B-Raf and C-Raf significantly 

increased metastatic latency, the presence of endogenous A-Raf may cooperate with C-Raf 

D486A for weak metastatic output via the MAPK pathway. We expressed C-Raf D486A in AB 

KO cells to test the additional role of A-Raf in C-Raf D486A driven metastasis. Unexpectedly, 

when the only available endogenous Raf monomer is C-Raf in the AB KO background, mice 

harboring C-Raf D486A had no metastatic lesions and survived to the conclusion of the study 

with no measurable tumors as assessed by BLI (Figure 6B & 6C) This experiment was repeated 
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twice to ensure accuracy of results. The presence of endogenous A-Raf in BC KO cells can 

compensate for C-Raf D486A’s loss of kinase activity, presumably via dimerization. However, 

endogenous C-Raf was not sufficient to rescue C-Raf D486A’s low kinase activity in AB KO 

cells, resulting in no metastasis (Figure 6C). A model of how C-Raf dimerization and interactions 

with other Raf monomers contributes to metastasis is described in Figure 6D. These data 

suggest that C-Raf’s inherent kinase activity is dispensable in driving metastasis because C-Raf 

can heterodimerize with kinase competent A-Raf or B-Raf.  

 

DISCUSSION 

Cancer cells frequently exhibit increased output through the MAPK pathway, mediated 

by activating mutations and alterations in Raf function. 12,88,172. However, the role of wild-type 

(WT) Raf in metastasis is still poorly understood. In this study, we investigated the critical 

components of elevated C-Raf signaling in driving metastasis. 

We found that non-mutated C-Raf's ability to cause metastasis depends on elevated 

expression compared to endogenous levels. Various mechanisms can lead to elevated 

expression and pathway flux, independent of genomic amplification or activating mutations. 

Dysregulation may involve negative feedback mechanisms, such as hyperphosphorylated C-Raf 

via ERK1/2 feedback can return to a signaling-competent state through the action of 

phosphatase PP2A and prolyl isomerase Pin1 70. Changes in PP2A activity can result in 

accumulated active C-Raf. In a parallel example, PTP1B elevation in renal cell carcinoma 

sensitizes it to SRC inhibition 173. Genomic changes in non-coding gene regulatory regions can 

also affect protein expression. Recent whole genome sequencing efforts have identified 

structural alterations in non-coding cis-regulatory elements of multiple genes that correspond to 

elevated expression 174. 
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 We demonstrate that C-Raf's dimerization function is crucial for metastasis. The 

difference in metastatic phenotype between two different C-Raf kinase domain mutations 

(K375M and D486A) may be explained by their effect on dimerization ability with B-Raf.  

Rushworth et al.'s molecular studies highlight the significance of distinct binding affinity regions 

in C-Raf's kinase domain to B-Raf 77. D486 falls into a medium affinity region for B-Raf binding 

while K375 is shown to be in the high binding affinity region for B-Raf. Since dimerization 

precedes kinase activation, mutation of K375 may compromise and impede dimerization with 

kinase competent B-Raf. This may truncate MAPK flux and consequently cell fitness, resulting 

in decreased metastases. Therefore, C-Raf's intrinsic kinase activity is dispensable for 

metastasis if it can compensate by dimerizing with other kinase competent monomers. 

 

Substantiating this study, Venkatanarayan and colleagues report that expression of C-

Raf K375M mutant results in drastically reduced B-Raf heterodimer formation. Despite reduced 

heterodimer formation, this mutant can still drive malignant phenotypes in K-Ras driven cancer, 

presumably through constitutive activity of mutant K-Ras 144. They also show that C-Raf K375M 

has preferential dimerization with A-Raf, which has the weakest kinase activity out of the three 

Raf kinases 111. This collection of evidence indicates that C-Raf’s intrinsic kinase activity is 

dispensable for metastasis if it can compensate by dimerizing with other kinase competent 

monomers.  

Heterodimerization is essential for C-Raf to drive metastasis, as C-Raf D486A 

expression in the absence of endogenous B-Raf or A-Raf significantly reduced or completely 

ablated metastatic ability (Figure 4E). This survival advantage provided by genetic deletion of A-

Raf and B-Raf suggests that C-Raf D486A homodimerization with endogenous WT C-Raf is not 

sufficient to facilitate metastasis. Concordant results were reported by Sanclemente et al. 2021, 

in which a kinase dead C-Raf was able to rescue tumor regression from C-Raf ablation in K-Ras 

mutant lung adenocarcinomas. Similar results were also highlighted by Venkatanarayan and 
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colleagues who pointed to the specific role of A-Raf:C-Raf dimer pairs in propagating mutant K-

Ras signal in vitro. This data suggests non-mutated C-Raf contributes to the metastatic 

phenotype through a C-Raf kinase-independent, dimerization-dependent signaling via the 

MAPK pathway. 

 C-Raf has been shown to possess MAPK independent roles that highlight its scaffolding 

functions. C-Raf’s MAPK independent roles are supported by a body of work that extensively 

interrogates its role in apoptosis, cell contractility and migration via interactions with various 

proteins like Bad, Bcl-2, ASK1, MST2 and Rok-a 123,126,128,175,176. Further investigation of these 

interactions in reference to metastasis can be explored in future studies.  

 The next generation allosteric type II Raf inhibitors or "paradox breakers," prevent 

pathway reactivation via higher affinity for B-Raf mutants and specific targeting of the DFG-

out/αC-helix-in conformation 112. Many of them are currently in development with some in early-

stage clinical trials 177-180. Phase I clinical trials for pan-Raf inhibitor LY3009120 showed toxicity 

and no change in Phospho-ERK inhibition despite sufficient drug blood plasma levels 180. While 

pan-Raf inhibition is important, our study and others highlight the importance of 

heterodimerization of Raf molecules over homodimerization 72,77,144,181,182. Higher specificity of 

future Raf inhibitor development may be required to halt Raf mediated metastatic phenotypes.  
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MATERIALS & METHODS  

 

Cell Culture and Reagents 

BPH-1 cells were propagated in RPMI supplemented with 10% (vol/vol) FBS (Gibco) and 

glutamine (1 mM). RWPE-1 cells were purchased from ATCC and cultured in keratinocyte 

serum-free medium (K-SFM) (Gibco) supplemented with 0.05 mg/mL bovine pituitary extract 

(Gibco), 5 ng/mL EGF (Gibco), penicillin (100 U/mL), and streptomycin (100 μg/mL). 293t cells 

used for lentiviral production were cultured in DMEM supplemented with 10% (vol/vol) FBS and 

glutamine (1 mM). 

Cell titer glo experiments 
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Proliferation experiments were performed following 5 days incubation in ultra-low attachment 

plates (Corning cat. CLS3471-24EA) and read using Promega Cell Viability assay (Promega 

cat. G7570).  

Cloning  

For cloning of the Ub-C-Raf overexpression vectors (C-Raf WT, C-Raf R401H and C-Raf 

D486A) C-Raf in C-Raf-ILYW (Falteirmeier et al. 2013) was mutated using site direct 

mutagenesis kit (Agilent 200523). Ub reporter was swapped out for EFS and PGK promoters via 

Gibson cloning. LentiCRISPR v2 CRISPR/cas9 system all-in-one dox inducible system was 

used to express cas9 and sgRNA targeting A-Raf, B-Raf and C-Raf genes. TLCV2 (Addgene 

#87360) was generated by insertion of A-Raf, B-Raf and C-Raf guide RNA (sgA-Raf – 

ACAATTTTGTGAGTGCAGGG, sgB-Raf – TTGAAGGCTTGTAACTGCTG, and sgC-Raf – 

GACCATGTGGACATTAGGTG) into TLCV2 vector. All cloning was sequence verified.  

Virus production 

Third-generation lentiviruses were prepared by calcium phosphate precipitation transfection of 

293t cells with plasmids expressing kinases with firefly luciferase reporter gene (FU-ILYW), 

Cas9 and guide RNAs (TLCV2), and gaussian luciferase plasmid (CMV-Gluc-IRES-GFP) 

(Targeting systems cat. GL-001). The lentiviruses were prepared as described 183. Viruses were 

tittered using serial transduction protocol of naïve 293t and assessed via flow cytometry using 

YFP and GFP.  

Clonal knock out using CRISPR/Cas9 

BPH-1 cells were infected with B-Raf-TLCV2 virus at an MOI of 10 for 48 hours. Infected cells 

were then treated with puromycin for selection of plasmid positive cells at 1 ug/mL for 72 hours. 

After puromycin selection, cells were then treated with 1 ug/mL of doxycycline for 72 hours to 

induce Cas9 expression and cutting. Cells were then expanded and then plated into 96 wells at 

once cell/well. Clones were then individually grown out, and screened via western blot for 

changes in protein levels. Clones that exhibited diminished or non-existent specific protein 



 52 

bands were additionally DNA sequenced at the site of the CRISPR edit to determine 

heterozygous or homozygous frame shift.  

Western blot  

Whole-cell lysates were prepared in Urea lysis buffer (8M Urea, 4% CHAPS, cOmplete™ 

Protease Inhibitor Cocktail from Roche with phosphatase inhibitor). Equal amounts of protein 

were separated by 4–12% (mass/vol) Bolt™ 4 to 12%, Bis-Tris SDS/PAGE (Thermo Fisher), 

followed by immunoblotting analysis with the indicated antibodies. The following antibodies were 

used to detect the corresponding proteins V5 (Invitrogen R960-25; 1:2,500); BRAF (Cell 

Signaling 55C6; 1:1,000); ARAF (Cell Signaling 4432S; 1:1000); C-Raf (Sigma HPA002640; 

1:1000); Phospho-p44/42 MAPK (Erk1/2) (Cell Signaling 4370S; 1:1000); Phospho-MEK1/2 

(Cell signaling 9154S; 1:1000); MEK1/2 (Cell Signaling 8727S; 1:1000); p44/42 MAPK (Erk1/2) 

(L34F12) (Cell Signaling 4696S; 1:1000); GAPDH (Biolegend 607903; 1:2,500) 

Animal studies and tumor models 

All animal experiments were performed according to the protocol approved by the Division of 

Laboratory Medicine at the University of California, Los Angeles. NOD-scid gamma mice were 

purchased from Jackson Laboratories. For all experiments, male mice between 6 and 8 weeks 

of age were used. Mice were anesthetized at 2% (vol/vol) Isoflurane prior to intracardiac 

injection. A single cell preparation was prepared at 0.250e6/injection of 100 uL in 1x PBS and 

injected into the left ventricle of the mouse heart. Gaussia luciferase measurements were 

conducted weekly and were performed as described 147.  

Bioluminescence imaging 

Bioluminescence Imaging (BLI) was conducted using an IVIS Lumina II (PerkinElmer). D-

luciferin (150 mg/kg) was injected intraperitoneally. After 15 min, anesthetized mice (using 2% 

(vol/vol) isoflurane) were imaged. BLI analysis was performed using Living Image software, 

version 4.0 (PerkinElmer). 

Phospho-proteomics  
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Cells were grown at 70% confluency (10e6) harvested and washed 2x with ice cold PBS. Cells 

were subsequently scaped off using a cell scraper, pelleted and washed 2x with ice cold PBS. 

Cell pellets were lysed in Urea lysis buffer (8M Urea, 100mM Tris pH8.5, AEBSF, phosphatase 

inhibitor, benzonase and 1mM DTT) and incubated at RT for 0.5 hour. Lysates were cleared by 

centrifuging at 12000 g for 15 minutes. Supernatants from samples were transferred to a set of 

new tubes and concentrations were determined by absorbance at 280nm. 150ug of protein was 

taken from each sample and proceeded to reduction (5mM TCEP) and alkylation (10mM 

iodoacetamide). Reduced and alkylated protein samples were cleaned up by SP3 method 184, 

then 0.2ug of Lys-C and 2ug of Trypsin proteases were added to each sample and digestion 

were conducted for overnight. Digested peptide samples were labeled by 0.3ug of TMT isobaric 

tagging reagent for 1 hour and quenched by adding hydroxylamine to 0.5%. Equal amount of 

labeled peptide from each sample was pooled. The pooled mixture was used to perform 

phospho-peptide enrichment using Thermo High-Select Fe-NTA phospho-peptide enrichment kit 

(A32992). Finally, enriched TMT-labeled phospho-peptides were fractionated by CIF method 152 

to 6 fractions. 

LC-MS acquisition 

A 75 µm x 25 cm homemade C18 column was connected to a nano-flow Dionex Ultimate 3000 

UHPLC system. The 70-minute gradient of increasing acetonitrile (ACN) was delivered at a 

200nl/min flow rate as follows: 1% ACN phase from minutes 0 – 6, 6 - 25% ACN from minutes 6 

– 55, 25 - 32% ACN from minutes 55 - 63.5, 32 - 80% ACN from minutes 63.5 – 67, and then 

1% ACN from minutes 68 - 70. An Orbitrap Fusion Lumos Tri-brid mass spectrometer was used 

for data acquisition in TMT-SPS-MS3 185 mode. Full MS scans were acquired at 120K resolution 

with the AGC target set to standard and a maximum injection time set to 50 ms. MS/MS scans 

were collected in linear ion trap in Turbo mode after isolating precursors with an isolation 

window of 0.7 m/z and CID-based fragmentation using 35% collision energy. Synchronized 

precursor selection was performed and 10 precursors were fragmented with 75% energy of 
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HCD and sent for MS3 scans in Orbitrap with 50K resolution. were collected. For data 

dependent acquisition, a 3-second cycle time was used to acquire MS/MS and MS3 spectra 

corresponding to peptide targets from the preceding full MS scan. Dynamic exclusion was set to 

30 seconds. 

Mass spectrometry data analysis 

MS/MS database search was performed using MaxQuant (1.6.10.43) against the human 

reference proteome from EMBL (UP000005640_9606 HUMAN Homo sapiens, 20874 entries). 

The search included carbamidomethylation on cysteine, TMT isobaric tag on lysine and peptide 

N-terminus as a fixed modification. Serine, threonine and tyrosine phosphorylation, methionine 

oxidation and N-terminal acetylation were set as variable modifications. The digestion mode 

was set to trypsin and allowed a maximum of 2 missed cleavages. The precursor mass 

tolerances were to 20 and 4.5 ppm for the first and second searches, respectively. Datasets 

were filtered at 1% FDR at the PSM level. Peptide quantitation was performed using 

MaxQuant’s multiplexing TMT 10plex MS3 mode. Site level t-test was performed using 

summarized phosphosites quantitation output from MaxQuant. Differentially (p-value<=0.05) 

quantified peptides from each pair of comparison were sent to PhosFate 154 to infer kinase 

activity change. 

Transcriptional Profiling of C-Raf cell lines 

RNA-Sequencing 

Transcriptomic profiling was performed using the TOIL pipeline. The transcriptomic dataset was 

filtered for coding genes with low additional filtering of variance and low abundance. We used 

ComBat-seq 186 to adjust for batch effects attributed to tumors coming from two different cell 

lines/models. Expected counts were log2 transformed. After processing, the final transcriptomic 

dataset consisted of 10,958 genes. Raw and processed RNA-seq data is available in GEO 

accession number XXX” 

Differential RNA abundance 



 55 

DESeq2 187 was used to perform differential RNA abundance analysis. Comparisons were 

performed between parental C-Raf vs vector control, which identified 667 differentially abundant 

genes, and C-Raf metastasis derived line vs parental C-Raf, which identified 634 differentially 

abundant genes. Statistical significance was determined using FDR-adjusted p-value < 0.05. 

Using these sets differentially abundant genes, we identified 46 genes that were perturbed in a 

stepwise fashion. That is, these genes were altered in the same direction for both comparisons. 

Hallmarks signature scoring 

To evaluate well-characterized biological processes, we scored each sample for the 50 

Hallmarks gene sets 188. The transcriptomic dataset was first normalized by z-scoring across 

samples and across genes, then scored by taking each gene in the Hallmarks gene sets and 

median dichotomizing the samples. Samples with RNA abundance levels greater than the 

median were assigned a score of +1 for the gene, and samples with RNA abundance levels 

lesser than the median were assigned a score of -1 for the gene. This was repeated for every 

gene in the gene set, and the scores were summed for each sample to give the sample’s 

signature score. 

The volcano plot, heatmap and boxplots were generated using the BoutrosLab.plotting.general 

R package 189. 
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FIGURE LEGENDS 

Figure 1: C-Raf overexpression drives metastasis of two immortalized prostate cell lines. 

A) Schematic of model system and workflow used to study C-Raf overexpression in vivo. C-Raf 

and reporter genes were expressed in immortalized prostate lines and injected into mice via 

intracardiac injection followed by serial blood measurements and bioluminescence imaging 

(BLI). Firefly luciferase reporter system was used to assess spatial metastatic activity via BLI. 

Gaussia luciferase reporter system was used to assess whole body tumor burden measurement 

via real-time blood measurements. B) Western blot analysis demonstrating C-Raf-v5 

overexpression and subsequent downstream effectors including P-MEK1/2 and P-ERK1/2 in 

RWPE-1 and BPH-1 cell lines. C) BLI imaging at 28 days post RWPE-1 injection. D) BLI 

imaging at 14 days post injection of BPH-1. E) Distribution of macroscopic tumors across 12 

mice with C-Raf overexpression and vector control in RWPE-1 cells. F) Distribution of 

macroscopic tumors across 30 mice with C-Raf overexpression and vector control in BPH-1 

cells. G) Kaplan-Meier curve of mice harboring RWPE-1 vector control vs C-Raf overexpression 

cells (n=10/group, Log-rank (Mantel Cox) test p = 0.0001). H) Kaplan-Meier curve of mice 

harboring BPH-1 vector control vs C-Raf overexpression cells (n=10/group, Log-rank (Mantel 

Cox) test, p = 0.0001).  

 

Figure 2: C-Raf drives metastasis and mortality in a gene dosage dependent manner 

A) Western blot depicting increasing C-Raf protein expression driven by promoters of varying 

strength in BPH-1 cells. B) Cell cycle analysis using propodium iodide across cell lines with 

increasing C-Raf expression in adherent culture conditions. Vector (G1: 49.7%, S: 17.5%, G2: 

29%) PGK (G2: 56.4%, S: 17.0%, G2: 20.9) EFS (G1: 58.5%, S: 14.4%, G2: 21.5%) Ub (G1: 
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64%, S: 10.3%, G2: 22.1%). C) Proliferation as measured by trypan blue staining over 10 days 

in adherent conditions. D) Proliferation of cells measured by cell titer glo assay of C-Raf 

increasing expression cell lines in anchorage independent conditions at 5 days (unpaired t-test, 

p= 0.0002, 0.001, 0.0001 from left to right). E) Gaussia luciferase blood measurements as a 

surrogate marker of tumor burden over 17 days. F) BLI imaging of C-Raf dosage lines at 28 

days post intracardiac injection. G) Kaplan-Meier curve of mice harboring cells with increasing 

C-Raf expression (n=4/group, Log-rank (Mantel-Cox) test p=0.0014, all groups significantly 

different). 

 

Figure 3 Mutation of C-Raf dimerization domain ablates metastatic ability 

A) Western blot analysis of C-Raf dimerization mutant overexpression compared to WT C-Raf in 

BPH-1 cells. B) BLI 28 days post injection of WT C-Raf compared to C-Raf dimerization null 

(R401H) and vector control. C) Kaplan-Meier curve of mice harboring WT C-Raf and mutant 

cells (n=5/group, Log-rank (Mantel-Cox) test p = 0.0064, all groups significantly different). D) In 

vitro cell titration detected using D-luciferin substrate to confirm firefly surrogate tumor 

measurements in vivo. 

 

Figure 4: Knock-out of Raf family members diminishes C-Raf driven metastasis  

A) Schematic of double knock-out cell line generation starting from viral transduction, inducible 

Cas9 induction via doxycycline at 1 ug/mL, single cell cloning, and subsequent confirmation and 

sequential generation of double knock-out line. B) Protein level confirmation of endogenous KO 

combinations A-Raf and B-Raf (AB) or B-Raf and C-Raf (BC) and their corresponding C-Raf 

overexpression lines. C) Proliferation of double knock-out cell lines compared to parental control 

in anchorage independent conditions (n=3/group, unpaired t-test, p = 0.04). D) Proliferation in 

anchorage independent conditions with C-Raf overexpression (unpaired t-test from left to right, 

p = 0.0004, 0.0027, 0.0001). E) Combined survival curve of mice harboring cells with C-Raf 
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overexpression in BPH-1 cells and BPH01 AB & BC KO cell lines (n=8/group Log-rank (Mantel-

Cox) test, p = 0.0001, all groups significantly different). 

 

 

Figure 5: Mutation of the DFG motif and the ATP binding site in C-Raf’s kinase domain 

result in different metastatic phenotypes  

A) Schematic of C-Raf structure indicating location of mutations relative to the rest of the protein 

structure. B) Western blot depicting expression of C-Raf and C-Raf D486A mutant and 

downstream signaling. C) Western blot depicting expression of C-Raf and C-Raf K375M and 

downstream signaling. D) BLI imaging of both C-Raf kinase dead mutants at 28 days post 

intracardiac injection compared to controls. E) Kaplan-Meier curve of mice harboring cells with 

vector control, C-Raf and C-Raf D486A and C-Raf K375M, (n=4/group Log-rank (Mantel-Cox) 

test, p = 0.0001, all groups significantly different). 

 

 

Figure 6: Overexpression of C-Raf DFG kinase dead mutant requires endogenous A-Raf 

and B-Raf to drive metastasis 

A) Western blot depicting C-Raf D386A mutant expressed in wildtype or combination AB KO or 

BC KO and downstream signaling. B) BLI imaging at 70 days post intracardiac injection of mice 

expressing vector control, C-Raf and C-Raf D486A in AB KO or BC KO backgrounds. C) 

Kaplan-Meier curve of groups depicted in B) (n=8/group Log-rank (Mantel-Cox) test, p = 0.0001, 

all groups significantly different). D) Cartoon model depicting the implied role of hetero and 

homodimerization in C-Raf driven metastatic phenotype. 

 

SUPPLEMENTAL FIGURE LEGENDS 
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Supplemental Figure 1: C-Raf overexpression increases MAPK pathway flux and is 

associated with metastasis. 

A) Phospho-proteomic workflow using tandem mass tag (TMT) isobaric labeling and mass 

spectrometry for multiplexing. Cells are lysed using proteolytic digestion and subsequently 

labeled with TMT isobaric labeling to allow for sample multiplexing. Samples simultaneously 

underwent Immobilized metal affinity chromatography (IMAC) phospho-enrichment and 

subsequent MS/MS analysis to determine the phosphoproteome relative to each other. B) 

Principal component analysis of phospho-proteomic samples captured a total of 84.74% of 

variance in PC1 and PC2. C) Schematic of inferred kinase activity (IKA) analysis. D) List of top 

15 upregulated kinases in C-Raf samples compared to vector control. E) Top 10 pathways 

upregulated via pathway flux analysis derived from inferred kinase hits with p value < 0.05.  
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Supplemental Figure 2: Transcriptional targets of the MAPK pathway are upregulated in 

metastatic C-Raf driven tumors 

A) Schematic of C-Raf metastasis derived cell line generation and subsequent mRNA 

sequencing analysis compared to parental cell lines. Cell lines were generated from bone, 

lymph, thymus, spine, and liver metastases. B) Volcano plots of genes altered upon C-Raf 

addition compared to vector control and C-Raf metastasis cell lines compared to C-Raf parental 

line. Statistical significance was determined using FDR <0.05. C) 46 differentially expressed 

genes that were perturbed in a stepwise fashion across parental and metastasis derived lines in 

BPH-1 and RWPE-1 (increasing and decreasing). Bold italicized genes indicate genes that are 

part of the Ras/Raf signaling pathway that increased from vector to C-Raf parental to C-Raf 

metastasis derived cell line. D) Significantly altered cancer hallmark pathway analysis using 

GSEA across sample groups (unpaired t - test, p = 0.005).  

 

 

Supplemental Figure 3: C-Raf gene dosage western quantification 

A) Densitometric quantification of C-Raf gene dosage protein expression and downstream 

effectors. 
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Chapter 3: Discussion and Future Directions 
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Raf's role in MAPK signaling in the context of cancer has been recognized for the past 30 

years. Despite the prevalence of alterations in this pathway across various cancer types, 

effectively targeting it remains a challenge. While current therapies show promise in extending 

patients' progression-free survival, the emergence of resistance mutations remains a persistent 

issue. Clinical trials have explored the use of combination therapies involving multi-target 

inhibition. In metastatic melanoma, for instance, the combination of mutant B-Raf inhibition with 

MEK inhibition has shown some efficacy 190. However, the combined effect of dual MAPK 

inhibition often leads to significant toxicity, with some patients experiencing adverse effects 191. 

To address this problem, various approaches can be considered, such as the continuous 

development of inhibitors targeting resistance mechanisms, drawing inspiration from natural 

interactions between plants and viruses. Another innovative strategy involves exploring 

oncogenic dependencies, vulnerabilities, and genes that control crucial aspects of the malignant 

process. This is where studying the impact of wild-type genes, particularly kinases, becomes 

relevant.  

In this thesis, our objective is to comprehend the nature of WT C-Raf-driven metastasis by 

examining different functional domains of C-Raf. Through our research, we demonstrate that 

even subtle elevation of C-Raf protein levels can instigate cancer metastasis in an intracardiac 

mouse tumor model. Our findings emphasize the critical role of the dimerization interface in the 

kinase domain for C-Raf-driven metastatic behavior, while the inherent kinase activity itself is 

not essential. This conclusion is further supported by the impact of eliminating other Raf 

isoforms on mice survival. These results highlight the importance of delineating the dimerization 

domain independently from the kinase domain. By understanding how these structural domains 

regulate various Raf processes, we can gain insights for more effective therapeutic 

development targeting the Raf kinases. Given that this thesis establishes the significance of 
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kinase activity in driving metastatic activity, it would be valuable to discuss the current 

landscape of Raf inhibitors and their interactions with Raf kinases. 

There are currently three categories of Raf inhibitors: Type I, Type II, and Type III, along 

with some inhibitors that do not fit neatly into these categories 192. These inhibitors are classified 

based on their interaction with the DFG motif (Asp-Phe-Gly) and the Alpha C helix. The DFG 

motif is a conserved sequence found in the activation loop of protein kinases, including Raf 

kinases, and plays a crucial role in regulating kinase activity through conformational changes 

193. The Alpha C helix, located adjacent to the DFG motif, also contributes to kinase regulation 

by influencing the accessibility of the ATP-binding site 81. 

1. Type I Raf inhibitors/ATP-competitive inhibitors: Type I inhibitors interact with the DFG-in 

alpha C helix inward conformation of Raf kinases. They bind to the ATP-binding site and 

stabilize the inactive state of Raf, preventing its activation. Sorafenib and vemurafenib 

are examples of type I inhibitors that have demonstrated clinical efficacy in Raf-mutant 

cancers. 

2. Type II Raf inhibitors/Allosteric inhibitors: Type II inhibitors target the DFG-out and alpha 

C helix outward conformation of Raf kinases. They bind to an allosteric pocket adjacent 

to the ATP-binding site and induce conformational changes that disrupt Raf kinase 

activity. By modulating the conformation, these inhibitors prevent downstream signaling 

activation. Some type II inhibitors, such as PLX8394 and LY3009120, exhibit improved 

selectivity and potency compared to type I inhibitors 180,194. 

3. Type III Raf inhibitors/active conformation stabilizers: Type III inhibitors specifically target 

the alpha C helix of Raf kinases. They interact with a unique pocket formed by the alpha 

C helix and adjacent residues, resulting in conformational changes that inhibit kinase 

activity. This interaction stabilizes Raf proteins in their active conformation, effectively 

blocking downstream signaling by preventing their transition to an inactive state. BGB-
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283 and CCT196969 are examples of active conformation stabilizers that have shown 

promise in preclinical studies 195,196. 

4. Dimerization-dependent inhibitors: Dimerization-dependent inhibitors disrupt the 

interaction between Raf monomers, preventing their activation. Promising dimerization 

inhibitors like RRD-251 and CHIR-265/RAF265 have demonstrated efficacy in preclinical 

models and have shown positive results in phase I and phase II clinical trials 197,198. 

These different types of Raf inhibitors target key aspects of Raf kinase function, such as 

conformational changes, ATP-binding site interactions, and dimerization. Understanding the 

mechanisms of action of these inhibitors provides valuable insights for the development of 

effective therapeutic strategies against Raf-driven cancers. 

Dimerization-dependent inhibitors may seem to hold the key to addressing the 

complexities of Raf biology. The development of pan-Raf inhibitors, such as KIN-2787 

(Exarafenib) and BGB-3245, which target both pan-Raf and dimerization, has shown promising 

early phase I trial data 199,200. These diverse inhibitors, with their ability to target different Raf 

conformations, have deepened our understanding of Raf kinase biology and opened avenues 

for personalized treatment approaches. However, challenges related to drug resistance and 

selectivity persist. This thesis underscores the significance of dimerization selectivity and its role 

in metastatic disease. Further research is needed to optimize the potency, selectivity, and 

pharmacokinetic properties of Raf inhibitors. Additionally, exploring strategies to overcome 

resistance mechanisms and enhance the clinical efficacy of these inhibitors is crucial. 


