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Exemplar Dynamics Models of
the Stability of Phonological Categories

P. F. Tupper (pft3@sfu.ca)
Department of Mathematics, Simon Fraser University, 8888 University Drive

Burnaby, BC V5A 1S6 Canada

Abstract

We develop a model for the stability and maintenance of
phonological categories. Examples of phonological categories
are vowel sounds such as i and e. We model such categories
as consisting of collections of labeled exemplars that language
users store in their memory. Each exemplar is a detailed mem-
ory of an instance of the linguistic entity in question. Starting
from an exemplar-level model we derive integro-differential
equations for the long-term evolution of the density of exem-
plars in different portions of phonetic space. Using these latter
equations we investigate under what conditions two phonolog-
ical categories merge or not. Our main conclusion is that for
the preservation of distinct phonological categories, it is nec-
essary that anomalous speech tokens of a given category are
discarded, and not merely stored in memory as an exemplar of
another category.
Keywords: exemplar models; phonetics; phonology; pattern
formation; categories

Introduction
Our goal is a model of how phonological categories, like
those of the vowel sounds i and e, are formed and are main-
tained, and what laws govern their dynamics. For this pa-
per we consider a single important aspect of these systems:
whether or not two categories merge. Consider the pair of
words cot and caught. In many dialects of English these
two words are homophonous, i.e. they are pronounced the
same way. At some point in the past they were pronounced
distinctly, but over time the words became indistinguishable
when spoken out of context. We say that the phonological cat-
egories corresponding to the vowels in these words merged in
this context.

One theory for why phonological categories merge in some
contexts but not in others is that sounds merge when there
is no harm done to communication by them having merged.
For example, we may suppose that the words cot and caught
being pronounced the same way is harmless for communi-
cation, since which word is intended can almost always be
determined from context. In contrast, a merger between the
pronunciations of the words can and can’t could lead to se-
rious miscommunications. However, to actually explain why
phonological categories merge in some contexts and not in
others, what is needed is an actual mechanism for the merger
or non-merger of phonological categories. We demonstrate a
set of features of a model of phonological categories that are
sufficient to explain this phenomenon.

To model the dynamics of phonological categories we need
a model of how such categories are stored in the brain. We use
exemplar models (Nosofsky, 1988; Johnson, 1997) in which
categories consist of collections of labeled exemplars. Exem-
plars are instances of stimuli from the given category which

are stored in detailed representation in the subject’s mem-
ory. To model the merger or non-merger of phonological
categories we use exemplar dynamics (Pierrehumbert, 2001),
in which the long term behaviour of categories is modelled
as emerging from the bulk behaviour of many exemplars in
language-users’ memory.

We consider a particular class of exemplar dynamics mod-
els building on those of Pierrehumbert (2001), Wedel (2006),
Ettlinger (2007), and Blevins and Wedel (2009). In our model
every language-user has a small number of linguistic cate-
gories. Each category consists of exemplars which are de-
tailed memories of instances of the category in question. For
the sake of simplicity, in our model each exemplar will be de-
scribed by only 1 or 2 scalars indicating phonetic variables.
For example, if we are modelling vowel categories, we may
imagine exemplars that consist of the two phonetic variables
F1 and F2. Each exemplar has a weight that decays with time,
representing the strength of the exemplar in memory. When
a language-user, the speaker, wishes to utter a representative
of a category, an exemplar is selected from that category ran-
domly according to the exemplars’ weights. The new exem-
plar’s weight starts off at some fixed large value. The new
exemplar’s position is close to the original exemplar but is bi-
ased towards less extreme values (known as lenition) and may
be biased towards the category mean (known as entrenchent
(Pierrehumbert, 2001)). Random noise is also added to the
position of the new exemplar. This new exemplar is heard by
another language-user, the listener, and this listener classifies
the exemplar into one of their categories.

Exemplar dynamics models have some features that make
them difficult to work with computationally. On the one hand,
the computational expense of simulating an exemplar model
grows with the number of exemplars in the system. Phenom-
ena that only emerge in exemplar dynamics with millions or
billions of exemplars in the system may be missed in simula-
tions of smaller systems. On the other hand, exemplar models
involve randomness, through both the selection of exemplars
to be reproduced, and in the noise added in the production
of new exemplars. This means that the results of simulations
of exemplar models are random. In order to determine if a
phenomenon in an exemplar simulation is a rare aberration
or quite typical, it is necessary to do several exemplar simula-
tions with the same parameters, adding to the cost of studying
the system computationally. This latter effect becomes more
pronounced for small numbers of exemplars.

To overcome these difficulties we study exemplar models
in the limit where systems contain infinitely many exemplars.
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In this limit, rather than the location and weight of every ex-
emplar in phonetic space, we consider fields which describe
the density of exemplars of different types in different loca-
tions in phonetic space. We derive integro-differential equa-
tions for these exemplar density fields, which we refer to as
field models corresponding to the exemplar model. We study
the field model in order to infer properties of the exemplar
model in the limit of very many exemplars.

Through simulations of exemplar models and the limiting
field models, we show in this paper that it is the procedure
by which a language-user classifies heard exemplars that de-
termines whether or not two categories merge. If the lan-
guage user always classifies heard exemplars accurately, no
matter how they are produced, then the phonological cate-
gories will merge. This is believed to be what happens in
situations where the category can be inferred from context.
However, if there is the potential for exemplars to be misclas-
sified, then the categories will remain distinct, under some
additional modelling assumptions. We find that an important
aspect of our model for the categories to behave realistically
in the non-merger case is that exemplars that are misclassified
are discarded, rather than stored in memory.

In order to have tractable models of the phenomena of in-
terest, in all that follows we have made a simplifying assump-
tion: rather than modelling each individual in a population of
language-users with their own exemplars, we pool all the ex-
emplars in the population. This will not make a significant
difference to our results if each individual in the population
has the same categories with the same statistical character-
istics of exemplars within their categories. Accordingly, our
models and simulations should not be thought of as describ-
ing a single language-user’s phonological categories chang-
ing over their lifetime, but of the change of the phonological
categories of an entire population of language-users over pos-
sibly many generations.

One Category
We first describe the exemplar-level model with exemplars
possessing a single phonetic variable and belonging to a sin-
gle category. We then describe the corresponding field model.

One Category Exemplar Model
At any point in time the state of the system consists of the po-
sitions of n exemplars y1, . . . ,yn, and their respective weights
w1, . . . ,wn ≥ 0. Initially there are n(0) exemplars with fixed
positions and weights. The number of exemplars at time t,
n(t) is non-decreasing, and increases through the creation of
new exemplars. Once an exemplar is created, its position does
not change and it is never removed from the system, though
its weight decreases. New exemplars are introduced to the
system at a constant rate ν . The weight of new exemplars is
W0. The weight of all exemplars decay with rate λ , so that
exemplars that have been around for long enough cease to
have significant effect on the system. The position of new
exemplars is determined through two steps. First, one of the
existing exemplars is selected with probability proportional

to its weight. We imagine that this exemplar is being spoken
by a speaker. Let z be the position of this exemplar. A copy
of this exemplar is produced with a position moved towards
the centre of the phonetic space (lenition) and also towards
the mean of the exemplar positions (entrenchment). Let ȳ be
the weighted mean position of all the exemplars:

ȳ =
∑

n
i=1 wiyi

∑
n
i=1 wi

.

Then the new exemplar is generated at position

y = (1−β )z+α(ȳ− z)+ση

where η is a standard Gaussian random variable, independent
of all other variables, and α , β , σ are parameters representing
respectively the rate of pull to zero, the rate of pull to ȳ, and
the magnitude of errors in production/perception.

In Figure 1 we show the results of a simulation of this
model. The light blue lines indicate results from the exem-
plar model, and the dark blue lines indicate results from the
field model we will derive in the next subsection. On the
left we show the location and weight of all the exemplars in
the system at three points in time. On the top right we show
how the mean of the exemplars’ phonetic variable varies with
time. We have plotted the results for five independent runs
of the simulation. The mean converges to nearby 0 in each
simulation. On the bottom right, again for five different sim-
ulations, we show how the dispersion of the category varies
with time, where dispersion defined by√

∑
n
i=1 wi(yi− ȳ)2

∑
n
i=1 wi

,

is the weighted standard deviation of the phonetic variable of
the exemplars about their mean. Dispersion is a measure of
the width of a category in phonetic space.

One Category Field Model
Recall that the state of the exemplar model at time t consists
of n(t) exemplars with positions yi and weights wi. We define
the exemplar density field to be

ρ(t,y) =
n

∑
i=1

δ (y− yi)wi(t),

where δ is the δ -distribution. Roughly, the field consists of
of infinitely narrow peaks at locations yi with weights wi. We
derive equations for the limit of this field as rate of exem-
plar production ν goes to infinity and initial exemplar weight
W0→ 0.

Recall that new exemplars are produced at rate ν and that
the weight of each exemplar decays at rate λ . If each exem-
plar is created with weight W0 then we must have W0ν = λW
at steady state where W is the total weight in steady state. We
fix λ and let W0 go to zero while ν goes to infinity. ν and
W0 should be inversely related to guarantee a fixed W limit,
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Figure 1: In light blue, results for the exemplar model in one
dimension for one category. ν = 100, λ = 1, W0 = 1/ν , α =
0, β = .1. On the left we show the exemplars in the system
at three different points in time, for a single realization. On
the right we show the mean and dispersion of the category as
a function of time for five different realizations. In dark blue,
corresponding results for the field model.

so we let W0 = µ/ν , where µ is a constant. In this limit the
equations describing how ρ(t,y) changes with time are

∂ρ(y)
∂ t

=−λρ(y)+µ

∫
f (y− z+β z−α(ȳ− z))ρ(z)dz∫

ρ(z)dz
(1)

where f is the density of Gaussian with mean zero and vari-
ance σ2. This derivation will be given in a separate paper.
There we also show that the equilibrium value of ρ , which
the system will converge to, is a Gaussian given by

ρ(y) =
µ

λ

1√
2πs2

e−y2/2s2

where the dispersion s is given by

s2 :=
∫
(y− ȳ)2ρ(y)dy∫

ρ(y)dy
=

σ2

1− (1− (α +β ))2

Note that α and β do not have independent effects on the
equilibrium. In Figure 1 the dark blue lines show the results
of simulation of this field model, which we see captures many
of the features of the exemplar model.

Multiple categories
In this section we generalize our models to describe the inter-
actions of multiple phonological categories. Production and
decay of exemplars proceeds as before, but after a new ex-
emplar is produced it is assigned to one of the existing cat-
egories according to a classification procedure. We develop
the models for the case of two interacting categories here; the
extension to more than two is straightforward.

Multiple Category Exemplar Model
Each exemplar now belongs to one of two categories, A and
B. Exemplars are produced from each category with rates νA,
νB respectively. As before, all exemplar are produced with
weight W0 and decay with rate λ .

To describe how categorization works, suppose a new ex-
emplar is produced from category A. An existing exemplar
in category A is selected randomly with probability propor-
tional to exemplar weight. If z is the position of the existing
exemplar, a new exemplar is produced at

y = (1−β )z+α(ȳA− z)+ση

where ȳA is the weighted mean of the positions of the exem-
plars in category A.

The new exemplar has to be classified as either belonging
to category A, classified as belonging to category B, or dis-
carded. We consider three different ways that this may occur,
which we call Categorization Regimes.

1. No Competition: Exemplars are always classified into the
category they were produced from.

2. Pure Competition: Categories compete to claim the new
exemplar as their own, without information about the cate-
gory it came from. The winner accepts the exemplar in its
category.

3. Competition with Discards: Categories compete to claim
the new exemplar as their own, without information about
the category it came from. If the exemplar is claimed by
the category it came from, then it is stored in that category.
Otherwise it is discarded.

In the first, the No Competition regime, the exemplar is
assigned to the category that it was produced from. Linguis-
tically, this means that the listener is able to figure out from
context what category was intended, regardless of the actual
sound produced by the speaker. In the non-competitive case
there is no interaction between exemplars of different vari-
eties. So the model consists of the exemplars for category
A and the exemplars for category B both evolving indepen-
dently of one another.

In the second, the Pure Competition regime, the listener
has to decide which category to classify the exemplar in based
on the phonetic variables of the exemplar: the categories
“compete” to acquire the exemplar. The idea is that the ex-
emplar is more likely to be classified in category A if there
are more exemplars of category A with strong weight that are
close to the new exemplar. We assume the category of its par-
ent exemplar does not figure in the assignment. This is the
mechanism for prevention of the merger of categories pro-
posed in Blevins and Wedel (2009).

In the third, the Competition with Discards regime, the lis-
tener decides how to classify the exemplar exactly as in the
purely competitive case. But the listener is aware of what the
intended category is, and if the perceived category does not
match the intended category, the exemplar is discarded. This
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is a mechanism for prevention of the merger of categories pro-
posed by Labov (1994, pp. 586–588); see also (Silverman,
2006, Ch. 5).

In the two competitive regimes we need a model of how
the categories compete for an exemplar. In order for the clas-
sification of a new exemplar to be influenced by the weight
and number of nearby exemplars of both categories, we de-
fine local smoothed category density fields:

SA(y)=
nA

∑
i=1

1
2

κwA,ie−κ|y−yA,i|, SB(y)=
nB

∑
i=1

1
2

κwB,ie−κ|y−yB,i|.

(2)
The factor of 1

2 κ guarantees that
∫

y SA(y)dy = ∑i wA,i and
likewise for category B. As κ → 0 the smoothed fields are
uniform in space. As κ → ∞ there is no smoothing and
SA(y) = ρA(y), SB(y) = ρB(y). In the simulations that follow
we set κ = 10, so that a new exemplar is classified mostly
depending on the category of other exemplars within about
1/κ = 0.1 of it. We define the probability of the new exem-
plar generated at point y being assigned to category A or B
as

fA(y) =
SA(y)p

SA(y)p +SB(y)p , fB(y) =
SB(y)p

SA(y)p +SB(y)p ,

respectively, where p ≥ 0 is a fixed selection parameter. For
p = 1 the exemplar is assigned to a new category in direct
proportion to the magnitude of the smoothed field at y. For
p→ ∞ limit the exemplar is assigned to whichever category
has greater density.

Multiple Category Field Model
Taking the same limit as we do in the single-category case we
can derive equations for the exemplar density fields.

As in the single category case, we define the exemplar den-
sity fields ρA and ρB. We also define field analogues of the
smoothed density, as well as the selection functions fA and
fB, which also depend on a selection parameter p. We de-
fine the production terms PA and PB, which describes the rate
of production of new exemplars of type A and B respectively
at location y. For each categorization regime we can derive a
different set of coupled equations for ρA and ρB. For example,
for the Categorization with Discards regime the equations are

∂ρA(y)
∂ t

=−λρA(y)+ fA(y)PA(t,y),

∂ρB(y)
∂ t

=−λρB(y)+ fB(y)PB(t,y).

Numerical Simulations of Multiple Categories
Here we explore the behaviour of the exemplar model and
the field model with two categories under the different cat-
egorization regimes. In all of the following simulations we
choose α = 0, meaning that there is no bias in production
towards the category mean. (Having α > 0 does not qualita-
tively change the results.) In each case we also set β = 0.1,

λ = 1, κ = 10, and W0 = 1/ν , leading to µ = 1. We vary the
categorization regime and the selection parameter p.

For each regime we present results for the models over 100
time units. For the exemplar model we use ν = 103 and ini-
tialize the system with 50 exemplars of category A at y = 5
and 50 exemplars of category B at y = 10. The field model
is initialized with a matching initial condition. The results of
these simulation are presented in Figure 2. We show a plot
of ρA and ρB at time t = 100, with the exemplar model on
the left and the corresponding field model on the right. We
also present in Figure 3 results of a longer simulation (over
1000 times units) of the field model alone. In this latter fig-
ure we show ρA and ρB at time t = 1000 in the first column,
and in the remaining three columns we plot category means,
category dispersions, and total category activation (sum of
weights) versus time. We discuss each of the different choices
of categorization regime and selection parameter p in turn.
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Figure 2: Exemplar density fields ρA (blue) and ρB (red) for
the exemplar model (left) and the field model (right) at t =
100. Four different categorization regimes/choice of selection
parameter p are shown.
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Noncompetitive: Using the noncompetitive classification
regime the system is just two uncoupled versions of the single
category case. Both ρA and ρB rapidly converge to the steady
state Gaussian of the single category case, as can be seen in
the top row of Figure 2 and in the top row of Figure 3.

Purely Competitive: p = 1. We show the results for this
regime in the second rows of Figure 2 and Figure 3. The plots
demonstrate that even though the two categories start off sep-
arated, they slowly merge over the course of the simulation.
This impression is confirmed by a longer simulation of the
field model which is shown in the second row of Figure 3. At
t = 1000 the categories have nearly the same means, and the
means appear to be converging to zero. In a separate paper we
demonstrate that this phenomenon is an artefact of the choice
p = 1. We conclude that, even though it may be a realistic
model of categorization in some contexts, the purely compet-
itive regime with selection parameter p = 1 cannot account
for the existence of stable distinct categories in phonetic sys-
tems.

Purely Competitive: p = 1.5. The argument just made for
why the pure competitive regime leads to category merger
does not hold when the selection parameter p > 1. Indeed,
with this choice, the more active category in a region of pho-
netic space draws in more than its share of new exemplars.
To test this idea, we perform the same simulation as we did
for p = 1 for p = 1.5. The results are shown in the third rows
of Figure 2 and Figure 3.

As predicted, the categories do not merge and appear to re-
main sharply distinct for all time. However, there is another
anomaly: the system does not appear to settle into an equilib-
rium that is symmetric about y = 0. In Figure 2 it seems that
the categories have a boundary near y = 8 at time t = 100.
Looking at the longer simulation of the field model in the
third row of Figure 3 we see that in fact the categories are
slowly moving to the right. We conjecture that both cate-
gories continue to move to the right together indefinitely.

Again, the Pure Competition regime with p = 1.5 may be
a realistic model in some circumstances. However, it is un-
likely to be a very general mechanism for the stability of
phonological categories, since even though the categories do
not merge, they are not stably located within phonetic space.

Competition with Discards. p = 1. Finally we consider
Competition with Discards categorization regime. Choosing
selection parameter p= 1, we plot the final state in the bottom
row of Figure 2. Here the system approaches a steady state
where the two categories occupy distinct portions of phonetic
space they are symmetric about y = 0. This is confirmed by
the longer simulation of the field model shown in the fourth
row of Figure 3.

This categorization regime appears to have the best hope of
capturing the features of phonological categories in a linguis-
tic context, and so we explore its behaviour further for two
phonetic variables and more than two categories.
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Figure 3: Each row shows results for the field simulation with
a different categorization regime. The first column shows the
exemplar density ρ as a function of y at time t = 1000.

Two Dimensional Model and Simulation
The models we have presented so far extend immediately to
more than one phonetic dimension. We show the results of
two-dimensional simulations of both an exemplar and its cor-
responding field model. Both simulations were done with the
5 categories and the Competition with Discards regime for
categorization. The parameters in the model are set as fol-
lows for both simulations: λ = 1, µ = 1, σ = 1, β = 0.1,
p = 1, κ = 10.

In Figure 4 we show the results of the exemplar sim-
ulation. The system was initialized with 50 exemplars
at the same location for each category, each of weight
10−3. The five categories were located at the points
(−5,−5),(0,0), . . . ,(15,15). Exemplars were deleted when
their weight decreased below 10−4.

The corresponding simulation for the field model is shown
in Figure 5. We observe that both the exemplar model and the
field model produce stable distinct categories with the Com-
petition with Discards regimes.

Conclusions and Discussion
To conclude, we give an example of the three models we have
considered at work within a linguistic context. Consider the
following example in which the two relevant categories are
the English vowel sounds i and e within the context of the
words bit and bet. A speaker intends to utter the sentence

“The dog bit me!”

but what is received by the listener is

“The dog bXt me!”

where X is some indeterminate vowel sound between an un-
ambiguous i and an unambiguous e. We will assume that the
uttered X is closer to e than to i.
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Figure 4: The distribution of exemplars at four different times
in a simulation of the exemplar model in two dimensions with
6 categories. The bottom right plot is representative of the
equilibrium distribution of the system.

No Competition. The listener classifies the vowel sound
as i, because bit is obviously what is intended in this context.
Thereafter X is stored as an exemplar of i.

Pure Competition. Since X is closer to an e than an i, is
classified as an e. Thereafter, X is stored as an exemplar of
e. The meaning of the sentence plays no role in the classifi-
cation.

Competition with Discards. Since X is closer to an e than
an i, X is tentatively classified as an e. However, since the
sentence doesn’t make any sense with X as e, (dogs can’t bet
people) X is not stored as an exemplar of the category e. The
sound X is discarded and not stored as an exemplar in any
category. The conclusions from our modelling are as follows:
• Under the No Competition regime the categories i and e

will merge in this context, in agreement with Blevins and
Wedel (2009).

• Under the Pure Competition Regime the categories will
either merge, or together be unstable, (depending on the
value of parameter p). This is in disagreement with Blevins
and Wedel (2009).

• Under the Competition with Discards regime categories
will remain distinct and stably located in phonetic space.

This last point provides support for the idea of exemplar re-
jection as the mechanism for category stability as described
in qualitative terms by Labov (1994) and Silverman (2006).
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