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Abstract. The interaction of magnetohydrodynamic (MHD) waves in a non-
uniform, time-dependent background plasma flow is investigated using Lagrangian
field theory methods. The analysis uses Lagrangian maps, in which the position of
the fluid element x∗ is expressed as a vector sum of the position vector x of the
background plasma fluid element plus a Lagrangian displacement ξ(x, t) due to the
waves. Linear, non-Wentzel–Kramer–Brillouin (WKB) wave interaction equations
are obtained by expansion of the Lagrangian out to second order in ξ and ∆S,
where ∆S is the Lagrangian entropy perturbation. The characteristic manifolds
of the waves are determined by consideration of the Cauchy problem for the wave
interaction equations. The manifolds correspond to the usual MHD waves modes,
namely the Alfvén waves, the fast and slow magnetoacoustic waves and the entropy
wave. The relationships between the characteristic manifolds, and the ray equations
of geometrical MHD optics are developed using the theory of Cauchy characteristics
for first-order partial differential equations. The first-order differential equations
describing the singular manifolds are the dispersion equations for the MHD ei-
genmodes, where the wave vector k = ∇φ and frequency ω = −φt correspond
to the characteristic manifolds φ(x, t) = constant. The form of the characteristic
manifolds for both time-dependent and steady MHD flows are developed. The bi-
characteristics for steady MHD waves in a steady background flow are related
to the group velocity surface and Mach cone for the waves, and determine when
the flow is elliptic, hyperbolic, or of mixed hyperbolic–elliptic type. The wave
interaction equations are decomposed into coupled equations for the compressible
and incompressible perturbations.

1. Introduction
Heinemann and Olbert (1980) obtained bi-directional evolution equations describ-
ing the propagation of toroidal Alfvén waves in the Solar Wind, in which the back-
ward Alfvén wave is coupled to the forward Alfvén wave via large-scale gradients in
the background flow. This is known as wave mixing in the space physics community.
Zhou and Matthaeus (1990) and Marsch and Tu (1989) and others, subsequently
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developed theories for Alfvénic turbulence in the Solar Wind which naturally in-
corporated the effects of wave mixing on the turbulent fluctuations (e.g. Tu and
Marsch 1995). The ponderomotive force of the Alfvén waves on the background
wind flow has been invoked as an important element in accelerating the Solar Wind
in both Wentzel–Kramer–Brillouin (WKB) models (e.g. Hollweg 1978; Alazraki
and Couturier 1971; Jacques 1977; McKenzie 1994), and non-WKB models of wave
accelerated winds (e.g. Heinemann and Olbert 1980; Lou 1993; MacGregor and
Charbonneau 1994). Webb et al. (1999) developed wave mixing equations for the
seven magnetohydrodynamic (MHD) wave modes in one Cartesian space dimen-
sion with application to wave interactions and instabilities in cosmic ray modified
shocks. The relation between this formalism, based on the MHD eigenvectors, and
a variational approach, for the case of one-dimensional sound waves and entropy
waves in compressible gas dynamics was investigated in Webb et al. (1998a).
There is an extensive literature on the application of Lagrangian and Hamilto-

nian methods in MHD and fluid mechanics. Herivel (1955) considered a Lagrangian
version of Hamilton’s principle for incompressible fluids, whereas similar develop-
ments for compressible, non-homentropic fluids were considered by Serrin (1959).
Early, Eulerian versions of Hamilton’s principle for ideal fluids were those of Lin
(1963) and Seliger and Whitham (1968). Whitham (1974) discusses averaged
Lagrangian methods for linear and nonlinear dispersive waves. Newcomb (1962)
obtained Lagrangian variational principles for MHD and Chew–Goldberg–Low
(CGL) plasmas. Broer and Kobussen (1974) showed that the conversion from Eu-
lerian to material (i.e. Lagrangian) coordinates could be viewed as a canonical
transformation. The role of wave action conservation for waves in non-uniform
media were elucidated by Bretherton (1971). Dewar (1970) developed a variational
approach to the propagation of WKB magnetohydrodynamic waves in inhomo-
geneous media. Dewar (1970, 1977) discussed canonical and physical stress energy
tensors for waves, and the background medium through which the waves propagate.
Generalized Lagrangian mean flows, and the interaction of waves with the mean
flow were introduced by Andrews and McIntyre (1978) (see also Grimshaw (1984)
and Holm (1999)). A good general review of variational methods in fluid mech-
anics is given by Salmon (1988). Non-canonical Poisson brackets for MHD were
introduced by Morrison and Greene (1980, 1982).
The main aim of this paper is to provide a framework for linear, non-WKB, MHD

wave propagation in non-uniform media such as the Solar Wind, based on the MHD
variational principles of Dewar (1970, 1977) and Newcomb (1962).
Sections 2–4 consider non-WKB, linear wave propagation in a non-uniform back-

ground medium. The analysis is based on Dewar’s variational principle in which the
Lagrangian is expanded out to second order in the Lagrangian wave displacement
ξ, and in terms of a Lagrangian perturbation in the background entropy ∆S.
Variations of the action with respect to ξ yields a system of linear wave evolution
equations for ξ, which is equivalent to the perturbed momentum equation for the
system modified by the effects of entropy waves. The entropy wave perturbation
∆S is advected with the background flow (i.e. (∂/∂t + u · ∇)∆S = 0 where u is the
background flow velocity).
Section 3 shows that the linearized wave equations are related to the Frieman and

Rotenberg (1960) equations used to investigate the stability of steady MHD flows.
Section 4 studies the characteristic manifolds of the linear wave interaction

equations derived in Sec. 2. The concept of a characteristic manifold for a
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system of partial differential equations can be defined as amanifold φ(x) = constant
(here x denotes the independent variables) on which the Cauchy problem does not
have a unique solution. The characteristic manifolds of the linear wave equations
are shown to correspond to the dispersion equations for linear MHD waves in which
ω′ = −(φt + u · ∇φ) is the Doppler shifted frequency in the fluid frame and k = ∇φ
is the wave vector. These manifolds correspond to Alfvén waves, the fast and slow
magnetoacoustic waves and the entropy wave. Exactly the same characteristic
manifold equations can also be obtained from analysis of the fully nonlinear MHD
equations (e.g. Webb et al. (1996, 1998b); see also Courant and Hilbert (1989, ch. 2
and 6)). The bi-characteristics or ray equations of geometrical MHD optics corres-
pond to the Cauchy characteristics of the first-order partial differential equations
for φ described by the wave dispersion equations of the different eigenmodes. The
characteristics for standing waves in steady MHD flows, the magnetoacoustic wave
eikonal and group velocity surface and Mach cone for standing waves, and methods
to split off the compressible and incompressible perturbations and their mutual
interaction are discussed.
Section 5 concludes with a summary and discussion.

2. Variational principles for linear waves
In this section we derive equations for the evolution of linear MHD waves in non-
uniform background flows, allowing for the effects of an external gravitational field
potential φ(x), (g = −∇φ is the acceleration due to gravity), and the role of entropy
perturbations ∆S, on the propagation of the waves.
The basis of our analysis is the variational formulation for the propagation of

MHD waves in non-uniform flows, developed by Dewar (1970). Dewar’s variational
principle describes the propagation of the waves in terms of the Lagrangian fluid
displacement, ξ. Dewar only applied his variational principle to the propagation
of WKB waves, and did not consider the role of entropy perturbations, ∆S or
the effects of a gravitational field. However, it is clear that Dewar’s variational
principle can in fact be applied to non-WKB, MHD wave propagation problems in
non-uniform flows, which is the subject of the present analysis.
Dewar’s analysis is based, in part, on the variational formulations of MHD and

CGL plasmas, developed by Newcomb (1962), using ideas from Lagrangian fluid
mechanics and MHD. In Newcomb’s approach, the mass continuity equation,
Faraday’s law for the evolution of the magnetic field and the entropy advection
equation, are expressed in Lagrangian form in terms of the transformation between
the Lagrangian fluid coordinate x0, and the corresponding Eulerian position vector,
x of the fluid element x = X(x0, t), in which u = dx/dt ≡ ∂X(x0, t)/∂t is the fluid
velocity. In this approach, it is not necessary to include constraints in the vari-
ational principle, in order to ensure that the mass continuity equation, Faraday’s
law and the entropy equation are satisfied (see, e.g., Lundgren 1963). For the case of
an adiabatic ideal gas, the entropy advection equation implies that p/ργ is advected
with the flow, where γ is the adiabatic index of the gas.
In addition to including the effects of an external gravitational field and entropy

perturbations in the analysis, we also allow for a more general equation of state
for the gas than that used by Dewar, in which the internal energy per unit volume
ε = ε(ρ, S) is a given, but arbitrary function of the density ρ and entropy S.
Dewar and Newcomb, both considered the case of an ideal gas, with adiabatic
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index γ, for which ε = p/(γ − 1), where p is the gas pressure. The thermodynamics
of the gas is governed by the second law of thermodynamics:

dQ ≡ T dS = dU + p dτ, (2.1)

where τ = 1/ρ is the specific volume of the gas. The second law relates the change
in the heat energy dQ, to the change dU in the internal energy per unit mass, U
(U = ε(ρ, S)/ρ), and the mechanical work done by the pressure forces p dτ due
to expansion or contraction of the plasma. From (2.1) one obtains the standard
expressions:

p = ρ
∂ε

∂ρ
− ε, T =

1
ρ

∂ε

∂S
, h =

ε + p

ρ
=

∂ε

∂ρ
, (2.2)

for the gas pressure p, temperature T , and enthalpy h in terms of the internal
energy density ε(ρ, S).
The first step in the analysis is to write down the action for the combined system

of waves and background plasma in the form:

A =
∫

d3x∗
∫

dtL∗, (2.3)

where

L∗ =
1
2
ρ∗u∗2 − ε(ρ∗, S∗) − B∗2

2µ
− ρ∗φ(x∗), (2.4)

is the Lagrangian density for the system. In (2.4), the terms in the Lagrangian
density L∗ correspond respectively to the kinetic energy of the plasma flow (u =
|u| is the magnitude on the fluid velocity u); the internal energy density ε, the
magnetic energy density (B is the magnetic field induction, and µ is the magnetic
permeability), and the gravitational potential energy ρφ. The position coordinate
x∗ = x + ξ(x, t) where x is the position of the background plasma element, and ξ
is the Lagrangian displacement of the fluid element due to the waves. The entropy
S∗ = S + ∆S in (2.3), where ∆S is the Lagrangian entropy perturbation. The
volume element

d3x∗ = J∗d3x, (2.5)

where

J∗ = det
(

∂x∗i

∂xj

)
= det

(
δi
j +

∂ξi

∂xj

)

= 1 + ∇ · ξ +
1
2
[(∇ · ξ)2 − ∇ξ:∇ξ] +

1
6
[(∇ · ξ)3

+ 2(∇ξ · ∇ξ):∇ξ − 3(∇ · ξ)∇ξ:∇ξ], (2.6)

is the Jacobian of the transformation between x∗ and x (see, e.g., Kumar et al. 1994).
The Lagrangian transformations

ρ∗ =
ρ

J∗ , B∗i =
∂x∗i

∂xj

Bj

J∗ , (2.7)

correspond to mass continuity and Faraday’s law (e.g. Newcomb 1962). Using (2.7)
in (2.3) we obtain the action in the form

A =
∫

d3x

∫
dtL where L = J∗L∗. (2.8)
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The exact Lagrangian density L can be written more explicitly in the form

L =
1
2
ρ(|u|2 + 2u · ξ̇ + |ξ̇|2) − J∗ε

( ρ

J∗ , S + ∆S
)

− 1
2µJ∗ (x∗i

j Bjx∗i
s Bs) − ρφ(x+ ξ).

(2.9)

The transformation for B in (2.7) is the frozen in field theorem in MHD (see, e.g.,
Parker 1979, ch. 4, for a detailed exposition). Using the transformations (2.6) and
(2.7), we obtain the expansion

A =
∫

d3x

∫
dt[L0 + L1 + L2 + O(ξ3)], (2.10)

for the action of the system, where

L0 =
1
2
ρu2 − ε(ρ, S) − B2

2µ
− ρφ, (2.11)

L1 = ρu · ξ̇ − (ρT∆S − p∇ · ξ) +
B2

2µ
∇ · ξ − B · ∇ξ·B

µ
− ρξ · ∇φ, (2.12)

L2 =
1
2
ρ|ξ̇|2 − 1

2
[(ρa2 − p)(∇ · ξ)2 + p∇ξ:∇ξ − 2pS ∆S(∇ · ξ) + εSS (∆S)2]

+
B · ∇ξ·B

µ
∇ · ξ − (B · ∇ξ)2

2µ
− B2

4µ
((∇ · ξ)2 + ∇ξ:∇ξ) − 1

2
ρξξ:∇∇φ. (2.13)

In (2.13)

ξ̇ =
∂ξ

∂t
+ u · ∇ξ and a =

(
∂p

∂ρ

)1/2

, (2.14)

denote the Lagrangian velocity perturbation, moving with the fluid (note u∗ =
u+ ξ̇) and the adiabatic sound speed, respectively. Dewar considered the case of an
adiabatic gas, with adiabatic index γ, in which case ε = p/(γ − 1).
In the derivation of (2.10), it is assumed that the entropy S and the Lagrangian

entropy perturbation ∆S are advected with the flow, i.e.
dS

dt
= 0,

d∆S

dt
= 0, (2.15)

where d/dt = ∂t + u · ∇ is the Lagrangian time derivative moving with the flow.
In the absence of waves, the total Lagrangian L ≡ L0 in (2.10) and (2.11),

and the variational principle (2.10) obtained by varying the background plasma,
taking into account the Lagrangian constraints (i.e. the mass continuity equation,
Faraday’s equation, and the entropy advection equation in Lagrangian form) yields
the MHD momentum equation for the background plasma (Newcomb 1962). New-
comb obtained: (i) both the Lagrangian and Eulerian form of the MHDmomentum
equation by using both Lagrangian and Eulerian forms of the variational principle;
(ii) the energy principle for static, MHD equilibria of Bernstein et al. (1958); and
(iii) an energy principle for some steady, azimuthal MHD flows.
Dewar (1970) applied the variational principle (2.10) to derive equations for

WKB, MHD waves in a non-uniform background flow. He used an averaged
Lagrangian method, similar to that used by Whitham (1965), in which the
Lagrangian density L = L0 + L1 + L2 +O(ξ3) is averaged over the periodic, fast
variations of the wave phase φ. Variations of the wave amplitude, in the averaged
action principle using the averaged Lagrangian density 〈L2〉, results in the MHD
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wave eigenvector equations and dispersion relation, whereas slow variations of the
wave phase (i.e. of k = ∇φ and ω = −φt) results in the wave action equation.

2.1. Linear waves in non-uniform flows

We now consider equations for linear waves in non-uniform flows, in which the wave
amplitudes are supposed to be sufficiently small, that the waves do not affect the
background flow. The action principle (2.10) can be written as

A =
∫

d3x

∫
dt[Lb + Lw + O(ξ3)], (2.16)

where

Lb = L0, Lw = L1 + L2 + O(ξ3), (2.17)

represent the background Lagrangian densityLb and the wave Lagrangian density
Lw. We also use the notation

Aj =
∫

d3x

∫
dt Lj (j = 0, 1, 2) (2.18)

to denote the action components due to L0, L1 and L2, respectively.
Using (2.12) we find

δA1

δξ
= −

[
∂

∂t
(ρu) + ∇ ·

(
ρuu+

(
p +

B2

2µ

)
I− BB

µ

)
+ ρ∇φ

]
= 0. (2.19)

The equation δA1/δξ = 0 is recognizable as the momentum equation for the
undisturbed background flow. Equation (2.19) can also be obtained by varying the
background variables in the action A0 =

∫
d3x

∫
dtL0 (see, e.g., Newcomb 1962).

Variations of the action A2 with respect to ξ, and setting P(D) = −δA2/δξ = 0,
gives the linearized momentum equation:

P(D) =
∂

∂t
(ρξ̇) + ∇ ·

{
ρuξ̇ + ((p − ρa2)∇ · ξ − pS∆S)I− p(∇ξ)t

+
(
B · ∇ξ·B

µ
− B2

2µ
∇ · ξ

)
I− B2

2µ
(∇ξ)t +

B
µ

((∇ · ξ)B− B · ∇ξ)
}

+ ρξ · ∇∇φ = 0. (2.20)

In (2.20) we use the notation P(D) to denote the linearized momentum flux, where
the superscript D, refers to Dewar’s variational principle. Equation (2.20), coupled
with the advection equation: (

∂

∂t
+ u · ∇

)
∆S = 0, (2.21)

for the Lagrangian entropy perturbation, are the fundamental equations governing
the interaction of linear MHD waves and the entropy wave in non-uniform back-
ground flows, in the presence of an external gravitational potential φ(x). For the
case of an ideal gas, with adiabatic index γ, the thermodynamics of the gas are
governed by the equations:

ε =
p

γ − 1
, p = p0

(
ρ

ρ0

)γ

exp
(

S − S0

Cv

)
, S = Cv ln

(
p

ργ

)
, (2.22)

where Cv is the specific heat of the gas at constant volume, in which case pS = p/Cv
in (2.20).
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3. The Frieman and Rotenberg equations
Frieman and Rotenberg (1960) generalized the energy principle of Bernstein et al.
(1958) to study the stability of steady MHD flows including the effects of gravity.
The energy principle of Bernstein et al. (1958) only applies to magnetostatic equi-
libria. Similar equations were also used by Ferraro and Plumpton (1958) in a study
of MHD wave propagation in the gravitationally stratified, Solar atmosphere. Frie-
man and Rotenberg’s perturbation equations for ξ can be obtained by perturbing
the MHD momentum equation:

ρ
du
dt

= −∇
(

p +
B2

2µ

)
+
B · ∇B

µ
+ ρg, (3.1)

where g = −∇φ is the acceleration due to gravity.
The Eulerian perturbations δψ and the Lagrangian perturbation∆ψ of a physical

quantity ψ are related by the equation

δψ = ∆ψ − ξ · ∇ψ, (3.2)

where ξ is the Lagrangian displacement of the fluid element (e.g. Newcomb 1962;
Lundgren 1963). The Lagrangian perturbations ∆p, ∆ρ, ∆u, and ∆B in linear
perturbation theory are given by

∆p = pS∆S − a2ρ∇ · ξ, ∆ρ = −ρ∇ · ξ,

∆u = ξ̇ = ξt + u · ∇ξ, ∆B = B · ∇ξ − B∇ · ξ.
(3.3)

The corresponding Eulerian perturbations using (3.2) are given by

δp = pS∆S − a2ρ∇ · ξ − ξ · ∇p, δρ = −∇ · (ρξ).

δu = ξt + u · ∇ξ − ξ · ∇u, δB = ∇ × (ξ × B).
(3.4)

Linearizing the momentum equation (3.1) using Eulerian perturbations, gives
the perturbed momentum equation:

P(FR) ≡ ρξtt + 2ρu · ∇(ξt) − F(ξ) = 0, (3.5)

where the force-like term F(ξ) does not depend on ξt , and has the form

F(ξ) = −∇ ·Π+
B · ∇δB+ δB · ∇B

µ
− g∇ · (ρξ) + ∇ ·

(
ρξ

du
dt

− ρuu · ∇ξ

)

− ∂

∂t
(ρu) · ∇ξ, (3.6)

Π = pS∆S − a2ρ∇ · ξ − ξ · ∇p +
B · δB

µ
. (3.7)

For the case of a steady background flow, du/dt = u · ∇u = 0 and (ρu)t = 0, and
for the case of zero entropy perturbations, ∆S = 0. In this case the perturbed mo-
mentum equation (3.5) reduces to that obtained by Frieman and Rotenberg (1960).
It is interesting to compare the perturbed momentum equation P(FR) = 0 in

(3.5) (the superscript FR refers to Frieman and Rotenberg), with the perturbed
momentum equation P(D) = 0, obtained in (2.20) from Dewar’s variational prin-
ciple. From (2.20) and (3.5) we find:

P(D) − P(FR) = ∇·
{

ξ

[
ρ
du
dt

+ ∇
(

p +
B2

2µ

)
− B · ∇B

µ
+ ρ∇φ

]}
. (3.8)
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If the background momentum equation is unaffected by the waves, then the right-
hand side of (3.8) vanishes by virtue of the background MHD momentum equation
(2.19). Hence in this case, P(FR) = 0 is equivalent to P(D) = 0. In cases where
∆S �= 0, the perturbed momentum equation (3.5) is coupled with the advection
equation (2.21), d∆S/dt = 0.
For the steady flows considered by Frieman and Rotenberg (1960) (∂/∂t = 0 and

∆S = 0), (3.5) has solutions of the form ξ = ξ̃(r) exp iωt, where ξ̃(r) satisfies the
equation

−ω2ρξ̃ + 2iωρu · ∇ξ̃ − F(ξ̃) = 0. (3.9)

In (3.9), iρu · ∇ is a Hermitian operator (i.e. it is a self-adjoint operator, with
respect to the complex inner product 〈f, g〉 =

∫
fg∗d3x). The operator F is a self-

adjoint operator (i.e.
∫ ∞

−∞ η̃F(ξ̃)d3x =
∫ ∞

−∞ ξ̃F(η̃)d3x). The proof that F is self-
adjoint is facilitated by noting P(D) ≡ P(FR), using integration by parts, and
dropping surface terms. Frieman and Rotenberg discussed sufficient conditions for
stability and variational principles to determine the eigenvalues ω. Van der Holst
et al. (1999) considered the problem of the stability of shear flows in gravitating
plane plasmas, and investigate both the continuous spectra and the discrete spectra
for ω as well as cluster spectra. A non-standard approach, for studying waves
in shear flows, may be traced back to the work of Kelvin (1887). The Kelvin
modes are either periodic in, or independent of each space coordinate, but the
wavenumber and amplitude associated with each mode are functions of time which
depend on the shearing rate of the fluid. Examples of exact solutions for wave
interactions in shear flows governed by the incompressible Navier–Stokes equations
have been obtained, for example, by Craik and Criminale (1986). Related work
on the interaction and transformation of MHD waves in shear flows, using this
approach have been investigated by Chagelishvili et al. (1996), Poedts et al. (1998),
Kaghashvili (1999) and Bodo et al. (2001).

4. Characteristic manifolds and equations
In this section, we consider the characteristics of the linear wave interaction equa-
tions (2.20) and (2.21). We consider the characteristics for time dependent flows
(Sec. 4.1) and also for steady MHD flows (Sec. 4.2). The concept of a characteristic
manifold of a system of hyperbolic or non-strictly hyperbolic system of equations
has been developed in detail by a number of authors (e.g. Courant and Hilbert
1989; Chorin and Marsden 1979). For a hyperbolic system, the characteristic wave
speeds are all real and distinct, whereas for a non-strictly hyperbolic system (such
as MHD), the wave speeds {λj }, are all real, but in general are not all distinct.
In MHD, two or more of the eigenvalues λj , coincide for propagation parallel and
perpendicular to the mean magnetic field. For hyperbolic waves, the dispersion
equations for the waves (in a uniform medium) are scale invariant (i.e. ω ∝ k,
where ω and k are the wave frequency and wave number, respectively). This means
that there is no dispersion of waves with different k. However, the waves in MHD
are anisotropic, meaning that the wave speeds are dependent on the direction of
propagation of the wave relative to the direction of the background magnetic field.
The concept of a characteristic manifold for a partial differential equation system

can be defined as a manifold φ(x) = constant (here x denotes the independent
variables), on which the Cauchy problem does not have a unique solution. In less
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technical jargon, this means that if the initial data is specified on a characteristic
manifold φ(x) = constant, then the problem does not have a unique solution.
The characteristic manifolds of the wave equations (2.20) and (2.21) describing

linear wave propagation and interaction in a non-uniform background flow, turn
out to be equivalent to the characteristic manifolds for the fully nonlinear MHD
equations. The characteristic manifolds for (2.20) and (2.21), thus correspond to
the Alfvén waves, the fast and slow magnetoacoustic waves, and the entropy wave.
Alternatively, one can think of the characteristic manifolds as corresponding to the
wave fronts of short wavelength (WKB) disturbances in the medium (e.g. Whitham
1974). Appendix A sketches how the characteristic manifolds may be related to
WKB analysis by using the variational approach of Dewar (1970).

4.1. Time-dependent characteristics

Equations (2.20) and (2.21) describing linear MHD waves in a non-uniform flow,
may be written in the form

L(ξ) + R(ξ,∆S) = 0, (4.1)(
∂

∂t
+ u · ∇

)
∆S = 0, (4.2)

where

L(ξ) = ξtt + 2u · ∇(ξt) + uu :∇∇ξ − (a2 + b2)∇(∇ · ξ)

+ b·∇(∇ξ)·b− bb :∇∇ξ + [b·∇(∇ · ξ)]b, (4.3)

corresponds to the second derivatives of ξ in (2.20), and

R(ξ,∆S) =
1
ρ

{
∇·ξ

[
∇(p − a2ρ) +

(B · ∇)B
µ

− ∇
(

B2

2µ

)]

− [∇ξ + (∇ξ)t ] · ∇
(

p +
B2

2µ

)

+∇(pS∆S) + ∇
(
BB
µ

)
:∇ξ + ρξ · ∇∇φ

}
, (4.4)

corresponds to lower-order derivatives of ξ, terms linear in ξ (the gravitational
term) and terms independent of ξ (the entropy wave contribution). In (4.3),

b =
B

√
µρ

, (4.5)

is the Alfvén velocity and a is the adiabatic sound speed (2.14).
It is clear from the form of (4.1) and (4.2), that the entropy wave perturbation∆S

can affect the propagation of the other MHD waves represented by the Lagrangian
fluid displacement ξ since∆S appears as a source term in (4.1) for ξ, but the entropy
wave perturbation ∆S is unaffected by changes in ξ in (4.2).
To consider the Cauchy problem for (4.1) and (4.2) we introduce new independent

variables (φ0, φ1, φ2, φ3) where φj = φj (x), and x = (t, x, y, z) = (x0, x1, x2, x3)
are the independent variables. We have in mind, the problem of specifying initial
data on the manifold φ0(x) = constant, and determining when it is possible (or
not possible) to obtain a unique solution for ξ and ∆S. At least locally, what is
required to obtain a unique solution is that the Taylor series for the solution can be
determined, using the initial data, and by calculating the higher-order derivatives
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required from the differential equation system and its differential consequences.
In the analysis below, we use the notation φ0(x) ≡ φ(x), in order to emphasize that
the initial data is specified on the manifold φ(x) = constant.
In the new variables {φj }, the entropy advection equation (4.2) for ∆S becomes:

∂∆S

∂t
+ u · ∇∆S =

∂∆S

∂φ

[
∂φ

∂t
+ u · ∇φ

]
+

3∑
j=1

∂∆S

∂φj

[
∂φj

∂t
+ u · ∇φj

]
= 0. (4.6)

If we choose φ such that
∂φ

∂t
+ u · ∇φ = 0, (4.7)

and specify initial data for ∆S and ξ on the surface φ(x) = constant then it will
not be possible to solve (4.6) for ∂∆S/∂φ, and higher-order derivatives of ∆S with
respect to φ, since the coefficient of ∂∆S/∂φ is zero by virtue of the choice (4.7)
for the evolution of φ. Thus, solutions of (4.7), correspond to the characteristic
manifold for the entropy wave, and it is not possible to obtain a solution for ∆S
off the characteristic surface φ = constant, if the initial data was specified on
φ = constant. If in fact, we had specified initial data on a surface φ = constant not
satisfying (4.7), then (4.6) could be solved uniquely for ∂∆S/∂φ.
To determine the characteristic manifolds of (4.1) we first rewrite (4.1) in the

form

Aiαβ
j ξj

αβ + Ri(ξ,∆S) = 0, (4.8)

where

Aiαβ
j = δi

j [δ
α
0 δβ

0 + 2uβ δα
0 + uαuβ − bαbβ ] − (a2 + b2)δα

i δβ
j + bβ bj δα

i + bαbiδβ
j . (4.9)

In (4.9) we have defined b0 = 0 and u0 = 0 (i.e. b and u are vectors in three-
dimensional position space). In (4.8) and (4.9) the indices i, j take the values 1,2,3,
but the indices α, β refer to the independent variables (x0, x1, x2, x3) ≡ (t, x, y, z)
and take the values 0,1,2,3. These conventions are appropriate for non-relativistic
MHD, but a four-vector formalism would be appropriate for relativistic MHD. The
term Ri(ξ,∆S) in (4.8) is the ith component of the vector R in (4.4), which can be
written in the form

Ri = Biα
j ξj

α + Ci
j ξ

j + Di, (4.10)

and consists of first-order derivatives of ξ, linear terms in ξ and terms independent
of ξ. The detailed form of Ri does not play a role in the nature of the characteristic
manifolds.
Using new independent variables {φα (x)}, the wave equation (4.8) for ξ takes the

form

Aiαβ
j

∂φµ

∂xα

∂φν

∂xβ

∂2ξj

∂φµ∂φν
+

(
Aiαβ

j

∂2φµ

∂xα∂xβ
+ Biα

j

∂φµ

∂xα

)
∂ξj

∂φµ
+ Ci

j ξ
j + Di = 0. (4.11)

For the purposes of characteristic analysis, we write (4.11) as

Aiαβ
j

∂φ

∂xα

∂φ

∂xβ

∂2ξj

∂φ2
+ Si = 0, (4.12)

where we have isolated the second derivatives of ξj with respect to φ ≡ φ0 and Si

represents the remaining terms in (4.11). As in our discussion of the characteristic
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manifold of the entropy advection equation in (4.6) et seq., we consider the initial
value problem in which the data is specified on the manifold φ = constant. The
initial data on the manifold φ = constant can be written in the form

ξj = ξ̃j (φ1, φ2, φ3), ξj
,φ = ñj (φ1, φ2, φ3), ∆S = s̃(φ1, φ2, φ3), (4.13)

where ξ̃j , ñj and s̃ specify the initial data in terms of φ1,φ2, and φ3. The initial data
(4.13) is sufficient to determine the source term Si in (4.12). To obtain a unique
solution for ∂2ξj /∂φ2 on the manifold φ = constant, requires the matrix

Ãi
j = Aiαβ

j φαφβ (4.14)

to be non-singular, i.e. det(Ã) �= 0. If det(Ã) = 0, then (4.12) does not possess a
unique solution for ξj

φφ . Thus,

det(Ã) ≡ det(Aiαβ
j φαφβ ) = 0, (4.15)

defines the characteristic manifolds φ = constant for the wave equation (4.1).
The matrix Ã in (4.14) can be expressed in the form

Ãi
j = [ω′2 − (b · k)2]δi

j − (a2 + b2)kikj + (b · k)(bikj + bj ki), (4.16)

where

k = ∇φ, ω = −φt, ω′ = ω − k · u, (4.17)

are identified with the wave number k and frequency ω associated with the wave
surface φ = constant, and ω′ = ω − k · u is the Doppler shifted frequency in the
fluid frame. Taking the determinant of (4.16) we obtain

det(Ã) = [ω′2 − (b · k)2]{ω′4 − (a2 + b2)ω′2k2 + a2k2(b · k)2}. (4.18)

Thus, det(Ã) = 0, if

FA ≡ ω′2 − (b · k)2 = (φt + u · ∇φ)2 − (b · ∇φ)2 = 0, (4.19)

corresponding to the Alfvén wave characteristic manifolds, or alternatively,
det(Ã) = 0 if

FMS ≡ ω′4 − (a2 + b2)ω′2k2 + a2k2(b · k)2

= (φt + u · ∇φ)4 − (a2 + b2)(φt + u · ∇φ)2|∇φ|2 + a2(b · ∇φ)2|∇φ|2

= 0, (4.20)

which defines the characteristic surfaces for the magnetosonic modes.
The different dispersion equation branches (4.19) for the Alfvén waves, (4.20)

for the magnetoacoustic waves, and (4.7) for the entropy wave can be expressed
generically in the form

ω = Ω(k, x, t), where Ω = kVp(n, x, t), (4.21)

where n = k/k is the wave normal, and Vp = ω/k is the phase velocity of the wave.
Using the identifications ω = −φt , and k = ∇φ the dispersion equations for the
different MHD modes can be written in the generic form

F ≡ φt + Ω(∇φ, x, t) = 0. (4.22)

Equation (4.22) is the Hamilton–Jacobi equation for the wave eikonal function
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φ(x, t) with Hamiltonian Ω. Writing k0 = φt and using the four vector notation
(t, x, y, z) = (x0, x1, x2, x3), (4.22) has Cauchy characteristics (e.g. Sneddon 1957):

dxα

dτ
=

∂F

∂kα
,

dφ

dτ
= kα ∂F

∂kα
,

dkα

dτ
= −

(
∂F

∂xα
+

∂F

∂φ
kα

)
, (4.23)

where τ is a parameter along the trajectory ((4.23) are sometimes referred to
as the bi-characteristics, since the characteristic manifolds (4.19) and (4.20) may
also be thought of as characteristic equations). Alternatively, using ω and Ω, the
characteristics, or ray equations can be written in the form:

dxi

dτ
=

∂Ω
∂ki

,
dki

dτ
= − ∂Ω

∂xi
, 1 � i � 3, (4.24)

dt

dτ
= 1,

dφ

dτ
= 0,

dω

dτ
=

∂Ω
∂t

. (4.25)

The ray equations (4.24) are Hamilton’s equations, with Hamiltonian H =
Ω(k, x, t). If we use the usual Cartesian three-dimensional vectors x and k = (k1, k2,
k3) for the corresponding vectors in k space, then dx/dτ = ∂Ω/∂k ≡ Vg, where Vg
is the group velocity of the waves. To prove dφ/dτ = 0 in (4.25) we use the results:

ω = Ω = kVp(n, x, t), n = k/k, (4.26)

Vg =
∂ω

∂k
= Vpn+

1
k

(I− nn):∇nVp. (4.27)

Using (4.27) it follows that Vg·k = kVp ≡ Ω. Using this result in (4.23) we find
dφ/dτ = 0, by virtue of the dispersion equation (4.21).

4.2. Steady flow characteristics

The characteristics for steady MHD flows can be obtained from the characteristic
equations FA = 0 and FMS = 0 in (4.19) and (4.20) in which we set ω = −φt = 0
and ω′ = −u · k ≡ −u · ∇φ. Thus, the characteristics for steady flows correspond to
standing, MHD waves in a steady background flow (e.g. Crapper (1965); McKenzie
(1991) and Woodward and McKenzie (1993)). Kogan (1960) and Cabannes (1970)
consider, steady (ω = 0), linear MHD waves in two-dimensional flows, in Cartesian
geometry, in the xy-plane, in which the z coordinate is ignorable, and the un-
perturbed background flow velocity u = (ux, 0, 0)T is directed along the x-axis.
Cabannes derived a fourth-order partial differential equation for the perturbed
current, for the magnetoacoustic waves, which is distinct from the characteristic
equation FMS = 0 ((4.20) for steady flows with ω = −φt = 0). The analysis of
Kogan (1960) is of particular interest, since he considered the magnetoacoustic
bi-characteristics for two-dimensional flow, which correspond to the solutions of
a fourth-order differential equation for dy/dx, which gives the directions of the
bi-characteristics in terms of the parameters defining the background flow. The
bi-characteristics for Cabannes equation are the same as those obtained by Kogan
(1960). Kogan’s analysis describes when the flow is elliptic (complex characterist-
ics), or hyperbolic (real characteristics). The characteristics for steady, field-aligned
MHD flow, is described in the books by Jeffrey and Taniuti (1964) and Landau
et al. (1984). These characteristics also arise naturally as a special case of Kogan’s
analysis, even although Kogan’s analysis was strictly for the case of a uniform
background flow.
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4.2.1. The magnetoacoustic wave eikonal. From (4.20), the magnetoacoustic wave
eikonal equation for standing MHD waves, or equivalently, the characteristic man-
ifold equation for φ(r, t) is

F ′(ω′,k, x) = ω′4 − (a2 + b2)ω′2k2 + a2(b · k)2k2 = 0, (4.28)

where

ω′ = −u · k ≡ −u · ∇φ, (4.29)

is the frequency of the wave in the fluid frame. In the fixed frame, the frequency
ω = −φt = 0. If we eliminate the reference to ω′ in (4.28), (4.28) can be written in
the form:

F (k, x) = (u · k)4 − (a2 + b2)(u · k)2k2 + a2(b · k)2k2 = 0. (4.30)

The Cauchy characteristics (or bi-characteristics, or ray equations) for the first-
order partial differential equation (4.30) for φ are given by (4.23), except that the
index α is now restricted to the spatial components of kα (i.e. α = 1, 2, 3, α �= 0).
Equation (4.28) can also be cast in the form:

c4 − (a2 + b2)c2 + a2(b · n)2 = 0, (4.31)

for the wave phase speed c = ω′/k of the waves in the fluid frame, where n = k/k
is the wave normal.
Using (4.27), the group velocity, V′

g in the fluid frame is given by

V′
g =

∂ω′

∂k
= cn− a2(b · n)(b− b · nn)

c[2c2 − (a2 + b2)]
, (4.32)

where the phase speed c is one of the roots of (4.31). Note from (4.32) that V′
g ·n = c.

An alternative, equivalent expression for the group velocity V′
g can be obtained by

noting that ω′ = c(ϑ)k where cos ϑ = n · e1, e1 = B/B is the unit vector along the
magnetic field, and c(ϑ) satisfies the dispersion equation (4.31). In this approach
(Whitham 1974), the group velocity has the form:

V′
g =

∂ω′

∂k
= c(ϑ)n+ c′(ϑ)eϑ (4.33)

where c′(ϑ) = ∂c/∂ϑ, and

n = cos ϑe1 + sin ϑe2, (4.34)

eϑ =− sin ϑe1 + cos ϑe2, (4.35)

are the wave normal n = k/k and eϑ is the unit vector in the direction of increasing
ϑ. In (4.33)–(4.35) cylindrical coordinates are used in which the polar axis (e1) is
along the magnetic field, and (x, y, z) = (x1, x2 cos ϕ, x2 sin ϕ) is the position vec-
tor using cylindrical coordinates (x2, ϕ, x1). From (4.33)–(4.35) the group velocity
surface r′ = V′

gt can be written in the parametric form

x1 = V ′
g1t = [c(ϑ) cos ϑ − c′(ϑ) sin ϑ]t,

x2 = V ′
g2t = [c′(ϑ) cos ϑ + c(ϑ) sin ϑ]t.

(4.36)

The group velocity surface (4.36) can also be described locally, by the envelope
of the wave eikonal function

S = k(x1 cos ϑ + x2 sin ϑ − c(ϑ)t), (4.37)
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obtained by varying the wave normal angle ϑ. In other words, the envelope of the
family of plane wave fronts S = 0, tangent to the group velocity surface (4.36)
obtained by solving S = 0 and Sϑ = 0 simultaneously for x1 and x2 yields the
group velocity surface (4.36). The group velocity of the waves in the stationary
frame, Vg is given by the usual Galilean transformation

Vg = V′
g + u, (4.38)

for the transformation of velocity between frames.
Below we discuss the connection between the characteristics of (4.30), the group

velocity Vg and the Mach cone for magnetoacoustic waves. The Cauchy character-
istics for (4.30) are

dx
dτ

=
∂F

∂k
,

dφ

dτ
= k · ∂F

∂k
,

dk
dτ

= −∂F

∂x
. (4.39)

Because F (k, x) is a homogeneous function of k of degree four, i.e. F (λk, x) =
λ4F (k, x), it follows that

dφ

dτ
= k · ∂F

∂k
= 4F (k, x) = 0, (4.40)

and hence φ is constant on the characteristics. Differentiation of the magnetosonic
dispersion equation (4.28) with respect to k gives the expression

V′
g = −F ′

k/F ′
ω ′ , (4.41)

for the group velocity in the fluid frame. Using (4.41), and noting F (k, x) ≡
F ′(ω′,k, x) with ω′ = −u · k in the characteristic equations (4.39) we find

dx
dτ

=
∂F ′

∂ω′

(
∂ω′

∂k
+ F ′

k/F ′
ω ′

)
= −∂F ′

∂ω′ (u+ V′
g) = −∂F ′

∂ω′ Vg. (4.42)

In (4.42) ∂ω′/∂k = −u, since ω′ = −k · u for standing waves. The important point
in (4.42) is that the direction of the characteristic vector field dx/dτ is parallel to
the group velocity Vg in the fixed frame.
From (4.39) and (4.40) we find

k · dx
dτ

= k · ∂F

∂k
=

dφ

dτ
= 0. (4.43)

Then from (4.43) it follows that

k · Vg = 0, (4.44)

on the characteristics. Thus, for standing waves, the characteristic direction dx/dτ
(or equivalently, the group velocity direction in the fixed frame) is perpendicular to
the wave vector k = ∇φ, and hence the group velocity lies in the plane φ = constant.
Equation (4.44) can also be derived by noting that

k · Vg = k · (u+ V′
g) = k · u+ ck = −ω′ + ω′ = 0, (4.45)

on the characteristics.

4.2.2. Non-field aligned two-dimensional flow. As an example of the above ideas,
consider the form of the characteristics for flow in two Cartesian space dimensions
in the xy-plane, with ignorable coordinate z (see, e.g., Kogan 1960). Since φ is
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constant on the characteristics (4.40), then φxdx + φydy = 0, and hence
dy

dx
= −φx

φy
, (4.46)

on the characteristics. Using (4.46) in the characteristic manifold equation (4.30),
implies that y′ = dy/dx satisfies the fourth-order differential equation

(uy − uxy′)4 − (a2 + b2)(uy − uxy′)2(1 + y′2) + a2(by − bxy′)2(1 + y′2) = 0. (4.47)

Equation (4.47) can be written in the form

a4y
′4 + a3y

′3 + a2y
′2 + a1y

′ + a0 = 0, (4.48)

where
a4 = u4

x − (a2 + b2)u2
x + a2b2

x ,

a3 = −4u3
xuy + 2(a2 + b2)uxuy − 2a2bxby ,

a2 = 6u2
xu2

y − (a2 + b2)u2 + a2b2,

a1 = −4uxu3
y + 2(a2 + b2)uxuy − 2a2bxby ,

a0 = u4
y − (a2 + b2)u2

y + a2b2
y .

(4.49)

Equation (4.48) can also be obtained by re-arranging the characteristic equation
dy/dx = Vgy /Vgx which follows from (4.42). Equation (4.48) is related to the fourth-
order differential equation for the characteristics obtained by Kogan (1960). Kogan
(1960) considered the special case of linear, small amplitude waves in a uniform
flow along the x-axis, in which u = uxex , and the background magnetic field was
uniform, and confined to the xy-plane. In this case, the fourth-order differential
equation (4.48) for y′ can be reduced to the form

y′4[(M2
s − N2

x )(1 − M2
s ) + N2

y M2
s ] + y′3(2NxNy )

+ y′2[M2
s + (N2

x + N2
y )(M2

s − 1)] + y′(2NxNy ) − N2
y = 0, (4.50)

where the parameters

Ms =
ux

a
, Nx =

bx

a
, Ny =

by

a
, (4.51)

specify the background flow. HereMs is the sonic Mach number of the background
flow, whereas N = b/a is the ratio of the Alfvén velocity to the sound speed a.
Equation (4.50) is the equation for the characteristics derived by Kogan (1960,
(1.3)).
The characteristic equations (4.48)–(4.50) do not take into account the symmetry

of the fluid frame group velocity surface about the magnetic field. If one uses for
example, spatial coordinates x1 and x2 in the fixed frame, where x1 is parallel to B
and x2 is perpendicular toB, then since φ is constant on the characteristics φx1 dx1+
φx2 dx2 = 0 and dx2/dx1 = −φx1/φx2 ≡ −cot ϑ where ϑ is the wave normal angle
between k and B (note that locally, φ = k(x1 cos ϑ+x2 sin ϑ)). Using these relations
in the characteristic equation (4.30) gives the fourth-order polynomial equation

ã4w
4 + ã3w

3 + ã2w
2 + ã1w + ã0 = 0, (4.52)

for the bi-characteristics where

w =
dx2

dx1
= −cot ϑ, (4.53)



800 G. M. Webb et al.

and
ã4 = (u2

1 − a2)(u2
1 − b2),

ã3 = 2u1u2(a2 + b2 − 2u2
1),

ã2 = 6u2
1u

2
2 − (a2 + b2)u2 + a2b2,

ã1 = 2u1u2(a2 + b2 − 2u2
2),

ã0 = u2
2[u

2
2 − (a2 + b2)].

(4.54)

The fluid velocity components u1 and u2 are given by

u1 = ux cos α + uy sin α, u2 = −ux sin α + uy cos α, (4.55)

where α is the angle between u and B. Equation (4.52) is in effect a fourth-order
polynomial equation for cot ϑ where ϑ is the wave normal angle. Real characteristic
roots of this equation for ϑ correspond to hyperbolic characteristics.
Exactly the same equation for w = −cot ϑ arises from noting that

n · Vg = c(ϑ) + u · n = c + u1 cos ϑ + u2 sin ϑ = 0, (4.56)

and that c(ϑ) satisfies the dispersion equation

c4 − (a2 + b2)c2 + a2b2 cos2 ϑ = 0. (4.57)

Solving (4.56) for c in terms of u and ϑ and substituting the result in (4.57) yields
(4.52).

4.2.3. The Mach cone. Kogan (1960) noted that the two-dimensional flow
described above, in general has four roots of the characteristic equation (4.50).
The nature of the roots of (4.50) for y′ depends on the values of the parameters
defining the background flow. The flow can have up to four possible real roots for
y′. Four real, distinct roots for y′ correspond to hyperbolic flow, whereas no real
roots (i.e. the roots occur as complex conjugate pairs), correspond to elliptic flow.
The existence of real roots for y′ correspond to cases where the characteristics
form a Mach cone about the original disturbance (see e.g. Landau and Lifshitz
(1987, ch. 9, p. 313), for a discussion of the Mach cone formed by sound waves in a
supersonic flow). The simplest way in which to understand the formation of Mach
cones, corresponding to real roots for y′ is obtained by constructing the Mach cone
associated with the transformation of the group velocity (4.38) between frames.
Real characteristics correspond to the case where the group velocity Vg in the fixed
frame can be drawn as a tangent to either the fast or slow mode group velocity
surface.
Equation (4.56) can be written in the form:

c = −u · n = −|u| cos(α − ϑ) = |u| sin A, (4.58)

or

sin A =
1
M

, (4.59)

where

M =
|u|
c

and A = ϑ − α − π

2
. (4.60)

In (4.59) and (4.60),M is theMach number of the flow on theMach cone, andA is the
Mach cone angle. For real characteristics M > 1 and |sin A| < 1. Equations (4.59)–
(4.60) are analogous to similar results for the Mach cone angle for sound waves
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(e.g. Landau and Lifshitz (1987, ch. 9, p. 313)), except that in the present case, the
magnetosonic speed c(ϑ) can correspond to either the fast or slow magnetosonic
wave speed.
An alternative proof of (4.59) follows from noting that

sin2 A =
|xτ × u|2
|xτ |2u2

. (4.61)

Since φ is constant on the characteristics, φxxτ + φyyτ = 0 in (4.61). This implies
yτ = −φx/φyxτ , and hence

xτ × u = (xτ uy − yτ ux)ez =
xτ

φy
(φxux + φyuy )ez =

xτ (k · u)
ky

ez . (4.62)

Using (4.62) in (4.61) we find

sin2 A =
(k · u)2
k2u2

=
(n · u)2

u2
=

c2

u2
=

1
M2

, (4.63)

which is equivalent to (4.59).
Illustrative examples of the group velocity surface for standing magnetoacoustic

waves in a background flow with velocity u are given for example by Sears (1960),
and Woodward and McKenzie (1993). In general, there are four roots of the char-
acteristic equation (4.52), but depending on the magnitude and direction of the
background flow relative to the background magnetic field, not all roots of (4.52)
will necessarily be real. Real solutions of (4.52) correspond to cases where there
are real characteristics which can be drawn tangent to the group velocity surface.
These conditions determine whether the flow is elliptic or hyperbolic, or of a mixed
hyperbolic-elliptic type. The Alfvén waves also have a Mach cone for super-Alfvénic
flow which are commonly referred to as Alfvén wings (e.g. Woodward and McKenzie
(1993)).

4.3. Compressible (δρ �= 0) and incompressible (δρ = 0) perturbations
The characteristic analysis of the coupled wave equations (4.1) and (4.2) for ξ and
∆S in Secs 4.1 and 4.2 does not explicitly attempt to isolate off the compressible
wave perturbations (δρ �= 0) from the incompressible perturbations (δρ = 0). The
Eulerian density perturbation δρ, from (3.4) is given by

δρ = −∇ · (ρξ). (4.64)

The Eulerian MHD eigenvectors (e.g. Webb et al. (1999)) show that the linear, fast
and slow magnetoacoustic waves and the entropy wave are compressible (δρ �= 0),
whereas the Alfvén wave is incompressible (δρ = 0).
From electromagnetic theory (e.g. Panofsky and Phillips (1964, ch. 1)), a three-

dimensional vector field V with finite divergence (∇ ·V = σ) and curl (∇ ×V = c) in
which |σ| and |c| vanish sufficiently fast as r → ∞ can be represented in the form
V = ∇ψ + ∇ × w. The scalar and vector potentials ψ and w are solutions of the
Poisson equations ∇2ψ = σ and ∇2w = −c, where the guage potential defining w
has been chosen so that ∇ · w = 0. Using this idea we represent the vector field
q = ρξ in the form

q = ρξ = ∇ψ + ∇ × w. (4.65)

Using (4.65) it follows that

δρ = −∇ · q = −∇2ψ (4.66)
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and

∇ × q = ∇(∇ · w) − ∇2w ≡ −∇2w, (4.67)

where we have chosen the guage such that ∇ ·w = 0. Equations (4.65)–(4.67) show
that the compressible perturbations (δρ �= 0) are described in terms of the scalar
potential ψ whereas the incompressible perturbations (δρ = 0) are described by w.
However, it should be noted that the formulas ∆ρ = −ρ∇·ξ and δρ = −∇ · (ρξ) only
apply for small amplitude, linear waves, whereas ∆ρ = ρ∗ − ρ = (ρ/J − ρ) in the
general nonlinear case where J = det(∂x∗i/∂xj ) is the Jacobian determinant (2.6).
The action A and the wave action functionals Aj (j = 1, 2) in (2.18) depend on

the Lagrangian wave displacement vector ξ. Using (4.65) we obtain the variational
derivative transformations:

δF̃

δψ
= −∇ ·

(
1
ρ

δF

δξ

)
and

δF

δw
= ∇ ×

(
1
ρ

δF

δξ

)
. (4.68)

for the variational functional F̃ [ψ,w] = F [ξ]. Using the transformations (4.68) we
obtain

δA2

δψ
= −∇ ·

(
1
ρ

δA2

δξ

)
≡ ∇ ·

(
1
ρ
PD

)
= 0, (4.69)

δA2

δw
= ∇ ×

(
1
ρ

δA2

δξ

)
≡ −∇ ×

(
1
ρ
PD

)
= 0, (4.70)

where PD = 0 is the perturbed momentum equation (2.20). From (2.20), (4.69) and
(4.70) we obtain the equations

PD = 0, ∇ · PD = 0, ∇ × PD = 0, (4.71)

describing the wave perturbations.

4.3.1. Wave equations for ψ and w. Below, we provide two propositions which
characterize the interaction of the compressible (δρ �= 0) and incompressible (δρ =
0) perturbations.

Proposition 1. The equations ∇·PD = 0 and ∇ × PD = 0 in (4.71) may be
rewritten, respectively, as wave equations for ψ and w of the form(

∂2

∂t2
+ 2u · ∇ ∂

∂t
+ uu:∇∇ + bb : ∇∇ − (a2 + b2)∇2

)
∇2ψ + bb : ∇∇

× (∇2w) + S1 = 0, (4.72)

(
∂2

∂t2
+ 2u · ∇ ∂

∂t
+ uu:∇∇ − bb : ∇∇

)
∇2w+ b

× [(b · ∇)∇2ψ] + S2 = 0, (4.73)

where a = (γp/ρ)1/2 and b = B/(µρ)1/2 denote the gas sound speed and Alfvén velocity,
respectively. In (4.72) and (4.73) the source terms consist of lower-order derivatives
of ψ and w, which describe the interaction of finite wavelength waves, whereas the
higher-order, explicit derivative terms (of order 4) represent the dominant effects at
short wavelengths.
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The source terms S1 and S2 in (4.72) and (4.73) can be written in terms of q (or
ψ and w). The detailed forms of S1 and S2 are given in Appendix B. Note, that
if the Lagrangian entropy perturbation ∆S �= 0, then ∆S is advected with the
background flow (i.e. ∆S satisfies (2.21)).
The proof of Proposition 1 follows in a straightforward fashion by first writing

PD of (2.20) in terms of q = ρξ in the form

PD =
∂

∂t
(qt + ∇ · (uq))

+ ∇ ·
{
u[qt + ∇ · (uq)] +

[(
p

ρ
− a2

)
(∇ · q− ∇(ln ρ) · q) − pS ∆S

]
I

− p

ρ
[(∇q)t − q∇(ln ρ)]

+
(
bb :(∇q− ∇(ln ρ)q) − b2

2
[∇ · q− q · ∇(ln ρ)]

)
I

− b2

2
((∇q)t − q∇(ln ρ)) + bb[∇ · q− q · ∇(ln ρ)] − bb · (∇q− ∇(ln ρ)q)

}

+ q · ∇∇φ. (4.74)

To obtain (4.72) and (4.73) the highest-order derivatives in ∇·PD = 0 and ∇×PD = 0
are separated off from the lower-order derivatives which are represented by the
source terms S1 and S2 respectively.

Proposition 2. The density perturbation δρ = −∇2ψ satisfies the magnetoacoustic
type wave equation

L̂MSδρ + Ŝ1 = 0, (4.75)
where L̂MS are the highest-order derivative terms in the magnetoacoustic operator

LMS = ∂4
t ′ − (a2 + b2)∇2∂2

t ′ + a2bb : ∇∇, (4.76)

and
∂t ′ = ∂t + u · ∇, (4.77)

is the Lagrangian time derivative following the flow. The source term Ŝ1 in (4.75)
involves lower-order derivatives of ψ and w. In other words, we use the convention that
the differential operator L̂ is obtained from the operator L by expanding L in terms of
∂t and ∇ and regarding the background flow quantities u, a and b as constants in the
process.

To prove (4.75) we note that the wave equations (4.72) and (4.73) can be written
in the form

L̂1∇2ψ + bb : ∇(∇ × ∇2w) + S1 = 0, (4.78)

L̂A∇2w+ b× [(b · ∇)∇(∇2ψ)] + S2 = 0, (4.79)

where

L1 = ∂2
t ′ + bb : ∇∇ − (a2 + b2)∇∇. (4.80)

and

L̂A =
(

∂2

∂t2
+ 2u · ∇ ∂

∂t
+ uu:∇∇ − bb : ∇∇

)
, (4.81)
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is the second-order wave operator associated with Alfvénic perturbations.
From (4.78) and (4.79):

{L̂AL̂1 − bb : ∇∇ × [b× (b · ∇)∇]}∇2ψ + S = 0, (4.82)

where

S = −bb : ∇∇ × S2 + L̂AS1 + L̂A(bb): ∇∇ × ∇2w. (4.83)

Expanding the operator in curly brackets in (4.82) and collecting the highest-order
derivative terms, and noting that δρ = −∇2ψ we obtain the magnetoacoustic type
wave equation (4.75) where Ŝ1 consists of lower-order derivative terms.

5. Summary and discussion
The main aim of this paper was to provide a framework for MHD wave propagation
in non-uniform media, such as the Solar Wind, based on the MHD variational
principles of Newcomb (1962) and Dewar (1970, 1977).
The paper has concentrated on linear, non-WKB wave propagation in a non-

uniform background medium, based on Dewar’s (1970) variational principle in
which the Lagrangian is expanded out to second order in the Lagrangian wave
displacement ξ(x, t), and also in terms of the Lagrangian entropy perturbation∆S,
which is advected with the background flow. These equations are generalizations of
the Frieman and Rotenberg (1960) equations used to study the stability of steady
MHD flows (Sec. 3). The characteristic manifolds φ(x, t) = constant of the wave
equations correspond to the usual dispersion equations for the MHD eigenmodes
(i.e. the Alfvén, fast and slow magnetoacoustic waves and the entropy wave), in
which ω′ = −(φt +u · ∇φ) and k = ∇φ define the local Doppler shifted frequency of
the waves in the fluid frame and k is the wavenumber. The dispersion equations can
be regarded as first-order partial differential equations for the singular manifold
function φ(x, t), with Cauchy characteristics that define the ray equations of MHD
geometrical optics. For standing waves in a steady flow, the fixed frame frequency
ω = −φt = 0, and in this case the ray equations define the group velocity surface
and Mach cone for the magnetoacoustic waves and Alfvén wings, described in
earlier analyses of Kogan (1960), Sears (1960), Bazer and Hurley (1963), Crapper
(1965) and Woodward and McKenzie (1993). However, these earlier analyses did
not emphasize the connection between the theory of Cauchy characteristics of
first-order partial differential equations and the ray equations used in the present
analysis. Methods to split the wave equations into compressible and incompressible
components were also discussed (Sec. 4).
It is interesting to note that an inadvertent loss of two of the MHD characteristics

occurs in many discussions of MHD flows based on the generalized Grad–Shafranov
equation used to describe steady MHD winds and jets with one ignorable spatial
coordinate. The loss of two of the characteristics can be traced back to the as-
sumption that the electric field in the ignorable coordinate direction is zero (see
e.g. Contopoulos 1996; Webb et al. 2001). Similarly, the equations used to describe
steady, two-dimensional field-aligned flow (e.g. Jeffrey and Taniuti 1964) do not
contain the slow mode characteristics. For field-aligned flow, the slow mode phase
speed in the fluid frame for wave propagation perpendicular to the magnetic field
is zero, but the group velocity is directed parallel to the magnetic field and equals
the MHD cusp speed Vc = ab/(a2 + b2)1/2, where a is the sound speed and b is
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the Alfvén speed. This result turns out to be important in the discussion of the
possibility of a slow mode, hydrodynamical, 3–4 type bow shock in MHD models
of the interaction of the Solar Wind with an incoming, field aligned, supersonic,
but sub-Alfvénic interstellar flow (Ratkiewicz and Webb (2004), Pogorelov and
Matsuda (2004)).
Webb et al. (2003) and Webb (2004) have discussed the use of Noether’s the-

orem in the derivation of stress-energy tensors for the waves and background flow,
for fully nonlinear, non-WKB waves. This analysis is similar to Dewar’s (1970)
derivation of stress-energy tensors for the background and WKB waves in a non-
uniform background flow, except that the WKB assumption is discarded, and the
analysis was carried out using the exact MHD Lagrangian consisting of wave and
background components. A detailed derivation of these results, and other uses of
Noether’s theorem for MHD waves in non-uniform, time-dependent background
flows will be given in a forthcoming paper.
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Appendix A
In this appendix we point out that the characteristic manifolds for MHD waves
discussed in Sec. 4.1, also arise naturally from an analysis of WKB waves in non-
uniform flows in the averaged Lagrangian variational principle of Dewar (1970).
The Hermitian matrix Ã in (4.16) and the Alfvén and magnetoacoustic dispersion
equations (4.19) and (4.20) also occur in the analysis of Dewar (1970). By using the
identifications ω = −φt and k = ∇φ, the dispersion equations (4.19) and (4.20) can
be identified as the wave eikonal equations of WKB theory for the wave phase φ.
Dewar (1970) considered WKB, waves in a non-uniform background flow for which
ξ = a exp(iφ) + a∗ exp(−iφ), in which φ is the fast varying wave phase and a is the
complex wave amplitude. By averaging over the fast wave phase variable φ, Dewar
obtained

〈L2〉 = ρatÃa∗, (A 1)

for the averaged wave Lagrangian, where Ã is the matrix (4.16). Variation of the
action 〈A2〉 corresponding to 〈L2〉 in (2.16) with respect to the wave amplitude a
gave the eigenvector equation:

δ〈A2〉
δa

= ρÃa∗ = 0. (A 2)

The eigen-equation (A 2) has a non-trivial solution for a∗ if det(Ã) = 0, which is the
determinantal equation (4.15) for the characteristic MHD manifolds (note det Ã
is given by (4.18)). By varying the slow wave phase (i.e. by varying k = ∇φ and
ω = −φt), Dewar obtained the wave action equation for WKB, MHD waves.
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Appendix B
In this appendix we list the lower-order derivative source terms that appear in the
wave equations (4.72) and (4.73) for the potentials ψ and w describing compressible
and incompressible perturbations. The source terms S1 and S2 are given by

S1 = 2∇q : ∇u+ ∇∇(q · ∇): uu− ∇(a2 + b2)·∇(∇2ψ)

+ [∇(bb)·∇]: ∇q+ ∇(bb) · ∇(∇2ψ) − ∇∇(q · ∇): bb+ ∇ · R, (B 1)

S2 = −{2∇us × ∇sqt + ∇(usuα ) × ∇s∇α (q)

− ∇(a2 + b2) × ∇(∇ · q) + ∇(bsbp) × ∇(∇sq
p)

+ ∇ × (bbs)∇s(∇ · q) − ∇(bαbs) × ∇α ∇sq+ ∇ × R}, (B 2)

where

R = ut ·∇q+
∂

∂t
(q∇·u) + (∇·u)qt + ∇ · (uu)·∇q+ ∇·[uq(∇ · u)]

+ ∇
(

p

ρ
− a2

)
∇ · q− ∇

[(
p

ρ
− a2

)
q · ∇ ln(ρ) − pS∆S

]

+ ∇q · ∇
(

p

ρ

)
+ ∇·

(
pq

∇ρ

ρ2

)

+ q · ∇∇φ + ∇(bb): ∇q− ∇[bb : ∇(ln ρ)q] − ∇
(

b2

2

)
∇ · q

+ ∇
(

b2

2
∇(ln ρ) · q

)
− ∇q·∇

(
b2

2

)
+ ∇ ·

(
q∇(ln ρ)

b2

2

)

+ ∇ · (bb)∇ · q− ∇ · [bb(q · ∇(ln ρ))] − ∇ · (bb)·∇q+ ∇·[bq(b · ∇(ln ρ))]. (B 3)

In (B 2) we have used the Einstein summation convention for repeated indices,
where the indices range from 1 to 3.
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