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Abstract 

Reverse Engineering of RNA Regulatory Networks 

 by 

David Nellinger Adamson 

Doctor of Philosophy in Biophysics 

University of California, Berkeley 

Professor Han N. Lim, Chair 

Understanding gene regulation is of central importance to biology because 
controlling when, where, and how genes are expressed accounts for a large 
proportion of the complexity and organization of living systems. While for many 
years RNA was largely thought of as the middleman for converting genetic 
information into biochemically active proteins, it has become increasingly clear 
that RNAs are also major players gene regulation. This thesis examines the 
functional properties of regulatory RNAs in the context of bacterial RNA 
networks. More specifically, the three studies presented here examine signaling 
dynamics and crosstalk within the CsrA and Hfq-dependent small RNA 
regulatory systems; each of these systems (i) contain non-coding RNAs which 
regulate the translation of multiple target messenger RNAs, (ii) have central roles 
in coordinating their cells’ adaptation to environmental change, and (iii) are 
evolutionarily conserved across a wide range of bacterial species. In this work, a 
combination of synthetic biology and mathematical modeling are brought to bear 
to uncover the operational behavior and potential of the these two model RNA 
networks. 
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1. Introduction 
 

1.1  Functional properties of gene circuits 
 
While the content of individual genes plays a crucial role in an organism’s operation 
and survival, much of the complexity and structure of living systems emerges from 
how the expression of those genes is controlled. Gene regulation is a broad topic 
because individual genes can be controlled by staggering numbers of distinct 
mechanisms even within a single cell. Among gene regulatory mechanisms, we observe 
many distinct functional properties; as an example, some regulatory mechanisms 
modulate gene expression in a graded fashion in response to an input stimuli (much 
like a rheostat) while others will keep gene expression off until the input exceeds a 
threshold after which expression is fully on (much like a transistor or switch) [1-5]. 
Some more sophisticated regulatory mechanisms can either filter or amplify ‘noise’ 
arising from the randomness inherent in biochemical reactions (e.g. to ensure signal 
fidelity and developmental reproducibility or to increase phenotypic variation in a 
population) [6-8] while others can even cause gene expression to oscillate as a function 
of time (e.g. for generating circadian rhythms) [9,10]. 
 
Because many properties of regulatory mechanisms can be described using analogies to 
electrical engineering and because gene regulation is often accomplished through the 
interaction of multiple gene product ‘components’, collections of these interacting gene 
products are often referred to either as “gene circuits” or “gene networks”. Determining 
the functional properties of a regulatory gene circuit is important for understanding the 
physiological role of the gene(s) that the circuit controls. Additionally, identifying 
general principles for how a gene circuit may acquire these properties can allow us both 
(i) to more readily discern the properties of uncharacterized gene circuits and (ii) to 
rationally design synthetic gene circuits for industrial, therapeutic, diagnostic and/or 
bioremediation purposes. In the studies presented in this thesis, naturally occurring 
gene circuits within Escherichia coli are reverse engineered in an effort (i) to identify new 
general principles that dictate gene circuit properties and (ii) to determine what known 
principles are at work within native gene circuits.  
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1.2  The role of mathematical modeling 
 
In the study of genetic circuits, it is useful to create mathematical models for two 
significant reasons. First, mathematical modeling helps manage complexity. The study 
of gene circuits is the study of how interactions among gene products produce 
emergent behavior and biological function. Because the non-linear interaction of even a 
very small number of components can produce highly complex behavior (e.g. three 
components is sufficient for generating deterministic chaos) [11,12] modeling is an 
important tool for testing the conceptual soundness and internal consistency of a 
hypothesis before it is applied against an actual biological system [13]. 
 
Second, modeling can also help maintain generality. The ultimate goal in studying gene 
circuits is not to characterize circuits on a case-by-case basis with a high degree of 
specificity; instead, the goal is to extrapolate general mechanisms that are applicable to 
large classes of circuits from the detailed observation of a select few. With this 
philosophy in mind, the most valuable models are those that represent a system in the 
simplest way possible while still reproducing that systems’ fundamental behavior. The 
use of minimal, granular models allows for the omission of extraneous detail that 
would unnecessarily restrict comparisons between the specific circuit studied and other 
related circuits. The models presented in this thesis were constructed with this mindset; 
as an example: modeling of the binding between the CsrA protein and the CsrB non-
coding RNA largely omitted cooperativity/anti-cooperativity because that level of 
detail was shown to be unnecessary for the models to reproduce the fundamental 
dynamic and buffering properties of the system (see below) [14]. 
 
1.3  The role of synthetic gene circuits 
 
The ability to produce sophisticated synthetic gene circuits is of great value when 
reverse engineering natural circuits because it allows the researcher to reconstruct the 
natural system incrementally from the ground up. By adding one component at a time 
to the synthetic version of the native circuit, the researcher can (as with modeling) 
manage the complexity of the system, this time by comparing the in vivo behavior of 
circuits that differ from one another by only a single genetic change. Additionally, 
synthetic circuits allow both the magnitude and timing of the expression of genes to be 
precisely controlled by the researcher (e.g. via inducible promoters); this control enables 



Part 1:  Introduction 

  3 

the researcher to measure the dynamic behavior of and dose/response relationships 
between the involved genetic components [14,15]. 
 
1.4  Why RNA regulatory networks? 
 
In recent years, it has become increasingly clear that trans-acting RNAs play a far bigger 
role in regulating gene expression than was originally thought; small regulatory RNAs 
(srRNAs) have now been identified in organisms spanning all kingdoms of life [16]. 
Many of these srRNAs act by either interfering with or promoting the translation of 
targeted messenger RNAs (mRNAs). Additionally, a large proportion of srRNAs have 
multiple mRNA targets and/or make use of a shared protein complex in order to 
execute their function (e.g. Hfq-dependent small RNAs (sRNAs) which share the Hfq 
chaperone, the CsrB and CsrC non-coding RNAs which compete with mRNAs for CsrA 
binding or microRNAs (miRNAs) which incorporate into “RNA-induced silencing 
complexes” (RISCs)) [16,17]. Because of the widespread sharing of substrates and 
mediating complexes, srRNA regulatory circuits become well-connected ‘networks’ and 
thus gene circuits composed of srRNAs, their target mRNAs and their mediating 
proteins are referred to here as “RNA regulatory networks”. While many trans-acting 
srRNAs act upon their targets via complementary RNA-RNA base pairing (e.g. Hfq-
dependent sRNAs, miRNAs)  [18], some act via sequestration of a shared regulatory 
protein (e.g. CsrB, CsrC) [19] among other mechanisms. Because the general importance 
of RNA regulatory networks has only become clear recently, many of the functional 
properties and design principles of these networks remain to be characterized; this lack 
of characterization, in conjunction with the significant role these systems play in gene 
regulation throughout the biosphere makes RNA regulatory networks attractive 
systems for reverse engineering. 
 
1.5  The specific RNA networks and signaling properties investigated  
 
The studies presented in this thesis investigate the signaling properties of two specific 
RNA regulatory networks in Escherichia coli: the Hfq-dependent small RNA network 
and the carbon storage regulatory (Csr) network (also known as the CsrA network). The 
specific physiology of these networks is described below. This thesis discusses the 
dynamics of signaling in these networks as well as the and the susceptibility of these 
networks to crosstalk among parallel srRNA pathways [14,15,20-22]. Specifically, this 
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thesis includes studies of signaling dynamics in the CsrA regulatory network [14] as 
well as crosstalk within both the Hfq-dependent small RNA network [20] and the CsrA 
regulatory network [15]. The dynamics of signaling within the Hfq-dependent small 
RNA network has been characterized previously [22] so those results are summarized.  
 
1.5.1  THE HFQ-DEPENDENT SMALL RNA NETWORK 
 
Hfq-dependent sRNAs play an important role in regulating bacterial virulence and 
stress responses [23]. This importance is demonstrated in part by how significantly the 
gene encoding the Hfq protein is conserved among bacterial species: putative hfq 
homologs have been identified in approximately 50% of all sequenced bacteria [17,24]. 
Hfq-dependent sRNAs regulate their mRNA targets by base paring with segments of 
complementary sequence. Most often, the binding of a sRNA silences translation of one 
or more target mRNAs (e.g. MicC silences ompC [25]; RyhB silences sodB, ftnA, bfR, acnA, 
fumA and sdhCDAB [26-28]), however, several sRNAs are known to activate translation 
of their mRNA targets (e.g. DsrA activates rpoS [29]; GlmZ activates glmS [28]). The Hfq 
protein complex (which is a hexamer of individual Hfq proteins) serves as a chaperone 
to assist in the annealing between sRNAs and their target mRNA [17]. As several 
experimental studies have shown, the various sRNA and mRNA molecules that depend 
upon Hfq for annealing can compete with one another for access to Hfq, disrupting one 
another’s activity [21,30,31].  
 
1.5.2  THE CsrA REGULATORY NETWORK 
 
Like Hfq-dependent sRNAs, the CsrA regulatory network plays an important role in 
regulating bacterial virulence and stress; additionally, the CsrA system controls genes 
integral to cell metabolism, motility, and biofilm formation [19]. As with hfq, csrA 
homologs (e.g. rsmA) exist in a large subset of bacteria, including gram negative and 
gram positive species [19,32,33]. The CsrA protein regulates its mRNA targets by 
binding to specific sequences within the target mRNAs that form small hairpin loops. 
Typically, these loops are found within the 5’ untranslated region (UTR) of the mRNA, 
allowing the CsrA protein to block the ribosomal binding site of the downstream gene; 
this occlusion silences translation of the mRNA (e.g. CsrA silences glgCAP, pgaABCD 
[19]). More rarely, CsrA has been observed to increase translation of its target mRNAs 
upon binding by blocking RNAse E access to the mRNA (e.g. CsrA activates flhDC [34]). 
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1.5.3  SIGNALING DYNAMICS 
 
Cells can exhibit a broad range of dynamic responses to changes in their environment. 
Often, a cell’s survival will depend upon rapid adaptation to an environmental change 
(e.g. when a cell encounters a source of physiological stress). Alternatively, some 
environmental variations are met with a more delayed response so that the cell does not 
overreact to what may only be a transient change [35,36]. Additionally, some cell 
pathways respond only to quick changes in the environment while averaging out 
slower changes; this form of adaptive (or acclimating) response is useful in bacterial 
chemotaxis where cells need to detect any nutrient gradient as they move [37-40] and 
when differentiating between signals that occur on different time scales but that are 
transmitted using sharing signaling components [41]. 
 
Because both the CsrA network and the Hfq-dependent sRNA network are intimately 
associated with stress response pathways, this thesis focuses on how genetic circuits can 
provide rapid responses to changes in a cell’s environment (thus allowing for quick 
adaptation) [14]. It should be noted, however, that the CsrA system exhibits the 
potential for both rapid and delayed signaling depending upon how a particular signal 
is processed; this affords the CsrA system flexibility in terms of how quickly its targets 
respond to environmental cues [14]. How the dynamic response of the CsrA system 
varies across different environmental contingencies remains to be fully characterized.  
 
1.5.4  SIGNALING CROSSTALK 
 
As mentioned above, RNA regulatory networks contain many shared components 
either in the form of shared regulators (e.g. CsrA, RyhB) or chaperones (e.g. Hfq). 
Because these shared regulators control a pool of target mRNAs that is variable in both 
size and composition, the transcription of individual target mRNAs has the potential to 
influence the translation of other target mRNAs through competition for the shared 
molecule. This example of “substrate availability” crosstalk [42], while not unique to 
RNA and translational regulatory networks, is a fundamental concern for translational 
regulation since even the translational machinery itself (e.g. ribosomes) can be competed 
for by mRNAs [43]. Transcriptional regulation (and thus transcriptional regulatory 
networks) does not face this problem since the copy number of individual genes in the 
cell (i.e. the DNA substrate to which transcription factors bind) does not vary to the 
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degree that the copy number of mRNAs does. In this thesis, we examine crosstalk in 
both the Hfq-dependent sRNA network [20] and the CsrA regulatory network [15]. 
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2.  Signaling dynamics in the CsrA system 
 
Biological mechanisms of signal transduction can operate on a variety of timescales. 
Some mechanisms are fast-acting; for example, signaling via small molecule binding to 
cytoplasmic proteins (e.g. transcription factors such as LacI and TetR which change their 
activity in the presence of sugars or antibiotics) or via transmembrane receptors that 
trigger the covalent modification of downstream effectors (e.g. two component systems 
and phosphorelays such as BarA/UvrY and the MAP kinase cascade) can occur in a few 
seconds. In contrast, other mechanisms act much more slowly; for example, endocrine 
signaling in mammals. Because hormones must be produced in one part of the body, be 
transported by the circulatory system, and then accumulate in another part of the body 
signaling can take hours or days. While typically slower than small molecule and 
phosphorelay signaling mechanisms, genetic circuits that operate within single cells 
tend to lie on the faster end of the signaling spectrum. Their speed allows them to be 
used in a reactive way: to allow an organism to adapt quickly to a changing 
environment. Signaling via genetic circuits is not always fast, however, and the factors 
that control the speed of signaling within gene circuits are the subject of active study. 
 
A previous study by Razika Hussein and Han N. Lim examined the dynamics of 
signaling via Hfq-dependent sRNAs [22]. As a control, the dynamics of sRNA signaling 
was compared with and contrasted against the dynamics of signaling via protein 
transcription factors. It had been postulated that inducing transcription of a sRNA 
would illicit a more rapid response from a downstream target than would inducing a 
transcription factor because (i) the sRNA need only be transcribed before it is able to 
regulate its target gene (while transcription factors must also be translated and folded) 
and (ii) because the sRNA can block translation from and promote the clearance of 
existing target gene mRNA (while the transcription factor can only prevent the 
production more mRNA from the target gene) [22]. As was shown, these described 
differences are in fact negligible because mRNA half-lives are already quite small and 
the time delay between starting transcription and starting translation is small when 
compared to the time required for a molecule to reach a steady-state concentration. 
Instead, the biggest difference in signaling dynamics between sRNAs and transcription 
factors arises when their production is halted. Because transcription factors are far more 
stable than sRNAs, it can take much longer for them to be cleared and for their 
influence to diminish once their expression has been turned off. This effect is an 
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important factor governing the dynamics of the CsrA regulatory system which we 
discuss in more detail in the study below. 

2.1  ABSTRACT 

Bacterial survival requires the rapid propagation of signals through gene networks 
during stress but how this is achieved is not well understood. This study systematically 
characterizes the signaling dynamics of a cascade of RNA-protein interactions in the 
CsrA system, which regulates stress responses and biofilm formation in Escherichia coli. 
Non-coding RNAs are at the center of the CsrA system; target mRNAs are bound by 
CsrA proteins that inhibit their translation, CsrA proteins are sequestered by CsrB non-
coding RNAs, and the degradation of CsrB RNAs is increased by CsrD proteins. Here we 
show using in vivo experiments and quantitative modeling that the CsrA system 
integrates three strategies to achieve rapid and robust signaling. These strategies 
include: (i) the sequestration of stable proteins by non-coding RNAs, which rapidly 
inactivates protein activity; (ii) the degradation of stable non-coding RNAs, which 
enables their rapid removal; and (iii) a negative feedback loop created by CsrA 
repression of CsrD production, which reduces the time for the system to achieve steady 
state. We also demonstrate that sequestration in the CsrA system results in signaling 
that is robust to growth rates because it does not rely on the slow dilution of molecules 
via cell division; therefore signaling can occur even during growth arrest induced by 
starvation or antibiotic treatment. 

2.2  INTRODUCTION 

A quantitative understanding of signaling dynamics is critical to determining how 
bacteria adapt to sudden environmental changes, combating pathogenesis, and 
designing synthetic circuits with specific dynamic properties. Recent studies have 
characterized signaling by transcription factor proteins [22,44-46] and by small RNAs 
that bind to target mRNAs to modulate their translation and/or degradation [22,46-48]. 
However, the signaling properties of non-coding RNAs that sequester proteins have not 
been defined and are of particular interest because of their theoretical potential for very 
rapid signaling (see Results). 

In this study we chose the CsrA system in Escherichia coli as a model to investigate 
signaling by protein-sequestering non-coding RNAs (Fig. 2.1). CsrA regulation is 
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important for carbon storage, motility, biofilm formation and pathogenesis, and is 
evolutionarily conserved across distant groups of bacteria [19,32,33]. The system 
consists of CsrA protein, CsrB and CsrC non-coding RNAs, and CsrD protein. CsrA 
binds as a dimer to the 5’ untranslated region of target mRNAs to silence their 
translation [19,32,33]. CsrB and CsrC, which have binding sites for 9 and 3-4 CsrA 
dimers respectively [49], sequester CsrA to prevent it from silencing target mRNA 
translation [49,50]. CsrB and CsrC concentrations are in turn regulated by CsrD which 
acts as a specificity factor to increase their degradation by RNase E [51]. 

The study has three major parts. The first part describes the dynamics of signaling in a 
synthetic CsrA cascade without native control mechanisms in response to turning on 
and off transcription at each level in the cascade (target gene, csrA, csrB and csrD). Our 
model and experiments show that sequestration of CsrA and degradation of CsrB 
enable rapid signaling by eliminating the need for multiple generations of cell division 
to dilute out these stable molecules. The second part describes how the sequestration of 
CsrA by CsrB enables signaling to occur in cells with growth arrest caused by starvation 
and antibiotic induced stress. The third part describes the systematic reintroduction of 
wild-type components with their native transcriptional and translational regulatory 
sequences into the CsrA cascade. These experiments show that negative feedback 
control enables signaling in the native system to be even faster than in the synthetic 
system. Together these findings highlight general strategies for rapid intracellular 
signaling that are important for reprogramming gene expression during stress. 

2.3  RESULTS 

2.3.1  Modeling summary 
We constructed a simple and general mathematical model to qualitatively predict and 
interpret how turning on and off the production of CsrA, CsrB and CsrD affect the 
dynamics of target gene expression. Briefly, the model uses ordinary differential 
equations (details below) to describe the production, clearance, association, dissociation 
and/or catalytic activity of the target mRNA, target protein, CsrA, CsrB, CsrD and their 
complexes (Fig. 2.1). For simplicity, all binding reactions are independent and the 
production of CsrA dimers and CsrD occur in a single step. CsrA primarily exists as a 
dimer in solution [52] therefore dimerization is presumably rapid compared to the CsrA 
turnover rate. Inclusion of separate transcription, translation and dimerization steps is 
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unnecessary since these reactions are assumed to be fast relative to the overall dynamics. 
The model is later extended to include feedback regulation. 

Fig. 2.1 | CsrA system. (A) Simplified schematic of the synthetic CsrA system. (B) Mechanistic description of the synthetic CsrA 
system (see text). 

Parameter values were obtained from our data or the literature (see below). In the 
synthetic CsrA systems (Figs. 2.2, 2.4 & 2.5), the only parameters fitted to our dynamics 
data were the production rates. Each production rate was fitted in a circuit where it was 
the only free parameter and once fitted, the parameter was constant across all 
simulations. In addition, we validated the model and parameter values by predicting 
the effect of steady state CsrA, CsrB and CsrD concentrations ([CsrA], [CsrB], [CsrD] 
respectively) on target protein (GlgC-GFP) expression and then confirmed the 
predictions qualitatively with in vivo measurements (Figs. 2.2D, 2.4D & 2.5D). In the 
native CsrA system, parameter values for feedback and saturation of CsrD activity were 
also obtained from the dynamics data. 

2.3.2  Experimental system and signaling metrics 
To test the model’s predictions, signaling was initially measured in a completely 
synthetic CsrA system. In this system, CsrA binding sites and flanking sequences from 
glgC (-61 to +8 nucleotides relative to the start codon) [53] were fused to gfp, thereby 
enabling GlgC-GFP expression (“target expression”) to be quantified by fluorescence. 
The transcription of each component (glgC-gfp, csrA, csrB and/or csrD) was controlled 
by an inducible promoter (PLlacO-1 or PLtetO-1) [54] or a constitutive promoter 
(variants of Pcon/O3 [55]). CsrB and CsrC are believed to behave similarly therefore 
only the more potent (CsrB) was used. These synthetic circuits were constructed on 
plasmids and transformed into strains with chromosomal csrA, csrB, csrC, csrD, glgCAP 
and/or pgaABCD deleted. Deletion of glgCAP was necessary for csrA knockouts to 
survive [56] and deletion of pgaABCD was required to prevent the overproduction of 
biofilm adhesins [57] and to enable efficient transformation. 
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Table 2.1 | Synthetic circuit signaling times 
figure experiment τ20 (min) τ50 (min) τ80 (min) 
Fig. 2.2B 
(turning target on) 

glgC-gfp turned on 39 ± 1 97 ± 1 >240 
csrA turned off 187 ± 1 >240 >240 

Fig. 2.4B 
(turning target on) 

glgC-gfp turned on 27 ± 1 74 ± 1 196 ± 3 
csrB turned on 26 ± 1 81 ± 2 >240 

Fig. 2.5B 
(turning target on) 

glgC-gfp turned on 28 ± 1 72 ± 2 159 ± 6 
csrD turned off 77 ± 18 158 ± 5 >240 

Fig. 2.8G 
(turning target on) 

csrA turned off 190 ± 9 >240 >240 
csrB turned on 44 ± 9 119 ± 18 >240 

Fig. 2.2C 
(turning target off) 

glgC-gfp turned off 90 ± 1 47 ± 1 9 ± 1 
csrA turned on 103 ± 3 49 ± 1 8 ± 3 

Fig. 2.4C 
(turning target off) 

glgC-gfp turned off 89 ± 2 46 ± 2 13 ± 1 
csrB turned off 147 ± 4 97 ± 9 67 ± 3 

Fig. 2.5C 
(turning target off) 

glgC-gfp turned off 78 ± 1 41 ± 1 14 ± 1 
csrD turned on 88 ± 7 52 ± 4 17 ± 2 

Fig. 2.8H 
(turning target off) 

csrB turned off 103 ± 1 67 ± 2 42 ± 4 
csrD turned on 83 ± 3 42 ± 12 16 ± 19 

Fig. 2.9C 
(turning target off) 

glgC-gfp turned off 85 ± 7 57 ± 6 35 ± 5 
csrA turned on 86 ± 1 54 ± 2 33 ± 2 

Fig. 2.9D 
(turning target off) 

glgC-gfp turned off 44 ± 3 27 ± 2 14 ± 3 
csrB turned off >90 70 ± 7 58 ± 6 

Fig. 2.9E 
(turning target off) 

glgC-gfp turned off 55 ± 5 35 ± 6 18 ± 8 
csrD turned on 65 ± 4 43 ± 6 25 ± 8 

 
Table 2.1 | Synthetic circuit signaling times. The τ20, τ50 and τ80 values for turning on and off target gene expression (calculated 
from normalized dynamics data shown in Figs. 2.8 & 2.9). Uncertainty represents the s.e.m. of duplicate measurements. 

 
Dynamics experiments were performed by turning transcription on or off for each 
component in the synthetic cascade and measuring GlgC-GFP expression at regular 
intervals. The rate of change in target expression reflects the convolved effects of target 
protein clearance, the difference between the initial and final steady states for the target 
protein, and the time required for the CsrA cascade upstream of the target protein to 
reach equilibrium [22]. Since the target protein degradation rate is constant and we 
rescaled the initial and final steady state of the target expression so the dynamic range 
is the same for all experiments, any observed differences in the dynamics are due to the 
delay in the CsrA cascade reaching equilibrium. We quantified the delay by measuring 
the time to reach 20%, 50% and 80% of the maximum GFP level (τ20, τ50 and τ80) (Table 
2.1 & Fig. 2.8). Because target expression was often slow to turn off or on (and therefore 
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did not fall or rise to 50% of maximum expression in the experimental timeframe), τ80 or 
τ20 respectively were used to quantify increases in target expression. 
 
We compared time delays using stable GFP (with constant and predictable clearance by 
dilution) to destabilized GFP (with a tail specific degradation tag [58] that decreases its 
half-life by up to 3.8 ± 0.5 fold) (Fig. 2.9). We chose not to use the latter because the time 
delays not only measure the delay in the CsrA system but also include saturation effects 
for active degradation (see below). We also found that destabilized GFP did not 
appreciably improve the resolution of time delays, and measurements were less 
reproducible than with stable GFP. 
 
2.3.3  CsrA signaling: Stable signaling molecules can cause delays 
In our first set of experiments, we turned on target expression directly by turning on 
glgC-gfp transcription (with csrA transcription kept off) or indirectly by turning off csrA 
transcription (with glgC-gfp transcription kept on) (Fig. 2.2A & B). The model predicts 
that turning on transcription of glgC-gfp mRNA will increase target expression after a 
very short period whereas a long delay will occur between turning off csrA 
transcription and a significant increase in target expression. The delay will occur for 
two major reasons: (i) clearance of a stable protein such as CsrA occurs slowly via 
dilution due to cell growth [59] (Fig. 2.10C); and (ii) the transfer function reveals a high 
initial CsrA concentration at 100% transcription that must first be cleared before a 
significant increase in target expression can occur. That is, when moving from high to 
low CsrA concentration (open to solid circle) there is minimal effect on target 
expression until the CsrA level is quite low (shaded region) (Fig. 2.2D). We tested the 
predictions in our experimental system (Fig. 2.2B) and confirmed that target expression 
took longer to rise to 20% of maximum when csrA transcription was turned off 
compared to when glgC-gfp transcription was turned on (τ20 = 187 ± 1 and 39 ± 1 min 
respectively; Table 2.1 & Fig. 2.8). 
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Fig. 2.2 | CsrA signaling: Stable signaling molecules can cause delays. Error bars are s.e.m. of duplicate measurements. (A) 
Experimental schematic. (B) Target expression turned on directly by turning on glgC-gfp transcription (IPTG added) or indirectly by 
turning off csrA transcription (aTc removed). (C) Target expression turned off directly by turning off glgC-gfp transcription (IPTG 
removed) or indirectly by turning on csrA transcription (aTc added). (D) GlgC-GFP expression as a function of % maximum csrA 
transcription (calibrated using PLlacO-1:st7:gfp; Fig. 2.8Q). Target expression was also measured in strains without csrA (HL5594; 
cyan dash line) or native (wt) csrA (HL5562 and HL5596; purple dash line indicates both as the data overlay). Gray shading 
indicates the range over which the CsrA concentration has a significant effect on target expression (“regulatory range”). Open and 
closed circles are 100% and 0% of maximum [CsrA] respectively. 

 
We next turned off target expression directly by turning off glgC-gfp transcription (with 
csrA transcription kept off) or indirectly by turning on csrA transcription (with glgC-gfp 
transcription kept on) (Fig. 2.2A & C). The model predicts similar signaling delays for 
the two mechanisms (note: the curves eventually diverge because they have different 
steady-states). Turning off glgC-gfp transcription causes target expression to fall almost 
immediately because pre-existing target mRNAs are quickly degraded (Fig. 2.10B). 
Turning on csrA transcription quickly decreases target expression despite the signal 
having to propagate through an extra regulatory step. This is because a small amount of 
CsrA is sufficient to silence most of the glgC-gfp mRNA (due to high affinity binding 
[53] and the stability of CsrA) as shown by the transfer function (Fig. 2.2D). We 
confirmed the predictions experimentally; turning off glgC-gfp transcription and turning 
on csrA transcription caused target expression to fall to 80% of maximum on similar 
timescales (τ80 = 9 ± 1 and 8 ± 3 min respectively; Table 2.1 & Fig. 2.8). 
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Fig. 2.3 | Effect of target mRNA concentrations on CsrA silencing. Error bars are s.e.m. of duplicate measurements. (A) A 
comparison of the expression of the target mRNA reporter under two different promoters; one has a constitutively high rate of target 
mRNA transcription (PconNoHindM2) and the other has a lower rate of target mRNA transcription (PconNoHindM12). (B) A 
comparison of the effect of the two different levels of target mRNA expression on the measurement of the CsrA transfer function and 
native CsrA concentrations. To obtain the transfer functions we varied the level of induction of the PLlacO-1:st7:csrA gene and 
measured its effect on target protein expression with the PconNoHindM2:glgC-gfp reporter or the PconNoHindM12:glgC-gfp reporter. 
To assess the effect of the native csrA (“csrAwt”) we measured the expression of both reporters in strains with the complete native 
csrA system (+ csrAwt + csrBwt + csrCwt + csrDwt) or with only native csrA (+ csrAwt). The synthetic system with PLlacO-1:st7:csrA 
and high levels of target mRNA transcription (PconNoHindM2:glgC-gfp) achieved an amount of target protein expression that was 
similar to the native csrA at 25 - 50 µM IPTG (black dot line), which is ~10% of the maximum CsrA that we induced (Fig. 2.2D). In 
contrast, with the synthetic system with PLlacO-1:st7:csrA and lower levels of target mRNA transcription (PconNoHindM12:glgC-
gfp), we could not accurately determine native CsrA levels because the lower quantity of target mRNA meant that it was completely 
silenced by CsrA at concentrations less than the native concentration (i.e. it was  fully silenced at <10 µM IPTG). 

 
We measured the level of target gene expression in a strain with native csrA instead of 
synthetic csrA (purple dash line, Fig. 2.2D) and this indicated that physiological levels 
of CsrA are close to but not quite at a saturating concentration. That is, for target 
mRNAs at high concentrations, the native CsrA concentration minimizes delays in 
signaling without a significant trade-off in effectiveness (i.e. if CsrA levels were reduced 
too much then the dynamic range of CsrA activity would be severely diminished). 
These findings may not only apply to highly transcribed individual target mRNAs, but 
also to target mRNAs that are transcribed concurrently with many others (i.e. when the 
total target mRNA pool is large due to a global transcriptional response to stress). 
However in the case of target mRNAs that are at low concentrations, native CsrA 
concentrations are saturating (Fig. 2.3) and this is expected to cause long signaling 
delays when CsrA is removed solely by dilution (hence the importance of CsrB; see 
below). 
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In summary, our model and experiments demonstrate that stable proteins such as CsrA 
can introduce long delays when signaling depends on their removal; this is consistent 
with predictions [48,60] and experiments in other systems [22,61]. 
 
2.3.4  CsrB signaling: Sequestration can bypass downstream delays 
In our second set of experiments, we turned on target expression directly by turning on 
glgC-gfp transcription (with csrA and csrB transcription kept on) or indirectly by turning 
on csrB transcription (with glgC-gfp and csrA transcription kept on) (Fig. 2.4A & B). The 
latter decreases free CsrA levels to increase glgC-gfp mRNA translation. Our model 
predicts similar signaling times for turning on target expression via these two 
mechanisms. The transfer function shows that CsrB can quickly reach a level that is 
sufficient to sequester CsrA away from its target mRNAs (Fig. 2.4D) due to its rapid 
production, long half-life [51] and multiple CsrA binding sites (Fig. 2.10E). We 
experimentally confirmed that turning on glgC-gfp transcription and turning on csrB 
transcription caused target expression to rise to 20% of maximum in comparable 
periods (τ20 = 27 ± 1 and 26 ± 1 min respectively; Table 2.1 & Fig. 2.8). 
 

 
 
Fig. 2.4 | CsrB signaling: Sequestration can bypass downstream delays. Error bars are s.e.m. of duplicate measurements. (A) 
Experimental schematic. (B) Target expression turned on directly by turning on glgC-gfp transcription (IPTG added) or indirectly by 
turning on csrB transcription (aTc added). (C) Target expression turned off directly by turning off glgC-gfp transcription (IPTG 
removed) or indirectly by turning off csrB transcription (aTc removed). (D) GlgC-GFP expression as a function of % maximum csrB 
transcription (calibrated using PLtetO-1:st7:gfp; Fig. 2.8R). Gray shading indicates the regulatory range for CsrB. Open and closed 
circles are 100% and 0% of maximum [CsrB] respectively. *Incomplete silencing of GlgC-GFP expression occurs if the total [CsrA] is 
less than the total [target mRNA] or if there is “leaky” CsrB expression.  
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We next turned off target expression either directly by turning off glgC-gfp transcription 
(with csrA and csrB transcription kept on) or indirectly by turning off csrB transcription 
(with glgC-gfp and csrA transcription kept on) (Fig. 2.4A & C). Our model predicts a 
significant delay in signaling for the latter. Turning off csrB transcription decreases 
sequestration of CsrA and consequently decreases glgC-gfp mRNA translation. The 
delay will occur for the same basic reasons that CsrA activity is slow to turn off: (i) CsrB 
is slowly cleared from the cell in the absence of CsrD [51]; and (ii) the CsrB 
concentration at 100% transcription corresponds to the saturating part of the transfer 
function (open circle, Fig. 2.4D) and therefore most of this excess CsrB must be cleared 
before it reaches a concentration that significantly decreases target expression (shaded 
region, Fig. 2.4D). Our in vivo experiments confirmed this prediction; turning off glgC-
gfp transcription caused target expression to fall to 80% of maximum in less time than 
turning off csrB transcription (τ80 = 13 ± 1 and 67 ± 3 min respectively; Table 2.1 & Fig. 
2.8). 
 
Our model and experiments demonstrate that CsrB can rapidly sequester and turn off 
the activity of the downstream CsrA thereby bypassing delays due to slow CsrA 
clearance. However, clearance of CsrB is itself slow, therefore it can delay signal 
propagation when turned off. 
 
2.3.5  CsrD signaling: Degradation can prevent downstream delays 
In our third set of experiments we investigated signaling using CsrD, a specificity factor 
that decreases the CsrB half-life from >30 min to <2 min at wild-type CsrD levels [51]. 
We turned on target expression directly by turning on glgC-gfp transcription (with csrA 
and csrB transcription kept on) or indirectly by turning off csrD transcription (with glgC-
gfp, csrA and csrB transcription kept on) (Fig. 2.5A & B). The model predicts it will take 
longer to turn on target expression by turning off csrD transcription because: (i) CsrD is 
cleared slowly by dilution; and (ii) the initial CsrD concentration corresponds to the 
saturating part of the transfer function (open circle, Fig. 2.5D) therefore most of it must 
be cleared before there will be a significant increase in target expression (shaded region, 
Fig. 2.5D). Our experimental results agree with the model. Target expression took 
longer to increase to 20% of maximum when csrD transcription was turned off than 
when glgC-gfp transcription was turned on (τ20 = 77 ± 18 and 28 ± 1 min respectively; 
Table 2.1 & Fig. 2.8). 
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We next turned off target expression directly by turning off glgC-gfp transcription (with 
csrA and csrB transcription kept on) or indirectly by turning on csrD transcription (with 
glgC-gfp, csrA and csrB transcription kept on) (Fig. 2.5A & C). The model predicts that 
turning on csrD transcription will have an almost immediate effect on target expression. 
This is because a very small amount of CsrD is sufficient to dramatically increase CsrB 
degradation and consequently decrease CsrA sequestration and target mRNA 
translation (Fig. 2.5D). Our in vivo experiments confirmed this prediction. Turning on 
csrD transcription and turning off glgC-gfp transcription caused target expression to fall 
to 80% of maximum after a similar delay (τ80 = 17 ± 2 and 14 ± 1 min respectively; Table 
2.1 & Fig. 2.8). 
 

 
 
Fig. 2.5 | CsrD signaling: Degradation can prevent downstream delays. Error bars are s.e.m. of duplicate measurements. (A) 
Experimental schematic. (B) Target expression turned on directly by turning on glgC-gfp transcription (IPTG added) or indirectly by 
turning off csrD transcription (aTc removed). *Left and right y-axis correspond to turning on glgC-gfp (gray) and turning off csrD 
(magenta) respectively. (C) Target expression turned off directly by turning off glgC-gfp transcription (IPTG removed) or indirectly by 
turning on csrD transcription (aTc added). (D) GlgC-GFP expression as a function of % maximum csrD transcription (calibrated 
using PLlacO-1:st7:gfp; Fig. 2.8Q). Gray shading indicates the regulatory range for CsrD. Open and closed circles are 100% and 
0% of the maximum [CsrD] respectively. 

 
2.3.6  Faster signaling is possible in longer cascades 
We have shown that turning on csrB transcription caused target expression to turn on 
faster than turning off csrA transcription (Fig. 2.2B and Fig. 2.4B). Similarly, turning on 
csrD transcription caused target expression to turn off faster than turning off csrB 
transcription (Fig. 2.4C and Fig. 2.5C). These results show, somewhat counterintuitively, 
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that regulating an upstream molecule can alter target expression more rapidly than 
regulating a downstream molecule under some conditions (i.e. when the shorter cascade 
requires the slow clearance of a stable molecule and the longer cascade does not). 
Because these measurements were in different strains, we constructed circuits to 
directly compare signaling between CsrA and CsrB, or between CsrB and CsrD in the 
same strain (Fig. 2.8G & H); these measurements confirmed our earlier findings. 
Therefore the CsrA cascade differs from purely transcriptional cascades in that the 
number of regulatory connections in the cascade does not predict signaling delay 
[45,60]. 
 
2.3.7  Robust signaling during stress 
Rapid cell signaling is most crucial when cells are exposed to potentially lethal 
environmental stress. However, stress often causes growth arrest which prevents the 
clearance of stable molecules by dilution causing signaling lock-up. In theory, signaling 
by sequestration bypasses this problem. To test this proposal we attempted to turn on 
target expression by turning off csrA transcription and turning on csrB transcription 
during starvation (M9 media without a carbon source) or in the presence of antibiotics 
for which the cells were not resistant. 
 
We tested several classes of antibiotics including: sulfamethoxazole (100-500 µg/mL) 
and trimethoprim (5 µg/mL) which disrupt folate synthesis; novobiocin (200-3000 
µg/mL) and norfloxacin (12.5-250 ng/mL) which inhibit DNA gyrase; and polymyxin B 
(0.25-50 µg/mL) which destabilizes the outer membrane. Trimethoprim (5ug/mL) and 
novobiocin (200mg/mL) in LB media caused significant growth arrest without rapid 
lysis. Doubling times in M9, novobiocin and trimethoprim were 700 ± 300, 400 ± 100 
and 180 ± 30 min respectively (mean ± s.e.m.). In all three stress conditions, target 
expression could be turned on by inducing csrB transcription to sequester CsrA but not 
by turning off csrA transcription (Fig. 2.6). 
 
These experiments with three independent sources of stress confirm the generality of 
our prediction that sequestration can be essential for signaling in pathways with stable 
signaling molecules during stress. 
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Fig. 2.6 | Robust signaling during stress. Error bars are s.e.m. of two or more measurements. (A) Experimental schematic. (B-E) 
Experiments performed using circuits shown in Fig. 2.2A and Fig. 2.4A without stress treatment (B), in M9 with no carbohydrate (C), 
in LB with 5µg/mL trimethoprim (D), or in LB with 200µg/mL novobiocin (E). In HL4860, csrA transcription was kept off (control) or 
turned off at t = 0. In HL4845, csrB transcription was kept on (control) or turned on at t = 0. Fluorescence levels were normalized to 
their respective control at each time point to correct for general effects of stress. The normalized values were rescaled to the initial 
measurement to determine the fold-change in expression (“relative expression”).  

 
2.3.8  Feedback in the native CsrA system  
We next probed the architecture of the native CsrA cascade using the synthetic CsrA 
system as a benchmark. Specifically, we sought to determine whether putative 
transcriptional and translational feedback loops described in the native system affect 
signaling dynamics under our experimental conditions [32,62]. Feedback is known to 
influence signaling dynamics (1) and CsrA has been reported to: (i) positively and 
negatively regulate its own expression via mechanisms that have not been fully 
elucidated [62]; (ii) inhibit its own activity by increasing transcription of CsrB and CsrC 
[49,63]; and (iii) inhibit its own activity by decreasing CsrD production which increases 
CsrB [64]. 
 
In these experiments we systematically replaced components of the synthetic cascade 
with native genes in the chromosome that have intact regulatory sequences. We turned 
on and off synthetic csrB transcription (input) and measured the effect of the native 
gene(s) on the dynamics of target expression (output) (Fig. 2.7A). Initially we started 
with all four native genes (csrA, csrB, csrC, csrD) present (Fig. 2.7B), and remarkably we 
found that turning on csrB transcription with the entire native CsrA cascade caused 
target expression to turn on more rapidly than the synthetic cascade (Fig. 2.7B). To 
isolate the regulatory interaction responsible for this “enhanced signaling” speed in the 
native CsrA cascade we incrementally replaced or removed native genes (Fig. 2.7C-F). 
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Fig. 2.7 | Feedback in the native CsrA system. Error bars are s.e.m. of duplicate measurements. (A) Experimental schematic with 
synthetic (black) and native genes with reported feedback loops (blue). The “synthetic cascade”, which was a benchmark for 
comparison, was composed of synthetic csrA and csrB. Normalized fluorescence was determined by dividing each value by the 
fluorescence value in a control with csrB transcribed constitutively; the resulting ratio was rescaled so the start and end points were 
0 and 1 respectively (Fig. 2.8). (B-F) Comparison of systems with synthetic and native genes where synthetic csrB was induced at t 
= 0. (B) Cascade with native csrA, csrB, csrC and csrD, and synthetic csrB (gold) versus synthetic cascade (black). (C) Cascade 
with native csrA and csrD (orange) versus synthetic cascade (black). (D) Cascade with native csrA (red) versus synthetic cascade 
(black). (E) Cascade with native csrD (blue) versus synthetic cascade (black). Native csrD is modeled at low (light blue) and high 
(dark blue) CsrA levels. (F) Cascade with and without synthetic csrD expression (magenta and black respectively). (G) Comparison 
of cascade with native csrA, csrB, csrC and csrD, and synthetic csrB (gold) versus synthetic cascade (black) where synthetic csrB 
was turned off at t = 0. 
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We started by removing native csrB and csrC and found their removal did not eliminate 
enhanced signaling (Fig. 2.7C). However, when we also removed native csrD enhanced 
signaling no longer occurred (Fig. 2.7D). Therefore native csrD was necessary for 
enhanced signaling. Enhanced signaling was restored when native csrD was reinstated 
with synthetic csrA (Fig. 2.7E). This latter strain also showed a transient overshoot of the 
steady state target expression. Given that enhanced signaling and overshoot are known 
to be generated by negative feedback under certain conditions [44] and that native csrD 
was necessary for these behaviors, our findings are consistent with the reported 
negative feedback regulation in which CsrA represses the production of CsrD. In 
further support of this, we demonstrated that enhanced signaling does not occur with 
the synthetic csrD gene which lacks the flanking sequences (including the native csrD 
promoter and 5’ UTR sequences) that are necessary for CsrA repression of CsrD 
production [51,64]. Instead we found that the induction of a small, constant amount of 
CsrD from synthetic csrD resulted in slower signaling than in the control cascade 
without CsrD induction (Fig. 2.7F). Additionally, we showed by quantitative RT-PCR 
that the CsrD mRNA concentration decreases with increased CsrA production (see 
below), which is consistent with negative feedback and previous reports [51,64]. 
 
We used the model to determine whether negative feedback explains the enhanced 
signaling and overshoot observed. The model was modified to include repression of 
CsrD production by CsrA and the capacity for CsrD binding to be saturated by CsrB 
(see below). We found that an increase in csrB transcription is countered by negative 
feedback which decreases CsrB levels after a delay (Fig. 2.10J & K). The net effect is a 
pulse of CsrB resulting in a brief surge in target mRNA translation that causes target 
expression to reach its final steady state faster (right panel, Fig. 2.7E). If the delay in the 
negative feedback is sufficiently large, which depends on the total CsrA concentration, 
then target expression can briefly overshoot the new steady state (Fig. 2.10J & K) [44]. 
This explains the overshoot with synthetic csrA and why it does not occur with native 
csrA that produces approximately one tenth the CsrA concentration (Fig. 2.2D and Fig. 
2.7B, C and E). Negative feedback can also allow target expression to reach a new 
steady state sooner when csrB transcription is decreased. In this case, the response is 
faster because increased CsrD concentrations minimize the accumulation of saturating 
amounts of CsrB in the first place and increase the CsrB clearance rate (Fig. 2.7G). The 
model also explains why slower signaling is observed with synthetic csrD (Fig. 2.7F). 
Initially the CsrB concentration increases slowly because it is cleared by CsrD therefore 
target expression increases more slowly than in the control cascade (Fig. 2.10I & L). 
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However as CsrB accumulates, CsrD becomes saturated causing the overall half-life of 
CsrB and the CsrB concentration to increase at a faster rate resulting in a rapid increase 
in target expression. That is, there is a slow initial increase in target expression followed 
by a fast increase with synthetic csrD, which is the opposite of native csrD with negative 
feedback. 
 
In summary, characterization of the native CsrA system reveals that negative feedback 
(i.e. inhibition of CsrD production by CsrA) enhances the speed of turning on and off 
target protein expression. 
 
2.3.9  RT-PCR Corroborates Inhibition of CsrD Production by CsrA 
Above, we examined feedback by measuring the dynamic response of the CsrA system 
(Fig. 2.7) and determined that the only component that had a significant effect on the 
dynamics was CsrD. In particular the data indicated that the inhibition of CsrD 
expression by CsrA increased the speed of the system’s response to changes in CsrB 
transcription (“enhanced signaling”). We also evaluated this feedback regulation of 
CsrD by CsrA under steady-state conditions. 
 
We measured CsrD mRNA concentrations in parallel for two strains (HL 5944 and 
HL5947) by quantitative RT-PCR. One strain carried a gene that constitutively 
expressed synthetic csrA (HL5947) while a second strain contained a control plasmid 
without csrA (HL5944). In the strain expressing CsrA, CsrD mRNA levels were very low 
(-9.28 x 10-8 ± 3.90 x 10-7 a.u., 8 samples, uncertainty is the s.e.m.) and indistinguishable 
from background (i.e. plus RT measurements were the same as the minus RT control, 
which contains the harvested RNA but without reverse transcriptase). In contrast, the 
strain lacking CsrA had significantly elevated CsrD mRNA levels (1.82 x 10-6 ± 8.13 x 10-

7 a.u., 8 samples, uncertainty is the s.e.m.). The difference between these two 
measurements is statistically significant (two-tailed t-test: p = 0.04, t-value = 2.26). We 
note that the variances of the values for the two strains were not found to be different 
(Levene’s test: p = 0.26), so homoscedasticity was assumed for the t-test calculation. Our 
observed decrease in the csrD mRNA concentration in the presence of CsrA suggests 
that CsrD mRNA levels are directly or indirectly repressed by CsrA; this result is 
consistent with CsrD mRNA measurements from previous reports [51,64]. 
 
In summary, in this study we have demonstrated via two independent types of 
experiments (dynamics measurements and steady state RT-PCR) that CsrA represses 
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CsrD production, and these findings are in agreement with prior measurements by 
others [64]. 
 
2.4  DISCUSSION 
 
In this study we reverse engineered and quantitatively modeled the CsrA regulatory 
network to obtain a detailed and coherent picture of its signaling dynamics. We found 
that it is capable of rapid signal propagation due to three general principles: (i) 
sequestration of stable signaling molecules; (ii) degradation of stable signaling 
molecules; and (iii) negative feedback regulation. Sequestration and degradation of 
CsrA and CsrB respectively avoids long delays due to the slow removal of these stable 
signaling molecules by dilution through cell division. Negative feedback regulation 
(due to CsrA inhibition of CsrD production) enables target expression to reach its new 
steady state faster in response to changes in csrB transcription (as explained above). 
 
How might rapid signaling in the CsrA system aid adaptation to stress? Unfortunately, 
the pathways which sense environmental stresses and transmit this information to the 
CsrA system have not been fully elucidated. However, one regulator that has been 
identified to activate the CsrA cascade is the BarA/UvrY two-component system. Two 
component systems also control expression of CsrB and CsrC homologs in other 
bacteria (e.g. GacS/GacA in Pseudomonas aeruginosa, LetS/LetA in Legionella pneumophila, 
and VarS/VarA in Vibrio cholerae) [33]. Extracellular weak acids are thought to activate 
BarA which alters the phosphorylation state of UvrY; UvrY then interacts with the CsrA 
system by increasing csrB and csrC transcription [19,32,33]. As with other two 
component systems, the BarA/UvrY response to a signal is believed to be extremely 
rapid therefore propagation of the signal through the CsrA cascade is likely to be rate-
limiting. As a consequence, increasing the speed of signaling through the CsrA system 
should directly shorten delays in adapting gene expression patterns and phenotypes to 
environmental perturbations. Our findings with stable and destabilized GFP show that 
shortening the time delay in the CsrA system benefits the dynamics of target proteins 
with short lifetimes as well as those with long lifetimes (Fig. 2.9). 
 
There are many parallels between the CsrA system and the architecture of other 
bacterial stress response pathways. In the Salmonella ChiP and E. coli YbfM pathways, a 
small RNA silences target mRNA translation (ChiX and MicM respectively) in a manner 
analogous to CsrA silencing of mRNAs [65,66]. These small RNAs are themselves 
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sequestered by a sRNA or mRNA to turn off their activity (in a manner analogous to 
CsrB). In Bacillus subtillus, a CsrA homolog and AarB (another global regulator of 
biofilm formation) are also regulated by sequestration but by proteins (FliW and AbbA 
respectively) instead of non-coding RNAs [67,68]. In E. coli, the regulation of the 
extracytoplasmic stress sigma factor (σE) that controls the transcription of genes in stress 
response pathways also has features in common with the CsrA system [69]. σE is 
inactivated by sequestration to the membrane by the RseA protein (analogous to CsrA 
and CsrB respectively) and reactivated when RseA is cleaved by DegS and YeaL 
(analogous to CsrD) [69]. These examples highlight the general importance of 
sequestration and degradation in regulating the dynamics of stress response pathways. 
 
The regulation of signaling molecules by sequestration and degradation not only 
increases signaling speed but it also makes signaling robust to growth rates. As we 
showed, this is important for preventing signaling lock-up when stresses such as 
starvation and antibiotics lead to growth arrest. 
 
In conclusion, this study shows that CsrB, which is at the center of the CsrA network, 
synergistically integrates multiple mechanisms to achieve rapid and robust signaling. 
These findings provide further evidence that non-coding RNAs, which include small 
RNAs, have evolved a prominent role in connecting genetic pathways due to their 
general ability to rapidly propagate signals needed for prompt adaptation to stress. 
 
2.5  METHODS 
 
2.5.1  Gene Expression Measurement and Analysis 
 
2.5.1.1  Cell growth protocols 
Steady state experiments (e.g. measuring transfer functions) were performed by 
inoculating 5-50 mL of overnight culture in 5 mL of LB media with 100 µg/mL 
ampicillin and/or 50 µg/mL kanamycin. Cultures were grown for 3.5 h at 37°C and 200 
rpm then 5 mL of culture was inoculated into 5 mL of fresh LB with antibiotics and 
IPTG (0.01 to 1 mM), aTc (0.01 to 1 µM), both or neither. Harvested cells were placed on 
ice and GFP expression was measured using a Coulter EPICS-XL flow cytometer 
(488nm/15mW argon ion laser) and analyzed as described [21]. GFP distributions were 
unimodal for all measurements included in this study. However, bimodality was 
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observed at very high free CsrA concentrations that exceeded levels presented in this 
study and caused aberrant morphologies consistent with severe cellular stress. 

Dynamics experiments were performed as above except as follows. There was a pre-
induction step (to achieve steady state on or off transcription) and a post-induction step 
(to reverse or maintain the transcription states of the pre-induction step). In the pre-
induction step, cells were grown with IPTG (0.1 to 1 mM), aTc (1 µM), both or neither in 
the initial 3.5 h growth phase. After the initial growth phase, cells were inoculated into 
2.5 mL of fresh media (with the same antibiotic and inducer concentrations) to produce 
an OD600 = 0.01 to 0.05. The culture was grown for 30 min, diluted 1 in 2 in the same 
fresh media, and grown for an additional 30 min. Post-induction cultures were created 
by taking cells from pre-induction cultures, centrifuging them (16, 100 × g for 1 min), 
discarding the supernatant, and resuspending the pellets in LB with the same 
antibiotics and IPTG (0.1 to 1 mM), aTc (1 µM), both or neither. The cultures were 
grown for 4 h and diluted ~ 1 in 2 every 30 min to maintain OD600 within a range. 
HL5877 was inoculated from glycerol stock instead of overnight cultures to prevent 
selection of a “locked-on” phenotype with constitutively high GlgC-GFP expression. 

Growth arrest experiments were performed as the dynamics experiments except as 
follows. Pre-induction cultures were 10 mL and grown for 4 h with IPTG (1 mM), aTc (1 
µM), both or neither. Post-induction cultures were created by resuspending pre-
induction cells in M9 media with no carbohydrate or in LB with trimethoprim or 
novobiocin. IPTG, aTc, both or neither were added to the media. Cells were harvested 
after 4 and 8 h of stress. 

Dynamics experiments using destabilized GFP (Fig. 2.9B-E) were performed and 
measured as described for stable GFP except that 5-50 µM of overnight culture was 
inoculated into 10 mL of LB with 100 µg/mL ampicillin and 50 µg/mL kanamycin with 
IPTG (0.01 to 1 mM), aTc (1 µM), both or neither. Cells were grown for 3.5 hours, 
centrifuged (16,000 x g for 1 min), the supernatant discarded, and the pellets 
resuspended in 15 mL of fresh media to produce a final OD600 = 0.01 to 0.05 and a 
volume of ~15 mL. The culture was then grown for 90 minutes with cells harvested 
every 10 minutes. No serial dilution was necessary due to the shortened experimental 
timeframe. 
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2.5.1.2    Fluorescence data analysis 
In the dynamics experiments we measure the change in target expression as a function 
of time after an input (e.g. csrB transcription) has been altered at t = 0. The change in 
gene expression reflects the convolved effects of: (i) the target protein degradation rate, 
(ii) the ratio of the initial and final steady states for the target protein (i.e. dynamic 
range), and (iii) the time required for the CsrA cascade upstream of the target protein to 
reach equilibrium [22]. We eliminate the first factor as a cause for any differences in the 
dynamics of different CsrA systems by only directly comparing systems that the same 
target protein.  We eliminate the second factor by rescaling the difference between the 
initial and final steady states so that it is the same for all experiments; specifically we set 
the minimum and maximum relative steady state levels of target expression to zero and 
one respectively (“zero-to-one rescaling”). By eliminating the first and second factors as 
possible causes for differences in the time delay for different cascades we are left with a 
metric that primarily measures the time required for the CsrA cascade upstream of the 
target protein to reach equilibrium (Figs. 2.2, 2.4 & 2.5 and Fig. 2.8A-H).  
 
In all of our dynamics experiments we had duplicate “physiological” control samples 
where target protein was constitutively expressed (i.e. GlgC-GFP was on before t = 0 
and it was maintained in the on state for the duration of the dynamics experiment) (Fig. 
2.8). These control samples are included to demonstrate that conditions are constant (e.g. 
cell density and inducer activity) throughout the experiment and that there are no 
changes in non-specific physiological factors that generally affect gene expression (e.g. 
ribosome concentration). Moreover, if there is a change in these general factors that 
affect gene expression we can correct for them using these control samples which are 
measured in parallel. 
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Fig. 2.8 | Normalization and analysis of in vivo dynamics and transfer function data. Error bars are s.e.m. of two or more 
measurements. (A-F) Normalization and analysis of data presented in Figs. 2.2, 2.4 & 2.5. Each left plot is raw data with the 
physiological control (black curve); each right plot is data from the left plot rescaled to lie between zero and one. τ20, τ50 and τ80 
values (green dash lines) were calculated as described in the text using linear interpolation from adjacent data points (Table 2.1). 
(A) Fig. 2.2B data. (B) Fig. 2.2C data. (C) Fig. 2.4B data. (D) Fig. 2.4C data. (E) Fig. 2.5B data. (F) Fig. 2.5C data. (G, H) Longer 
cascades can signal faster than shorter cascades (under some conditions) within the same strain. Model predictions, raw data and 
rescaled data are left, center and right respectively. (G) CsrA versus CsrB. (H) CsrB versus CsrD. (I-P) Normalization and analysis of 
data presented in Fig. 2.7. Each left plot is raw data from two replicates that were rescaled to eliminate constant offsets between 
them. The black curve is the physiological control. Each right plot is data from the left plot normalized ‘time point-by-time point’ by 
the physiological control and then rescaled so the initial and final concentrations are 0 and 1 or vice versa. (I) The right plot shows all 
the dynamics data for the synthetic cascade that was used as a benchmark for comparison in the right plot of panels J, K, L and M 
(grey curve) (note: the synthetic cascade is the same as the black curve shown in Fig. 2.7B, C, D & E respectively). (J) Fig. 2.7B 
data. (K) Fig. 2.7C data. (L) Fig. 2.7D data. (M) Fig. 2.7E data. (N) Fig. 2.7F data. (O) The right plot shows the dynamics data for 
the synthetic cascade that was used as a benchmark for comparison in the right plot of panel P (grey curve) (note: the synthetic 
cascade is the same as the black curve shown in Fig. 2.7G). (P) Fig. 2.7G data. (Q, R) PLlacO-1 (panel Q) and PLtetO-1 (panel R) 
induction with IPTG and aTc respectively. Green curves are Hill function fits used to calibrate the x-axis of the transfer functions in 
Figs. 2.2, 2.4 & 2.5.

In purely synthetic systems using stable GFP the physiological control samples showed 
only a small amount of “drift” over the course of the dynamics experiments and 
therefore there was no need to correct for it (Fig. 2.8A-H). In systems with native genes 
(Fig. 2.8I-P) or with destabilized GFP (Fig. 2.9C-E), the drift was large compared to the 
dynamic range (i.e. ratio of maximum to minimum steady state expression) of the target 
protein. To correct for this drift we performed a ‘point-to-point’ normalization (prior to 
the zero-to-one rescaling) where the fluorescence value at each time point for each 
sample was normalized by the fluorescence value in the corresponding physiological 
control samples at the same time point. This point-to-point normalization was 
important for HL5860, HL5877 and HL5878 (Fig. 2.8J, K & M) to prevent drift from 
exaggerating the observed overshoot (Fig. 2.7B, C & E). 

2.5.1.3  Transfer function calibration 
We collected our in vivo transfer function data by varying the amount of IPTG and aTc 
added to the media to induce different levels of expression of CsrA, CsrB and CsrD 
from the PLlacO-1 and PLtetO-1 promoters. We then measured the effect of this 
induction on target protein expression via GFP fluorescence (Fig. 2.2D, 2.4D & 2.5D). To 
estimate the relative rate of production of CsrA, CsrB and CsrD from the PLlacO-1 and 
PLtetO-1 promoters at each concentration of inducer, we expressed GFP under these 
promoters to obtain their induction curves (Fig. 2.8Q & R). We modeled these induction 
curves using the Hill function in Eq. 2.i. 
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In Eq. 2.i, a is the maximum expression in the presence of inducer, n is the Hill 
coefficient, k is the concentration at which expression is half the maximum, and c is the 
minimum expression in the absence of inducer. We determined the parameter values by 
performing a non-linear least squares fit of the logarithm of the Hill function to the 
logarithm of the data (green curves, Fig. 2.8Q & R) and then subtracted E. coli 
autofluorescence (determined by the fluorescence of HL716 which does not have a 
fluorescent reporter gene) from c to more accurately quantify the amount of “leaky” 
expression. The resulting values for the parameters for IPTG were: c = 0.100 
fluorescence a.u., a = 155 fluorescence a.u., k = 176 µM IPTG, and n = 3.53 (unitless). The 
parameter values for aTc were: c = 0.419 fluorescence a.u., a = 40.7 fluorescence a.u., k = 
153 nM aTc, and n = 5.87 (unitless). 
 
The above parameter values and Hill functions were used with Eq. 2.ii to determine the 
relative amount of CsrA, CsrB or CsrD produced at any given amount of IPTG or aTc 
(i.e. to calibrate the x-axis of the transfer functions presented in Fig. 2.2D, 2.4D & 2.5D). 
 

 
[2.ii] 

 
In Eq. 2.ii, f is the Hill function for IPTG induction and a is the maximum expression 
obtained for the above IPTG induction curve. The relative expression for aTc was 
calculated in the same manner except that the Hill function and maximum expression 
associated with aTc were used. The concentration of each of these species is assumed to 
be proportional to their production rates because the rate constants for the clearance of 
CsrA, CsrB, and CsrD do not vary under the conditions in which the transfer functions 
were measured (Fig. 2.2D, 2.4D & 2.5D respectively). 
 
2.5.2  Stable versus Destabilized GFP 
To determine whether an actively degraded reporter would improve our ability to 
resolve differences in signaling delays, we repeated some of the dynamics experiments 
(Fig. 2.2C, Fig. 2.4C and Fig. 2.5C) using a destabilized form of GFP as a reporter. These 
additional experiments with destabilized GFP (Fig. 2.9B-E) were performed identically 
to those with stable GFP (i.e. Fig. 2.2C, Fig. 2.4C and Fig. 2.5C) except the measurements 
were performed more frequently and for a shorter length of time (protocol below). 
Specifically, we used GlgC-GFP-LVA which has the LVA degradation tag fused to the 

Relative Expression (%) =
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C-terminal end of GlgC-GFP [58] (Fig. 2.9B-E). The LVA degradation tag decreased the 
half-life of the GlgC-GFP target protein by as much as 3.8 ± 0.5 fold relative to the 
untagged target (Fig. 2.9A & B). 
 

 
 
Fig. 2.9 | Alternate experimental and model designs. (A-E) Dynamics experiments using target protein without (passive 
clearance of the target protein) and with the LVA degradation tag (active and passive clearance of the target protein). Transcription 
of the target gene is turned off at t = 0. (A) Clearance of GlgC-GFP without the degradation tag. Dynamics data from Fig. 2.2C, 2.4C 
& 2.5C are replotted for comparison. (B) Clearance of GlgC-GFP with the LVA degradation tag. Data are replotted in panels B-D. 
Note: the curves no longer have a predictable linear decay on a logarithmic plot and instead degradation is initially slow and then 
becomes faster as the concentration of target protein decreases. (C-E) Experiments with a target protein without the LVA tag in Fig. 
2.2C, Fig. 2.4C & Fig. 2.5C repeated with a target protein that has the LVA tag in panels C, D and E respectively. Green dash lines 
indicate 80%, 50% and 20% of maximum expression. (F) Simulated induction of csrB in the presence or absence of a low CsrD 
concentration without negative feedback (pink dash and black curves respectively). Simulations were performed using the “three 
step cascade” model that does not include the CsrB-CsrD complex. (G, H) Simulations demonstrating that cooperativity has 
negligible effect on the steady state and dynamic behavior of the CsrA system. (G) Free target mRNA levels as a function of CsrB 
concentration (i.e. CsrB transfer functions). CsrB has 9 sites for CsrA dimers. There are three comparisons: (i) CsrA dimers bind 
independently at 1x concentration (black); (ii) CsrA dimers bind independently but are present at twice the concentration (2x) (red); 
and (iii) CsrA dimers bind cooperatively at 1x concentration (grey) to CsrB. nH is the Hill coefficient that would produce a Hill function 
with the same “steepness” as the function shown; steepness was measured using the levels of CsrB required to reach 10% and 
90% occupancy of the target mRNA by CsrA (green dash lines). (H) Dynamics of target protein expression following the turning on 
and off glgC-gfp transcription or the transcription of CsrB (thereby turning target expression on and off respectively), with and 
without cooperative binding between CsrA dimers and CsrB. Direct induction of target protein expression is provided for comparison. 
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To determine the effect of destabilizing the target protein on our ability to resolve 
differences between the time delays caused by direct and indirect signaling we make 
use of the metric δ: 
 

 [2.iii] 
 
In Eq. 2.iii, τ80(indirect) is the time delay to reach 80% of the maximum expression with (i) 
CsrA turned off, (ii) CsrB turned on, or (iii) CsrD turned off, and τ80(direct) is the time 
delay to reach 80% of maximum expression after the glgC-gfp control is turned off. We 
found the δ values were similar with stable and destabilized GFP when CsrA is turned 
off (-1 ± 3 and -2 ± 5 min respectively), CsrB is turned on (54 ± 3 and 44 ± 7 min 
respectively) and CsrD is turned off (3 ± 2 and 7 ± 11 min respectively) (Table 2.1 and 
Fig. 2.9C-E). In short, the addition of a degradation tag to the GFP protein did not 
improve the measurement of signaling delays. 
 
The dynamics measurements with the LVA-tagged reporter also revealed that its 
clearance rate is more complicated than that of stable GFP. The clearance of stable GFP 
by dilution has a clear first-order dependence on reporter concentration (as shown by 
the linear decrease in fluorescence on the log-linear time course plot in Fig. 2.9A). In 
contrast, the active clearance of LVA-tagged GFP is slow initially and depends on the 
starting concentrations of the target protein (Fig. 2.9B). This finding is not unexpected 
given that active degradation requires specific enzymes and cellular machinery (such as 
tail-specific proteases) that can become saturated if there are high concentrations of 
substrate such as GlgC-GFP-LVA. Therefore the addition of the LVA tag introduces 
extra complexity into the dynamic behavior of the reporter and as a consequence the τ 
values may convolve delays caused by the CsrA cascade with those caused by the target 
protein degradation machinery. In summary, stable GFP provides a more suitable 
target protein to isolate the dynamic properties of the CsrA cascade because its 
clearance is highly predictable and the measured time delays reflect only the delays 
incurred by the CsrA cascade. In addition, using destabilized GFP to measure time 
delays was found to increase the uncertainty in our experiments (Table 2.1). 
 
These experiments demonstrated that LVA-tagged GFP was not the best available 
choice for measuring dynamics within the CsrA cascade. However, the fact that we 
have observed similar time delays using experiments with the stable and destabilized 
GFP demonstrates that the time delays that we have measured in the CsrA system are 

� = ⌧80(indirect) � ⌧80(direct)
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general and applicable to target proteins that have short lifetimes as well as those that 
are stable. 
 
2.5.3  Quantitative RT-PCR 
Total RNA was extracted from eight exponentially growing cell cultures for each strain 
(HL5944 and HL5947) using the RNeasy RNA extraction kit (Qiagen). The RNA was 
treated with DNase I and cDNA was synthesized using the iScript select cDNA 
synthesis kit and random primers (Bio-Rad). Quantitative RT-PCR was performed to 
determine the concentration of cDNA using iQ SYBR Green Supermix and the iQ5 Real-
Time PCR detection system (Bio-Rad). Samples without reverse transcriptase (“minus 
RT”) were created and measured in parallel to determine the concentration of any 
contaminating DNA and non-specific amplification. The reported amount of CsrD 
mRNA for each sample represents the difference between the amount of cDNA in the 
RNA sample prepared with reverse transcriptase and the same RNA sample prepared 
identically except without reverse transcriptase. CsrD mRNA was amplified using the 
oligonucleotides CsrDinF and CsrDinR (Table 2.4). 
 
2.5.4  Detailed Model Description 
Differential equations, parameter values and initial conditions are discussed below. 
Simulations were performed using MATLAB (Mathworks). 
 

2.5.4.1  Model overview 
We constructed a model with ordinary differential equations for each of the following 
species: GlgC-GFP protein (“GFP”), glgC-gfp mRNA (“m”), CsrA dimer (“A”), CsrB 
non-coding RNA (“B”), CsrD (“D”), CsrA-target mRNA complex (“Am”) and the CsrA-
CsrB complex (“AB”). The CsrB-CsrD complex (“BD”) is also included in later versions 
of the model. It should be noted that in our model, “B” represents a pair of CsrA 
binding sites within the CsrB molecule that can be bound by a single CsrA dimer, and 
thus the CsrA-CsrB complex “AB” represents a CsrA dimer occupying one pair of CsrA 
binding sites. 



Part 2: Signaling dynamics in the CsrA system 

33 

Fig. 2.10 | Simulated concentrations CsrA cascade components. Components in the CsrA cascade are color coded (key is in 
the bottom right of the figure) and not all are shown in each panel. Colors used here do not correspond to those in other figures. (A, 
B) Turning on and off glgC-gfp mRNA transcription (CsrA, CsrB and CsrD are absent). These simulations correspond to the grey 
curves in Fig. 2.2B, C, Fig. 2.4B, C and Fig. 2.5B, C. (C, D) Turning off and on CsrA expression with glgC-gfp mRNA at constant 
maximal transcription (CsrB and CsrD are absent). These simulations correspond to the red curves in Fig. 2.2B, C. (E, F) Turning 
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on and off CsrB expression with both glgC-gfp mRNA and CsrA at constant maximal expression (CsrD is absent). These simulations 
correspond to the blue curves in Fig. 2.4B, C. (G, H) Turning off and on CsrD expression with glgC-gfp mRNA, CsrA and CsrB all at 
constant maximal expression. These simulations correspond to the magenta curves in Fig. 2.5B, C. (I) Turning on CsrB expression 
in the synthetic CsrA cascade without feedback and both glgC-gfp mRNA and CsrA at constant maximal expression (csrD is absent). 
[CsrA]total = 1x. This simulation corresponds to the control curve (black) in Fig. 2.7E, F. This is a reference panel for comparison with 
panels J, K and L. (J, K) Turning on CsrB expression in the three step cascade with negative feedback and saturation of CsrD 
activity by CsrB. These simulations correspond to the dark blue and light blue curves in Fig. 2.7E which have [CsrA]total = 1x (panel 
J) and [CsrA]total = 0.1x (panel K) respectively. (L) Turning on CsrB expression in a system where CsrD is constitutively produced at
a low rate (no feedback is present), and glgC-gfp mRNA and CsrA are at constant maximal expression. [CsrA]total = 1x. This 
simulation corresponds to the magenta curve in Fig. 2.7F. (M) Turning off CsrB expression in the synthetic CsrA cascade as 
described in panel I. This simulation corresponds to the control curve (black) in Fig. 2.7G. This is a reference panel for comparison 
with panels N and O. (N) Turning off CsrB expression in the cascade as described in panel K. This simulation corresponds to the 
gold curve in Fig. 2.7G. (O) Same as M except [CsrA]total = 0.1x. 

To our knowledge, our model is the first to quantitatively and specifically describe the 
CsrA regulatory cascade. A previously reported model described the general features of 
repression of target mRNA translation by a protein and CsrA was cited as example [47]; 
however the reported model did not incorporate any upstream regulators of CsrA (i.e. 
CsrB or CsrD) (Fig. 2.4-2.7) or negative feedback resulting from the repression of CsrD 
production by CsrA (Fig. 2.7). The basic assumptions of our model are described  
below. 

Initially we modeled the synthetic CsrA system in which each gene is under the control 
of a synthetic promoter without any flanking native regulatory sequences (and 
therefore without negative feedback). This model was constructed in three sequential 
steps. In the first step we modeled only the action of CsrA on the target protein 
concentration (“one step cascade”). In the second step we added CsrB to the one step 
cascade model thereby creating a “two step cascade” model. In the third step we added 
CsrD to the two step cascade model to create a “three step cascade” model. Parameter 
values were obtained from the literature, reasonable a priori estimates, and by fitting the 
simulated dynamics to the experimental data. The latter was used to determine the 
production rates of CsrA, CsrB and CsrD in the one, two and three step cascade models 
respectively. The one, two and three step cascade models were each validated by 
comparing the transfer functions they predicted to those measured experimentally. 
Finally, we expanded the three step cascade to include negative feedback and the 
saturation of CsrD by CsrB to model the behavior of the native CsrA system. 

In each dynamics simulation, we turned on or off the production of one component in 
the cascade (“modulated component”) and measured the effect on the concentrations of 
all the other components of the system as a function of time. When we turned on the 
production of the modulated component (e.g. CsrA), its initial concentration was zero 
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and the initial concentrations of the other species (e.g. glgC-gfp mRNA and target 
protein) were at their steady state levels in the absence of the modulated component. 
These steady levels were obtained by simulating the system with the production of the 
modulated component turned off (e.g. CsrA) and allowing the system to converge to 
steady state. When we turned off the production of a modulated component (e.g. CsrA), 
its initial concentration and the initial concentrations of the other species (e.g. glgC-gfp 
mRNA and target protein) were at their steady state with maximal production of the 
modulated component (i.e. CsrA). These initial steady state levels (e.g. CsrA, glgC-gfp 
mRNA and target protein) were obtained by simulating the system with the production 
of the modulated component turned on (e.g. CsrA) and allowing it to converge to steady 
state. The simulations were performed by integrating the model’s equations using the 
ode15s solver in MATLAB. All the initial conditions are provided in Table 2.2. 

Table 2.2 | Initial conditions for dynamic simulations 

simulation 
[GFP] 
(nM) 

[m] 
(nM) 

[A] 
(nM) 

[Am] 
(nM) 

[B] 
(nM) 

[AB] 
(nM) 

[D] 
(nM) 

[BD] 
(nM) 

Fig. 2.2B, glgC-gfp turned on 0 0 0 0 n/a n/a n/a n/a 
Fig. 2.2B, csrA turned off 5 0.26 497 3 n/a n/a n/a n/a 
Fig. 2.2C, glgC-gfp turned off 200 10 0 0 n/a n/a n/a n/a 
Fig. 2.2C, csrA turned on 200 10 0 0 n/a n/a n/a n/a 
Fig. 2.4B, glgC-gfp turned on 0 0 0.11 0 4500 500 n/a n/a 
Fig. 2.4B, csrB turned on 5 0.26 497 3 0 0 n/a n/a 
Fig. 2.4C, glgC-gfp turned off 198 9.9 0.11 0.026 4500 500 n/a n/a 
Fig. 2.4C, csrB turned off 198 9.9 0.11 0.026 4500 500 n/a n/a 
Fig. 2.5B, glgC-gfp turned on 0 0 0.11 0 4500 500 0 n/a 
Fig. 2.5B, csrD turned off 15 0.76 150 2.7 2.3 347 200 n/a 
Fig. 2.5C, glgC-gfp turned off 198 9.9 0.11 0.026 4500 500 0 n/a 
Fig. 2.5C, csrD turned on 198 9.9 0.11 0.026 4500 500 0 n/a 
Fig. 2.7E and F control (black) 1.2 0.06 1997 3 0 0 0 0 
Fig. 2.7E, 1.0x CsrA (drk blue) 1.2 0.06 1997 3 0 0 5.9 0 
Fig. 2.7E, 0.1x CsrA (lght blue) 11.8 0.6 197 3 0 0 53 0 
Fig. 2.7F, fixed CsrD (pink) 1.2 0.06 1997 3 0 0 29 0 
Fig. 2.7G, control (black) 178 8.9 0.7 0.1 3000 1999 0 0 
Fig. 2.7G, native system (gold) 22.8 1.1 95 2.6 1 102 47 49 
Fig. 2.10O, native w/o csrD 187 9.3 0.042 0.009 4800 200 0 0 

Table 2.2 | Initial conditions for dynamic simulations. The initial conditions for dynamics simulations are included here. [GFP], 
[m], [A], [Am], [B], [AB], [D] and [BD] represent the concentrations of the target protein, the target mRNA, CsrA dimers, the CsrA-
target mRNA complex, CsrB, the CsrA-CsrB complex, CsrD and the CsrB-CsrD complex respectively as described. 
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The transfer functions were simulated as described above for the dynamics with the 
production rate of the modulated component (CsrA, CsrB or CsrD) assigned a range of 
values between zero (turned off) and its maximum (turned on). For each value of the 
production rate we ran the dynamics simulations to convergence to determine the 
steady-state target protein concentration. We emphasize that the model was constructed 
from first principles, parameter values obtained from the literature and production 
rates obtained from the dynamics experiments. No information from our steady state 
experiments was incorporated into the models used to predict the transfer functions. 
Furthermore, predicting the transfer functions is non-trivial because they convolve 
multiple non-linear functions. For example, predicting the effect of varying the steady 
state CsrD concentration on the steady state target protein concentration requires the 
model to accurately predict how the CsrD concentration alters the CsrB concentration, 
how the CsrB concentration alters the free CsrA concentration, and how the free CsrA 
concentration alters the target mRNA’s concentration and translation. We performed in 
vivo experiments to determine the transfer functions and found them to be in good 
agreement with the predictions. That is, the steady state experiments confirmed the 
predictive capacity of our model and thus the appropriateness of its assumptions and 
parameters. 
 
2.5.4.2  One-step cascade (CsrA and target) 
The simplest model is the “one step” cascade that contains only target proteins, target 
mRNAs, CsrA dimers, and CsrA-target mRNA complexes (“CsrA-glgC mRNA”) (Fig. 
2.2). Our model describes the production and removal (by dilution, active degradation 
and/or sequestration) of each component. 
 
The GlgC-GFP concentration ([GFP]) is determined by (i) its production rate, which is 
proportional to the free glgC-gfp mRNA concentration ([m]) and the rate constant αG, 
and (ii) its degradation rate, which is proportional to [GFP] and the sum of the rate 
constants for passive dilution (βdil) and active degradation of the protein (βG). 
 

 
[2.1] 

 
The concentration of free glgC-gfp mRNA ([m]) is determined by (i) its production rate 
αm which depends on promoter activity, and (ii) its removal rate which depends on 
passive dilution, active degradation, and sequestration by CsrA. The rates of active 

d[GFP]

dt
= ↵G[m]� (�G + �dil) [GFP]
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degradation and passive dilution for the mRNA are proportional to [m] and the rate 
constants βm and βdil respectively. The rate of removal of free glgC-gfp mRNA via 
sequestration into the CsrA-glgC mRNA complex (Am) is proportional to the glgC-gfp 
mRNA and CsrA concentrations and the rate constant for association (k1). Release of 
free glgC-gfp mRNA from the CsrA-glgC mRNA complex is proportional to the 
concentration of the complex ([Am]) and the dissociation rate constant k-1. For 
simplicity, we assume the glgC leader sequence in the glgC-gfp mRNA is capable of 
binding to one CsrA dimer and that the bound CsrA completely inhibits translation. 
Since the predictions of our model are in good agreement with our in vivo dynamics 
data (see above), this simplifying assumption indicates that more complex modes of 
interaction between CsrA and RNA molecules (e.g. cooperativity) are not required to 
explain the observed dynamics (note: this is modeled and discussed in detail below). In 
addition, the details of the reaction steps involved in CsrA binding to its RNA partners 
have not been fully elucidated and are still being investigated [70]. Theoretically, free 
glgC-gfp mRNA could also be generated by active degradation of CsrA in the CsrA-glgC 
mRNA complex; while we include this possibility to be systematic, active degradation 
of CsrA is negligible and therefore we set the rate constant for this reaction (βAAm) to 
zero. 

[2.2] 

The concentration of CsrA-glgC mRNA complex ([Am]) is determined by it creation rate 
(which depends on the association rate constant and the concentrations of glgC-gfp 
mRNA and CsrA) and the clearance rate (which is proportional to the concentration of 
CsrA-glgC mRNA complex and the rate constants for dissociation (k-1), active 
degradation of the glgC-gfp mRNA within the complex (βmAm), active degradation of 
CsrA within the complex (βAAm), and passive dilution (βdil)).  

[2.3] 

The concentration of free CsrA dimer ([A]) is determined by (i) its production rate αA 
and (ii) its removal rate which depends on passive dilution, active degradation, and 
sequestration into the CsrA-glgC complex. The production of CsrA dimers was treated 
as a single step to maintain the simplicity of the model. It was unnecessary to explicitly 

d[m]

dt
= ↵m � (�m + �dil)[m]� k1[A][m] + (k�1 + �AAm)[Am]

d[Am]

dt
= k1[A][m]� (k�1 + �mAm + �AAm + �dil)[Am]
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model the production and degradation of csrA mRNA because its half-life is short 
compared to the CsrA protein’s half-life (therefore the dynamics of the csrA mRNA has 
negligible effect on the CsrA protein dynamics). Similarly, we do not separately model 
the monomeric and dimeric forms of CsrA because the vast majority of intracellular 
CsrA exists as a dimer [52]. Furthermore, because very little CsrA is found in the 
monomeric form this implies that it associates rapidly compared to the turnover rate of 
CsrA. In the unlikely event that CsrA dimerization is slow; its contribution to the 
dynamics would be accounted for because it would be incorporated into the CsrA 
production rate αA which is obtained from a fit to the experimental data (see below). 
The rate of removal of free CsrA dimers via active degradation and passive dilution is 
proportional to [A] and the rate constants βA and βdil respectively. We included the 
possibility of active degradation of CsrA in the model for completeness; however, 
because CsrA is a stable protein we assumed βA to be zero. Free CsrA dimers are 
removed by sequestration into the CsrA-glgC mRNA complex as described above. Free 
CsrA dimers are generated both by degradation of the glgC-gfp mRNA within the CsrA-
glgC mRNA complex (rate constant βmAm) and by dissociation of the CsrA-glgC mRNA 
complex (rate constant k-1). 
 

 
[2.4a] 

 
We now establish numerical values for the above kinetic parameters. The rate constant 
for passive dilution (βdil) was determined to be 4 x 10-4 s-1 by dividing ln(2) by the 
average doubling time of four strains (HL4495, HL4574, HL4845 and HL4860) grown in 
LB in the absence of inducer molecules. We used stable GFP in our simulated 
experiments (i.e. GFP is not actively degraded) therefore βG = 0. We estimated that the 
steady state target protein concentration was likely to be on the high end of the 
physiological range (2 x 102 nM) [71] because the glgC-gfp mRNA is transcribed from a 
strong promoter, the glgC-gfp gene is located on a medium copy plasmid, and the glgC-
gfp mRNA has an efficient RBS. Multiplying this steady state concentration of target 
protein by βdil yields the GFP production rate (8 x 10-2 nM⋅s-1), which is the product of 
the rate constant for GFP production (αG) and the steady state glgC-gfp mRNA 
concentration. The steady state glgC-gfp mRNA concentration was also estimated to be 
on the high side of the physiological range (1 x 101 nM) due to its strong promoter and 
because the gene is on a medium copy plasmid [71]. Dividing the total GFP production 
rate by the steady state mRNA concentration provides αG = 8 x 10-3 s-1. 

d[A]

dt
= ↵A � (�A + �dil)[A]� k1[A][m]� (k�1 + �mAm)[Am]
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We next specify the rate constants related to the glgC-gfp mRNA. We multiplied the 
steady state concentration of target mRNA (1 x 101 nM) by the sum of the rate constants 
for passive dilution (βdil) and active degradation (βm) to calculate the production rate for 
the glgC-gfp mRNA (αm). βm was estimated to be 6 x 10-3 s-1 by dividing ln(2) by the half-
life (~120 s) determined from reported plots of native glgC mRNA degradation [72]. 
Therefore βm + βdil = 6.0 x 10-3 s-1 + 0.4 x 10-3 s-1 = 6.4 x 10-3 s-1 and αm = 6.4 x 10-2 nM⋅s-1. 
We assumed that the active degradation of CsrA, bound or unbound, is negligible; this 
is supported both by our experiments (Fig. 2.2B & Fig. 2.6) and studies that have shown 
that the vast majority of intracellular proteins in E. coli are stable [73]. We therefore 
assume that the rate constant for active degradation of CsrA from within the CsrA-glgC 
mRNA complex (βAAm) is zero. The rate constants k1 and k-1 are unknown but their ratio 
(Kd,Am = k-1/k1) has been determined for native glgC mRNA (~40 nM) [53]. We used the 
association rate constant for another RNA-protein complex (a 16 nucleotide RNA 
substrate binding to Hfq) [74], which has been determined (~ 10-1 nM-1·s-1), as a starting 
point for estimating k1. Thinking ahead, the association rate constant of the CsrA-CsrB 
complex is likely to be larger than that of the CsrA-glgC mRNA complex due to the 
difference in their reported Kd values (see below). We therefore selected a conservative 
value for the association rate constant of the CsrA-glgC mRNA complex (k1 = 10-2 nM-

1·s-1), leaving the higher value for the association rate constant of the CsrA-CsrB 
complex (10-1 nM-1·s-1). Having estimated k1, we calculated k-1 = 4 x 10-1 s-1 from the 
above ratio (k-1/k1 ~ 40 nM). The rate constant for the active degradation of glgC-gfp 
mRNA from within the CsrA-glgC mRNA complex (βmAm = 2 x 10-2 s-1) was calculated 
by dividing ln(2) by the half-life (~35 s) estimated from plots of the degradation of 
native glgC mRNA bound to CsrA [72]. 
 
We now establish the remaining rate constants for CsrA that have not been described 
above.  As we discussed, CsrA is not believed to be actively degraded therefore βA  = 0 s-

1 and therefore CsrA is cleared at a rate determined by βdil. The value for the production 
rate of CsrA dimer, αA (2 x 10-2 nM·s-1), was determined by fitting the model to our 
dynamics data. Specifically, αA was selected so that the simulated delay in turning on 
target expression caused by turning off csrA transcription (which depends on the CsrA 
concentration) was comparable in magnitude to that measured experimentally (Fig. 
2.2B). 
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Simulation of the one step cascade with the above parameters and only a single fit 
parameter (αA) was able to describe the dynamics behavior of the system with CsrA 
production turned off (αA = 0, Fig. 2.2B) or on (αA = 2 x 10-2 nM·s-1, Fig. 2.2C). 
Furthermore, simulation of the system with a range of different CsrA production rates 
(0 ≤ αA ≤ 2 x 10-2 nM·s-1) qualitatively predicted the steady state CsrA transfer function 
(Fig. 2.2D). 
 
2.5.4.3  Two-step cascade (CsrB, CsrA and target) 
The two step cascade model extends the one step cascade to include CsrB and the CsrA-
CsrB complex (Fig. 2.4). This model is described by Eq. 2.1-2.3, 2.4b, 2.5a & 2.6. The 
concentration of free CsrB ([B]) is determined by its (i) production rate αB and (ii) 
removal rate due to passive dilution, active degradation (via non-CsrD pathways), and 
sequestration into the CsrA-CsrB complex. For simplicity, [B] represents the 
concentration of CsrB binding sites rather than the concentration of full length CsrB 
RNA molecules. In other words, we measure the CsrB concentration in terms of CsrA 
dimer equivalents where one unit of CsrB can bind one CsrA dimer. This assumes that 
the binding of each CsrA dimer to CsrB is independent, which is the simplest model. 
More complex binding interactions between CsrA and CsrB are unnecessary for 
qualitative agreement between our model and experimental measurements (Fig. 2.2, 2.4 
& 2.5). To be clear, we refer to the independent binding of CsrA dimers to CsrB not to 
the binding of the individual CsrA molecules within a dimer to CsrB. In the latter case, 
the binding of a CsrA molecule within a dimer to CsrB is known to increase the 
probability that the other CsrA molecule will also bind to CsrB [70]; this behavior is 
included in our model with the assumption that CsrA dimers occupy two binding sites 
within CsrB (i.e. CsrB has 18 sites for CsrA, but only 9 sites for CsrA dimers). 
 
As with all other species in our model, the rate of passive dilution of CsrB is 
proportional to its concentration and the rate constant βdil. The rate of active 
degradation of CsrB via non-CsrD mediated pathways is proportional to [B] and the 
rate constant βB. The rate of sequestration of CsrB is proportional to [B], [A], and the 
association rate constant for the CsrA-CsrB complex (k2). CsrB can be released from the 
CsrA-CsrB complex by active degradation of CsrA or by dissociation; the rates of these 
reactions are proportional to the concentration of the complex ([AB]) and the constants 
βAAB or k-2 respectively. Active degradation of CsrB in the CsrA-CsrB complex may also 
generate free CsrA at a rate that is proportional to the concentration of the complex 
([AB]) and the rate constant βBAB. 
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A model of CsrB molecules with 9 sites for CsrA dimers versus a model of single 
binding sites for CsrA dimer will produce equivalent results in a deterministic model. 
However the latter is much simpler because there is no need to model all the different 
types of CsrA-CsrB complexes. The reason the two types of models are equivalent is 
that differences in the production rate are taken into account when we fit this parameter. 
Furthermore, the degradation rate constants for CsrB molecules and individual CsrA 
dimer binding sites, which depend on their lifetimes, are the same under conditions 
where CsrB clearance is not saturated. That is, under non-saturating conditions the time 
taken to cleave an individual molecule is independent of the number of other molecules 
present. Under these circumstances, the rate of clearance of single CsrA dimer sites will 
be nine times greater than for CsrB whole molecules but the rate constant and overall 
flux of dimer sites is identical. Under conditions when CsrD is saturated with CsrB we 
fit our model to the experimental data and therefore the parameter values obtained 
account for differences in the clearance of CsrB molecules and single binding sites for 
CsrA dimer. 
 
The equations for the two step cascade include the above process as well as those 
described in the one step cascade; that is, Eq. 2.1-2.3 from the one step cascade and a 
modified equation for the free CsrA concentration (Eq. 2.4b) that includes the 
association, dissociation and active degradation of the CsrA-CsrB complex: 
 

 

[2.4b] 

 
In addition, the model for the two step cascade has equations for free CsrB and the 
CsrA-CsrB complex: 
 

 
[2.5a] 

  

 
[2.6] 

  
The values of the additional parameters were obtained as follows. CsrB stability is not 
believed to be affected by binding to CsrA [63] (unlike target mRNAs that bind to CsrA) 

d[A]

dt
= ↵A � (�A + �dil)[A]� k1[A][m] + (k�1 + �mAm)[Am]� k2[A][B] +

(k�2 + �BAB)[AB]

d[B]

dt
= ↵B � (�B + �dil)[B]� k2[A][B] + (k�2 + �AAB)[AB]

d[AB]

dt
= k2[A][B]� (k�2 + �BAB + �AAB + �dil)[AB]
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and therefore the active degradation rates for bound and unbound CsrB are the same 
(βBAB ≡ βB). The rate constant for the active degradation of CsrB in the absence of CsrD 
(βB ≤  4 x 10-4 s-1) was determined by dividing ln(2) by the reported half-life of CsrB (≥ 30 
min) in a csrD deletion strain [51]. It is unclear how much the half-life was influenced by 
cell growth therefore the above value should be considered as an upper bound. In other 
words, active degradation contributes the same or less than passive dilution to the 
clearance of CsrB. We include the active degradation of CsrA from the CsrA-CsrB 
complex (βAAB) for completeness. However, since CsrA is stable, βAAB = 0. The 
association rate constant for CsrA dimer binding to CsrB (k2) was estimated to be 
similar in magnitude to RNA binding to Hfq (see above; k2 = 10-1 nM-1·s-1). We 
calculated the dissociation rate constant for the CsrA-CsrB complex (k-2 = 10-1 s-1) from 
the above value for k2 and the reported equilibrium dissociation constant for this 
complex (Kd,AB = k-2/k2 ~ 1 nM) as measured by gel mobility shift assays [49]. The 
production rate of pairs of CsrB binding sites (αB = 4 nM·s-1) was determined by fitting 
the model to our dynamics data so the simulated signaling delay was comparable in 
magnitude to that measured experimentally (Fig. 2.4C). This production rate 
corresponds to a steady state concentration of CsrB binding sites [B] of 5 x 103 nM. Since 
each CsrB molecule has approximately 9 binding sites for CsrA dimers (assuming both 
faces of the CsrA dimer bind simultaneously) [50] the concentration of CsrB molecules 
will be ~9-fold lower than [B] (and therefore the production rate for CsrB molecules 
would also be 9-fold lower). 
 
Simulation of the two step cascade with the above parameters and only a single fit 
parameter (αB) was able to describe the dynamics behavior of the system with CsrB 
production turned on (αB = 4 nM·s-1, Fig. 2.4B) or off (αB = 0, Fig. 2.4C). Furthermore, 
simulation of the system with a range of different CsrB production rates (0 ≤ αB ≤ 4 
nM·s-1) qualitatively predicted the steady state CsrB transfer function (Fig. 2.4D). 
 
2.5.4.4  Three-step cascade (CsrD, CsrB, CsrA and target) 
The three step cascade model extends the two step cascade to include CsrD (Fig. 2.5). 
This model is described by Eq. 2.1-2.3, Eq. 2.4b, Eq. 2.5b, Eq. 2.6 & Eq. 2.7a. The 
concentration of CsrD ([D]) depends on (i) its production rate (αD) and (ii) its removal 
rate by passive dilution and active degradation. The production of CsrD is modeled as a 
single reaction step as with CsrA dimers. The clearance of CsrD by passive dilution and 
active degradation is proportional to [D] and the rate constants βD and βdil respectively. 
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[2.7a] 

 
CsrD is known to bind to and facilitate the degradation of free CsrB by RNase E [51]. 
The kinetics of this process have not been completely characterized and therefore we 
begin by modeling the action of CsrD as a simple first order process. Active degradation 
of free CsrB by CsrD is therefore proportional to [B], [D] and a single kinetic parameter 
that defines the catalytic efficiency of CsrD-mediated degradation (ω). Incorporating 
active degradation of CsrB by the CsrD mediated pathway into the model converts Eq. 
2.5a into Eq. 2.5b: 
 

 
[2.5b] 

 
This equation assumes the free CsrB concentration is not greatly in excess of the CsrD 
concentration, which our experiments show is appropriate for dynamics experiments 
using the synthetic CsrA cascade (Fig. 2.5). However, at the lower concentrations of 
CsrD that can occur with native csrD  (Fig. 2.7B, C, E, G) or at very low induction levels 
of synthetic csrD (Fig. 2.7F), CsrD can become saturated by high levels of free CsrB. 
Under these conditions where CsrD becomes saturated it is important to consider the 
CsrB-CsrD complex (see next section). As stated above, the three step cascade model 
combines all the equations for the two step cascade except Eq. 2.5a (i.e. Eq. 2.1, 2.2, 2.3, 
2.4b, 2.6) plus Eq. 2.5b & Eq. 2.7a.  
 
The additional parameter values for Eq. 2.5b & 2.7 were determined as follows. It is 
believed that CsrD is primarily cleared by dilution for the same reasons as CsrA 
therefore the rate constant for active degradation of CsrD is assumed to be near zero (βD 
= 0). Since CsrD partners with RNase E to degrade CsrB, we selected a catalytic 
efficiency value (ω = 8 x 10-3 nM-1·s-1) within the range of reported catalytic efficiencies 
for RNase E [75,76]. The production rate for CsrD (αD = 8 x 10-2 nM·s-1) was determined 
by fitting the model to our dynamics data so that the simulated signaling delay was 
comparable in magnitude to that measured experimentally (Fig. 2.5B). It should be 
noted that all other parameter values (including αA and αB) were held fixed during this 
fit process. We found the production rate for CsrD is less than that for CsrA which is 
consistent with csrD having a weaker ribosomal binding sequence (st3 instead of the 
stronger st7 ribosomal binding sequence of synthetic csrA) [77]. 

d[D]

dt
= ↵D � (�D + �dil)[D]

d[B]

dt
= ↵B � (![D] + �B + �dil)[B]� k2[A][B] + (k�2 + �AAB)[AB]
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Simulation of the three step cascade with the above parameters and only a single fit 
parameter (αD) was able to describe the dynamic behavior of the system with CsrD 
production turned off (αD = 0, Fig. 2.5B) or on (αD = 8 x 10-2 nM·s-1), Fig. 2.5C). 
Furthermore, simulation of the system with a range of different CsrD production rates 
(0 ≤ αD ≤ 8 x 10-2 nM·s-1) qualitatively predicted the CsrD transfer function at steady 
state (Fig. 2.5D). 
 
2.5.4.5  Three-step cascade with feedback 
To interpret and explain our experimental observations for the CsrA cascade with 
native csrD we incorporated into our model the repression of CsrD production by CsrA 
(Fig. 2.7). This repression is necessary for negative feedback regulation. Because native 
csrD is not as highly expressed as synthetic csrD, CsrD may become saturated by CsrB 
therefore we needed to explicitly include CsrB-CsrD complexes (BD) in the model to 
account for this possibility. The model verified that negative feedback was necessary for 
the “enhanced signaling” observed in Fig. 2.7E. In addition, the model demonstrated 
that saturation of CsrD activity by CsrB is required for the delay (Fig. 2.7F) and the 
delay does not occur if CsrD is absent (Fig. 2.7F) or with low constant expression of 
CsrD without saturation (Fig. 2.9F). 
 
The repression of CsrD expression by CsrA was incorporated into the model by having 
the production rate of CsrD from native csrD depend on the CsrA concentration 
according to a simple Hill-type function. The Hill-type function [78] is kf/(kf + [A]), 
where the constant kf determines the CsrA concentration [A] at which CsrD production 
is half its maximum value. Use of the Hill-type function requires fewer parameters and 
assumptions than additional equations that explicitly consider the csrD mRNA and its 
association, dissociation, degradation and translation in the CsrA-csrD mRNA complex 
(note: to our knowledge, this complex has not been identified in vivo). 
 
The association of CsrB and CsrD results in the CsrB-CsrD complex and this reaction 
occurs at a rate proportional to [B], [D] and the rate constant kES. The CsrB-CsrD 
complex dissociates to free CsrB and CsrD at a rate that depends on its concentration 
and the rate constant k-ES. Clearance of the CsrB-CsrD complex can occur by dilution, 
active degradation of CsrB in the complex by RNase E (which releases free CsrD), and 
active degradation of CsrD in the complex (which releases free CsrB); the rate constants 
for these respective processes are βdil, kP and βD. 
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Our model of the three step cascade with feedback regulation extends the previous 
model by the modification of Eq. 2.5b & 2.7a to include (i) the regulation of CsrD 
production by CsrA and (ii) the addition of an equation for the CsrB-CsrD complex. The 
final set of equations for the three step model with feedback is therefore: 
 

 
[2.1] 

 

 
[2.2] 

 

 
[2.3] 

 

 

[2.4b] 

 

 

[2.5c] 

 

 

[2.6] 

 

 
[2.7b] 

 

 
[2.8] 

 
The parameter values used to simulate the dynamics of the three step cascade with 
feedback were identical to those used in the three step cascade without feedback unless 
otherwise stated. The additional parameters values that were not in the original three 
step cascade without feedback model (i.e. kf, kES, k-ES and kP) were determined as 
follows. We estimated kES (the association rate constant for the binding of CsrB to CsrD) 

d[GFP]

dt
= ↵G[m]� (�G + �dil) [GFP]

d[m]

dt
= ↵m � (�m + �dil)[m]� k1[A][m] + (k�1 + �AAm)[Am]

d[Am]

dt
= k1[A][m]� (k�1 + �mAm + �AAm + �dil)[Am]

d[A]

dt
= ↵A � (�A + �dil)[A]� k1[A][m] + (k�1 + �mAm)[Am]� k2[A][B] +

(k�2 + �BAB)[AB]

d[B]

dt
= ↵B � (�B + �dil)[B]� k2[A][B] + (k�2 + �AAB)[AB]� kES[B][D] +

(k-ES + �D)[BD]

d[AB]

dt
= k2[A][B]� (k�2 + �BAB + �AAB + �dil)[AB]

d[D]

dt
= ↵D

✓
kf

kf + [A]

◆
� (�D + �dil)[D]� kES[B][D] + (k-ES + kP)[BD]

d[BD]

dt
= kES[B][D]� (�D + k-ES + kP + �dil)[BD]
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to be the same as the association rate constant between CsrB and CsrA (kES = k2 = 10-1 
nM-1·s-1). kP, k-ES, kf, and αA were obtained by simultaneously fitting the model to the 
dynamic behavior of the experimental results in Fig. 2.7B, C, E, F & G. Identical values 
for kP and k-ES were used for all simulations in Fig. 2.7. The value for the rate constant 
for the conversion of CsrB-CsrD complex into free CsrD and degraded CsrB (kP = 8 x 10-

2 s-1) falls within the experimentally measured range reported for RNase E (1.4 to 3 x 10-2 

s-1) [75,76]. Our value for the rate constant for CsrB dissociation from CsrD (k-ES) was 2 x 
10-2 s-1, which is comparable to reported RNA-protein dissociation rate constants [79-81]. 
kf pertains only to the simulations demonstrating the effects of feedback (dark and light 
blue lines in Fig. 2.7E and gold line in Fig. 2.7G); its value (kf = 30 nM) was identical in 
all three simulations and was comparable to the levels of free CsrA observed in the 
model. We estimate that the level of CsrA produced by the native csrA gene to be 
approximately one tenth the concentration that we expressed in our synthetic system 
(Fig. 2.2D). Therefore αA = 8 x 10-2 nM·s-1 for the native csrA gene (0.1x CsrA, Fig. 2.7E, 
Fig. 2.8) and αA = 8 x 10-1 nM·s-1 for the synthetic csrA gene (1x CsrA, Fig. 2.7E, Fig. 2.8). 
 
Simulations of the three step cascade with feedback using the above parameters were 
able to describe the dynamic behavior of the system. In the models we turned csrB 
transcription either on (Fig. 2.7B-F) or off (Fig. 2.7G) under different combinations of 
conditions. These conditions include two different CsrA concentrations: (i) native CsrA 
levels (αA = 8 x 10-2 nM·s-1; light blue line in Fig. 2.7E and gold line in Fig. 2.7G) or (ii) 
synthetic CsrA levels (αA = 8 x 10-1 nM·s-1; dark blue line in Fig. 2.7E and magenta line 
in Fig. 2.7F, and black line in Fig. 2.7E-G). We also modeled three possible regulatory 
patterns for CsrD: (i) no expression (αD = 0; black control curve in Fig. 2.7E-G), (ii) low 
induced expression without feedback (αD = 1.16 x 10-2 nM·s-1; magenta curve in Fig. 
2.7F) and (iii) native expression with feedback (αD = 1.6 x 10-1 nM·s-1; gold line in Fig. 
2.7B & G, orange line in Fig. 2.7C, and blue line in Fig. 2.7E). In the case of the low 
induced expression of CsrD without feedback (Fig. 2.7F), the term αD⋅(kf/(kf + [A])) in 
the model was replaced with just αD. The low expression of CsrD was achieved 
experimentally (Fig. 2.7F) from PLlacO-1 by adding 20 µM IPTG to the media rather 
than the 0.5-1 mM IPTG required for full transcription (Fig. 2.10Q). The maximum 
production rates for glgC-gfp mRNA (αm), GlgC-GFP protein (αgfp), and CsrB (αB) are the 
same in Fig. 2.7E-G as described in prior sections. 
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2.5.4.5  The Minimal Effects of Cooperative CsrA Binding 
In our model, CsrA binds as a dimer to its target mRNAs and non-coding RNAs. This 
feature of the model is based on experimental evidence showing that CsrA primarily 
exists in the cell as a dimer [52]. It has also been shown experimentally that an 
individual CsrA subunit can facilitate the binding of its dimer partner to CsrB [70]; this 
phenomenon is included in our model in that we assume that both CsrA molecules in 
the dimer bind together to CsrB. One CsrA molecule facilitating the binding of the other 
CsrA molecule within the same dimer is distinct from cooperative binding between CsrA 
dimers in which the binding of one CsrA dimer promotes the binding of another CsrA 
dimer to CsrB or an mRNA. There is one report that may indicate cooperative binding 
of CsrA dimers to CsrB [49], however many details remain unclear. The binding of 
CsrA dimers to the CsrB non-coding RNA is likely to be very different to that of a small 
molecule binding a protein. When a small molecule binds to a protein (e.g. dioxygen 
binding to hemoglobin) it can induce a conformational change in the protein that alters 
small molecule binding at other sites on the protein. For the CsrB non-coding RNA, 
there is no described mechanism by which the binding of a CsrA dimer at one location 
on CsrB enhances the binding of other CsrA dimers at other locations on CsrB; although 
it is of course possible that this does occur. 
 
In this section, we explore how cooperative binding between CsrA and CsrB would 
affect the transfer function (Fig. 2.9G) and dynamic behavior (Fig. 2.9H) of our system. 
To evaluate the effects of cooperativity in CsrB binding on the CsrB transfer function we 
compared a model where each site for a CsrA dimer was bound independently (i.e. 
“non-cooperative”) to a model where the binding of each dimer increased the 
equilibrium association constant for the binding of the next CsrA dimer by 2-fold (i.e. 
“cooperative”). In the non-cooperative model, there are 9 sites for CsrA dimers on each 
CsrB molecule and the binding of each CsrA dimer to each site on CsrB is independent. 
In the cooperative model, there are also 9 sites for CsrA dimers on each CsrB molecule; 
however in this case the binding of the first CsrA dimer increases the association rate 
constant of the second CsrA dimer by two-fold which increases the association rate 
constant of the third CsrA dimer by a further two-fold, and so on until the ninth and 
last CsrA dimer has an association rate constant that is 28-fold greater than that of the 
first CsrA dimer. In the non-cooperative and cooperative models, we varied the total 
CsrB concentration and measured the amount of free target mRNA in the presence of 
fixed total CsrA (Fig. 2.9G). Cooperativity is often considered from the perspective of its 
effect on the steepness of an input-output relationship. In this case, we will quantify the 
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effect of cooperative binding on the change in the free target mRNA concentration 
(output) as the CsrB concentration (input) increases. We measured the steepness of each 
function using the “response coefficient” (i.e. the input value that yields 90% of 
maximum output divided by the input value that yields 10% of maximum output) and 
then converted these values to an equivalent Hill coefficient as described by Goldbeter 
and Koshland [1]. 
 
We found that the extreme example of cooperative binding described above only 
increased the Hill coefficient for the CsrB transfer function from 3.7 (for non-
cooperative binding) to 4.5 (cooperative binding) (Fig. 2.9G). By comparison, a two-fold 
increase in the total CsrA concentration in the system with non-cooperative binding 
increased the Hill coefficient from 3.7 to 5.0. Cooperativity has such a comparatively 
small effect on the transfer function because the stoichiometric point (where the number 
of CsrA dimers equals the number of available sites for those dimers on CsrB) creates a 
sharp transition even in the absence of cooperativity. That is, when the concentration of 
CsrB sites [B] is less than the CsrA dimer concentration [A] there is substantial silencing 
of the target mRNA; on the other hand, when the concentration of CsrB sites [B] is 
greater than the CsrA dimer concentration [A] there is minimal silencing of the target 
mRNA. The sharpness of this transition across the stoichiometric point (from silencing 
to non-silencing) depends on the equilibrium dissociation constants for CsrA dimers 
binding to CsrB sites, and on the absolute concentrations of CsrA dimers and CsrB sites. 
The transfer function for CsrB is very different from that of a protein acting 
“catalytically” (e.g. an enzyme or transcription factor) where there is no stoichiometric 
point and cooperative binding can have a much greater impact on the steepness of the 
transfer function. 
 
We next compared signaling dynamics using a version of our two level cascade model 
that was modified to incorporate cooperative and non-cooperative binding as described 
above. Using this model, we turn on and off csrB transcription and monitor target 
protein levels (Fig. 2.9H) as we did previously (Fig. 2.4B, C). The dynamic behavior of 
the system with cooperative binding was found to be very similar to the system with 
non-cooperative binding (Fig. 2.9H). Note: cooperative binding implemented by 
changing dissociation rate constants (rather than association rate constants) produced 
dynamics traces that are visually indistinguishable from those produced by changing 
the association rate constants (Fig. 2.9H). 
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In summary, our model demonstrates that the qualitative dynamic behavior of our 
system can be explained without incorporating cooperative binding. Furthermore, our 
simulations show that if the binding of CsrA dimers is cooperative it is unlikely to have 
a substantial qualitative effect on the transfer functions or dynamic behavior of the 
CsrA system. 
 
Table 2.3 | Plasmids and strains 
ID* Description 
pHL177 contains chloramphenicol resistance cassette flanked by FRT sites 
pHL600 PLtetO-1:csrB, PLlacO-1:RBS(st7):csrA 
pHL661 PLtetO-1:RBS(st7):gfp, PLlacO-1:RBS(st7):mCherry 
pHL662 PLtetO-1:RBS(st7):mCherry, PLlacO-1:RBS(st7):gfp 
pHL1318 PconNoHind:RBS(st3):tetR, PconNoHind:RBS(st2):csrA 
pHL1335 PconNoHindM12:glgC::gfp†, PconNoHind:RBS(st3):tetR, PconNoHind:RBS(st2):csrA 
pHL1355 PconNoHindM12:glgC::gfp†, PconNoHind:RBS(st3):tetR, PconNoHind:RBS(st3):csrA 
pHL1490 PLtetO-1:csrB, PLlacO-1:RBS(st3):csrD 
pHL1506 PLlacO-1:RBS(st7):csrA 
pHL1529 PLlacO-1:glgC::gfp†, PconNoHind:RBS(st3):tetR, PconNoHind:RBS(st2):csrA 
pHL1530 PLlacO-1:glgC::gfp†, PconNoHind:RBS(st3):tetR, PconNoHind:RBS(st3):csrA 
pHL1559 PLtetO-1:csrB 
pHL1561 PLtetO-1:RBS(st7):csrA 
pHL1575 PconNoHind:csrB, PLtetO-1:RBS(st3):csrD 
pHL1756 PconNoHindM12:glgC::gfp†, PconNoHind:RBS(st3):tetR 
pHL1757 PconNoHindM2:glgC::gfp†, PconNoHind:RBS(st3):tetR 
pHL1801 PLlacO-1:RBS(st7):gfp 
pHL1853 PLlacO-1:glgC::gfp::LVA†, PconNoHind:RBS(st3):tetR, PconNoHind:RBS(st2):csrA 
pHL1855 PLlacO-1:glgC::gfp::LVA†, PconNoHind:RBS(st3):tetR, PconNoHind:RBS(st3):csrA 
HL3721 HL716‡ + ΔcsrB + ΔcsrC + ΔglgCAP + ΔpgaABCD 
HL3796 HL716‡ + ΔcsrA + ΔcsrB + ΔcsrC + ΔglgCAP + ΔpgaABCD 
HL4018 HL716‡ + ΔcsrB + ΔcsrC + ΔcsrD + ΔglgCAP + ΔpgaABCD 
HL4142 HL716‡ + ΔcsrA + ΔcsrB + ΔcsrC + ΔcsrD + ΔglgCAP + ΔpgaABCD 
HL4495 HL4142 + pHL1335 + pHL600 
HL4574 HL4142 + pHL1355 + pHL1490 
HL4845 HL4142 + pHL1530 + pHL1559 
HL4860 HL4142 + pHL1529 + pHL1561 
HL4874 HL4142 + pHL1530 + pHL1575 
HL4509 HL4142 + pHL1318 + pHL661 
HL4510 HL4142 + pHL1318 + pHL662 
HL5561 MG1655 + pHL1756 
HL5562 MG1655 + pHL1757 
HL5582 HL4142 + pHL1506 + pHL1756 
HL5591 HL4142 + pHL1506 + pHL1757 
HL5593 HL4142 + pHL1756 
HL5594 HL4142 + pHL1757 
HL5595 HL4018 + pHL1756 
HL5596 HL4018 + pHL1757 
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HL5814 HL4142 + pHL1561 + pHL1853 
HL5815 HL4142 + pHL1559 + pHL1855 
HL5816 HL4142 + pHL1575 + pHL1855 
HL5840 HL716‡ + ΔpgaABCD 
HL5860 HL5840 + pHL1559 + pHL1756 
HL5861 HL4142 + pHL1559 + pHL1355 
HL5876 HL4018 + pHL1559 + pHL1756 
HL5877 HL3796 + pHL1559 + pHL1355 
HL5878 HL3721 + pHL1559 + pHL1756 
HL5944 HL3796 + pHL1801 
HL5947 HL4142 + pHL1561 

 
Table 2.3 | Plasmids and strains. Selected plasmids and strains were submitted to the Addgene repository (www.addgene.org). 
*ID numbers beginning with “pHL” correspond to plasmids; ID numbers beginning with “HL” correspond to strains. †To construct the 
glgC::gfp reporter gene, the DNA sequence of the glgCAP mRNA between -61 and +8 nucleotides (relative to the glgC start codon) 
was translationally fused to the gfp coding region. ‡This strain is MG1655 with lacIq added to the chromosome [68]. 

 
2.5.5  Bacterial Strains and Plasmids 
Bacterial plasmids and strains are listed in Table 2.3. Oligonucleotide sequences for 
knockouts, plasmid construction and RT-PCR are listed in Table 2.4. Plasmid maps are 
in Fig. 2.11. The chromosomal genes and operons csrA, csrB, csrC, csrD, glgCAP and/or 
pgaABCD were deleted from the chromosome using the λ-red method [82] or removed 
from their host strain via phage transduction. All deletions were confirmed by PCR. The 
csrA deletion was performed after glgCAP was deleted because CsrA is essential for cell 
survival when glgCAP is present [32]. CsrA was also deleted only after pgaABCD was 
deleted because in the absence of CsrA, cells with the pgaABCD operon overproduced 
biofilm adhesins [57] which prevented their resuspension and further genetic 
manipulation. 
 
  



Part 2: Signaling dynamics in the CsrA system 

  51 

Table 2.4 | Oligonucleotides 
name description sequence 

csrAKOpkD1F 
For deletion of csrA using 
pHL177 as template 

TGCCGGGATACAGAGAGACCCGACTCTTTTAATCTTTCAAGGAGCAAAGAGTGT
AGGCTGGAGCTGCTTC 

csrAKOpkD4R 
For deletion of csrA using 
pHL177 as template 

GGAGAAATTTTGAGGGTGCGTCTCACCGATAAAGATGAGACGCGGAAAGAATTC
CGGGGATCCGTCGACC 

csrBKOpkD1F 
For deletion of csrB using 
pKD13 as template 

AGCGCCTTGTAAGACTTCGCGAAAAAGACGATTCTATCTTCGTCGACAGGGTGT
AGGCTGGAGCTGCTTC 

csrBKOpkD4R 
For deletion of csrB using 
pKD13 as template 

GTGGTCATAAAGCAACCTCAATAAGAAAAACTGCCGCGAAGGATAGCAGGATTC
CGGGGATCCGTCGACC 

csrCKOpkD1F 
For deletion of csrC using 
pKD13 as template 

ACTGATGGCGGTTGATTGTTTGTTTAAAGCAAAGGCGTAAAGTAGCACCCGTGT
AGGCTGGAGCTGCTTC 

csrCKOpkD4R 
For deletion of csrC using 
pKD13 as template 

GCCGTTTTATTCAGTATAGATTTGCGGCGGAATCTAACAGAAAGCAAGCAATTC
CGGGGATCCGTCGACC 

csrDpkD1F 
For deletion of csrD using 
pKD13 as template 

ATCTGATTTGCTAGTATGCCCGCTTCCTCACTATCGGAGTTAACACAAGGGTGT
AGGCTGGAGCTGCTTC 

csrDpkD4R 
For deletion of csrD using 
pKD13 as template 

CATGAGACGCAGCGCGCATTATTCTACGTGAAAACGGATTAAACGGCAGGATTC
CGGGGATCCGTCGACC 

glgCpkD1F 
For deletion of glgCAP 
using pKD13 as template 

CCTGCACACGGATTGTGTGTGTTCCAGAGATGATAAAAAAGGAGTTAGTCGTGT
AGGCTGGAGCTGCTTC 

glgPpkD4R 
For deletion of glgCAP 
using pKD13 as template 

TTACAATCTCACCGGATCGATATGCCAGATATGATCGGCGTACTCTTTGAATTC
CGGGGATCCGTCGACC 

pgaApkD4R 
For deletion of pgaABCD 
using pKD13 as template 

CTGTAATTAGATACAGAGAGAGATTTTGGCAATACATGGAGTAATACAGGATTC
CGGGGATCCGTCGACC 

pgaDpkD1F 
For deletion of pgaABCD 
using pKD13 as template 

AGTGTGTTATCGGTGCAGAGCCCGGGCGAACCGGGCTTTGTTTTGGGTGTGTGT
AGGCTGGAGCTGCTTC 

csrARBSXmaF 
PCR amplifies csrA with a 
synthetic RBS (st7) 

CCTCCCGGGTAAGGAGGAAAAAAAATGCTGATTCTGACTCGTCGAGTTG 

csrAKpnHindR PCR amplifies csrA GGCCAAGCTTCTTTCAGGTACCTTAGTAACTGGACTGCTGGGATTTTTCAG 

csrBSalF PCR amplifies csrB CAAGTCGACGAGTCAGACAACGAAGTGAACATC 

csrBApaR PCR amplifies csrB CATGGGCCCAATAAAAAAAGGGAGCACTGTATTCACAGC  

csrARBS2NotIF 
PCR amplifies csrA with a 
synthetic RBS (st2) 

TCCTGCGGCCGCTAAGGAGGAAATGCTGATTCTGACTCGTCGAGTTG 

csrARBS3NotIF 
PCR amplifies csrA with a 
synthetic RBS (st3) 

TCCTGCGGCCGCTAAGGAGGAAAATGCTGATTCTGACTCGTCGAGTTG 

csrAApaR PCR amplifies csrA TAAGGGCCCTTAGTAACTGGACTGCTGGGATTTTTCAG 

glgCleadSalF 
PCR amplifies 5'UTR of 
glgC leader for fusion to 
gfp 

CCTGTCGACTCTGGCAGGGACCTGCACACGGATTG 

glgCleadSphR 
PCR amplifies 5'UTR of 
glgC for fusion to gfp 

TACGCATGCTAACCATGACTAACTCCTTTTTTATCATCTCTGG 

GFPRBSSalSphF 
PCR amplified gfp with 
SalI & SphI sites 

TTAGTCGACTAAGGAGGAAAAAGCATGCGTAAAGGAGAAGAACTTTTC  

PconNoHindBamHF 
PCR synthesis of Pcon 
promoter with no HindIII 
site 

CGCGGATCCTCGAGCACCGTCGTTGTTGACATTTTTATGCTTGGCGGTTATAAT 
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PconNoHindXmaR 
PCR synthesis of Pcon 
promoter with no HindIII 
site 

CCTCCCGGGTGTGTGGAATCCATTATAACCGCCAAGCATAAAAATGTCAACAAC 

PconNoHindEcoRF 
PCR synthesis of Pcon 
promoter with no HindIII 
site 

CCGGAATTCTCGAGCACCGTCGTTGTTGACATTTTTATGCTTGGCGGTTATAAT 

PconNoHindNotlR 
PCR synthesis of Pcon 
promoter with no HindIII 
site 

TCCTGCGGCCGCCTGTGTGGAATCCATTATAACCGCCAAGCATAAAAATGTCAA
CAAC 

PconM2NoHindAatF 
PCR synthesis of PconM2 
promoter with no HindIII 
site 

CGCGACGTCTCGAGCACCGTCGTTGTTTACATTTTTATGCTTGGCGGTTATGAT 

PconM2NoHindSalR 
PCR synthesis of PconM2 
promoter with no HindIII 
site 

TTAGTCGACCTGTGTGGAATCCATCATAACCGCCAAGCATAAAAATGTAAACAA
C 

PconM8NoHindAatF 
PCR synthesis of PconM12 
promoter with no HindIII 
site 

CGCGACGTCTCGAGCACCGTCGTTGTTTACATTTTTATGCTTGGCGGTTATGGT 

PconM12NoHindSalR 
PCR synthesis of PconM12 
promoter with no HindIII 
site 

TTAGTCGACCTGTGTGGAATCCACCATAACCGCCAAGCATAAAAATGTAAACAA
C 

PconNoHindBamHF 
PCR synthesis of Pcon 
promoter with no HindIII 
site 

CGCGGATCCTCGAGCACCGTCGTTGTTGACATTTTTATGCTTGGCGGTTATAAT 

csrDRBS3NotIF 
PCR amplifies csrD with a 
synthetic RBS (st3) 

TCCTGCGGCCGCTAAGGAGGAAAATGAGATTAACGACGAAATTTTCG 

csrDHindR PCR amplifies csrD GCCAAGCTTTTAAACCGAGTATCTTTGTGAATA 

csrDinF 
For RT-PCR measurement 
of csrD mRNA 

CTGGCGCGTTACCACCGCAGTGAT 

csrDinR 
For RT-PCR measurement 
of csrD mRNA 

CCAATGTGGATCATATCGTCGCGA 

 
Table 2.4 | Oligonucleotides. Oligonucleotides were used (i) to construct the plasmids, (ii) to create PCR products for the deletion 
of CsrA system components from the chromosome or (iii) to perform quantitative RT-PCR measurements of intracellular mRNA 
concentrations. 

 
PconNoHind, PconNoHindM2 and PconNoHindM12 are variants of Pcon/O3 [55] 
without a HindIII site. The PconNoHindM2 promoter is the same as PconNoHind 
except for a substitution mutation at the -10 site that modestly increases transcription. 
The PconNoHindM12 promoter is the same as PconNoHind except for two substitution 
mutations at the -10 and -35 sites that moderately decrease transcription. The PLlacO-1 
and PLtetO-1 promoters and T1 terminators were obtained from the pZ system [54]. 
The st2, st3 and st7 RBS sequences [83] were synthesized. The gfp gene and the T1T2 
terminator sequence were obtained from pTAK102 [4]. The Asp terminator sequence 
was PCR-amplified from pLex (Invitrogen). The sources and sequences for tetR and 
lacIq have been reported [21,22]. csrA, csrB, csrC and csrD genes were PCR amplified 
from E. coli MG1655 chromosomal DNA (Yale E. coli Stock Center, CGSC #7740). The 
mCherry gene was amplified from a plasmid provided by R. Tsien (University of 
California, San Diego, CA) [84]. 
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Fig. 2.11 | Plasmid maps. *Plasmids listed in brackets are similar to the plasmid shown except for the differences described here. 
Relative expression levels from the different ribosome binding sequence (RBS) used: st7 > st3 > st2. p15a and ColE are origins of 
replication. T1 term, T1T2 Term and Asp Term are terminator sequences. (A) pHL600. (B) pHL661. In pHL662 the st7-gfp replaces 
st7-mCherry and st7-mCherry replaces st7-gfp. (C) pHL1318. (D) pHL1335. In pHL1355, the st3 RBS replaces st2 for csrA. In 
pHL1529, PLlacO-1 replaces PconNoHindM12. In pHL1530, st3 replaces st2 and PLlacO-1 replaces PconNoHindM12. (E) pHL1490. 
In pHL1575, PconNoHind replaces PLtetO-1 and PLtetO-1 replaces PLacO-1. (F) pHL1506. In pHL1561, PLtetO-1 replaces 
PLlacO-1 (SalI is removed). In pHL1801, gfp replaces csrA. (G) pHL1559. (H) pHL1756. In pHL1757, a stronger PconM2NoHind 
promoter replaces PconM12NoHind. (I) pHL1853. In pHL1855, st3 replaces st2 for csrA. 
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3.  Crosstalk among Hfq-dependent small RNAs 
 
Having examined in detail how RNA regulators and their associated gene networks can 
accelerate and otherwise control the speed of signal propagation, we now examine how 
these same RNA regulators and networks control crosstalk and manage interference 
among signaling pathways that share common molecules.  
 
As discussed in the introduction, shared components can become a source of 
competition for signaling molecules that require them. Through this competition, 
otherwise distinct signaling pathways can influence one another’s activity. While some 
crosstalk in biological networks can be useful for signal integration and coordination, 
indiscriminate crosstalk degrades signal specificity and effectiveness. In the following 
study, crosstalk and signaling robustness are examined in the context of the Hfq-
dependent small RNA network and a framework is constructed to characterize the 
kinetic constraints on the operation of Hfq.  
 
3.1  ABSTRACT 
 
Bacteria possess networks of small RNAs (sRNAs) that are important for modulating 
gene expression. At the center of many of these sRNA networks is the Hfq protein. 
Hfq’s role is to quickly match cognate sRNAs and target mRNAs from among a large 
number of possible combinations and anneal them to form duplexes. Here we show 
using a kinetic model that Hfq can efficiently and robustly achieve this difficult task by 
minimizing the sequestration of sRNAs and target mRNAs in Hfq complexes. This 
sequestration can be reduced by two non-mutually exclusive kinetic mechanisms. The 
first mechanism involves heterotropic cooperativity (where sRNA and target mRNA 
binding to Hfq is influenced by other RNAs bound to Hfq); this cooperativity can 
selectively decrease singly-bound Hfq complexes and ternary complexes with non-
cognate sRNA-target mRNA pairs while increasing cognate ternary complexes. The 
second mechanism relies on frequent RNA dissociation enabling the rapid cycling of 
sRNAs and target mRNAs among different Hfq complexes; this increases the 
probability the cognate ternary complex forms before the sRNAs and target mRNAs 
degrade. We further demonstrate that the performance of sRNAs in isolation is not 
predictive of their performance within a network. These findings highlight the 
importance of experimentally characterizing duplex formation in physiologically 
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relevant contexts with multiple RNAs competing for Hfq. The model will provide a 
valuable framework for guiding and interpreting these experiments. 
 
3.2  AUTHOR SUMMARY 
 
Bacteria have small RNAs (sRNAs) which are important modulators of gene expression. 
Many of these sRNAs require the Hfq protein to mediate their binding to specific target 
mRNAs which alters the translation and/or degradation of the mRNAs. The Hfq 
protein has a difficult task; it has to correctly pair cognate sRNAs and target mRNAs 
from among a large number of possible combinations and anneal them before the RNAs 
degrade. Furthermore, the process must be robust to changes in the number and types 
of sRNAs and target mRNAs that are transcribed and changes in the Hfq concentration. 
Here we show that Hfq can most successfully achieve its task when sRNAs and target 
mRNAs are not unnecessarily sequestered in Hfq complexes. The cell can accomplish 
this via cooperative binding of sRNAs and target mRNAs to Hfq and/or by rapid RNA 
dissociation from Hfq complexes. These findings reveal the requirements for efficient 
and robust sRNA signaling which are important for understanding the regulation of 
gene expression in diverse cell processes, for devising strategies that inhibit Hfq activity 
during pathogenesis and for the rational construction of synthetic circuits. 
 
3.3  INTRODUCTION 
 
Small RNAs (sRNAs) regulate a wide variety of pathways in prokaryotes [85]. An 
important subset of these small RNAs act in trans with the aid of the Hfq protein to 
decrease (“silencing”) or increase (“activation”) the expression of specific target mRNAs. 
These trans-acting, Hfq-dependent sRNAs, which have important roles in the cellular 
response to stress and the virulence of major pathogens [86-90], are the focus of this 
study. 
 
sRNAs typically function by binding to target mRNAs at or near the site of the 
ribosome binding sequence (RBS) [85]. This results in sRNA-target mRNA duplexes 
which decrease or less commonly increase the translation of mRNAs. The decreased 
mRNA translation can be accompanied by an increase in mRNA degradation. The 
binding between a sRNA and its cognate target mRNA is sequence specific. However, 
this does not mean that each sRNA can only bind to one target mRNA; a sRNA can act 
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on multiple target mRNAs and a target mRNA can have binding sites for more than one 
sRNA. 
 
The Hfq protein, which was originally identified as an essential host factor for the 
replication of the bacteriophage Qβ [91], plays an important role in bringing many 
sRNAs and target mRNAs together and assisting their annealing. Hfq is a small 11 kDa 
protein which forms stable cyclic homo-hexamers [92] that have a “Proximal face” and a 
“Distal face”. The Proximal face binds uridine rich sequences and the distal face binds 
poly(A) tracts and poly(A-R-N) repeats, where R is a purine nucleotide and N is any 
nucleotide [93]. Competition studies indicate substantial overlap in the binding sites for 
sRNAs and target mRNAs on Hfq and they indicate interactions between the RNAs 
bound to these sites [94,95]. Hfq also binds to proteins including RNase E [96], 
polynucleotide phosphorylase (PNPase) [97] and ribosomal subunit S1 [98]. In addition 
to its role in mediating sRNA activity, Hfq also binds DNA [99,100] and regulates the 
degradation of polyadenylated mRNAs [97,101]. 
 
In many sRNA-target mRNA pairs, both members can bind free Hfq. This has been 
demonstrated in co-immunoprecipitation studies [102,103], in vitro Hfq binding assays 
[104,105] and with in vivo competition studies [21]. The affinity of the sRNA and the 
target mRNA for free Hfq in many pairs appears to be comparable [80,101,104] 
(although the RyhB-sodB pair appears to be an exception [105]). Therefore most sRNAs 
have two potential paths to duplex formation; one where the sRNA binds to free Hfq 
followed by target mRNA binding (“sRNA-Hfq branch”) and another where the target 
mRNA binds to free Hfq followed by sRNA binding (“target mRNA-Hfq branch”) (Fig. 
3.1). 
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Fig 3.1 | General reaction scheme for Hfq dependent duplex formation. (A) A kinetic model of Hfq-dependent duplex formation 
showing two paths to duplex formation. The annealing of the sRNA and target mRNA and the release of the duplex from Hfq are 
treated as a single step. (B) The kinetic model as a simplified topology representation. (C) Percentage duplex formation and 
percentage of RNA bound to Hfq at different concentrations of Hfq. The illustration (top) shows mechanistically why insufficient and 
excess Hfq result in decreased duplex formation. At low concentrations of Hfq, the formation of cognate ternary complexes is limited 
by the number of Hfq hexamers. At high concentrations of Hfq, the formation of cognate ternary complexes is limited because the 
probability of a sRNA and its cognate target mRNA binding to the same Hfq hexamer is low. That is, sRNA and target mRNA 
molecules are sequestered from one another on separate Hfq complexes. The lower and upper bounds indicate the minimum and 
maximum Hfq concentrations respectively that result in at least 10% duplex formation. 
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Once the sRNA and its cognate target mRNA are bound to Hfq (forming a cognate 
sRNA-Hfq-target mRNA ternary complex), Hfq can promote duplex formation by 
providing a structure for strand exchange to take place [106,107] or by acting as a 
chaperone that alters the sRNA and target mRNA structures to expose sites necessary 
for annealing [108,109]. Early in vitro evidence suggested that the conformational 
change in the bound RNAs and annealing was slow and required ten minutes or more 
to occur [108]. However, more recently it was observed that a partial duplex can form 
and be released from Hfq with the whole process taking seconds rather than minutes 
[74]. The basis for the discrepancy between the two studies is unclear but the latter is 
consistent with in vivo experiments which have shown target mRNA silencing occurring 
within three minutes of sRNA induction [110]. Once the duplex is formed it can be 
released or remain bound to Hfq while it is degraded or translated (the latter will 
decrease the availability of free Hfq). 
 
Experimental and theoretical studies have typically focused on duplex formation for 
individual sRNA-target mRNA pairs in isolation [47,48]. However, most sRNAs act 
within a network with dozens of different sRNAs and target mRNAs competing for Hfq 
[111]. Furthermore, the network is not static but changes its composition of sRNAs, 
target mRNAs and the amount of Hfq in response to environmental conditions [112-
114]. Because the actions of sRNAs are so interdependent due to their shared need for 
Hfq, these changes in the network’s composition can dramatically alter sRNA activity 
[21]. In this study we sought to address the fundamental question of how a large 
network with many ligands (sRNAs and target mRNAs) competing for a single protein 
(Hfq) can function efficiently and robustly. 
 
In the first part of the study we modeled the kinetics of duplex formation for a single 
cognate sRNA-target mRNA pair. We identified two non-mutually exclusive 
mechanisms that can increase the efficiency of sRNA signaling: 1. heterotropic 
cooperativity for the binding of sRNAs and/or target mRNAs to Hfq (we simply refer 
to this as “cooperativity”); and 2. frequent RNA dissociation. These mechanisms 
increase duplex formation by reducing the sequestration of sRNAs and target mRNAs 
in singly-bound Hfq complexes. In the second part of the study we show the same two 
mechanisms also promote signaling in sRNA networks with many sRNAs and target 
mRNAs competing for Hfq. In this case, cooperativity and/or frequent RNA 
dissociation also decrease the sequestration of sRNAs and target mRNAs in non-
cognate ternary complexes (i.e. where Hfq is bound by a sRNA and a target mRNA that 
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do not form a cognate duplex). These mechanisms make duplex formation more 
efficient as well as more robust to changes in the Hfq concentration and the composition 
of the network. 
 
3.4  RESULTS 
 
3.4.1  A General Model of Hfq Kinetics  
Current evidence indicates that sRNAs and target mRNAs have separate binding sites 
on Hfq as well as shared sites. We simply assumed that sRNAs and target mRNAs have 
separate sites, which provides a conservative estimate of the difficulties faced by Hfq. 
However, the qualitative findings of this study are still applicable when sRNAs and 
target mRNAs compete for shared sites on Hfq (see Discussion). There are two possible 
paths to duplex formation; one where the sRNA binds first to Hfq followed by the 
target mRNA (“sRNA-Hfq branch”) and another where the target mRNA binds first to 
Hfq followed by the sRNA (“target mRNA-Hfq branch”) (Fig. 3.1). The reaction scheme, 
which may be a random order bi uni or compulsory order bi uni enzymatic reaction 
[115], can be topologically represented as a graph with weighted, directed arrows 
indicating the relative magnitude of the rate constant for each reaction (Fig. 3.1B). 
 
The complete reaction scheme for a single sRNA-target mRNA pair has three categories 
of rate constants: 1. association rate constants which describe the binding of sRNAs and 
target mRNAs to free Hfq or an Hfq complex (k1, k2, k3 and k4 with units of 
concentration-1⋅time-1); 2. dissociation rate constants for the unbinding of sRNAs and 
target mRNAs from Hfq complexes (k-1, k-2, k-3 and k-4 with units of time-1); and 3. a 
“duplex” rate constant which is an overarching constant for the steps involved in 
sRNA-target mRNA annealing and the release of the duplex from Hfq (k5 with units of 
time-1). While duplexes can rebind Hfq in vitro [116], in vivo many duplexes are rapidly 
degraded [85] and therefore we do not include duplex rebinding. The fraction of total 
target mRNA converted to a specific cognate duplex at steady state is the measured 
output of the pathway; this output does not depend on whether the sRNA is silencing 
or activating gene expression. 
 
We varied the rate constants to generate reaction schemes with different topologies. 
Unless otherwise stated, we kept the production and degradation of the sRNAs and 
target mRNAs constant and equal (unless otherwise stated) and varied the total Hfq 
concentration by altering its production (a typical plot is shown in Fig. 3.1C). That is, 
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the concentration of Hfq varies relative to the total target mRNA. Therefore when the 
“relative Hfq” = 1 (i.e. 100), it indicates the concentration of Hfq in all forms is equal to 
the total concentration of target mRNA for the cognate pair being measured (which 
includes free target mRNA, target mRNA bound to Hfq and target mRNA in duplexes). 
The minimum and maximum relative Hfq concentrations that permit at least 10% 
duplex formation, were termed the “lower bound” and the “upper bound” respectively. 
The logarithmic range of Hfq concentrations over which at least 10% of target mRNA is 
converted to duplex (i.e. the fold-difference between the upper and lower bounds) is 
termed “Hfq robustness”. Hfq robustness is a useful overall measure of how efficiently 
the system copes with changes in Hfq, sRNA and target mRNA concentrations and with 
competition for Hfq. 
 
At the lower bound, the Hfq concentration is insufficient to process the quantity of 
sRNAs and target mRNAs present (Fig. 3.1C). Typically the lower bound is determined 
by the Hfq recycling rate; that is, the rate at which free Hfq is converted to ternary Hfq 
complex and then to free duplex and free Hfq. At the upper bound, the sRNA and 
target mRNA concentrations are low compared to Hfq. Therefore there is a low 
probability that the sRNA and its cognate target mRNA will bind to the same Hfq 
hexamer to form the ternary complex, and a high probability they will bind to separate 
Hfq hexamers to form singly-bound complexes (sRNA-Hfq and target mRNA-Hfq). The 
upper bound is consequently a measure of the susceptibility of a pathway to sequester 
sRNAs and target mRNAs in singly-bound Hfq complexes. It has been shown in vitro 
that relatively high Hfq concentrations do indeed increase singly-bound Hfq complexes 
and reduce duplex formation [80,104]. 
 
To keep the model as simple as possible, the rate constant β (equal to 1 unit of time-1) for 
degradation and dilution is the same for all species. While this simplification does not 
reflect the relative degradation rates in biological systems (e.g. sRNAs often have longer 
half-lives when bound to Hfq), it does not alter the basic qualitative results. This was 
demonstrated by showing that a 10-fold greater degradation rate constant for the free 
sRNA compared to the sRNA bound to Hfq had minimal effect on the behavior of the 
system with several different kinetic schemes (Fig. 3.14). The reason the free sRNA 
degradation rate has a minor effect at high Hfq concentrations is that most of the sRNA 
is bound to Hfq. At low Hfq concentrations, the free sRNA degradation has minimal 
effect because there is insufficient Hfq to bind all the sRNA. 
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Fig. 3.2 | Independent binding of sRNAs and target mRNAs to Hfq. (A) Reaction scheme with independent binding of sRNAs 
and target mRNAs to free Hfq hexamers and Hfq complexes (k1 = k4 and k2 = k3). In this scheme there is no sRNA or target mRNA 
dissociation. (B) Topological representation of the reaction schemes with low, medium and high values for the y1 and y2 parameters. 
y1 determines the relative affinity of target mRNAs and sRNAs for Hfq [y1 ≡ ((k2⋅k3) /(k1⋅k4))1/2] and it has values of 10-4, 100 and 104 
(unitless) in the simulations. y2 determines the overall magnitude of the association rate constants for the sRNAs and target mRNAs 
[y2 ≡ (k1⋅k2⋅k3⋅k4)1/4] and it has values of 100.5, 102.5 and 104.5 concentration-1⋅time-1 in the simulations. The relative magnitude of the 
kinetic parameters is represented graphically by the weight of the arrows. (C) Percentage duplex formation at different 
concentrations of Hfq. Each panel corresponds to the reaction scheme shown in the previous panel at the same position. The grey 
dash line indicates a 1:1 ratio of [total target mRNA] to [Hfq], where the [total target mRNA] ≡ [T] + [HT] + [HST] + [D] and [T], [HT], 
[HST] and [D] are the concentrations of free target mRNA, target mRNA-Hfq complex, cognate ternary complex and duplex 
respectively. Yellow values indicate the “lower bound” while blue values indicate the “upper bound” as defined in the text. 

3.4.2  Part 1: Duplex Formation for a Single sRNA-Target mRNA Pair 

3.4.2.1  Independent Binding of sRNAs and Target mRNAs to Hfq 
To understand the basic behavior of Hfq mediated duplex formation, we began with a 
highly simplified model with few kinetic degrees of freedom and gradually introduced 
additional parameters. We first examined duplex formation in the absence of RNA 
dissociation (k-1 = k-2 = k-3 = k-4 = 0) and with independent binding (Fig. 3.2A). 
Independent binding means the probability that a sRNA or target mRNA binds to Hfq 
does not depend on whether the Hfq is already bound (i.e. k1 = k4 and k2 = k3). With 
independent binding, a system with a fixed value for duplex annealing and release (k5) 
has only two free parameters. We reparameterized them to yield two new parameters, 
y1 and y2 (Fig. 3.2B, C). y1 determines the relative affinity of sRNAs and target mRNAs 
for Hfq [y1 ≡ ((k2⋅k3)/(k1⋅k4))1/2; unitless]. y2 specifies the overall magnitude of the sRNA 
and target mRNA binding [y2 ≡ (k1⋅k2⋅k3⋅k4)1/4; units of concentration-1·time-1]. 
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We selected low, intermediate and high values for y1 and for y2 resulting in nine 
representative reaction schemes [y1 = 10-4, 100 and 104; y2 = 100.5, 102.5 and 104.5 

concentration-1⋅time-1]. For each reaction scheme, the percentage of the target mRNA 
converted to duplex was measured at varying Hfq concentrations (Fig. 3.2C). Duplex 
formation was shown to require less Hfq when sRNAs and target mRNAs bind more 
rapidly to Hfq (i.e. increasing y2 decreases the lower bound). The lower bound 
decreases, because with all other factors being equal, increasing RNA binding to Hfq 
increases Hfq recycling. The maximum concentration of Hfq at which duplex formation 
occurred (i.e. the upper bound) was invariant to y1 and y2. That is, sRNA and target 
mRNA sequestration in singly-bound Hfq complexes is unaffected by the kinetic 
parameters in a system with independent binding and without RNA dissociation. 
 

 
 



Part 3: Crosstalk among Hfq-dependent small RNAs 

  63 

Fig. 3.3 | Cooperative binding and dissociation reactions can increase the efficiency and robustness of duplex formation. 
(A) Reaction scheme without sRNA and target mRNA dissociation. (B) Topological representation of the cooperative reaction 
schemes with low, medium and high values for y3 and y4. y3 determines whether the association rate constants favor the sRNA-Hfq 
branch or the target mRNA-Hfq branch [y3 ≡ ((k2⋅k4)/(k1⋅k3))1/2] and it has values of 10-4, 100 and 104 (unitless) in the simulations. y4 
biases the system from negative to positive cooperative association [y4 ≡ ((k3⋅k4)/(k1⋅k2))1/2] and it has values of 10-4, 100 and 104 
(unitless) in the simulations. The relative magnitude of the kinetic parameters is represented graphically by the weight of the arrows. 
(C) As described for Fig. 3.2C. (D) Reaction scheme for duplex formation with association and dissociation reactions that are 
independent. (E) Topological representation of the reaction schemes with low, medium and high values for the k5 and y5 parameters. 
k5 is the overall rate of duplex formation and release with values of 100, 103 and 106 time-1 in the simulations. y5 determines the 
overall magnitude of the dissociation rate constants for the sRNA and target mRNA [y5 ≡ (k-1⋅k-2⋅k-3⋅k-4)1/4] and it has values of 100, 
104 and 108 time-1 in the simulations. (F) As described for Fig. 3.2C. 

 
3.4.2.2  Cooperative Binding and Dissociation Reactions can Increase the Efficiency  
and Robustness of Duplex Formation 
Heterotropic cooperativity, which we simplify to “cooperativity”, exists when the 
binding and unbinding of a sRNA or target mRNA to a given Hfq hexamer is not 
independent but depends upon whether that Hfq hexamer is already bound to an RNA. 
Heterotropic cooperativity could be due to an allosteric change in the Hfq hexamer or a 
direct or indirect interaction between the bound sRNA and target mRNA. “Positive 
cooperativity” occurs when the affinity of a sRNA or target mRNA is greater for the 
singly-bound Hfq complex than for the free Hfq and “negative cooperativity” occurs 
when the reverse is true. When positive and negative cooperativity arise because the 
binding of a sRNA and target mRNA to the Hfq is altered by the presence of a bound 
RNA then we use the more specific terms “positive cooperative association” and 
“negative cooperative association” respectively. Whereas when positive and negative 
cooperativity occur because the unbinding of a sRNA and a target mRNA from Hfq is 
altered by the presence of a bound RNA then we use the terms “positive cooperative 
dissociation” and “negative cooperative dissociation” respectively. 
 
We relaxed our assumption of independent binding and created two parameters, y3 and 
y4, to comprehensively explore the effect of positive and negative cooperative 
association while keeping fixed the relative affinity of sRNAs and target mRNAs for 
Hfq (y1) and the total magnitude of the association rate constants (y2) (Fig. 3.3A-C). y3 
tunes the relative cooperative association of the sRNA compared to that of the target 
mRNA which alters the bias for the sRNA-Hfq branch and the target mRNA-Hfq 
branch [y3 ≡ (k2⋅k4)/(k1⋅k3))1/2; unitless] (Fig. 3.3B). When y3 < 1, cooperative association 
is greater for the target mRNA than the sRNA (i.e. k3/k2 > k4/k1) resulting in a bias for 
the sRNA-Hfq branch. Alternatively when y3 > 1, cooperative association is greater for 
the sRNA than for the target mRNA (i.e. k4/k1 > k3/k2) resulting in a bias for the target 
mRNA-Hfq branch. When y3 = 1, sRNA and target mRNA cooperative association are 
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equal and therefore duplex formation occurs equally via both branches. y4 determines 
whether the RNA is more or less likely to bind to Hfq after its partner has bound (y4 > 1 
and y4 < 1 respectively) [y4 ≡ ((k3⋅k4)/(k1⋅k2))1/2; unitless]. When an RNA is more likely 
to bind to Hfq after its partner has bound we term this positive cooperative association 
(k1 < k4 and/or k2 < k3). When an RNA is less likely to bind after its partner has bound 
we term this negative cooperative association (k1 > k4 and/or k2 > k3). 
 
We selected low, intermediate and high values for y3 and y4, resulting in nine 
representative reaction schemes [y3 = 10-4, 100 and 104; y4 = 10-4, 100 and 104] (Fig. 3.3B, 
C). Our analysis shows that a bias for one RNA binding order (i.e. sRNA-Hfq branch or 
target mRNA-Hfq branch) diminishes sRNA and target mRNA sequestration in singly-
bound Hfq complexes which increases the upper bound (compare left or right columns 
with center column in Fig. 3.3C). Positive cooperative association (y4 > 1) also alleviates 
the sequestration of sRNAs and target mRNAs in singly-bound complexes at high Hfq 
concentrations, while negative cooperative association (y4 < 1) exacerbates it (compare 
upper bound in the top and bottom rows in Fig. 3.3C). In summary, rate constants that 
result in a compulsory order of RNA binding (i.e. a strong bias for the sRNA-Hfq 
branch or the target mRNA-Hfq branch) and/or positive cooperative association 
increase the maximum Hfq concentration at which duplex formation can occur thereby 
increasing Hfq robustness.  
 
3.4.2.3 Frequent RNA Dissociation Increases the Efficiency and Robustness of  
Duplex Formation 
We next incorporated RNA dissociation, governed by the rate constants k-1, k-2, k-3, k-4, 
into a model with independent RNA binding and balanced affinity of sRNAs and target 
mRNAs for Hfq (Fig. 3.3D). In the context of the reverse reactions, these criteria imply 
that k1 = k2 = k3 = k4 and k-1 = k-2 = k-3 = k-4. The parameter y5 determines the overall 
probability of non-duplex RNA dissociating from Hfq [y5 ≡ (k-1⋅k-2⋅k-3⋅k-4)1/4, units of 
time-1]. Because the dissociation of non-duplex RNA from Hfq constitutes backtracking 
along the paths to duplex formation, we vary y5 in conjunction with k5 (the rate 
constant for duplex annealing and release) which opposes its action. To systematically 
explore the impact of these competing effects, we selected low, intermediate and high 
values for y5 and for k5, resulting in nine reaction schemes [y5 = 100, 104 and 108 time-1; 
k5 = 100, 103 and 106 time-1] (Fig. 3.3E, F). 
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Increasing duplex annealing and release (k5) increases Hfq recycling and reduces RNA 
sequestration in singly-bound complexes. This decreases the minimum Hfq 
concentration and increases the maximum Hfq concentration for duplex formation 
leading to increased Hfq robustness (Fig. 3.3E, F). Moderately increasing RNA 
dissociation such that y5 is greater than the RNA degradation rate can diminish the 
sequestration of sRNA and target mRNA molecules in singly-bound Hfq complexes 
resulting in an increased upper bound (Fig. 3.3F). The increased dissociation of sRNAs 
and target mRNAs from Hfq complexes enables them to bind multiple Hfq hexamers 
before they degrade which increases the likelihood that they will encounter their 
partner on the same Hfq complex (i.e. forming a cognate ternary complex). However, 
the increased RNA dissociation also diminishes the overall RNA affinity for Hfq and 
therefore higher Hfq concentrations are needed for duplex formation (increased lower 
bound in Fig. 3.3F). If RNA dissociation is too great then duplex formation is prevented 
(upper left panel, Fig. 3.3F). 
 

 
 
Fig. 3.4 | Cooperative binding and dissociation synergistically promote duplex formation. The combination of cooperative 
association plus independent dissociation reactions (A) or cooperative association plus cooperative dissociation (B). (A) Duplex 
formation was simulated with or without independent, RNA dissociation (k-1 = k-2 = k-3 = k-4 = y5 = 104 or 0 time-1; lower and upper 
panels respectively) and with or without cooperative association (y4 = 104 or 100 unitless, right and left panels respectively). The four 
plots on the right of this panel are as described in Fig. 3.2C. (B) Duplex formation was simulated with or without cooperative 
dissociation [y6 ≡ ((k-1⋅k-2)/(k-3⋅k-4))1/2 and it has values of 104 or 100; lower and upper panels respectively] and with or without 
cooperative association [y4 = 104 or 100 unitless; right and left panels respectively]. The four plots on the right of this panel are as 
described in Fig. 3.2C. 

 
3.4.2.4  Cooperativity Combined with Frequent RNA Dissociation can Result in  
Greater Robustness than Either Mechanism Alone (Synergy) 
We next demonstrated that cooperativity and RNA dissociation, which promote duplex 
formation via two different mechanisms, can have synergistic effects. We first showed 
that positive cooperative association plus independent unbinding of sRNAs and target 



Part 3: Crosstalk among Hfq-dependent small RNAs 

66 

mRNAs from Hfq complexes reduces singly-bound Hfq complexes more than either 
mechanism alone (upper bound increases; Fig. 3.4A). We then examined the effects of 
positive cooperativity in the dissociation reactions (i.e. positive cooperative dissociation 
as defined earlier) which acts to relatively increase dissociation from singly-bound Hfq 
complexes compared with dissociation from Hfq ternary complexes (k-4 < k-1 and/or k-3 
< k-2) also promotes Hfq robustness (upper bound increases, Fig. 3.4B). Cooperativity in 
the dissociation reactions is quantified by the unitless metric y6 ≡ ((k-1⋅k-2)/(k-3⋅k-4))1/2; y6 
> 1 indicates positive cooperativity while y6 < 1 indicates negative cooperativity. The 
combination of positive cooperative association plus positive cooperative dissociation 
further reduces sequestration in singly-bound Hfq complexes (Fig. 3.4B). 

Fig. 3.5 | General reaction scheme for duplex formation in a network with multiple sRNAs and target mRNAs. In a network 
with multiple sRNAs and target mRNAs many types of Hfq ternary complexes are possible. If these ternary complexes cannot form 
duplexes they are termed non-cognate ternary complexes. In other words, k5 ~ 0 for a non-cognate ternary complex and k5 >> 0 for 
a cognate ternary complex. The k5 values that specify whether a ternary complex is cognate or non-cognate can be represented in a 
n × m matrix for n sRNAs and m target mRNAs with the darkness of the shading representing the magnitude of k5. Three examples 
of this k5 matrix are shown: 1. a “mock” native sRNA network (upper right panel); 2. a simplified system where each sRNA and 
target mRNA has only one specific partner (middle right panel); and 3. a simplified system where each sRNA and target mRNA can 
indiscriminately form duplexes with any other target mRNA or sRNA respectively (lower, right panel). For subsequent plots, we 
stress that “relative Hfq” = 1 (i.e. 100) indicates the concentration of Hfq in all forms is equal to the total concentration of target 
mRNA for the cognate pair being measured (as opposed to the total concentration of all the target mRNAs in the network). 
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3.4.3  Part 2: Duplex formation in the sRNA network 
 
3.4.3.1  General Reaction Scheme for Duplex Formation in a Network with Multiple  
sRNAs and Target mRNAs 
In a network, we need to consider that sRNAs and target mRNAs can bind in multiple 
combinations to Hfq resulting in many types of ternary complexes [85] (Fig. 3.5). 
Therefore we categorized ternary complexes as cognate or non-cognate according to 
whether the bound sRNAs and target mRNAs can form a duplex or not. It is possible 
for any given sRNA or target mRNA to have several cognate RNA partners. By 
definition, if a ternary complex is non-cognate then k5 ~ 0 and if a ternary complex is 
cognate then k5 >> 0.  
 
In any real biological system k5 will have a range of values for every possible ternary 
complex that can form and therefore the distinction between cognate and non-cognate 
may not be clear. That is, in a real network there will be many sRNAs and target 
mRNAs that can form duplexes with more that one type of target RNA or sRNA 
respectively (as stated above). Furthermore, each sRNA or target mRNA may form 
these different types of duplexes at different rates. The k5 value, which determines the 
rate of duplex annealing and release, can be represented in a “k5 matrix” for each 
possible sRNA-target mRNA pairing on Hfq (a “mock” example of a k5 matrix for a 
“real” system is shown in the upper right panel, Fig. 3.5; darker shading indicates 
higher magnitudes of k5 with white representing zero). 
 
We reduced the complexity of the system by adding the constraint that every sRNA and 
target mRNA behaves identically and the number of sRNAs (n) is equal to the number 
of target mRNAs (m) (i.e. n = m) unless otherwise stated. We examined two extreme 
cases of this simplified system. In the first case, each sRNA and target mRNA has only 
one specific partner. That is, sRNAi forms a duplex with mRNAj if and only if i = j (by 
definition this means that k5(i,j) >> 0 if and only if i = j in the k5 matrix) (middle right 
panel, Fig. 3.5). In the second case, each sRNA and target mRNA can indiscriminately 
form duplexes with any other target mRNA or sRNA respectively. That is, sRNAi forms 
duplex with mRNAj for all possible pairs i and j (by definition this means k5(i,j) >> 0, for 
all values of i and j in the k5 matrix) (lower right panel, Fig. 3.5). We examined the first 
case where each sRNA and target mRNA has exactly one cognate partner in Figs. 3.6-
3.10 and Fig. 3.12 and the second case where sRNAs and target mRNAs can form 
duplexes in all possible combinations in Fig. 3.10. 
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Fig. 3.6 | Non-cognate ternary complexes decrease the efficiency and robustness of duplex formation. (A) Schematic 
showing the possible Hfq complexes formed by three sRNAs and three target mRNAs with single partner pairing. The number of 
possible types of Hfq complexes that can form with n sRNA-target mRNA pairs if both the sRNA and the target mRNA in each pair 
can bind to Hfq hexamers and there is only one cognate partner for each sRNA and target mRNA. (B) Schematic showing the 
kinetics of duplex formation for a single cognate sRNA-target mRNA pair in the presence of multiple sRNAs and target mRNAs 
competing for Hfq. Non-cognate ternary complexes form but by definition do not result in duplexes. The rate constants k*3 and k*4 
specify the association of the target mRNA and sRNA respectively to a sRNA-Hfq and target mRNA-Hfq complex resulting in the 
formation of a non-cognate ternary complex. The rate constants k*-3 and k*-4 specify the dissociation of the target mRNA and sRNA 
respectively from the non-cognate ternary complex. (C) The percentage allocation of Hfq and percentage duplex formed for a sRNA-
target mRNA pair in isolation (left panels) and in a network with five sRNA-target mRNA pairs competing equally for Hfq (right 
panels). In these simulations, all sRNA-target mRNA pairs have independent RNA binding and unbinding. Yellow and blue values 
indicate the lower and upper bounds respectively. 

 
3.4.3.2  Non-cognate Ternary Complexes Decrease the Efficiency and Robustness of  
Duplex Formation 
The effect of non-cognate ternary complexes on duplex formation was simulated in a 
system with n sRNA-target mRNA pairs, where each sRNA and target mRNA has only 
one partner (i.e. middle right panel of Fig. 3.5). In this system there are potentially n2-n 
different types of non-cognate ternary complexes that can form (Fig. 3.6A). Therefore 
with five or more sRNA-target mRNA pairs there are more possible types of non-
cognate ternary complexes than singly–bound Hfq complexes (2n) and cognate ternary 
complexes (n) combined. We demonstrated that when sRNAs and target mRNAs bind 
independently and with equal affinity for Hfq (Fig. 3.6B), duplex formation can be so 
impaired in this system by the formation of non-cognate ternary complexes that there is 
no Hfq concentration at which duplexes form efficiently (lower right, Fig. 3.6C). 
Therefore in a network where non-cognate ternary complexes can form, there need to 
be mechanisms that allow duplexes to form efficiently. 
 
3.4.3.3  Decreasing Non-cognate Ternary Complexes by Cooperativity Increases the   
Efficiency and Robustness of Duplex Formation 
We demonstrate that cooperativity is a mechanism that can increase the proportion of 
cognate ternary complexes and decrease the proportion of non-cognate ternary 
complexes. Cooperativity can achieve this by “cognate selection” and “non-cognate 
exclusion” (Fig. 3.7A). Cognate selection requires a stabilizing interaction between 
cognate sRNA-target mRNA pairs in the ternary complex while non-cognate exclusion 
requires a destabilizing interaction between non-cognate sRNAs and target mRNAs in 
the ternary complex. 
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Fig. 3.7 | Decreasing non-cognate ternary complexes by cooperativity increases the efficiency and robustness of duplex 
formation. (A) Simplified topology representations showing the reaction schemes with or without cognate selection and with or 
without non-cognate exclusion. Each RNA can form duplexes with only one specific partner. Cognate selection occurs when the rate 
constants increase the formation and/or the stability of the cognate ternary complex such that the unitless ratio y7 < 1 (right panels). 
Non-cognate exclusion when rate constants decrease the formation and/or the stability of the non-cognate ternary complex such 
that the unitless ratio y8 > 1 (lower panels). The color and style of the border surrounding each topology indicates the properties of 
the reaction scheme. Dash blue is independent binding (y7 = 1; y8 = 1); solid blue is non-cognate exclusion (y7 = 1; y8 = 101); dash 
red is cognate selection (y7 = 10-1; y8 = 1); solid red is cognate selection plus non-cognate exclusion (y7 = 10-1; y8 = 101). (B) 
Percentage duplex formed in sRNA networks with n identical sRNA-target mRNA pairs having the reaction scheme shown in the 
corresponding panel in (A). The horizontal line indicates 10% duplex formation which defines the upper and lower bounds as 
previously described. (C) The lower bound, upper bound, Hfq robustness and maximum percentage duplex for each kinetic scenario 
described in (A). The color and style of each curve indicates the corresponding topology shown in (A). 

 
Cognate selection can occur when Hfq-bound sRNAs or target mRNAs assist the 
binding of their cognate partner (i.e. increasing the RNA binding rate constants k3 and 
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k4) or when sRNA-target mRNA pairs in cognate ternary complexes stabilize their 
partners binding (i.e. reducing the RNA dissociation rate constants k-3 and k-4) (Figs. 
3.6B, 3.7A). We created a parameter, y7, which measures the affinity of sRNAs and 
target mRNAs for cognate ternary complexes relative to singly-bound complexes [y7 ≡ 
((k1·k2·k-3·k-4)/(k-1·k-2·k3·k4))1/4 which is unitless; y7 < 1 for cognate selection]. 
 
Non-cognate exclusion can occur when Hfq-bound sRNAs or target mRNAs occlude 
the binding sites for non-cognate partners (i.e. decreasing the binding rate constants k*3 
and k*4) or when sRNAs and target mRNAs in non-cognate ternary complexes 
destabilize one another’s binding (i.e. increasing the dissociation rate constants k*-3 and 
k*-4) (Figs. 3.6B, 3.7A). We created a parameter, y8, to specify the affinity of sRNAs and 
target mRNAs for the non-cognate ternary complexes relative to singly-bound 
complexes [y8 ≡ ((k1·k2·k*-3·k*-4)/(k-1·k-2·k*3·k*4))1/4 which is unitless; y8 > 1 for non-
cognate exclusion].  
 
In the absence of any cooperativity (i.e. with independent RNA binding and unbinding), 
increasing the number of sRNA-target mRNA pairs in the network reduces the 
maximum percentage duplex achievable and increases the minimum Hfq concentration 
required for 10% duplex formation (upper left panel in Fig. 3.7B, C). The same network 
with cognate selection or non-cognate exclusion has a greater maximum percentage 
duplex formation and a lower minimum Hfq concentration for 10% duplex formation 
(Fig. 3.7B, C). Cognate selection combined with non-cognate exclusion reduces Hfq 
sequestration and improves duplex formation more than either mechanism separately 
(Fig. 3.7B, C). These results show that reducing the sequestration of sRNAs, target 
mRNAs and Hfq in non-cognate ternary complexes by these forms of cooperativity 
enables more pairs to signal in parallel over a wider range of Hfq concentrations. 
 
3.4.3.4  Increasing RNA Dissociation Increases the Efficiency and Robustness of  
Duplex Formation in Networks 
In this section, rapid RNA dissociation is shown to be an important mechanism for 
decreasing sequestration in non-cognate ternary complexes (Fig. 3.8). The dissociation 
rate constants determine how stably sRNAs and target mRNAs are bound in non-
cognate ternary complexes (and also in cognate ternary complexes). High dissociation 
kinetics prevent sRNAs and target mRNAs being sequestered in singly-bound Hfq 
complexes as well as ternary complexes, which allows them to bind Hfq multiple times 
before they degrade. As a result, there is an increased probability that the sRNAs and 
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target mRNAs will form cognate ternary complexes and this will lead to increased 
cognate duplex production [if the total magnitude of the association rate constants (y2) 
and duplex annealing and release (k5) are sufficiently high]. 
 

 
 
Fig. 3.8 | Increasing RNA dissociation increases the efficiency and robustness of duplex formation in networks. (A) 
Simplified topology representations showing the reaction schemes with and without increased RNA dissociation and with and 
without increased duplex annealing. Each RNA can form duplexes with only one specific partner. The parameter for duplex 
annealing and release (k5) has values of 103 and 106 time-1 for these simulations (upper and lower panels respectively). RNA 
dissociation from singly-bound Hfq complexes (quantified by y9) is non-cooperative and is equal for the sRNA and mRNA within 
these topologies (i.e. k-1 = k-2 = k-3 = k-4 = k*-3 = k*-4 = y9 = 100 and 104 time-1; left and right panels respectively). The color and style 
of the border surrounding each topology indicates the properties of the reaction scheme. Dash green serves as a basis for 
comparison and is identical to dash blue from Fig. 3.7 (k5 = 103; y9 = 100); solid green indicates increased duplex annealing and 
release (k5 = 106; y9 = 100); dash yellow indicates increased RNA dissociation (k5 = 103; y9 = 104); and solid yellow indicates both 
increased RNA dissociation and increased duplex annealing and release (k5 = 106; y9 = 104). (B) Percentage duplex formed in sRNA 
networks with n identical sRNA-target mRNA pairs with the reaction scheme shown in the corresponding panel in (A). The horizontal 
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line indicates 10% duplex formation which defines the upper and lower bounds as previously described. (C) The lower bound, upper 
bound, Hfq robustness and maximum percentage duplex for each of the four kinetic scenarios described in (A). The color and style 
of each curve indicates the corresponding topology shown in (A). 

 
We created a parameter, y9, which measures the total magnitude of RNA dissociation 
from Hfq complexes [y9 ≡ (k-1⋅k-2⋅k-3⋅k*-3⋅k-4⋅k*-4)1/6, units of time-1] (Note: k*-3 and k*-4 
are defined above). We found that increasing RNA dissociation (y9) did indeed decrease 
the minimum amount of Hfq required for 10% duplex formation (decreased lower 
bound in Fig. 3.8B, C). As before, the impact of duplex annealing and release (k5) was 
examined in combination with RNA dissociation (y9) as these reactions compete for 
cognate ternary complexes. We found that increasing duplex annealing and release 
together with increased RNA dissociation further decreased the amount of Hfq 
required for duplex formation. However, increasing duplex annealing and release (k5) 
in the absence of sufficient RNA dissociation had limited effect (Fig. 3.8B, C) because 
the prevalence of the cognate ternary complex is small. 
 
3.4.3.5  Cognate sRNA-Target mRNA Pairs with Distinct Dissociation Kinetics  
Perform Differently in Isolation than in Networks 
We next examined networks with a mix of “stable” cognate pairs that stably bind Hfq 
due to slow RNA dissociation or “unstable” cognate pairs that unstably bind Hfq due to 
rapid RNA dissociation (Fig. 3.9A). These simulations showed that duplex formation 
for stable pairs is sensitive to the number of other stable pairs in the network but 
relatively insensitive to the number of unstable pairs in the network (left panels, Fig. 
3.9B, C). In contrast, duplex formation for unstable pairs is relatively insensitive to both 
the number of stable and unstable pairs in the network (right panels, Fig. 3.9B, C). 
 
Together the results reveal that in terms of duplex formation, a network is more scalable 
if it is primarily composed of unstable cognate pairs. The sRNAs and target mRNAs in 
unstable pairs permit scalability because they do not get sequestered in non-cognate 
ternary complexes due to rapid RNA dissociation. Whereas cognate pairs that form 
stable Hfq complexes and perform well in isolation, may perform relatively poorly in a 
network. This result shows that an assessment of the properties of cognate pairs needs 
to take into account the other sRNAs and target mRNAs that are acting at the same 
time; this has important implications for future studies as we discuss below. 
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Fig. 3.9 | Cognate sRNA-target mRNA pairs with distinct dissociation kinetics perform differently in isolation and in 
networks. (A) Topologies for cognate pairs which form stable Hfq complexes due to low RNA dissociation rate constants or 
unstable Hfq complexes due to high RNA dissociation rate constants. (B) Maximum percentage duplex production in networks with 
different numbers of cognate sRNA-target mRNA pairs that form unstable (horizontal axis) and stable Hfq (vertical axis) complexes. 
The left and right panels show the maximum duplex formation in cognate pairs that form stable and unstable complexes respectively. 
The vertical boxed regions (solid green and orange) and the horizontal boxed regions (dash green and orange) indicate the data 
shown in (C). Blue and red arrowheads indicate stable and unstable cognate pairs acting in isolation. (C) Duplex formation for a 
single stable pair (left) and a single unstable pair (right) in a network with an increasing number of unstable pairs (dot line) or stable 
pairs (solid line). 

 
3.4.3.6  Indiscriminate Duplex Formation can Increase Hfq Robustness at the Cost of  
Decreased Maximum Duplex Yield  
Until this point, we have only simulated networks where sRNAs and target mRNAs 
have one cognate partner. Here, we directly compare a network where sRNAs and 
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target mRNAs have one cognate partner (upper panels, Fig. 3.10) to a network where all 
ternary complexes can form duplexes (lower panels, Fig. 3.10). In other words, in the 
latter network all sRNAs and target mRNAs can form a duplex with any other RNA (i.e. 
k5(i,j) > 0, for all values of i and j); this represents ubiquitous cross-talk or non-specific 
interactions. Of course in a wild-type network not all sRNAs and target mRNAs will 
indiscriminately form duplexes with each other. However, this scenario will most 
clearly shed light on how the formation of multiple types of duplexes by each type of 
sRNA and target mRNA, which does occur to some extent in wild-type sRNA networks, 
affects the efficiency and robustness of duplex formation. 

 
 
Fig. 3.10 | Indiscriminate duplex formation can increase Hfq robustness at the cost of maximum duplex yield. Percentage 
duplex formed with specific or indiscriminant duplex formation (upper and lower panels) and slow or fast RNA dissociation (left and 
right panels). For specific duplex formation, each sRNA and target mRNA has only one cognate partner (i.e. k5(i,j) = 0 time-1 for i ≠ j 
and k5(i,j) = 103 time-1 for i = j) (illustrated in the upper left panel). We define indiscriminate duplex formation as when all sRNAs and 
target mRNAs can form duplexes with any target mRNA and sRNA respectively (i.e. k5(i,j) = 103 time-1 for all values of i and j) 
(illustrated in the lower left panel). The rate constants for RNA dissociation (k-1 = k-2 = k-3 = k-4 = k*-3 = k*-4 = y9) were equal to 100 or 
104 time-1 for the slow and fast categories respectively. n is the number of types of pairs sRNAs and target mRNAs in the network. 

 
We found that at low rates of RNA dissociation, the indiscriminate formation of 
duplexes prevents Hfq sequestration because there are no non-cognate ternary 
complexes and therefore duplexes are released from all ternary complexes (upper and 
lower left panels, Fig. 3.10). This increases Hfq recycling which decreases the lower 
bound resulting in increased Hfq robustness. However, the increased Hfq robustness 
comes at the cost of a large reduction in the maximum yield for any given duplex. The 
amount of duplex decreases because sRNAs and target mRNAs are being incorporated 
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into a wider variety of duplexes and therefore there is less cognate sRNA and target 
mRNA for any particular duplex. It should be noted that indiscriminate sRNA-target 
mRNA pairing has little impact on Hfq robustness when RNA dissociation from Hfq 
complexes is high. This is because under these conditions Hfq recycling is already high 
(upper and lower right panels, Fig. 3.10) and therefore the sequestration of Hfq and 
RNAs in non-cognate ternary complexes is low. 
 
3.4.3.7  Imbalances in sRNA and Target mRNA Production can Globally Alter  
Duplex Formation 
In the previous simulations, the production and degradation rates were equal for both 
members of each cognate sRNA-target mRNA pair. We now investigate how unequal 
production rates for sRNAs and target mRNAs impacts duplex formation in different 
scenarios (Figs. 3.11-3.13).   
 

 
 
Fig. 3.11 | Sequestration of Hfq by imbalanced RNA expression is minimized by a compulsory RNA binding order. (A) The 
relative concentration of sRNA to target mRNA within a cognate sRNA-target mRNA pair is varied from 5:1 to 1:5 while the 
combined concentration of sRNA and target mRNA is kept constant. sRNA/target mRNA ratios of 5:1, 1:1 and 1:5 are indicated by a 
red asterisk, black triangle and blue circle respectively. (B) Percentage duplex versus percentage Hfq sequestered for cognate 
sRNA-target mRNA pairs with imbalanced ratios. The shape of the curve depends on whether the kinetics of the sRNA-target 
mRNA pair is biased towards the sRNA-Hfq branch, the target mRNA-Hfq branch or neither. The bias was altered by changing the 
values for y3 while keeping y1, y2 and y4 constant (y3 = 10-8, 108 and 100 in the left, middle and right panels respectively). 

 
We first show that for a single cognate sRNA-target mRNA pair there will be less Hfq 
sequestration if the member of the pair that is in excess does not efficiently bind free 
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Hfq (Fig. 3.11). If the concentration of the target mRNA exceeds its sRNA partner (blue 
circles in Fig. 3.11) then sequestration will be lower if only the sRNA binds free Hfq (i.e. 
a sRNA-Hfq branch bias).  Conversely, if the concentration of sRNA exceeds its target 
mRNA partner (red asterisks in Fig. 3.11), sequestration will be less if only the target 
mRNA binds free Hfq (i.e. a target mRNA-Hfq branch bias). 
 
We next examined a simple network composed of two cognate sRNA-target mRNA 
pairs (sRNA1-target mRNA1 and sRNA2-target mRNA2) where each RNA can only form 
duplexes with one partner. The production of one sRNA (sRNA1) was varied and the 
production of the other RNAs was kept constant and equal (i.e. the production of 
sRNA1 ≥ production of sRNA2, target mRNA1 and target mRNA2) (Fig. 3.12A). All 
sRNAs and target mRNAs had the same degradation rate, independent binding to Hfq 
and identical RNA dissociation kinetics. In this scenario, increasing sRNA1 production 
increased Hfq robustness for the sRNA1-target mRNA1 pair because the additional 
sRNA drives the concentration of the sRNA1-Hfq complex higher which increases the 
formation of the sRNA1-Hfq-target mRNA1 ternary complex and duplex1 (Fig. 3.12B). 
However, the excess sRNA1-Hfq also leads to increased formation of non-cognate 
ternary complexes which diminishes duplex formation and robustness for the other 
sRNA-target mRNA pair (duplex2 in Fig. 3.12B). That is, imbalances in sRNA-target 
mRNA concentrations can increase Hfq robustness for one pair at the cost of reducing 
duplex formation and Hfq robustness for other pairs.  
 
We then investigated a common scenario where most target mRNAs are transcribed 
without their partners and a single sRNA is activated in response to a specific stressor 
[117,118]. In this case, a single cognate sRNA-target mRNA pair with balanced 
production needs to signal in a pool of unpartnered target mRNAs (Fig. 3.13). The large 
pool of unpartnered target mRNAs (100-fold the concentration of the cognate target 
mRNA in this simulation) increases the formation of non-cognate ternary complexes 
and therefore decreases Hfq recycling. The decreased Hfq recycling results in an 
increased upper bound and decreased duplex formation (compare right and left panels, 
Fig. 3.13). 
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Fig. 3.12 | Imbalances in sRNA and target mRNA production can globally alter duplex formation. (A) A network with two 
cognate sRNA-target mRNA pairs where each sRNA and target mRNA can only bind one partner. Initially the concentrations of 
sRNA1, sRNA2, target mRNA1 and target mRNA2 are equal. Additional sRNA1 is then added to the system by increasing the 
production of sRNA1. (B) Hfq robustness and the maximum percentage duplex for the sRNA1-target mRNA1 pair (green) and the 
sRNA2-target mRNA2 pair (purple) as a function of the total concentration of sRNA1.The total sRNA1 concentration is measured 
relative to target mRNA1.  
 

As with the other scenarios described above, rapid RNA dissociation and cooperativity 
(only non-cognate exclusion is shown) minimize non-cognate ternary complexes 
resulting in increased Hfq robustness and duplex formation (upper panels, Fig. 3.13). 
Hfq robustness is also improved by increasing the affinity of the sRNA for Hfq (middle 
panels, Fig. 3.13) because this increases the probability that the limited numbers of 
sRNA that are transcribed in response to a specific stressor are bound to Hfq. Therefore 
when the cognate target mRNA binds to Hfq there is a higher probability that the 
cognate ternary complex will form. Because there is a large pool of target mRNAs, 
increasing the affinity of the target mRNAs (cognate and unpartnered) for Hfq reduces 
the fraction of target mRNAs that have the chance to bind Hfq in a given period. This 
lowers the probability that the cognate target mRNA will be bound to one of the limited 
number of Hfq hexamers and diminishes the robustness of the cognate pair (lower 
panels, Fig. 3.13). Of course, selectively increasing only the affinity of the cognate target 
mRNA for Hfq would increase Hfq robustness and duplex formation for the cognate 
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pair, but this would only work if the same sRNA was always induced in response to 
stress; this is clearly not a realistic scenario.  
 

 
 
Fig. 3.13 | Duplex formation and Hfq robustness in the presence of excess, unpartnered target mRNAs. Duplex formation for 
a cognate sRNA-target mRNA pair in the absence (left panels) and presence (right panels) of competing non-cognate mRNAs. The 
sRNA only forms duplexes with its cognate target mRNA. Each plot shows a control topology with moderate RNA dissociation and 
no cooperativity (solid line), the control topology with increased RNA dissociation for all reaction steps (dash line) and the control 
topology with non-cognate exclusion which was created by selectively increasing RNA dissociation from non-cognate duplexes (dot 
line). The affinity of the cognate sRNA and target mRNA for Hfq was varied by increasing and decreasing two groups of rate 
constants (k1, k4, k*4 and k2, k3 and k*3) so that the ratio ((k2·k3·k*3)/(k1·k4·k*4))1/3 had values of  100, 10-2 and 102 (equal affinity, high 
sRNA affinity and high target mRNA affinity respectively). In these simulations, total RNA dissociation which was measured by y9 
had values of 100, 104 and 101 (top, middle and bottom panels respectively). Non-cognate exclusion which was measured by y8 had 
values of 100, 100 and 101 (top, middle and bottom panels respectively). The vertical black line indicates where the Hfq 
concentration equals the total target mRNA concentration in the cognate pair. The vertical yellow line indicates where the Hfq 
concentration equals the concentration of all competing, non-cognate mRNAs. 
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In summary, imbalances in sRNA and target mRNA production alter Hfq robustness 
and maximum duplex formation and some of these effects are only apparent in the 
context of a network. We demonstrated that an excess of a particular sRNA can increase 
the efficiency of forming its duplexes but this occurs at the cost of decreased duplex 
formation and Hfq robustness for other sRNAs. Strategies that reduce non-cognate 
ternary complex formation such as bias for the sRNA-Hfq or target mRNA-Hfq branch, 
cooperativity, rapid RNA dissociation, and differences in the affinity of sRNAs and 
target mRNAs for Hfq can help compensate for imbalanced and unpartnered RNAs. 
 
3.5  DISCUSSION 
 
In this study we investigated a fundamental question; how is Hfq able to efficiently and 
robustly mediate duplex formation in the internal environment of the cell with many 
sRNAs and target mRNAs competing for Hfq? The difficulty of this task is exacerbated 
by the fact that the Hfq concentration varies with environmental cues [112-114] as does 
the number, types and concentrations of the sRNAs and target mRNAs [118-120]. To 
address this question we modeled the kinetics of the interactions between Hfq, sRNAs 
and target mRNAs which are the foundation of sRNA networks. 
 
The model used in this study is very general and the basic qualitative findings are likely 
to apply to other realistic binding scenarios. For example, if sRNAs and target mRNAs 
compete for the same sites on Hfq rather than having separate binding sites as we have 
modeled, then this would simply increase the number of possible non-cognate ternary 
complexes. In this case there would be 2n2−n non-cognate ternary complexes instead of 
n2−n (where n is the number of sRNA-target mRNA pairs) in networks with single-
partner pairing. While this reduces Hfq availability, it does not alter the fundamental 
kinetics of the system except that sRNA-target mRNA pairs acting in isolation would 
also require a mechanism to prevent non-cognate ternary complexes from forming [i.e. 
(sRNA)2-Hfq and (target mRNA)2-Hfq]. Similarly, the binding of Hfq to DNA [99,100] 
and polyadenylated RNAs [97,101] will decrease Hfq availability but it will not alter the 
basic kinetics of duplex formation. 
 
The model was used to systematically explore the possible kinetic mechanisms for 
increasing the efficiency and robustness of sRNAs. We found two non-mutually 
exclusive mechanisms that can help achieve these goals: 1. heterotropic cooperativity; 
and 2. rapid RNA dissociation from Hfq complexes. Both mechanisms can increase 
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duplex formation and/or robustness for single cognate sRNA-target mRNA pairs 
acting in isolation, in networks with many competing sRNAs and target mRNAs, and 
when there are imbalances in sRNA and target mRNA concentrations. 
 
Cooperativity can enhance duplex formation by increasing the proportion of bound Hfq 
in cognate ternary complexes. This can occur by increasing the formation and/or 
stability of cognate ternary complexes (i.e. cognate selection) or by decreasing the 
formation and/or stability of non-cognate ternary complexes (i.e. non-cognate 
exclusion) and singly-bound Hfq complexes. The “active” cycling model that was 
recently proposed [80], where the binding of one RNA to Hfq increases the dissociation 
of another RNA bound to Hfq, is consistent with what we have termed non-cognate 
exclusion. There is in vitro experimental evidence which is consistent with our definition 
for cooperativity. Kinetics measurements with synthetic RNA sequences have shown 
unequal formation of duplexes via the sRNA-Hfq and target mRNA-Hfq branches; this 
indicates that RNA binding to Hfq is affected by the presence of other RNAs bound to 
Hfq [74]. Furthermore, sRNAs and target mRNAs dissociate from non-cognate ternary 
complexes at greater rates than from singly-bound Hfq complexes which is consistent 
with non-cognate exclusion [31,80]. There is currently no clear evidence for or against 
cognate selection. 
 
In contrast to cooperativity, high RNA dissociation rates do not alter the relative 
proportion of Hfq complexes but instead increase the cycling of sRNAs and target 
mRNAs among cognate and non-cognate ternary complexes and singly-bound Hfq 
complexes. The increased cycling improves the likelihood that sRNAs and target 
mRNA are incorporated into a cognate ternary complex before they degrade. Rapid 
RNA dissociation has been observed in vitro for non-cognate ternary complexes [80] and 
for cognate ternary complexes [74]. The evidence for rapid RNA dissociation from 
singly-bound Hfq complexes is less clear; singly-bound Hfq complexes have reported 
half-lives (which is a measure of the rate of RNA dissociation) in the absence of 
competition which varies from approximately 165 minutes [80] to 0.03 s [74] to between 
2.1 × 10-5 and 4.1 × 10-5 s [31]. 
 
How sRNAs and target mRNAs interact while bound to Hfq is unclear. It may involve 
allosteric changes in the Hfq hexamer, electrostatic interactions or direct interactions 
between the sRNAs and/or target mRNAs bound to Hfq. Whatever the mechanism, in 
vivo experiments suggest that the 5’ sequences of sRNAs and target mRNAs are in at 
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least some cases sufficient to ensure specific interactions between the sRNAs and the 
target mRNAs [121]. Furthermore, a comparative analysis of sRNAs across different 
genomes has shown that the binding sequences, irrespective of their location, are the 
only regions that are consistently conserved [122].  
 
We demonstrated that duplex formation not only depends on the kinetics of the sRNA-
target mRNA pair of interest but it also depends on the kinetics and abundance of 
competing RNAs. This was highlighted by showing that in isolation sRNA-target 
mRNA pairs that form stable Hfq complexes can perform better than pairs that form 
unstable Hfq complexes, whereas in a sRNA network the reverse can occur. Further 
illustrating the importance of the environment on duplex formation, we showed that 
excess production of a sRNA can be used to selectively enhance the formation of one 
type of duplex at the cost of decreased duplex formation for other sRNA-target mRNA 
pairs. Similarly, we demonstrated that a pool of unpartnered target mRNAs can alter 
duplex formation for a cognate pair. 
 
It is clear that more in vitro and in vivo experimental data is needed to understand 
duplex formation in biologically realistic scenarios where there is competition for Hfq. 
In particular it is important to ascertain which of the two mechanisms for reducing 
sequestration (cooperativity or high RNA dissociation) is more important and whether 
it varies among sRNAs. This could be determined by isolating singly-bound Hfq 
complexes, cognate ternary complexes and non-cognate ternary complexes and 
measuring their association and dissociation rate constants via electrophoretic mobility 
shift assays, surface plasmon resonance and filter binding assays [31,80]. Furthermore, 
because duplex formation is dependent on the number, types and concentrations of the 
other RNAs that are competing for Hfq, in vivo measurement of these factors under 
specific physiological conditions is desirable to obtain an accurate quantification of 
sRNA activity. Genome wide identification and quantification of sRNAs and target 
mRNAs that compete for Hfq could be obtained by deep sequencing expression 
analysis [123,124]. Of course there is also a need to determine the availability of Hfq 
under the same conditions. Direct measurement of Hfq concentration [113,125] may not 
be helpful because Hfq has the capacity to bind DNA and other proteins and therefore 
the available fraction of Hfq would be difficult to ascertain. It may be more practical to 
directly measure Hfq availability and competition using a reporter system [21]. 
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It is important to acknowledge that even with mechanisms such as cooperativity and 
rapid RNA dissociation acting to optimize Hfq function, the sRNA network may not 
signal effectively under some conditions due to Hfq competition. Recently, it was 
shown in vivo that over-expressing a single sRNA or target mRNA can be sufficient to 
generally disrupt sRNA signaling due to Hfq competition [21]. The inability of Hfq to 
mediate sRNA signaling under only certain conditions could be a desirable feature 
when individual signals (e.g. iron deficiency, oxidative stress, nutrient limitation) need 
to be over-ridden or controlled centrally under specific conditions such as pathogenesis 
or stress. Cells could globally turn off or tune the activity of large subsets of sRNAs by 
varying the production of Hfq or the transcription of RNA competitors. 
 
In conclusion, there are simple kinetic mechanisms that can increase the efficiency and 
robustness of Hfq activity to enable it to mediate multiple sRNA signals in parallel. 
These mechanisms are cooperativity and/or rapid RNA dissociation which minimize 
the sequestration of sRNAs, target mRNAs and Hfq. Determining the role of these 
mechanisms in vivo will require further characterization of the composition and kinetics 
of sRNA networks in cells under physiologically relevant conditions. The general model 
we have presented is a valuable framework to guide, analyze and interpret these future 
experiments. 
 
3.6  MODEL 
 
In our model [H], [Si] and [Tj] represent the concentrations of unbound Hfq hexamer, 
the ith unbound sRNA and the jth unbound target mRNA respectively. [HSi] and [HTj] 
denote singly-bound Hfq hexamers with the ith sRNA and the jth target mRNA 
respectively. [HSiTj] denotes a ternary complex where Hfq is bound to the ith sRNA and 
the jth target mRNA. [Di,j] denotes the sRNA-target mRNA duplex formed by the 
combination of the ith sRNA and the jth target mRNA. In this model, Hfq cannot bind 
more than one sRNA or target mRNA. 
 
The number of differential equations needed to describe a network depends on number 
of types of sRNA and target mRNA species. In a network with n types of sRNA species 
(i.e. i = 1 to n) and m types of target mRNA species (i.e. j = 1 to m) there will be: 1. a 
single equation that describes the dynamics of free Hfq; 2. n equations that describe the 
dynamics of free sRNAs; 3. m equations that describe the dynamics of free mRNAs; 4. n 
equations that describe the dynamics of sRNA-Hfq complexes; 5. m equations that 
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describe the dynamics of target mRNA-Hfq complexes; 6. n⋅m equations that describe 
the dynamics of ternary Hfq complexes; and 7. n⋅m equations that describe the 
dynamics of sRNA-target mRNA duplexes. 
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the jth target mRNA respectively. k1(i), k-1(i), k2(j) and k-2(j) describe the formation and 
dissociation of singly-bound Hfq complexes and k3(i,j), k-3(i,j), k4(i,j), k-4(i,j) describe the 
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non-cognate sRNA-target mRNA pairs (i.e. when i ≠ j) unless otherwise stated. As 
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explained above, the rate constant for degradation and dilution (β) was the same for all 
species to keep the model as simple as possible; this simplification does not alter the 
basic qualitative results (Fig. 3.14). 

Fig. 3.14 | Varying sRNA degradation minimally affects duplex formation. The effect of the free sRNA degradation rate 
constant on duplex formation was examined in a system with independent sRNA and target mRNA binding (left panels), positive 
cooperative association (middle panels) and rapid RNA dissociation (right panels). For native sRNAs the degradation rate is 
typically greater than for target mRNAs and Hfq. Therefore we increased free sRNA degradation by 10-fold (compared to other 
simulations). The degradation of the target mRNA, Hfq and Hfq complexes were unchanged. The simulations showed that 
increasing the degradation of free sRNA compared to the target mRNA and Hfq had minimal affect on duplex formation (Note: the 
simulated difference is greater than typically occurs physiologically). The grey dash line indicates a 1:1 ratio of [total target mRNA] to 
[Hfq], where the [total target mRNA] ≡ [T] + [HT] + [HST] + [D]; [T], [HT], [HST] and [D] are the concentrations of free target mRNA, 
target mRNA-Hfq complex, cognate ternary complex and duplex respectively. 

We did not include the possibility of Hfq dodecamers and the exchange of RNAs 
between Hfq hexamers (which must also form a Hfq dodecameric complex) in the basic 
model [126,127]. This would have required the creation of additional reaction paths and 
therefore increased complexity for the basic model. Furthermore, Hfq dodecamers have 
not been consistently observed in vivo and a recent study has shown that single Hfq 
hexamers are sufficient for duplex formation [128]. Of course the latter does not exclude 
a role for Hfq dodecamers in duplex formation but current evidence suggests it is not 
essential. 

The parameter values for the simulations are provided in the Table 3.1. Many of the 
kinetic parameters for duplex formation have not been quantified or the reported values 
vary widely (see Discussion). For this reason, the values for the kinetic parameters 
were given arbitrary values and these were varied over several orders of magnitude to 
ensure that biologically relevant regimes are likely to fall within the ranges selected. 
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All the data presented in this study is generated from the steady state solutions to the 
differential equations described above by allowing numerically generated time courses 
to run to convergence using the NDSolve subroutine of Mathematica 6 (Wolfram 
Research, Champaign, IL). Simulations were run for at least 100 times the RNA lifetime 
and convergence was confirmed by ensuring that the solutions at 90% and 100% of the 
simulation differed by no more 1 x 10-10. 
 
Table 3.1 | Kinetic parameters used in the simulations 
 

Fig 3.2 units TL TC TR ML MC MR BL BC BR 
k1 conc.-1·time-1 106.5 104.5 102.5 104.5 102.5 100.5 102.5 100.5 10-1.5 
k2 conc.-1·time-1 102.5 104.5 106.5 100.5 102.5 104.5 10-1.5 100.5 102.5 
k3 conc.-1·time-1 102.5 104.5 106.5 100.5 102.5 104.5 10-1.5  100.5 102.5 
k4 conc.-1·time-1 106.5 104.5 102.5 104.5 102.5 100.5 102.5 100.5 10-1.5 
k5 time-1 103 103 103 103 103 103 103 103 103 

k-1,-2,-3,-4 time-1 0 0 0 0 0 0 0 0 0 
αS,T conc.·time-1 102 102 102 102 102 102 102 102 102 
β time-1 100 100 100 100 100 100 100 100 100 
           
           

Fig 3.3C units TL TC TR ML MC MR BL BC BR 
k1 conc.-1·time-1 106.5 104.5 102.5 104.5 102.5 100.5 102.5 10-1.5 10-1.5 
k2 conc.-1·time-1 102.5 104.5 106.5 100.5 102.5 104.5 10-1.5 10-1.5 102.5 
k3 conc.-1·time-1 102.5 100.5 10-1.5 104.5 102.5 100.5 106.5 106.5 102.5 
k4 conc.-1·time-1 10-1.5 100.5 102.5 100.5 102.5 104.5 102.5 106.5 106.5 
k5 time-1 103 103 103 103 103 103 103 103 103 

k-1,-2,-3,-4 time-1 0 0 0 0 0 0 0 0 0 
αS,T conc.·time-1 102 102 102 102 102 102 102 102 102 
β time-1 100 100 100 100 100 100 100 100 100 
           
           

Fig 3.3F units TL TC TR ML MC MR BL BC BR 
k1,2,3,4 conc.-1·time-1 102.5 102.5 102.5 102.5 102.5 102.5 102.5 102.5 102.5 

k5 time 100 103 106 100 103 106 100 103 106 
k-1,-2,-3,-4 time 108 108 108 104 104 104 100 100 100 
αS,T conc.·time-1 102 102 102 102 102 102 102 102 102 
β time-1 100 100 100 100 100 100 100 100 100 
           
           

Fig 3.4A units TL TC TR ML MC MR BL BC BR 
k1,2 conc.-1·time-1 102.5 n/a 102.5 n/a n/a n/a 102.5 n/a 100.5 
k3,4 conc.-1·time-1 102.5 n/a 102.5 n/a n/a n/a 102.5 n/a 104.5 
k5 time-1 103 n/a 103 n/a n/a n/a 103 n/a 103 

k-1,-2,-3,-4 time-1 0 n/a 0 n/a n/a n/a 104 n/a 104 
αS,T conc.·time-1 102 n/a 102 n/a n/a n/a 102 n/a 102 
β time-1 100 n/a 100 n/a n/a n/a 100 n/a 100 
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Fig 3.4B units TL TC TR ML MC MR BL BC BR 

k1,2 conc.-1·time-1 102.5 n/a 100.5 n/a n/a n/a 102.5 n/a 100.5 
k3,4 conc.-1·time-1 102.5 n/a 104.5 n/a n/a n/a 102.5 n/a 104.5 
k5 time-1 103 n/a 103 n/a n/a n/a 103 n/a 103 

k-1,-2 time-1 104 n/a 104 n/a n/a n/a 106 n/a 106 
k-3,-4 time-1 104 n/a 104 n/a n/a n/a 102 n/a 102 
αS,T conc.·time-1 102 n/a 102 n/a n/a n/a 102 n/a 102 
β time-1 100 n/a 100 n/a n/a n/a 100 n/a 100 
 
 

          
           

Fig 3.6 units TL TC TR ML MC MR BL BC BR 
k1,2,3,4 conc.-1·time-1 102.5 n/a 102.5 n/a n/a n/a 102.5 n/a 102.5 

k5 time-1 103 n/a 103 n/a n/a n/a 103 n/a 103 
k-1,-2,-3,-4 time-1 100 n/a 100 n/a n/a n/a 100 n/a 100 
αS,T conc.·time-1 102 n/a 102 n/a n/a n/a 102 n/a 102 
β time-1 100 n/a 100 n/a n/a n/a 100 n/a 100 

 
 

Fig 3.7 units TL TC TR ML MC MR BL BC BR 
k1,2 conc.-1·time-1 102.5 n/a 102.5 n/a n/a n/a 102.5 n/a 102.5 
k3,4 conc.-1·time-1 102.5 n/a 103.5 n/a n/a n/a 102.5 n/a 103.5 
k*3,4 conc.-1·time-1 102.5 n/a 102.5 n/a n/a n/a 101.5 n/a 101.5 
k5 time-1 103 n/a 103 n/a n/a n/a 103 n/a 103 

k-1,-2 time-1 100 n/a 100 n/a n/a n/a 100 n/a 100 
k-3,-4 time-1 100 n/a 10-1 n/a n/a n/a 100 n/a 10-1 
k*-3,-4 time-1 100 n/a 100 n/a n/a n/a 101 n/a 101 
αS,T conc.·time-1 102 n/a 102 n/a n/a n/a 102 n/a 102 
β time-1 100 n/a 100 n/a n/a n/a 100 n/a 100 
           
 
 

          
Fig 3.8 units TL TC TR ML MC MR BL BC BR 
k1,2,3,4 conc.-1·time-1 102.5 n/a 102.5 n/a n/a n/a 102.5 n/a 102.5 
k*3,4 conc.-1·time-1 102.5 n/a 102.5 n/a n/a n/a 102.5 n/a 102.5 
k5 time-1 103 n/a 103 n/a n/a n/a 106 n/a 106 

k-1,-2,-3,-4 time-1 100 n/a 104 n/a n/a n/a 100 n/a 104 
k*-3,-4 time-1 100 n/a 104 n/a n/a n/a 100 n/a 104 
αS,T conc.·time-1 102 n/a 102 n/a n/a n/a 102 n/a 102 
β time-1 100 n/a 100 n/a n/a n/a 100 n/a 100 
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Fig 3.9‡ units TL TC TR ML MC MR BL BC BR 
k1,2,3,4 conc.-1·time-1 102 n/a n/a n/a n/a n/a n/a n/a n/a 
k*3,4 conc.-1·time-1 102 n/a n/a n/a n/a n/a n/a n/a n/a 
k5 time-1 101.5 n/a n/a n/a n/a n/a n/a n/a n/a 

k-1,-2,-3,-4 time-1 100 n/a n/a n/a n/a n/a n/a n/a n/a 
k*-3,-4 time-1 100 n/a n/a n/a n/a n/a n/a n/a n/a 
αT,S conc.·time-1 102 n/a n/a n/a n/a n/a n/a n/a n/a 
β time-1 100 n/a n/a n/a n/a n/a n/a n/a n/a 
           
           

Fig 3.9◊ units TL TC TR ML MC MR BL BC BR 
k1,2,3,4 conc.-1·time-1 102 n/a n/a n/a n/a n/a n/a n/a n/a 
k*3,4 conc.-1·time-1 102 n/a n/a n/a n/a n/a n/a n/a n/a 
k5 time-1 101.5 n/a n/a n/a n/a n/a n/a n/a n/a 

k-1,-2,-3,-4 time-1 104 n/a n/a n/a n/a n/a n/a n/a n/a 
k*-3,-4 time-1 104 n/a n/a n/a n/a n/a n/a n/a n/a 
αT,S conc.·time-1 102 n/a n/a n/a n/a n/a n/a n/a n/a 
β time-1 100 n/a n/a n/a n/a n/a n/a n/a n/a 
 
 

          
           

Fig 3.10 units TL TC TR ML MC MR BL BC BR 
k1,2,3,4 conc.-1·time-1 102.5 n/a 102.5 n/a n/a n/a 102.5 n/a 102.5 
k*3,4 conc.-1·time-1 102.5 n/a 102.5 n/a n/a n/a 102.5 n/a 102.5 
k5 time-1 103 n/a 103 n/a n/a n/a 103 n/a 103 
k*5 time-1 0 n/a 0 n/a n/a n/a 103 n/a 103 

k-1,-2,-3,-4 time-1 100 n/a 104 n/a n/a n/a 100 n/a 104 
k*-3,-4 time-1 100 n/a 104 n/a n/a n/a 100 n/a 104 
αS,T conc.·time-1 102 n/a 102 n/a n/a n/a 102 n/a 102 
β time-1 100 n/a 100 n/a n/a n/a 100 n/a 100 

 
Fig 3.11 units TL TC TR ML MC MR BL BC BR 

k1,3 conc.-1·time-1 106 10-2 102 n/a n/a n/a n/a n/a n/a 
k2,4 conc.-1·time-1 10-2 106 102 n/a n/a n/a n/a n/a n/a 
k5 time-1 101 101 101 n/a n/a n/a n/a n/a n/a 

k-1,-2,-3,-4 time-1 0 0 0 n/a n/a n/a n/a n/a n/a 
αS conc.·time-1 17-83 17-83 17-83 n/a n/a n/a n/a n/a n/a 
αT conc.·time-1 17-83 17-83 17-83 n/a n/a n/a n/a n/a n/a 
αH conc.·time-1 102 102 102 n/a n/a n/a n/a n/a n/a 
β time-1 100 100 100 n/a n/a n/a n/a n/a n/a 
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Fig 3.12£ units TL TC TR ML MC MR BL BC BR 

k1,2,3,4 conc.-1·time-1 102.5 n/a n/a n/a n/a n/a n/a n/a n/a 
k*3,4 conc.-1·time-1 102.5 n/a n/a n/a n/a n/a n/a n/a n/a 
k5 time-1 101.5 n/a n/a n/a n/a n/a n/a n/a n/a 

k-1,-2,-3,-4 time-1 101 n/a n/a n/a n/a n/a n/a n/a n/a 
k*-3,-4 time-1 101 n/a n/a n/a n/a n/a n/a n/a n/a 
αS1 conc.·time-1 102-104 n/a n/a n/a n/a n/a n/a n/a n/a 

αT1,S2,T2 conc.·time-1 102 n/a n/a n/a n/a n/a n/a n/a n/a 
β time-1 100 n/a n/a n/a n/a n/a n/a n/a n/a 
           
           

Fig 3.13¶ units TL TC TR ML MC MR BL BC BR 
k1,4 conc.-1·time-1 102.5 n/a 102.5 103.5 n/a 103.5 101.5 n/a 101.5 
k2,3 conc.-1·time-1 102.5 n/a 102.5 101.5 n/a 101.5 103.5 n/a 103.5 
k*3 conc.-1·time-1 102.5 n/a 102.5 101.5 n/a 101.5 103.5 n/a 103.5 
k*4 conc.-1·time-1 102.5 n/a 102.5 103.5 n/a 103.5 101.5 n/a 101.5 
k5 time-1 103 n/a 103 103 n/a 103 103 n/a 103 

k-1,-4 time-1 100 n/a 100 10-1 n/a 10-1 101 n/a 101 
k-2,-3 time-1 100 n/a 100 101 n/a 101 10-1 n/a 10-1 
k*-3 time-1 100 n/a 100 101 n/a 101 10-1 n/a 10-1 
k*-4 time-1 100 n/a 100 10-1 n/a 10-1 101 n/a 101 
αS1,T1 conc.·time-1 102 n/a 102 102 n/a 102 102 n/a 102 

αT non-cog. conc.·time-1 0 n/a 104 0 n/a 104 0 n/a 104 
β time-1 100 n/a 100 100 n/a 100 100 n/a 100 
           
           

Fig 3.13¥ units TL TC TR ML MC MR BL BC BR 
k1,4 conc.-1·time-1 102.5 n/a 102.5 103.5 n/a 103.5 101.5 n/a 101.5 
k2,3 conc.-1·time-1 102.5 n/a 102.5 101.5 n/a 101.5 103.5 n/a 103.5 
k*3 conc.-1·time-1 102.5 n/a 102.5 101.5 n/a 101.5 103.5 n/a 103.5 
k*4 conc.-1·time-1 102.5 n/a 102.5 103.5 n/a 103.5 101.5 n/a 101.5 
k5 time-1 103 n/a 103 103 n/a 103 103 n/a 103 

k-1,-4 time-1 102 n/a 102 101 n/a 101 103 n/a 103 
k-2,-3 time-1 102 n/a 102 103 n/a 103 101 n/a 101 
k*-3 time-1 102 n/a 102 103 n/a 103 101 n/a 101 
k*-4 time-1 102 n/a 102 101 n/a 101 103 n/a 103 
αS1,T1 conc.·time-1 102 n/a 102 102 n/a 102 102 n/a 102 

αT non-cog. conc.·time-1 0 n/a 104 0 n/a 104 0 n/a 104 
β time-1 100 n/a 100 100 n/a 100 100 n/a 100 
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Fig 3.13§ units TL TC TR ML MC MR BL BC BR 
k1,4 conc.-1·time-1 102.5 n/a 102.5 103.5 n/a 103.5 101.5 n/a 101.5 
k2,3 conc.-1·time-1 102.5 n/a 102.5 101.5 n/a 101.5 103.5 n/a 103.5 
k*3 conc.-1·time-1 102.5 n/a 102.5 101.5 n/a 101.5 103.5 n/a 103.5 
k*4 conc.-1·time-1 102.5 n/a 102.5 103.5 n/a 103.5 101.5 n/a 101.5 
k5 time-1 103 n/a 103 103 n/a 103 103 n/a 103 

k-1,-4 time-1 100 n/a 100 10-1 n/a 10-1 101 n/a 101 
k-2,-3 time-1 100 n/a 100 101 n/a 101 10-1 n/a 10-1 
k*-3 time-1 102 n/a 102 103 n/a 103 101 n/a 101 
k*-4 time-1 102 n/a 102 101 n/a 101 103 n/a 103 
αS1,T1 conc.·time-1 102 n/a 102 102 n/a 102 102 n/a 102 

αT non-cog. conc.·time-1 0 n/a 104 0 n/a 104 0 n/a 104 
β time-1 100 n/a 100 100 n/a 100 100 n/a 100 
           
           

Fig 3.14 units TL TC TR ML MC MR BL BC BR 
k1,2 conc.-1·time-1 n/a n/a n/a n/a n/a n/a 102.5 100.5 102.5 
k3,4 conc.-1·time-1 n/a n/a n/a n/a n/a n/a 102.5 104.5 102.5 
k5 time-1 n/a n/a n/a n/a n/a n/a 103 103 103 

k-1,-2,-3,-4 time-1 n/a n/a n/a n/a n/a n/a 0 0 104 
αS,T conc.·time-1 n/a n/a n/a n/a n/a n/a 102 102 102 

βS free (blk) time-1 n/a n/a n/a n/a n/a n/a 100 100 100 
βS free (red) time-1 n/a n/a n/a n/a n/a n/a 101 101 101 

β time-1 n/a n/a n/a n/a n/a n/a 100 100 100 

 
Table 3.1 | Kinetic parameters used in the simulations. Abbreviations used to specify the panels in the figures are: top left (TL), 
top center (TC), top right (TR), middle left (ML), middle center (MC), middle right (MR), bottom left (BL), bottom center (BC) and 
bottom right (BR). ‡ indicates sRNA-target mRNA pairs that form “stable” complexes with Hfq and ◊ indicates “unstable” complexes 
with Hfq (Fig 3.9U). £ Two sRNA-target mRNA pairs were simulated which have the same kinetic parameters (both panels represent 
the same set of simulations with varying sRNA1 production). ¶ Control topologies (solid curves). ¥ Topologies with increased RNA 
dissociation relative to the control (dash curves). § Topologies exhibiting non-cognate exclusion (dot curves). Hfq production (αH) in 
all panels is varied from 10-5 to 107 concentration·time-1 unless otherwise indicated.  conc. = concentration. 
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4.  Crosstalk in the CsrA system 
 
Having discussed crosstalk among mRNAs (as well as sRNAs) in the context of the 
Hfq-dependent sRNA network, we now shift our focus and examine crosstalk among 
mRNAs in the CsrA regulatory system. This system also constitutes an RNA regulatory 
network because the non-coding RNAs CsrB and CsrC are shared regulators of the 
translation of numerous mRNAs. 
 
4.1  ABSTRACT 
 
While signal specificity is often essential for cell survival, many signaling molecules are 
shared between pathways which creates avenues for unwanted crosstalk [41]. This is 
particularly true in the growing field of translational regulatory networks (e.g. the CsrA 
network and the Hfq-dependent small RNA network) in which small RNAs and 
proteins regulate stoichiometrically a fluctuating pool of diverse target mRNAs; 
crosstalk arises in these networks from competition for shared regulators [16,20,47]. 
While many strategies have been identified to mitigate crosstalk among biochemical 
pathways (including protein scaffolding [129], cross-pathway inhibition [130] and 
kinetic insulation [41]), they largely address crosstalk between receptor proteins or 
phosphorelays in ways that are not readily adaptable to translational regulatory 
networks. In this study, we reverse engineered the CsrA regulatory network to show 
that it can buffer crosstalk among its mRNA targets. Specifically, we show that non-
coding RNAs (e.g. CsrB) which bind and sequester the system’s central regulator (CsrA) 
can buffer competition for that central regulator similarly to how a pH buffer damps 
fluctuations in free protons. We show that target mRNA translation is affected far less 
by expression of a competitor mRNA in cells with high concentrations of both CsrA and 
CsrB than in cells with lower CsrA and CsrB levels because the competitor mRNA 
sequesters a much smaller fraction of the total CsrA in the former case than in the latter. 
Unlike many mechanisms for minimizing crosstalk, buffering by sequestration is 
inherently scalable in that no additional regulatory components are required to keep 
new pathways (i.e. mRNA targets) insulated as they are added into the network. 
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4.2  INTRODUCTION 
 
Preventing crosstalk between distinct signaling pathways is a general problem faced by 
nearly all modes of communication from the electronic to the biochemical. Crosstalk is 
particularly problematic in biochemical systems since many distinct signaling pathways 
share common regulatory molecules [41]. While several strategies have been described 
for mitigating the crosstalk that arises through these shared regulatory components (e.g. 
protein scaffolding [129], cross-pathway inhibition [130] and kinetic insulation [41]) 
most of these do not scale effectively with the number of pathways to be isolated; in 
other words, the complexity of these mechanisms (e.g. the number of distinct scaffold 
proteins, cross-inhibitor molecules, or signaling timescales required) grows as the 
number of pathways to be isolated increases. In this study, we reverse engineered the 
CsrA regulatory network and show that it possesses a mechanism to mitigate crosstalk 
among the mRNA targets of CsrA (Fig. 4.1). Unlike the above strategies for avoiding 
crosstalk, the strategy we describe using CsrA regulation scales well for large networks 
because it relies on the principle of buffering; as such, the effect of adding new mRNA 
competitors for the central regulator (CsrA) can be arbitrarily diminished by increasing 
the concentration of that central regulator in tandem with its buffering agent (CsrB). 
 

 
 

Fig. 4.1 | CsrA regulatory network. (A) The CsrA protein binds to and silences numerous target mRNAs. CsrA is sequestered by 
non-coding RNAs (ncRNAs; e.g. CsrB and CsrC) which inhibit that silencing. (B) Buffered and unbuffered networks. Left: CsrA ‘links’ 
mRNAs by allowing changes in the concentration of one mRNA to influence the translation of others (through competition for CsrA) 
(Fig. 4.2, 4.7). Right: Sequestering ncRNAs can buffer this crosstalk (Fig. 4.3, 4.7). (C) Effects of perturbations. Left: Perturbing the 
concentration of one mRNA can affect translation of other mRNAs via “substrate availability crosstalk” [42] (unbuffered network). 
Center: perturbations of mRNA concentrations are strongly damped which mitigates crosstalk (buffered network). Right: Target 
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mRNAs remain sensitive to changes in ncRNAs since they compete for CsrA much more effectively than other mRNAs (Fig. 4.5) 
(buffered network). 

 
The CsrA network is of general interest, not only because it plays a central and 
conserved role in controlling bacterial metabolism, motility, biofilm formation and 
pathogenesis, but also because it represents a larger class of “translational regulatory 
network” in which a central translational regulator coordinates protein expression from 
multiple genetically distinct mRNAs [16,19,33]. All of these networks are potentially 
susceptible to crosstalk via competition for the central regulator through what has been 
termed “substrate availability crosstalk” [42] (Fig. 4.1). In Escherichia coli, the CsrA 
network consists of the CsrA protein, numerous CsrA target genes (e.g. cstA, pgaABCD, 
glgCAP, hfq, ycdT and ydeH, among others) and upstream regulators of CsrA which 
include the sequestering non-coding RNAs (ncRNAs) CsrB and CsrC. CsrA typically 
regulates its target genes by binding to and blocking the ribosomal binding site on the 
mRNA, thus silencing translation of the target protein [19,32,33]. Because the ncRNAs 
CsrB and CsrC contain multiple CsrA binding sites closely resembling those found on 
the target mRNAs (enough for binding to ~nine and ~three to four CsrA dimers 
respectively), they are able to compete with target mRNAs for binding to CsrA; in this 
way, CsrB and CsrC act as inhibitors of CsrA activity [49,50]. 
 
This study is divided into two parts. In the first part, we characterize the steady state 
dose/response relationships between a single target mRNA, CsrA, and the sequestering 
ncRNAs CsrB and CsrC to lay the foundation for understanding crosstalk, buffering 
and coordinated signaling. Specifically, we demonstrate (i) that CsrA is sequestered by 
the target mRNAs it regulates (Fig. 4.2), (ii) that the addition of a sequestering non-
coding RNA (ncRNA) buffers the target mRNA against changes in the CsrA 
concentration (Fig. 4.3) and (iii) that for ncRNAs to be effective signaling molecules, 
CsrA levels must reside within a range set by the amount of target mRNA and the 
amount of ncRNA produced upon induction: too little CsrA will not silence the target 
mRNAs and too much CsrA will not be sufficiently sequestered when the ncRNA is 
turned on (Fig. 4.4). 
 
In the second part, we introduce additional target mRNAs into our analysis to quantify 
competition for CsrA and examine crosstalk among mRNA targets. Specifically, we 
demonstrate that when transcribed from identical promoters, target mRNAs are much 
less effective at competing for CsrA than are the ncRNAs CsrB and CsrC; this places 
CsrB and CsrC in a unique position where they can modulate the availability of free 
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CsrA in vivo much more strongly than their mRNA counterparts (Fig. 4.5). Additionally, 
we show that the magnitude of crosstalk between target mRNAs can be tuned by 
altering the concentrations of CsrA and its sequestering ncRNA partner (Fig. 4.7). When 
CsrA and CsrB levels are low, the translation of individual mRNAs is sensitive to the 
presence of other mRNAs which can compete for the small pool of CsrA; when CsrA 
and CsrB levels are high, the system can achieve the same level of ‘free’ CsrA activity 
(and thus the same level of target expression) as with low CsrA and CsrB but with 
diminished sensitivity to the presence of extra mRNA competitors. 
 
4.3  RESULTS 
 
4.3.1  Modeling Summary 
To examine crosstalk in the CsrA regulatory network we incorporated competing target 
mRNAs into our previously described model of the CsrA cascade [14]. In brief, this 
model used ordinary differential equations (details below) to describe the production, 
clearance, association, dissociation and/or catalytic activity of the target mRNAs, target 
proteins, CsrA, sequestering non-coding RNAs (e.g. CsrB, CsrC), and the associated 
complexes. Except where otherwise stated, the parameters used in the simulations in 
this study correspond to those used in our prior work [14]. 
 
4.3.2  Experimental System 
Except where otherwise stated, experiments in this study were preformed using fully 
synthetic gene circuits in strains with chromosomal csrA, csrB, csrC, csrD, glgCAP and 
pgaABCD deleted; additionally, experiments were preformed in exponentially growing 
cells at steady state. As described previously [14], deletion of glgCAP was necessary for 
the survival of cells lacking csrA [56] and deletion of pgaABCD was necessary to allow 
cells lacking csrA to be made competent for transformation; deletion of csrA, csrB, csrC 
and csrD allowed us to remove the known feedback regulation present in the native 
system. 
 
In this study, we used several synthetic targets for CsrA including glgC-gfp, hfq-gfp, 
glgC-rfp, pgaA-rfp, hfq-rfp, cstA-rfp and ydeH-rfp. To construct each target gene, (i) the 5’ 
untranslated region (UTR) of a native mRNA known to include both CsrA binding sites 
a ribosomal binding site (RBS) and (ii) several codons of the coding sequence from the 
native target gene were translationally fused to either the gfp or rfp (mCherry) coding 
sequence (details below). In each case CsrA silences the translation of GFP or RFP 
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allowing expression of these “target proteins” to be quantified by fluorescence (Fig. 4.6). 
Full-length transcripts of CsrA targets were not used as competitors because expression 
of selected full-length transcripts (e.g. cstA) dramatically inhibited cell growth (doubling 
time = τ = 56 +/- 1 min without cstA induction versus 120 +/- 15 min with cstA; 
HL6105); in contrast, expressing RFP had affected cell growth only minimally (τ = 53 
+/- 1 min without rfp induction versus 52 +/- 1 min with rfp; HL6055). 
 

 
 

Fig. 4.2 | CsrA can be sequestered by mRNA targets. Error bars are SEM of duplicate measurements. The steady-state 
concentration of target protein (approximated by GFP fluorescence) is presented as a function of target transcription with three 
levels of CsrA induction. Center: The model predicts threshold linear behavior in the presence of CsrA. Dashed lines have the slope 
of the modeled gray line. Right: Target mRNA transcription (from PLlacO-1:glgC-gfp) is induced to varying degrees using IPTG; 
CsrA production (from PLtetO-1:st7:csrA) is induced using aTc. The percent of transcription of glgC-gfp (relative to the maximum for 
the promoter) is estimated from the IPTG concentration used and the GFP fluorescence level of PLlacO-1:glgC-gfp at zero aTc 
(HL5050). Modeled curves (from center panel) are reproduced with the in vivo data (right panel) as a guide to the eye. 

 
4.3.3  CsrA can be Sequestered by mRNA Targets 
To demonstrate that CsrA can be sequestered by the target mRNAs that it regulates, we 
measured the dose/response relationship between CsrA and one of its target mRNAs. 
Experimentally, we accomplished this by placing csrA and glgC-gfp (a target gene) 
under the control of orthogonal inducible promoters (PLtetO-1 and PLlacO-1 
respectively) [54]; we then varied the transcription rate of the target mRNA at selected 
levels of csrA induction and measured GFP fluorescence at steady state (Fig. 4.2). Our 
model predicts that when varying the rate of transcription of the target mRNA, 
expression of the target protein will exhibit threshold linear behavior in the presence of 
CsrA (Fig. 4.2, red lines) instead of the simple linear behavior exhibited in its absence 
(Fig. 4.2, grey lines). This threshold linear behavior occurs because a fixed quantity of 
CsrA dimers can only silence a fixed quantity of target transcripts per unit time. Once 
the number of target transcripts exceeds the amount that the available CsrA can silence 
(termed the “stoichiometric point”), any further increase in transcription causes an 
unattenuated increase in translation; in other words, target protein levels would 
increase with target mRNA transcription along the same slope as if CsrA were absent 
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(Fig. 4.2, dashed black line). Past the stoichiometric point, no additional silencing occurs 
because the mRNAs that are silenced have sequestered the available CsrA away from 
other copies of the same transcript. Our in vivo results confirm the predicted threshold 
linear behavior; in this way, we confirm that CsrA is sequestered by its target mRNAs. 
We note that threshold linear responses have been observed previously in small RNA 
regulation [47] where target mRNAs compete to be silenced by small RNA molecules 
rather than by CsrA. 
 

 
 

Fig. 4.3 | CsrB buffers the target mRNA against changes in CsrA levels. Error bars are SEM of five (upper right panel) or three 
or more (lower right panel) measurements. Top Row: The steady-state concentration of target protein (approximated by GFP 
fluorescence) is presented as a function of the CsrA concentration with four levels of CsrB induction. Center Top: CsrB inhibits 
CsrA. The dotted box shows the region for comparison with the in vivo data. Right Top: CsrA (from PLlacO-1:st7:csrA) is induced to 
varying degrees using IPTG; CsrB production (from PLtetO-1:csrB) is induced using aTc. The relative concentration of CsrA ([CsrA]) 
is estimated from the IPTG concentration used and the GFP fluorescence level of PLlacO-1:st7:gfp (HL4510) as described 
previously [14]. Center Bottom: Scatterplot of the derivative of GFP fluorescence with respect to CsrA concentration (y-axis) as a 
function of GFP fluorescence (x-axis) and level of CsrB induction; the coordinates for each point were determined by averaging the 
GFP fluorescence of two samples from the same overnight culture with adjacent values of CsrA induction (to find the ‘x’ value) and 
by dividing the difference in GFP fluorescence of those two samples by the difference in the estimated relative [CsrA] for those 
samples (to find the ‘y’ value). n = 30 points for each level of CsrB induction. Right Bottom: Average of the y-axis value of the points 
between the dotted lines in the center bottom panel, sorted by level of CsrB induction. 

 
4.3.4  CsrB Buffers the Target mRNA Against Changes in CsrA Levels 
To demonstrate that sequestering ncRNAs can buffer target mRNA translation against 
changes in the CsrA concentration, we measured the dose/response relationship 
between CsrA and CsrB. Experimentally, we accomplished this by placing csrA and csrB 
under the control of inducible promoters (PLlacO-1 and PLtetO-1 respectively); glgC-gfp 
was expressed constitutively. Using this system, we varied the expression of CsrA at 
selected concentrations of CsrB and measured target protein levels at steady state; as 
expected, the model predicts and our experiments confirm that with higher levels of 
CsrB, more CsrA is required to repress target expression to a comparable level (Fig. 4.3, 
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top row). Additionally, our experiments show that increasing CsrB levels decreases the 
sensitivity of target expression to changes in CsrA levels (i.e. d[target protein]/d[CsrA] 
which is approximated by d(GFP fluorescence)/d[CsrA]) at steady state) (Fig. 4.3, 
bottom row); by comparing points with roughly same level of GFP fluorescence (e.g. 
points that lie between the two vertical dotted lines) we show that higher levels of CsrB 
induction correspond to lower levels of sensitivity to CsrA at comparable levels of CsrA 
activity (Fig. 4.3 bottom right). In summary, we have shown that a sequestering ncRNA 
can dampen (or “buffer”) the translation of the target mRNA against changes in CsrA, 
making those changes less influential.  
 

 
 
Fig. 4.4 | Signaling via sequestration is sensitive to CsrA levels. Experimental heatmaps are the average of two or more 
measurements per pixel; data points exhibiting multimodal distributions of cell fluorescence (which occurred sporadically at the 
highest levels of CsrA induction) were not included in the averaging. (A) Schematic and illustrative plots showing that competitors for 
CsrA have most influence at intermediate CsrA concentrations. *CsrB/C indicates CsrB or CsrC. (B) Fully synthetic circuit without 
feedback. Grayscale heatmaps show either the steady-state concentration of the target protein (model) or steady-state GFP 
fluorescence (expmt) as a function of the production rates of CsrA and either CsrB or CsrC. Color heatmaps show the ratio of [target 
protein] (model) or GFP fluorescence (expmt) in the presence of non-zero ncRNA induction to those same measures in the absence 
of ncRNA induction. (C) Circuit with synthetic csrA, synthetic csrB or csrC and native csrD (and thus with negative feedback). 
Grayscale and color heatmaps are as in B.  

 
4.3.5  Signaling via Sequestration is Sensitive to CsrA Levels 
Having examined how CsrB affects a target’s response to changes in CsrA (Fig. 4.3), we 
now examine how CsrA affect a target’s response to changes in CsrB (Fig. 4.4). Our 
model predicts that for CsrB or another ncRNA to alter the expression of a CsrA target, 
the CsrA levels must be neither too high nor too low. Low CsrA levels (i.e. a level of 
CsrA that is insufficient to repress the available target mRNA) prevent CsrB from 
signaling because CsrB cannot reduce the silencing of the target mRNAs (since there is 
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little to no silencing to begin with); in contrast, an excess of CsrA can bind all of the 
available target mRNA and CsrB simultaneously and CsrB will not stop CsrA from 
silencing its targets (Fig. 4.4A). In this way CsrB can only play a meaningful regulatory 
role when the ‘off’ and ‘on’ expression levels of CsrB are well adjusted relative to the 
CsrA concentration so that moving CsrB expression from the ‘off’ state to the ‘on’ state 
will cause the system to cross the stoichiometric point where CsrA and CsrB levels are 
balanced (dashed line on modeled heatmaps, Fig. 4.4B); additionally, this crossing 
needs to occur such that CsrA levels are above the stoichiometric point where CsrA and 
target mRNA levels are balanced (solid line on modeled heatmaps, Fig. 4.4B). Our in 
vivo measurements using CsrB and CsrC confirm the model’s prediction that (for a fixed 
maximum concentration of the ncRNA) there is an optimal level of CsrA for ncRNA 
signaling (expmt panels, Fig. 4.4B) and thus that CsrA and ncRNA expression levels 
need to be well coordinated for signaling to function. 
 
Known feedback regulation within the native CsrA network does not significantly alter 
the above result. Since it has been shown that CsrA levels can indirectly influence the 
concentration of its sequestering ncRNA partners (e.g. CsrA inhibits the production of 
CsrD which in turn promotes the degradation of CsrB and CsrC [14,51,64] we 
incorporated csrD and its repression by free CsrA into both our model and 
experimental system to test its effects (Fig. 4.4C). CsrD and its inhibition by CsrA were 
modeled as described below and were incorporated into our in vivo system by leaving 
the native csrD gene intact in the chromosome. As before, in vivo measurements using 
CsrB and CsrC confirm the model’s prediction (Fig. 4.4C). Even in the presence of 
known feedback regulation, CsrA and ncRNA expression levels still need to be tuned 
appropriately for ncRNA to effectively signal. 
 

 
 
Fig. 4.5 | CsrB strongly outcompetes target mRNAs for CsrA.  Error bars are SEM of duplicate measurements. The fold 
increase in [CsrA] required to silence glgC-gfp upon induction of a competing RNA is shown for several RNA competitors; we 
considered glgC-gfp ‘silenced’ when GFP fluorescence dropped to 10% of its original value upon CsrA induction. The concentration 
of CsrA required to silence glgC-gfp (both in the presence and absence of the competitor) was estimated by varying CsrA induction 
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as detailed in Fig. 4.9 We confirmed the expression of each of the target mRNAs and the negative control as well as repression of 
the target mRNAs by CsrA via RFP fluorescence (Fig. 4.6). 

 
4.3.6  CsrB Strongly Outcompetes Target mRNAs for CsrA 
We have shown above that, like the ncRNAs CsrB and CsrC, target mRNAs can also act 
as a competitor for (and thus a means to sequester) CsrA (Fig. 4.2); we now 
quantitatively compare how effectively target mRNAs and sequestering ncRNAs 
compete with a common reporter mRNA for CsrA (Fig. 4.5). Since the concentration of 
CsrA strongly influences how much a competitor will affect target expression (Fig. 4.4), 
we quantified competition for CsrA in vivo by measuring the fold increase in [CsrA] 
required to silence the reporter mRNA (glgC-gfp) upon induction of the competitor gene 
(Fig. 4.5, Fig. 4.9). We considered the reporter mRNA to be ‘silenced’ when GFP 
fluorescence drops to 1/10th of its initial value. 
 
The results are striking: the ncRNAs (in particular CsrB) compete for CsrA much more 
effectively than do any of the competitor mRNAs. While CsrB required 63 ± 0.7 fold 
more CsrA to silence the reporter, ydeH-rfp (the strongest mRNA competitor tested) 
required only 3.2 ± 1.3 fold more CsrA. This difference can be understood in terms of 
several compounding advantages that increase the ability of CsrB (and to a lesser extent 
CsrC) to sequester CsrA. First, CsrB has a higher affinity for CsrA than do any of the 
measured target mRNAs (while CsrC has a higher affinity than most): CsrB and CsrC 
have kd values for CsrA binding of ~0.5 nM and 8.7 nM respectively; [49] while target 
mRNAs have kd values of 2.3 nM (ydeH) 64, 22 nM (pgaABCD) [57], 38 nM (hfq) [131], 39 
nM (glgCAP) 53, and 40 nM (cstA) [132]. Second, CsrB and CsrC both have more 
binding sites for CsrA than do the target mRNAs: CsrB and CsrC can simultaneously 
bind ~18 and ~9 CsrA monomers respectively 49. In contrast, mRNAs that are targets 
for CsrA typically have between one and six known sites for CsrA monomers: hfq has 
one [131], cstA and glgC have four [53,132], and pgaA has six [57]. Third, CsrB and CsrC 
(in the absence of csrD) have longer half-lives than do typical mRNAs; without csrD, 
CsrB and CsrC both have measured half-lives longer than 30 min 51 while typical E. coli 
mRNAs have half-lives on the order of single minutes [133]. Additionally while the 
degradation rate of CsrB and CsrC are unaffected by CsrA binding [49,63], target 
mRNAs are more rapidly degraded when bound to CsrA (e.g. we estimate from [72] 
that glgC mRNA has a half-life of ~1 and ~2 min in the presence and absence of csrA 
respectively). By having longer half-lives, steady state CsrB and CsrC levels are higher 
than their competitor mRNA counterparts when produced at the same rate (e.g. by the 
same promoter).  
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Fig. 4.6 | RFP fluorescence measurements of competitor mRNAs. Error bars are SEM of duplicate measurements. (A) 
Competitor mRNAs (with CsrA target sequence fused to mCherry) were both expressed upon their induction and silenced upon the 
induction of CsrA. (B) The negative control “competitor” mRNA (that contained the mCherry coding region but did not contain 
sequence for known CsrA binding sites) was expressed upon its induction but was not silenced by induction of CsrA. (C) The glgC-
rfp competitor mRNA was partially silenced even upon its induction in both HL5691 and HL6035, consistent with constitutive 
expression of CsrA; this partial silencing was lifted upon induction of CsrB. *Here, the RFP fluorescence for each sample from the 
same overnight culture is reported relative to the RFP fluorescence of the +aTc, +IPTG sample; this was necessary to prevent 
differences between overnight cultures from obscuring the repeated pattern of relative fluorescence values within samples from the 
same overnight culture.  

 
4.3.7  Competitor mRNA Expression and Regulation 
Since each competitor mRNA used in this study is a translational fusion with the 5’-
UTR of a native CsrA target gene and small segment of its coding sequence fused in 
frame to the coding region for mCherry (a red fluorescent protein), RFP fluorescence was 
used as a measure of translation of the competitor mRNA. In this way RFP fluorescence 
measurements were used (i) to confirm that the competitor mRNA genes induced 
during competition experiments (e.g. in Fig. 4.5) expressed competitor mRNAs upon 
induction and (ii) to confirm that those competitor mRNAs were susceptible to silencing 
by CsrA (Fig. 4.6). Each strain used in Fig. 4.5, Fig. 4.9 and Fig. 4.10 produced RFP 
fluorescence in the presence of competitor mRNA induction, but only if CsrA was not 
also induced (Fig. 4.6A). In contrast, the strain (HL6055) with the negative control 
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‘competitor’ gene (agn43-rfp) produced RFP fluorescence in the presence of agn43-rfp 
induction, independently of whether CsrA was also induced (Fig. 4.6B). For strains in 
which CsrA expression was constitutive (e.g. HL5691 and HL6035), RFP fluorescence 
increased marginally upon induction of the glgC-rfp competitor in the absence of CsrB 
induction, but much more significantly in the presence of CsrB (Fig. 4.6C). All of these 
results are consistent with the true competitor mRNAs (i.e. all but agn43-rfp) being 
expressed upon induction and binding specifically to CsrA. 
 
4.3.8  Topology of the Network of CsrA-Binding RNAs 
The disparity between how effectively ncRNAs and target mRNAs sequester CsrA has 
important implications for the topology of the CsrA regulatory network. In the absence 
of a ncRNA, target mRNAs may influence one another’s expression by competing with 
one another for CsrA; there is likely some hierarchy to this crosstalk (e.g. as has been 
observed in sRNA networks [47] but when compared to sequestering ncRNAs, mRNA 
targets for CsrA appear to be on a comparable footing. This leads to a highly 
interconnected network where nodes represent RNA partners for CsrA binding and 
directed edges represent the effect that each RNA can have on another’s translation 
resulting from competition for CsrA (left network, Fig. 4.1B). In contrast, when a strong 
sequestering ncRNA (e.g. CsrB) is incorporated into the network, that ncRNA will 
dominate competition for CsrA and the level of translation of the target mRNAs will be 
dictated much more strongly by expression of the ncRNA than by any of the mRNAs 
themselves. This leads to a strongly star-shaped network with a central hub RNA (e.g. 
CsrB) controlling the level of transcription of the subordinate target mRNAs (right 
network, Fig. 4.1B). Strictly speaking, all of the original edges from the highly 
interconnected network are still present, but their magnitude is now dwarfed by 
regulation from CsrB; for this reason, the inter-mRNA edges from the network without 
a sequestering ncRNA (left network, Fig. 4.1B) were not drawn in the network with the 
ncRNA present (right network, Fig. 4.1B). By conceptualizing the CsrA regulatory 
network in this way, it is suggestive that ncRNAs such as CsrB may have the capacity to 
buffer crosstalk among mRNA targets. We examine this concept both theoretically and 
experimentally in the next section. 
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Fig. 4.7 | CsrB buffers crosstalk between target mRNAs. (A) Gene circuit schematic (left) and diagram explaining when crosstalk 
is buffered (right). Low [CsrA] and low [CsrB] (red triangle, “not buffered” scenario) allows competing mRNAs (purple) to rob the 
target mRNA (green) of CsrA; higher [CsrA] and higher [CsrB] (blue triangle, “buffered” scenario) dampen the impact of the 
competing mRNA on target expression since the competing mRNA can only sequester what is now a much smaller fraction of the 
total CsrA. (B, C) Simulation and in vivo measurement of mRNA-to-mRNA crosstalk and buffering. CsrB induction is varied (IPTG 
between 0 and 2 mM) in strains with fixed ‘high’ (HL5691) or ‘low’ (HL6129, HL6131) levels of CsrA expression in order to find 
conditions in which (i) high [CsrA] and high [CsrB] and (ii) low [CsrA] and low [CsrB] yield the same level of target expression (gray 
region: left and right plots of panel C). In all conditions, competitor mRNA is induced and the effect on the target expression is 
recorded. (B) Example of CsrB and competitor mRNA induction. This data is re-presented in panel C with additional data from Fig. 
4.8. (C) In both simulated (left) and experimental (right) scatterplots, individual points represent the difference in target expression 
caused by induction of the competitor mRNA (y-axis; from panel B: distance between the black triangles) as a function of target 
expression in the absence of competitor (x-axis; from panel B: height of the black dashed line). 

 
4.3.9  Buffering of Crosstalk Among CsrA Targets 
To describe how CsrB can buffer crosstalk among mRNA targets of CsrA, we turn to an 
analogy with buffering acid. In this analogy, CsrA can be thought of as analogous to H+ 
while CsrB can be thought of as analogous to buffering agent. 
 
With solutions, the concentration of free H+ (or H3O+) is often “buffered” by adding a 
molecule to that solution that will bind H+. As more of this buffering molecule is added, 
larger changes in the total amount of H+ are needed to appreciably change the 
concentration of free H+ in solution (typically measured via pH). Buffering agents are 
important to diminish the effect that (i) perturbations in the total concentration of H+ or 
(ii) perturbations in the concentrations of molecules that bind H+ will have on the 
concentration of free H+. 
 
In the case of CsrA and CsrB, we can think of the concentration of free CsrA as being 
buffered by CsrB. As shown in Fig. 4.3, as more CsrB is added, larger changes in the 
total amount of CsrA are needed to appreciably change the concentration of free CsrA 
(approximately reported by GFP fluorescence). We now investigate whether CsrB can 
be used to decrease the effect that a competitor mRNA has on translation from a distinct 
CsrA target (much in the way a buffer of H+ prevents impurities from altering pH). 
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Specifically, we want to know whether we can achieve the same intermediate level of 
translation (and thus GFP fluorescence) from a reporter target mRNA in both a buffered 
and unbuffered state; this would be analogous to achieving the same pH in solutions 
exhibiting differing buffering capacities. 
 
As can be seen in the induction spaces in Fig. 4.4, the same intermediate level of target 
expression can be achieved at low levels of induction CsrA and CsrB (Fig. 4.7A, red 
triangle) and at high levels of induction CsrA and CsrB (Fig. 4.7A, blue triangle). As 
explained by our analogy with pH buffering, we expect that with low concentrations of 
CsrA and CsrB the induction of an mRNA competitor would have a notable effect on 
whether a reporter mRNA would be bound by CsrA, and thus whether or not the 
reporter protein would be translated (Fig. 4.7A, “not buffered”); in contrast, we would 
expect that with high concentrations of CsrA and CsrB the induction of an mRNA 
competitor would have much less of an effect on target mRNA occupancy and target 
protein translation (Fig. 4.7A, “buffered”). 
 
To test these hypotheses, we constructed synthetic circuits as follows (Fig. 4.7A). In each 
strain (HL5691, HL6129 and HL6131), glgC-gfp mRNA (the reporter) was transcribed 
constitutively; the promoter used was weaker than that used to transcribe the reporter 
mRNA in Fig. 4.5 [14] so that the competitor mRNAs would have an increased 
advantage over the reporter when competing for CsrA. Also in each strain, CsrB and 
glgC-rfp mRNA (the competitor) were transcribed using inducible promoters (PLlacO-1 
and PLtetO-1 respectively). CsrA was expressed constitutively in each strain, but using 
promoters with different strengths (PconNoHind, PconNoHindM8, and 
PconNoHindM10 in HL5691, HL6129 and HL6131 respectively with PconNoHind much 
stronger than the other two). Using each strain, CsrB was induced to varying degrees 
(using 0-2 mM IPTG) while the competitor mRNA was either uninduced or fully 
induced (using 0 or 1 µM aTc). Varying CsrB induction allowed us to identify 
conditions that with distinct buffering capacities for CsrA at the similar levels of CsrA 
activity (Fig. 4.7C, gray regions). 
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Fig. 4.8 | Raw data for crosstalk scatterplot. Data from experimental replicates are shown individually (e.g. as i, ii and iii) and thus 
plotted points are not shown with error bars. (A-C) This raw data is re-presented in Fig. 4.7 to compare the effect of adding a 
competitor mRNA (i.e. glgC-rfp) at similar levels of target expression across different strains with different levels of CsrB induction. 
In each strain: glgC-gfp (the target mRNA) is expressed from PconNoHindM12; CsrA is expressed from a constitutive promoter, 
each of distinct strength; CsrB is expressed from PLlacO-1 and induced with IPTG as shown; glgC-rfp (the target mRNA) is 
expressed from PLtetO-1 and is either uninduced or induced with 0 or 1 µM aTc respectively. (A) Data from HL5691. (B) Data from 
HL6129. (C) Data from HL6131. (D) Data from HL6035. This raw data was not included in the Fig. 4.7 scatterplot because HL6035 
contains chromosomal rather than synthetic csrA; it has been reported that native csrA is autoregulated by the CsrA protein, which 
complicates the analysis of this data. We do observe, however, that crosstalk can occur in systems with chromosomal csrA, 
signifying that crosstalk is not abolished by csrA feedback. CsrB, glgC-gfp (the target mRNA) and glgC-rfp (the competitor mRNA) 
are expressed as described for A-C. 
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To visually compare the buffering capacities of conditions that produce the same level 
of target expression, we presented our data using scatterplots (Fig. 4.7C); sensitivity to 
expression of the competitor was plotted on the y-axis (i.e. “target expression with the 
competitor mRNA induced” – “target expression without the competitor mRNA 
induced”; shown as the distance between black triangles in Fig. 4.7B) while the level of 
target expression (in the absence of the competitor mRNA) was plotted on the x-axis 
(height of black dashed line in Fig. 4.7B). In the model scatterplot, each distinct point 
represents the comparison of two simulations (one with competitor expression and one 
without) at the same rate of CsrB production (Fig. 4.7C, left); in the experimental 
scatterplot, each distinct point represents the comparison of two samples (one with the 
competitor induced and one without) taken from the same overnight culture and with 
the same level of CsrB induction (Fig. 4.7C, right). 
 
Our simulations and our in vivo experiments agree with our prediction from the 
analogy with acid buffering: induction of a competitor mRNA had a much greater effect 
on the reporter when CsrA was “not buffered” (i.e. [CsrA] and [CsrB] were low; red 
points in grey shaded region, Fig. 4.7C) than when CsrA was “buffered” (i.e. [CsrA] and 
[CsrB] were high; blue points in grey shaded region, Fig. 4.7C). Interestingly, GFP 
fluorescence from strains with low CsrA levels were less reproducible than from 
buffered strains when comparing replicates of cells with the same level of CsrB 
induction. This effect is itself consistent with the buffering analogy since we would 
expect a less buffered system to be more susceptible to stochastic and environmental 
fluctuations; the effect can be observed both in the scatterplot (Fig. 4.7C, right: y-axis 
coordinates of blue versus red points) and from the induction curve data that was 
processed to produce them (Fig. 4.8A versus Fig. 4.8B, C). 
 
4.4  DISCUSSION 
 
In this study, we reverse engineered and quantitatively modeled the CsrA regulatory 
network to understand how crosstalk among target mRNAs can be prevented while still 
allowing for coordinated and graded regulation of those targets. We have shown that 
the degree of crosstalk between target mRNAs can be tuned by modulating the 
concentrations of CsrA and CsrB in tandem (Fig. 4.7) while the level of translation of 
those targets can be tuned in a coordinated way by varying the relative concentrations 
of CsrA and CsrB (Figs. 4.3-4.10). We note that even under buffered conditions 
modulating CsrB induction is still an effective way for continuously tuning target 
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expression (Fig. 4.7, Fig. 4.8A) and that this is in part because CsrB is much more 
effective at sequestering CsrA than the other RNAs in the CsrA regulatory network (Fig. 
4.5).  
 
The CsrA system is not the only translational regulatory network facing crosstalk via 
competition for shared regulatory molecules. For example, in the past two decades the 
number of identified small regulatory RNAs (srRNAs) that target and regulate mRNA 
translation has increased dramatically with examples spanning all kingdoms of life 
[16,134]. Many of these srRNAs have multiple mRNA targets and/or share central 
regulatory complexes (e.g. Hfq, RISC) making them susceptible to the same forms of 
crosstalk as the CsrA system [16]; because the mechanisms of crosstalk are so similar, 
understanding how crosstalk can be buffered in the CsrA system has implications for 
other translational regulatory networks beyond CsrA homologs. Indeed, it has been 
proposed that within srRNA networks, fluctuations in translation from ‘principle’ 
target mRNAs may be buffered by a pool of ‘auxiliary’ target mRNAs which can bind to 
a shared central regulator but are not strongly regulated by it [135]. These two examples 
of mRNA buffering (i.e. in the CsrA and srRNA networks) may well represent a general 
principle of RNA buffering within translational regulatory networks, the regulatory 
consequences of which we are only beginning to explore. 
 
In conclusion, this study shows that the CsrA regulatory network contains all of the 
components needed to implement a scalable strategy for preventing mRNA-to-mRNA 
crosstalk while allowing coordinated and graded regulation of those mRNA targets. 
The sequestering ncRNAs at the center of this buffering strategy ensure its scalability 
because the addition of new target mRNA ‘nodes’ to the network can always be 
countered by a coordinated increase in CsrA and CsrB expression. This study 
illuminates yet another example of how CsrB (and regulatory RNAs in general) can 
enhance the robustness of their surrounding regulatory systems [14]. Finally, since the 
CsrA system is a member of a larger class of translational regulatory networks present 
in all kingdoms of life, the principle of RNA buffering described here is of general 
importance for understanding how gene expression is controlled. 
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4.5  METHODS 
 
4.5.1  Gene Expression Measurement and Analysis 
 
4.5.1.1  Cell growth protocols 
Steady state measurements of target and/or competitor protein expression were 
performed by inoculating 5-50 mL of overnight culture in 5 mL of LB media with 100 
µg/mL ampicillin and/or 50 µg/mL kanamycin as needed to ensure plasmid retention. 
Cultures were grown for 3-4 h with shaking at 37 °C and 200 rpm, and then 0.5-5 mL of 
culture was inoculated into 3-5 mL of fresh LB with antibiotics and isopropyl β-D-1-
thiogalactopyranoside (IPTG; 0.01 to 1 mM), anhydrotetracycline (aTc; 0.01 to 1 µM), 
both or neither. Collected cells were placed on ice. Single-cell GFP expression was 
measured using flow cytometry as previously described [21]. Single-cell RFP expression 
was measured using microscopy as described below. 
 
For steady-state measurements of RFP fluorescence, single colonies were grown 
overnight in LB media with 100 µg/mL of ampicillin and/or 50 µg/mL of kanamycin as 
required for plasmid retention. Overnight cultures were diluted ~ 1/1000 in fresh LB 
media containing the same antibiotics as the overnight LB as well as IPTG and aTc as 
described for the specific experiment (Fig. 4.6). These newly diluted cultures were 
grown for ~ 3 to 4 hours at 37°C with shaking to early exponential growth (OD600 ~ 0.1); 
cells were then harvested and placed on ice. To prepare slides for microscopy, ~ 1 mL of 
LB per sample was centrifuged at 16,100 × g for 1 min to concentrate the cells, these 
concentrated cells were then resuspended in ~ 4 µL of LB media; the 4 µL of media was 
then applied to the slide and secured beneath a glass coverslip. 
 
4.5.1.2  Microscopy protocols 
Microscopy was performed using a TE2000E microscope (Nikon) with an X-cite 120PC 
lamp (Exfo) and a 100× objective with phase 3 contrast. The excitation filter, dichroic 
mirror and emission filter used for microscopy measurements were 575 ± 25 nm, 610 
nm, and 640 ± 25 nm respectively. Images were captured using a Pixus 1024×1024 pixel 
CCD camera (Princeton Instruments) in conjunction with Metamorph 7.0 (Molecular 
Devices). Metamorph was also used to identify cells within the images and log their 
average RFP fluorescence. RFP fluorescence was recorded from ~ 30 to 300 cells per 
sample; each experimental condition was measured in duplicate (i.e. two independent 
samples from distinct overnight cultures were measured per condition). The average 
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fluorescence for each sample was determined by first averaging the fluorescence of cells 
within that sample and subsequently subtracting background fluorescence.  
 

 
 
Fig. 4.9 | CsrB strongly outcompetes target mRNAs for CsrA. Experiments to determine the fold increase in CsrA required to 
silence a target mRNA upon the addition of a competitor RNA (as presented in Fig. 4.5). Error bars are SEM of duplicate 
measurements. In each scenario GFP fluorescence from the target mRNA reporter is presented as a function of CsrA concentration 
in the presence and absence of an mRNA competitor. CsrA was expressed from PLlac:st7:csrA which was induced using between 0 
and 1 mM IPTG. The x-axis of each plot is calibrated using induction curve data from PLlacO-1:st7:gfp (HL4510). Each competitor 
was expressed from PLtetO-1 and was either uninduced (0 aTc, gray curves) or induced (1 µM aTc, black curves). (A) The ncRNA 
CsrB strongly competed with glgC-gfp mRNA for CsrA. (B) The ncRNA CsrC moderately competed with glgC-gfp mRNA for CsrA. 
(C) Negative control; the rfp mRNA did not compete with the glgC-gfp mRNA. (D) The five examined target mRNAs (i.e. CsrA target 
sequences translationally fused to rfp) competed only marginally with glgC-gfp mRNA for CsrA. RFP fluorescence measurements 
confirm the expression of these mRNA competitors and their repression by CsrA (Fig. 4.6). 

 
4.5.1.3  Quantifying competition for CsrA 
Because we have shown that the sequestration of CsrA is most observable over a 
window of CsrA concentrations (Fig. 4.3), we measured competition for CsrA in vivo 
over a range of CsrA expression levels. In each case the reporter mRNA, CsrA, and the 
competitor RNAs are expressed using PconNoHindM2 (a constitutive promoter), 
PLlacO-1 (induced with between 0 and 200 µM IPTG) and PLtetO-1 (induced with 0 or 1 
µM aTc) respectively. For each experiment, the relative intracellular concentration of 
CsrA was estimated from the amount of IPTG added using the induction curve for 
PLlacO-1:st7:gfp as described previously [14]. For the purposes of quantifying 
competition, we consider the reporter mRNA to be ‘silenced’ when GFP fluorescence 
drops to 1/10th of its initial value (i.e. 1/10th of the fluorescence measurement taken at 
the lowest level of CsrA achieved, which occurs at 0 µM IPTG). Using this definition, we 
quantified competition by determining the fold-increase in CsrA required to silence the 
reporter mRNA in the presence versus in the absence of the RNA competitor (orange 
line intersecting the black and grey curves respectively, Fig. 4.9). 
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When the ncRNAs CsrB (Fig. 4.9A) and CsrC (Fig. 4.9B) were induced, substantially 
more CsrA was required to silence the reporter mRNA (63 ± 0.7 fold and 7.7 ± 0.5 fold 
respectively) than when the ncRNAs were not transcribed. To show that these numbers 
specifically reflect competition for CsrA among RNAs with well-defined CsrA binding 
sites (and would arise upon induction of a generic transcript), we performed a control 
experiment with the competitor RNA replaced with rfp mRNA (Fig. 4.9C). For this 
negative control the 5’ untranslated region (UTR) of the rfp mRNA was taken from the 
agn43 gene that does not possess any known CsrA binding sites. As expected this non-
competitor did not increase the amount of CsrA required for silencing of the reporter 
(the amount of CsrA needed ‘increased’ by 0.8 ± 0.2 fold). 
 

 
 
Fig. 4.10 | Alternate target mRNA: hfq-gfp. Error bars are SEM of two or more measurements. CsrA is expressed from 
PLlac:st7:csrA which is induced using between 0 and 1 mM IPTG. The x-axis of each plot is calibrated using induction curve data 
from PLlacO-1:st7:gfp (HL4510). The glgC-rfp competitor was expressed from PLtetO-1 and was either uninduced (0 aTc, gray 
curve) or induced (1 µM aTc, black curve). The glgC-rfp mRNA competed only marginally with hfq-gfp mRNA for CsrA. RFP 
fluorescence measurements confirm the expression of the glgC-rfp mRNA competitor and its repression by CsrA in this strain (Fig. 
4.6A). 

 
Having quantified how effectively ncRNAs compete with the glgC-gfp reporter mRNA 
in vivo, we now use this same synthetic system to determine the strength of competition 
from native target mRNA leader sequences (Fig. 4.9D). Since the binding sites for CsrA 
are largely located in the 5’ UTR of target mRNAs (typically overlapping the ribosomal 
binding site), we fused parts of the 5’ UTR of known CsrA targets (parts known to 
include CsrA binding sites) to rfp to create several competitor mRNAs. These 
competitor mRNAs include glgC-rfp, pgaA-rfp, hfq-rfp, cstA-rfp and ydeH-rfp and their 
construction is detailed below. When induced, these competitor mRNAs (Fig. 4.9D) 
increase the amount of CsrA required for silencing only marginally more than the 
negative control (Fig. 4.9C) and much less than the ncRNAs (Fig. 4.9A, B). To confirm 
that the apparent weak competition for CsrA on the part of the target mRNAs was not 
an aberrant result arising from glgC-gfp (the reporter mRNA) being a particularly strong 
mRNA competitor, we performed an additional control with hfq-gfp as the reporter 
mRNA and glgC-rfp as the competitor (Fig. 4.10). We selected hfq-gfp as a likely weaker 
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competitor than glgC-gfp because the hfq 5’ UTR only has one known binding site for 
CsrA while the glgC 5’ UTR has four; additionally, the hfq and glgC mRNAs have 
comparable affinity for CsrA [53,131]. While hfq-gfp was not completely silenced by the 
addition of CsrA (i.e. the reporter only dropped to about 1/8th of its initial fluorescence) 
it is clear from inspection that glgC-rfp does not significantly rob hfq-gfp of CsrA (Fig. 
4.10). Note: for each of the strains using rfp or an rfp fusion mRNA competitor, RFP 
fluorescence measurements were recorded to ensure that the competitor mRNA was 
both expressed upon its induction, and repressed by induction of CsrA (Fig. 4.6A, B). 
 
4.5.2  Detailed Model Description 
 
4.5.2.1  Model overview 
To describe the CsrA regulatory network, we constructed a model with ordinary 
differential equations (ODEs) for each of the following species: the target protein 
(“GFP”), the target mRNA (“mGFP”), the competitor protein (“RFP”), the competitor 
RNA (“mRFP”), the CsrA dimer (“A”), the CsrB non-coding RNA (“B”), the CsrA-target 
mRNA complex (“AmGFP”), the CsrA-competitor mRNA complex (“AmRFP”) and the 
CsrA-CsrB complex (“AB”). This model extends our previous model of the CsrA 
cascade [14] by incorporating additional competitor mRNAs and proteins that were not 
considered previously. As with our previous model, “B” represents a pair of CsrA 
binding sites within the CsrB molecule that can be bound by a single CsrA dimer; in this 
way the CsrA-CsrB complex “AB” corresponds to a CsrA dimer that occupies one pair 
of CsrA binding sites. Parameter values (discussed below for each specific simulation) 
are identical to those used in our previous study except where otherwise stated [14].  
 
We now describe the equations and assumptions for the core model of the CsrA 
network used in this study. In our in vivo experiments, the green fluorescent protein 
GFP was used as the target protein and the red fluorescent protein mCherry (RFP) was 
used as the competitor protein. In or model, the target protein concentration ([GFP]) is 
determined by its production rate (the free target mRNA concentration ([mGFP]) 
multiplied by the rate constant αG) and its degradation rate ([GFP] multiplied by the 
rate constant for passive dilution (βdil)). 
 

 
[4.1] 

d[GFP]

dt
= ↵G[mGFP]� �dil[GFP]
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Similarly, the competitor protein concentration ([RFP]) is determined by its production 
rate (the free competitor mRNA concentration ([mRFP]) multiplied by the rate constant 
αR) and its degradation rate ([RFP] multiplied by the rate constant for passive dilution 
(βdil)). 
 

 
[4.2] 

 
The target mRNA concentration ([mGFP]) is determined by its production rate (αmGFP, 
which depends on how frequently it is transcribed) and its removal rate (determined by 
passive dilution, active degradation, and silencing by CsrA). The rates of active 
degradation and passive dilution are equal to [mGFP] multiplied by the rate constants βm 
and βdil respectively. The rate of removal of free target mRNA by formation of the CsrA-
target complex (AmGFP) is equal to the product of the target mRNA concentration, the 
CsrA dimer concentration and the association rate constant (k1). The rate of release of 
free target mRNA from the CsrA-target complex is equal to the product of the 
concentration of the complex ([AmGFP]) and the dissociation rate constant (k-1).  
 
For simplicity, we initially assume that the target and competitor leader sequences 
(within the target and competitor mRNAs) bind to one CsrA dimer each and that bound 
CsrA completely silences translation. The appropriateness of this simplifying 
assumption was validated experimentally both in this study and our previous work [14]. 
We note that, theoretically, free target mRNA could be generated by active degradation 
of CsrA from within the CsrA-target complex; however, since we know that the active 
degradation of CsrA is negligible, we omit reaction this from our model equations. 
 

 
[4.3] 

 
The competitor mRNA concentration ([mRFP]) is determined by the same processes as 
the target mRNA concentration. The rate constants governing the association and 
dissociation of CsrA dimers from the competitor mRNA are treated as identical to those 
of the target mRNA (i.e. k1 and k-1) for the purposes of this model; this is reasonable 
since in the simulated competition experiment (Fig. 4.7), the 5’ UTR sequence which 
contains the CsrA binding sites is the same on the target mRNA (glgC-gfp) and the 
competitor mRNA (glgC-rfp). The rate constant for the active degradation of the 

d[RFP]

dt
= ↵R[mRFP]� �dil[RFP]

d[mGFP]

dt
= ↵mGFP � (�m + �dil)[mGFP]� k1[A][mGFP] + k�1[AmGFP]
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competitor mRNA is assumed to be the same as the target, because most mRNAs have 
similar half-lives (on the order of single minutes) [133] and because the target and 
competitor mRNAs (glgC-gfp and glgC-rfp respectively) have very similar sequences. 
amRFP is the production rate of the competitor mRNA. The concentration of the CsrA-
competitor complex is [AmRFP]. 
 

 
[4.4] 

 
The concentration of CsrA-target complex ([AmGFP]) is determined by (i) the association 
and dissociation of the target mRNA with CsrA dimers and (ii) the clearance of the 
complex, either by passive dilution (rate constant βdil) or by the active degradation of 
the target mRNA while it is bound to CsrA the complex (rate constant βmAm). 
 

 
[4.5] 

 
The same processes that determine the concentration of the CsrA-target complex, 
determine the concentration of the CsrA-competitor complex ([AmRFP]). The rate 
constant for active degradation of competitor mRNA that is bound to CsrA is assumed 
to be the same as the target mRNA bound to CsrA (βmAm); again, this is a reasonable 
assumption because the mRNA sequences are highly similar and thus CsrA should 
affect the degradation of the two mRNAs in similar ways. 
 

 
[4.6] 

 
The concentration of free CsrB ([B]) is determined by its production rate (αB) and its 
removal rate (determined by passive dilution, active degradation, and sequestration 
into the CsrA-CsrB complex). To keep the model simple, [B] represents the 
concentration of CsrB binding sites rather than the concentration of complete CsrB RNA 
molecules [14]. In other words, the model quantifies the concentration of CsrB in terms 
of the number of CsrA dimers that it can bind to: one unit of [B] can bind one unit of [A]. 
We note that while this simplification requires the assumption that each CsrA dimer 
binds to the full length CsrB molecule independently, we have shown previously that 
this independent binding model is sufficient to describe the dynamic behavior of the 

d[mRFP]

dt
= ↵mRFP � (�m + �dil)[mRFP]� k1[A][mRFP] + k�1[AmRFP]

d[AmGFP]

dt
= k1[A][mGFP]� (k�1 + �mAm + �dil)[AmGFP]

d[AmRFP]

dt
= k1[A][mRFP]� (k�1 + �mAm + �dil)[AmRFP]
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CsrA cascade [14]. The rate of passive dilution of free CsrB equals [B] times the rate 
constant for passive dilution (βdil). The rate of active degradation of free CsrB (in the 
absence of the CsrD protein) equals [B] times the rate constant βB. Formation of the 
CsrA-CsrB complex occurs at a rate equal to the product of [A], [B] and the association 
rate constant for the CsrA-CsrB complex (k2). CsrB dissociates from the CsrA-CsrB 
complex at a rate equal to the product of concentration of the complex ([AB]) and the 
dissociation constant k-2. 
 

 
[4.7] 

 
The concentration of the CsrA-CsrB complex is determined by its rate of formation 
(described above), dissociation (described above), by the rate of active degradation of 
CsrB while CsrB is bound to CsrA (equal to the concentration of the complex [AB] 
multiplied by the rate constant βBAB) and by the rate of passive clearance of the complex 
(equal to [AB] multiplied by the rate constant βdil). 
 

 
[4.8] 

 
The concentration of free CsrA dimer ([A]) is determined by the production rate of the 
dimer (αA) by its clearance (by passive dilution), and by CsrA binding to and 
dissociation from (i) the target mRNA, (ii) the competitor mRNA and (iii) CsrB. To 
maintain the simplicity of the model CsrA dimers are generated in a single reaction step 
as described previously [14]. The rate of passive dilution of free CsrA dimers is equal to 
the product of [A] and the rate constant βdil. Free CsrA dimers form and dissociate from 
the CsrA-target or CsrA-competitor complexes as described above. 
 

 

[4.9] 

 
  

d[B]

dt
= �B � (�B + �dil)[B]� k2[A][B] + k�2[AB]

d[AB]

dt
= k2[A][B]� (k�2 + �BAB + �dil)[AB]

d[A]

dt
= ↵A � [A](�dil + k1[mGFP] + k1[mRFP] + k2[B]) +

(k�1 + �mAm)([AmGFP] + [AmRFP]) + (k�2 + �BAB)[AB]
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4.5.2.2  Simulation of dose/response relationships 
In Figs. 4.2 & 4.3, we simulated the dose/response relationships between a target 
mRNA, CsrA and CsrB. To perform these simulations, we used the model ODEs 
described above. 
 
In Fig. 4.2, the genetic circuit contained only a CsrA target gene (glgC-gfp) and csrA. 
Since csrB and the competitor gene were not present in the system, the rate of 
production of CsrB and the rate of production of the competitor mRNA (αB and αmRFP, 
respectively) were set to zero. Since target mRNA transcription was induced over a 
range of levels in our experiments, the rate of target mRNA transcription (αmGFP) was 
assigned a range of values between 0 and 5 nM·s-1 in our simulations. Since CsrA 
production was induced to three distinct levels in our experiments, the rate of CsrA 
dimer production (αA) was given three distinct values (0, 2·10-2 and 4·10-2 nM·s-1) in our 
simulations. The production rates for the target mRNA and CsrA (αmGFP and αA) were 
manually selected to fit the data; all other parameters (including rate constants for 
binding, unbinding, degradation and dilution) had values as previously described for 
the two-step cascade [14]. For each simulation (i.e. for each combination of parameters), 
the steady levels of all molecular species were obtained by solving numerically for the 
dynamic behavior of the system and allowing that simulation to converge as time 
increased. These simulations were performed by integrating the model’s ODEs using 
the ode15s solver in MATLAB. The initial conditions for all molecular species were set 
to zero. 
 
In Fig. 4.3, the genetic circuit contained a CsrA target gene (glgC-gfp), csrA and csrB. 
Since the competitor gene was not present in the system, the rate of production of the 
competitor mRNA (αmRFP) was set to zero. Since target mRNA transcription was not 
varied in these experiments, the rate of target mRNA transcription (αmGFP) was fixed at 
6·10-2 nM·s-1 in our simulations as per our prior model [14]. Since CsrA production was 
induced over a range of levels in our experiments, the rate of CsrA production was 
assigned a range of values between 0 and 10-4 nM·s-1 in our simulations. Since CsrB 
production was induced to four distinct levels in our experiments, the rate of CsrB 
production (αB) was given four distinct values (0, 8·10-3, 4·10-2 and 2·10-1 nM·s-1) in our 
simulations. The production rates for CsrA and CsrB were manually selected to fit the 
data; as for Fig. 4.2, all parameters that were not mentioned (including rate constants 
for binding, unbinding, degradation and dilution) had values as previously described 
for the two-step cascade [14].  
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In Fig. 4.4B, the genetic circuit contains the same components as in Fig. 4.3. Without the 
competitor mRNA gene the rate of production of the competitor mRNA (αmRFP) 
remained zero. Target mRNA transcription was not varied in these experiments (just as 
in Fig. 4.3) so the rate of target mRNA transcription (αmGFP) was maintained at 6·10-2 
nM·s-1 as above. Since the rates of production of both CsrA and the ncRNA (i.e. CsrB or 
CsrC) were induced over a range of levels in our experiments, the rates of production of 
both CsrA and the ncRNA were each assigned a range of values between 10-4 and 101 
nM·s-1. All parameters that were not mentioned (including rate constants for binding, 
unbinding, degradation and dilution) had values as previously described for the two-
step cascade [14]. Since CsrA and ncRNA levels were varied over a wide range in both 
our in vivo experiments and our simulations, no fitting of parameters was needed to 
demonstrate agreement between the experimental and simulated results; our model 
and our experiments (with CsrB and CsrC) both clearly shows that induction of a 
sequestering RNA has the strongest effect on target mRNA translation at intermediate 
levels of CsrA expression. We did not distinguish between CsrB and CsrC in our 
simulation, because the effectiveness of sequestration by CsrC shows the same 
multiphasic (i.e. non-monotonic) behavior as a function of CsrA expression that CsrB 
does. In this example CsrC operates simply as a less potent version of CsrB. 
 
In Fig. 4.4C, the genetic circuit contains the same components as in Fig. 4.4B with the 
addition of chromosomal csrD. The csrD gene expresses the CsrD protein, which binds 
to CsrB and CsrC and promotes their active degradation by RNAse E [51]. Additionally, 
it has been shown that expression of CsrD (from chromosomal csrD) is inhibited by free 
CsrA [14,51,64]. This regulation creates a chain of interactions, the net result of which is 
a negative feedback loop: CsrA inhibits CsrD expression, CsrD promotes CsrB clearance, 
and CsrB inactivates CsrA (Fig. 4.4C). As in Fig. 4.4B, we model the system using only 
the parameters for CsrB since the regulation via CsrB and CsrC showed the same 
qualitative behavior in vivo. To incorporate CsrD into our model, two additional 
equations are required to keep track of free CsrD and the CsrB-CsrD complex; these 
equations model CsrD in the same way as our prior study [14]. Free CsrD is produced 
at a maximum rate described by aD, but that rate is attenuated by the presence of free 
CsrA; we account for this inhibition by multiplying the production rate constant for 
CsrD (αD) by a hill-type function that has a range from 0 to 1 and reaches its half-
maximum when the concentration of free CsrA ([A]) equals the feedback regulation 
constant kf. Free CsrD is binds to CsrB at a rate equal to the product of the concentration 
of free CsrB ([B]), the concentration of free CsrD ([D]), and the rate constant kES. Free 
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CsrD is released from the CsrB-CsrD complex in two ways: by dissociation of CsrB 
(which occurs at a rate equal to the product of the concentration of the CsrB-CsrD 
complex ([BD]) and the rate constant k-ES), and by the degradation of CsrB by RNAse E 
(which occurs at a rate equal to the product of [BD] and the rate constant kP. CsrD is 
cleared passively by dilution at a rate equal to [D] multiplied by the rate constant βdil. 
 

 
[4.10] 

 
The concentration of the CsrB-CsrD complex ([BD]) increases when CsrB binds to CsrD, 
and decreases by the dissociation of CsrB from CsrD and by the degradation of CsrB by 
RNAse E as described above. The CsrB-CsrD complex can also be cleared by dilution at 
a rate equal to [BD] multiplied by the rate constant βdil. 
 

 
[4.11] 

 
In addition to incorporating Eqs. 4.10 & 4.11 above into our model of the CsrA network, 
Eq. 4.7 also must be modified to include terms for free CsrB binding to CsrD and CsrB 
dissociation from the CsrB-CsrD complex. Eq. 4.7’ below includes these modifications.  
 

 
[4.7’] 

 
In summary, the model of the CsrA network presented in Fig. 4.4C was simulated using 
Eqs. 4.1-4.6, 4.7’ (rather than 4.7), and 4.8-4.11. The rates of production of the target 
mRNA and the competitor mRNA are identical to Fig. 4.4B; all parameters that were 
not mentioned (including rate constants for binding, unbinding, degradation and 
dilution) had values as previously described for the three-step cascade with feedback 
[14]. 
 
4.5.2.3  Simulation of mRNA-to-mRNA crosstalk and buffering 
Crosstalk and buffering in the CsrA network were simulated in Fig. 4.7C. In the 
corresponding experiments, the genetic circuit contained both a CsrA target gene (glgC-
gfp) and a CsrA competitor gene (glgC-rfp) in addition to csrA and csrB. Note: since csrD 
was not present in this system, crosstalk and buffering was modeled using Eqs. 4.1 

d[D]
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= ↵D

✓
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◆
� �dil[D]� kES[B][D] + k-ES[BD]

d[BD]

dt
= kES[B][D]� (k-ES + kP + �dil)[BD]

d[B]

dt
= �B � (�B + �dil)[B]� k2[A][B] + k�2[AB]� kES[B][D]� k-ES[BD]



Part 4: Crosstalk in the CsrA system 

  117 

through 4.9 (and not Eqs. 4.7’, 4.10 or 4.11). Since CsrA production was maintained at 
high or low levels of expression constitutively in different strains, we divided our 
simulations into high and low [CsrA] scenarios accordingly. In the 1x [CsrA] scenario 
(red points, Fig. 4.7C) and the 50x [CsrA] scenario (blue points, Fig. 4.7C), the 
production rate of CsrA (αA) was assigned values of 4·10-2 nM·s-1 and 2 nM·s-1 
respectively. Since the rate of production of CsrB was induced over a range of levels in 
each strain, the rate of production CsrB was assigned a range of values between 10-4 and 
106 nM·s-1 in both the 1x [CsrA] and 50x [CsrA] scenarios. We do not expect the 
production rate of CsrB in the in vivo experiment to have quite this dynamic range, but 
by simulating this larger window of CsrB production rates the simulations provide 
more context in which to understand the experimental results. Target mRNA 
transcription was not varied in these experiments so the rate of target mRNA 
transcription (αmGFP) was maintained at 1.2·10-1 nM·s-1. The rate of competitor mRNA 
transcription (αmRFP) was set to either 0 or 3 nM·s-1. The production rates for the target 
mRNA, competitor mRNA and CsrA (αmGFP, αmRFP and αA) were manually selected to fit 
the data; all other parameters (including rate constants for binding, unbinding, 
degradation and dilution) had values as previously described for the two-step cascade 
[14]. 
 
4.5.3  Bacterial Strains and Plasmids 
Strain and plasmid information is provided in Table 4.1. Plasmid maps for plasmids 
first presented here are shown in Fig. 4.11. Oligonucleotide sequences are provided in 
Table 4.2. The nucleotides taken from the E. coli chromosome to construct each 
synthetic target and competitor mRNA sequence are as follows: the glgC-gfp and glgC-
rfp mRNAs both contained nucleotides -61 to +8 relative to the glgC start codon; the hfq-
gfp and hfq-rfp mRNAs contained nucleotides -71 to +56 relative to the hfq start codon; 
the cstA-rfp mRNA contained nucleotides -40 to +25 relative to the cstA start codon; the 
pgaA-rfp mRNA contained nucleotides -234 to +23 relative to the pgaA start codon; the 
ydeH-rfp mRNA contained nucleotides -37 to +22 relative to the ydeH start codon; the 
agn43-rfp negative control ‘competitor’ contained nucleotides -187 to +49 relative to the 
agn43 start codon. The PconNoHind, PconNoHindM2 and PconNoHindM12 promoters 
were described previously 14 and are variants of Pcon/O3 [55]. The PconNoHindM8 
promoter is identical to PconNoHindM12 except that seven nucleotides have been 
removed between -10 site and the ribosomal binding site. The PconNoHindM10 
promoter is identical to PconNoHind except for the removal of a nucleotide between 
the -10 and -35 sites. The PLlacO-1 promoter, PLtetO-1 promoter and T1 terminator 
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sequences were PCR amplified from pZ system plasmids [54]. The ribosomal binding 
sequences st2, st3 and st7 [83] were synthesized by Integrated DNA Technologies. The 
gfp gene and the T1T2 terminator sequence were PCR amplified from the pTAK102 
plasmid [54]. The mCherry gene was PCR amplified from a plasmid provided by R. 
Tsien (University of California, San Diego, CA) [84]. The Asp terminator sequence was 
PCR amplified from the pLex plasmid (Invitrogen). Sources for the tetR and lacIq gene 
sequences were reported previously [21,22]. Sequences for the csrA, csrB, csrC, csrD and 
cstA genes as well as the 5’UTR and portions of the cstA, glgC, hfq, pgaA, ycdT and ydeH 
genes were PCR amplified from the chromosome of E. coli MG1655 (Yale E. coli Stock 
Center, CGSC #7740).  
 
Table 4.1 | Plasmids and strains 
ID* Description 
pHL600† PLtetO-1:csrB, PLlacO-1:RBS(st7):csrA 
pHL601 PLtetO-1:csrC, PLlacO-1:RBS(st7):csrA 
pHL662† PLtetO-1:RBS(st7):mCherry, PLlacO-1:RBS(st7):gfp 
pHL1318† PconNoHind:RBS(st3):tetR, PconNoHind:RBS(st2):csrA 
pHL1335† PconNoHindM12:glgC::gfp, PconNoHind:RBS(st3):tetR, PconNoHind:RBS(st2):csrA 
pHL1355† PconNoHindM12:glgC::gfp, PconNoHind:RBS(st3):tetR, PconNoHind:RBS(st3):csrA 
pHL1488 PconNoHindM10:glgC::gfp, PconNoHind:RBS(st3):tetR, PconNoHind:RBS(st2):csrA 
pHL1529† PLlacO-1:glgC::gfp, PconNoHind:RBS(st3):tetR, PconNoHind:RBS(st2):csrA 
pHL1590 PLtetO-1:RBS(st3):csrA 
pHL1722 PLtetO-1:glgClead::mCherry, PLlacO-1:RBS(st7):csrA 
pHL1724 PLtetO-1:pgaAleadFull::mCherry, PLlacO-1:RBS(st7):csrA 
pHL1726 PLtetO-1:hfqlead::mCherry, PLlacO-1:RBS(st7):csrA 
pHL1745 PLtetO-1:cstAlead::mCherry, PLlacO-1:RBS(st7):csrA 
pHL1747 PLtetO-1:ydeHlead::mCherry, PLlacO-1:RBS(st7):csrA 
pHL1756† PconNoHindM12:glgC::gfp, PconNoHind:RBS(st3):tetR 
pHL1757† PconNoHindM2:glgC::gfp, PconNoHind:RBS(st3):tetR 
pHL1790 PLtetO-1:glgClead::mCherry, PLlacO-1:csrB 
pHL1914 PconNoHindM2:hfqlead::gfp, PconNoHind:RBS(st3):tetR 
pHL1928 PLtetO-1:Agn43RBS:mCherry, PLlacO-1:RBS(st7):csrA 
pHL1940 PLtetO-1:cstA‡, PLlacO-1:RBS(st7):csrA 
pHL1947 PconNoHindM12:glgC::gfp, PconNoHind:RBS(st3):tetR, PconNoHindM8:RBS(st3):csrA 
pHL1948 PconNoHindM12:glgC::gfp, PconNoHind:RBS(st3):tetR, PconNoHindM10:RBS(st3):csrA 
HL3796† HL716§ + ΔcsrA + ΔcsrB + ΔcsrC + ΔglgCAP + ΔpgaABCD 
HL3986 HL3796 + pHL600 + pHL1335 
HL4018† HL716§ + ΔcsrB + ΔcsrC + ΔcsrD + ΔglgCAP + ΔpgaABCD 
HL4022 HL3796 + pHL601 + pHL1335 
HL4142† HL716§ + ΔcsrA + ΔcsrB + ΔcsrC + ΔcsrD + ΔglgCAP + ΔpgaABCD 
HL4495† HL4142 + pHL1335 + pHL600 
HL4496 HL4142 + pHL1335 + pHL601 
HL4510† HL4142 + pHL1318 + pHL662 
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HL4550 HL4142 + pHL1488 + pHL600 
HL5050 HL4142 + pHL1529 + pHL1590 
HL5620 HL4142 + pHL1722 + pHL1757 
HL5621 HL4142 + pHL1724 + pHL1757 
HL5623 HL4142 + pHL600 + pHL1757 
HL5624 HL4142 + pHL601 + pHL1757 
HL5643 HL4142 + pHL1726 + pHL1757 
HL5644 HL4142 + pHL1745 + pHL1757 
HL5646 HL4142 + pHL1747 + pHL1757 
HL5691 HL4142 + pHL1355 + pHL1790 
HL6035 HL4018 + pHL1756 + pHL1790 
HL6051 HL4142 + pHL1914 + pHL1722 
HL6055 HL4142 + pHL1928 + pHL1757 
HL6105 HL4142 + pHL1940 + pHL1757 
HL6129 HL4142 + pHL1947 + pHL1790 
HL6131 HL4142 + pHL1948 + pHL1790 
 
Table 4.1 | Plasmids and strains. Selected plasmids and strains were submitted to the Addgene repository (www.addgene.org). 
*ID numbers beginning with “pHL” correspond to plasmids; ID numbers beginning with “HL” correspond to strains. †These plasmids 
and strains were reported previously [14].  ‡This indicates full-length cstA gene with its native leader region amplified with the 
cstAleadSalF and cstAstopApaR oligos (see Table 4.2). §This strain is MG1655 with lacIq added to the chromosome [21].  
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Table 4.2 | Oligonucleotides 
name description sequence 

csrARBSXmaF 
PCR amplifies csrA with a 
synthetic RBS (st7) 

CCTCCCGGGTAAGGAGGAAAAAAAATGCTGATTCTGACTCGTCGAGTTG 

csrARBS3XmaF 
PCR amplifies csrA with a 
synthetic RBS (st3) 

CCTCCCGGGTAAGGAGGAAAATGCTGATTCTGACTCGTCGAGTTG 

csrAKpnHindR PCR amplifies csrA 
GGCCAAGCTTCTTTCAGGTACCTTAGTAACTGGACTGCTGGGATTTTTC
AG 

csrARBS2NotIF 
PCR amplifies csrA with a 
synthetic RBS (st2) 

TCCTGCGGCCGCTAAGGAGGAAATGCTGATTCTGACTCGTCGAGTTG 

csrARBS3NotIF 
PCR amplifies csrA with a 
synthetic RBS (st3) 

TCCTGCGGCCGCTAAGGAGGAAAATGCTGATTCTGACTCGTCGAGTTG 

csrAApaR PCR amplifies csrA TAAGGGCCCTTAGTAACTGGACTGCTGGGATTTTTCAG 

csrBSalF PCR amplifies csrB CAAGTCGACGAGTCAGACAACGAAGTGAACATC 

csrBApaR PCR amplifies csrB CATGGGCCCAATAAAAAAAGGGAGCACTGTATTCACAGC  

csrBXmaF PCR amplifies csrB CCTCCCGGGGAGTCAGACAACGAAGTGAACATC 

csrBHindR PCR amplifies csrB GGCCAAGCTTAATAAAAAAAGGGAGCACTGTATTCACAGC 

csrCSalF PCR amplifies csrC CAAGTCGACATAGAGCGAGGACGCTAACAGGAAC 

csrC2ApaR PCR amplifies csrC CATGGGCCCCAGTATAGATTTGCGGCGGAATCT 

GFPRBSSalSphF 
PCR amplified gfp with SalI & SphI 
sites 

TTAGTCGACTAAGGAGGAAAAAGCATGCGTAAAGGAGAAGAACTTTTC  

RCYFPNoRBSSphF 
PCR synthesis of mCherry without 
an RBS sequence 

TACGCATGCTGAGCAAGGGCGAGGAG 

RCYApaIR PCR synthesis of mCherry CATGGGCCCTTACTTGTACAGCTCGTCCATGCC 

PconNoHindBamHF 
PCR synthesis of Pcon promoter 
with no HindIII site 

CGCGGATCCTCGAGCACCGTCGTTGTTGACATTTTTATGCTTGGCGGTT
ATAAT 

PconNoHindXmaR 
PCR synthesis of Pcon promoter 
with no HindIII site 

CCTCCCGGGTGTGTGGAATCCATTATAACCGCCAAGCATAAAAATGTCA
ACAAC 

PconNoHindEcoRF 
PCR synthesis of Pcon promoter 
with no HindIII site 

CCGGAATTCTCGAGCACCGTCGTTGTTGACATTTTTATGCTTGGCGGTT
ATAAT 

PconNoHindNotlR 
PCR synthesis of Pcon promoter 
with no HindIII site 

TCCTGCGGCCGCCTGTGTGGAATCCATTATAACCGCCAAGCATAAAAAT
GTCAACAAC 

PconM2NoHindAatF 
PCR synthesis of PconM2 
promoter with no HindIII site 

CGCGACGTCTCGAGCACCGTCGTTGTTTACATTTTTATGCTTGGCGGTT
ATGAT 

PconM2NoHindSalR 
PCR synthesis of PconM2 
promoter with no HindIII site 

TTAGTCGACCTGTGTGGAATCCATCATAACCGCCAAGCATAAAAATGTA
AACAAC 

PconM6NoHindAatF 
PCR synthesis of PconM10 
promoter with no HindIII site 

CGCGACGTCTCGAGCACCGTCGTTGTTGACATTTTTATGCTTGGCGTAT
AAT 

PconM10NoHindSalR 
PCR synthesis of PconM10 
promoter with no HindIII site 

TTAGTCGACCTGTGTG 
GAATCCATTATACGCCAAGCATAAAAATGTCAACAAC 

PconM8NoHindAatF 
PCR synthesis of PconM8 and M12 
promoter with no HindIII site 

CGCGACGTCTCGAGCACCGTCGTTGTTTACATTTTTATGCTTGGCGGTT
ATGGT 

PconM8NoHindSalR 
PCR synthesis of PconM8 
promoter with no HindIII site 

TTAGTCGACGAATCCACCATAACCGCCAAGCATAAAAATGTAAACAAC 

PconM12NoHindSalR 
PCR synthesis of PconM12 
promoter with no HindIII site 

TTAGTCGACCTGTGTGGAATCCACCATAACCGCCAAGCATAAAAATGTA
AACAAC 
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cstAstopApaR PCR synthesis of full length cstA CATGGGCCCTTAGTGTGCGCCTTTTGCCTGCGC 

glgCleadSalF 
PCR amplifies 5'UTR of glgC 
leader for fusion to gfp 

CCTGTCGACTCTGGCAGGGACCTGCACACGGATTG 

glgCleadSphR 
PCR amplifies 5'UTR of glgC for 
fusion to gfp 

TACGCATGCTAACCATGACTAACTCCTTTTTTATCATCTCTGG 

cstAleadSalF 
PCR amplifies 5'UTR of cstA 
leader for fusion to gfp 

CCTGTCGACAAATGTAACATCTCTATGGACACG 

cstAleadSphR 
PCR amplifies 5'UTR of cstA 
leader for fusion to gfp 

TACGCATGCTCCAGACGAGGTATTTCCCTGATTT 

pgaAleadFullSalF 
PCR amplifies 5'UTR of pgaA 
leader for fusion to gfp 

CCTGTCGACAGGCATTGGGATTTATGCCGTATTCC 

pgaAleadSphR 
PCR amplifies 5'UTR of pgaA 
leader for fusion to gfp 

TACGCATGCTTTTTCTGCTACTTGAATACATCCTGTATTACTC 

HfqleadSalF 
PCR amplifies 5'UTR of hfq leader 
for fusion to gfp 

CCTGTCGACGTATCGTGCGCAATTTTTTCAGAA 

HfqleadSphR 
PCR amplifies 5'UTR of hfq leader 
for fusion to gfp 

TACGCATGCGTTCCCGACGCAGTGCGTTCAG 

ydeHleadSalF 
PCR amplifies 5'UTR of ydeH 
leader for fusion to gfp 

CCTGTCGACAATAGCGCGCACAAGGAACTGTGA 

ydeHleadSphR 
PCR amplifies 5'UTR of ydeH 
leader for fusion to gfp 

TACGCATGCTTTCCGTTGTCTTCTTGATCATTGC 

AgdownswitchSalF 
PCR synthesis of RBS sequence 
from the Agn43 system 

TTAGTCGACGATAAGCTAATAATAACCTTTGTC 

AgmvwSphIR 
PCR synthesis of RBS sequence 
from the Agn43 system 

TTTACGCATGCTCATGTGATTCCATACCAG 

TetRRBS3XmaF 
PCR synthesis of tetR with a 
synthetic RBS (st3) 

TATCCCGGGTAAGGAGGAAAATGTCTAGATTAGATAAAAGTAAAG 

TetRHindIIIR PCR synthesis of tetR GGCCAAGCTTAAGACCCACTTTCACATTTAAG 

 
Table 4.2 | Oligonucleotides. Oligonucleotide sequences for selected PCR primers that were used to construct the plasmids 
(Table 4.1, Fig. 4.11). 
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Fig. 4.11 | Plasmid maps. Only new plasmids with maps not drawn elsewhere are depicted here. *Plasmids listed in brackets are 
similar to the plasmid shown except for the differences described here. Relative expression levels from the different ribosome 
binding sequence (RBS) used are as follows: st7 > st3 > st2. p15a and ColE are origins of replication. T1 Term, T1T2 Term and Asp 
Term are terminator sequences. (A) pHL601. (B) pHL1488. (C) pHL1590. (D) pHL1722. In pHL1724, pgaAleadFull replaces 
glgClead. In pHL1726, hfqlead replaced glgClead. In pHL1745, cstAlead replaced glgClead. In pHL1747, ydeHlead replaced 
glgClead. In pHL1928, the agn43RBS replaced glgClead. (E) pHL1790. (F) pHL1914. (G) pHL1940. (H) pHL1947. In pHL1948, 
PconNoHindM10 replaced PconNoHindM8. 
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5.  Conclusion 
 
Gene regulatory circuits possess a wide variety of functionality, enabling them to 
control separate sets of genes in distinct ways in accordance with the genes’ 
physiological roles. Understanding how to configure genetic circuits to achieve these 
distinct modes of functionality is important not only for understanding native biological 
systems, but also for the rational design and construction of synthetic circuits for 
industrial, medical and environmental purposes. The three studies presented in this 
thesis each investigated the functionality and architecture of translational RNA 
regulatory networks.  
 
The first study demonstrated that the dynamics of signaling in the CsrA regulatory 
cascade is strongly influenced both (i) by the interplay between slowly-cleared 
regulatory proteins and upstream regulators that either sequester or degrade them and 
(ii) by negative feedback that arises from the inhibition of CsrD expression by CsrA. 
While adjusting molecular turnover and applying negative feedback are both known 
mechanisms for manipulating the dynamic behavior of biochemical systems, this first 
study is important because it identified these two mechanisms as key players in the 
conserved CsrA network which governs bacterial metabolism, motility, virulence, 
quorum sensing and biofilm formation; additionally, this study helped to establish the 
operational properties of the CsrB (and CsrC) regulatory RNAs: non-coding RNAs 
which have stirred significant interest in the microbiology community for their 
distinctive mechanism of action. 
 
The second study described the functional constraints of the Hfq-dependent sRNA 
network. Because a large pool of genetically distinct sRNA and mRNA molecules must 
interact with the shared Hfq chaperone for those sRNAs to regulate their targets, 
competition for Hfq can easily lead to crosstalk among pathways and potentially the 
collapse of the entire regulatory network [20]. In order to enable the numerous parallel 
pathways to utilize Hfq, certain kinetic constraints must be obeyed in order to avoid 
rampant formation of mismatched sRNA-Hfq-mRNA complexes. This study is 
important because it provided a general conceptual and mathematical framework for 
understanding these constraints. 
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The third study also examined how an RNA regulatory network may avoid crosstalk, 
but this time in the context of the CsrA regulatory system. In this case, sequestering 
non-coding RNAs (e.g. CsrB) are shown to be able to buffer the activity of CsrA; 
additionally, that buffering is shown to mitigate mRNA-to-mRNA crosstalk by 
minimizing the influence that changes in mRNA levels has on CsrA activity. This result 
is important because it demonstrated that the principle of buffering, while well known 
in the context of pH, can also be applied to understanding genetic regulatory networks. 
 
All told, the three studies presented here systematically examined signaling dynamics 
and crosstalk within two RNA networks, both of which are highly conserved across 
species and share common features with other RNA regulatory mechanisms. By 
understanding both the realized and the potential operational behaviors of these model 
systems we enhance our comprehension of the space in which all RNA regulatory 
mechanisms function and evolve. 
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