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Coordinate versus momentum cuts and effects of collective flow on critical fluctuations
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We analyze particle number fluctuations in the crossover region near the critical endpoint of a first-order
phase transition by utilizing molecular dynamics simulations of the classical Lennard-Jones fluid. We extend
our previous study [V. A. Kuznietsov et al., Phys. Rev. C 105, 044903 (2022)] by incorporating longitudinal
collective flow. The scaled variance of particle number distribution inside different coordinate and momentum
space acceptances is computed through ensemble averaging and found to agree with earlier results obtained using
time averaging, validating the ergodic hypothesis for fluctuation observables. Presence of a sizable collective flow
is found to be essential for observing large fluctuations from the critical point in momentum space acceptances.
We discuss our findings in the context of heavy-ion collisions.

DOI: 10.1103/PhysRevC.110.015206

I. INTRODUCTION

Identifying the existence and location of the QCD critical
point (CP) at finite baryon density is one of the main goals of
the beam energy scans performed with relativistic heavy-ion
collisions [1]. Event-by-event fluctuations of the proton num-
ber are the primary observable here [2,3]. In particular, proton
number cumulants are expected to show a nonmonotonic col-
lision energy dependence if the QCD critical point exists and
heavy-ion collisions are sensitive to it in a narrow collision
energy range [4]. Experimental measurements performed by
the STAR Collaboration within phase I of the RHIC beam
energy scan show indications for a nonmonotonic collision
energy dependence of the proton kurtosis κσ 2 = κ4/κ2 [5],
although the experimental error bars are still too large to draw
firm conclusions. On the other hand, second-order cumulants
of protons were measured with much larger precision [6], and
show indications for an excess of the proton number scaled
variance at

√
sNN � 20 GeV relative to baseline expectations

due to baryon number conservation and repulsive baryon
hard-core (see Ref. [7] for a recent overview). Interestingly,
measurements at even lower energies,

√
sNN = 2.4 GeV by

HADES [8] and
√

sNN = 3 GeV by STAR [9] also show
indications for the large variance of the proton number dis-
tribution, although these measurements are affected by large
volume fluctuation effects unrelated to the CP. Therefore, the
effort to locate the CP with heavy-ion collisions is now mainly
focused on collision energies of

√
sNN � 2.4–20 GeV, with

future experimental data coming from RHIC BES-II and fixed
target programs, as well as the CBM experiment at FAIR
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[10]. In addition, several recent effective QCD approaches
[11–17] constrained by lattice QCD simulations at μB = 0
place the CP into a T -μB range probed by intermediate energy
heavy-ion collisions [7].

Interpreting heavy-ion data on event-by-fluctuations is
challenging due to many caveats associated with the corre-
sponding measurements. In particular, direct comparisons of
the grand-canonical equilibrium cumulants obtained in most
theoretical calculations with experimental measurements are
hindered by canonical ensemble effects, the difference be-
tween coordinate and momentum space cuts, nonequilibrium
dynamics and finite-size effects, and other caveats. Therefore,
a dynamical description of critical fluctuations is required to
make meaningful conclusions based on experimental data.
A dedicated effort is underway to incorporate critical fluc-
tuations into relativistic hydrodynamics [18,19], as well as
hadronic transport with mean fields [20] or molecular dynam-
ics with a critical point [21]. There are also separate studies
on the impact of the first-order phase transition on fluctuations
[22–24], as well as the production of clusters [25,26].

In previous work [21], we used molecular dynamics (MD)
simulations of the Lennard-Jones (LJ) fluid to study the
behavior of particle number fluctuations near a CP from
the three-dimensional (3D)-Ising universality class in a mi-
croscopic setup. The simulations were performed on the
crossover side of the transition and confirmed the large im-
print of the CP in the variance of particle number inside a
coordinate space subsystem. However, the large fluctuations
of the particle number were completely washed out after co-
ordinate cuts were replaced by momentum cuts (Fig. 1). Since
the simulations were performed in a uniform periodic box,
there were no correlations between the particles’ coordinates
and momenta, hence the loss of the CP signal in momentum
space.

In the present work, we extend our previous study to con-
ditions appropriate for heavy-ion collisions. First, we replace
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FIG. 1. (a) Red points depict the particles inside longitudinal coordinate and momentum space acceptance (b) without and (c) with
longitudinal collective flow.

time averaging with ensemble averaging by simulating many
events with random initial conditions. In this way, we verify
whether the ergodic hypothesis extends to critical fluctuations
[27]. This question is particularly relevant in the context for
heavy-ion collisions, where fluctuations are studied on event-
by-event basis and hence correspond to ensemble averaging.
Second, we incorporate longitudinal flow, which correlates
longitudinal momenta (rapidities) and coordinates (space-
time rapidities) of particles (as depicted in Fig. 1(c). This al-
lows us to establish whether large fluctuations survive in typi-
cal rapidity acceptances realized in heavy-ion measurements.

The paper is organized as follows. In Sec. II we briefly de-
scribe the molecular dynamics framework and the simulation
setup. In Sec. III, we present the results for coordinate space
fluctuations and verify the ergodic hypothesis. In Sec. IV,
we introduce longitudinal flow and study the behavior of
fluctuations at different collision energies and rapidity accep-
tances. We also explore the effect of critical slowing down and
compare our results to experimental data. We summarize our
findings in Sec. V.

II. SIMULATION SETUP

A. Lennard-Jones fluid

The LJ fluid corresponds to a system of classical nonrela-
tivistic particles interacting via the following potential:

VLJ(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]
. (1)

Here the first term corresponds to the repulsion at short
distances while the second term models intermediate range
attraction. The two parameters σ and ε correspond to the
size of the repulsive core and the depth of the attractive well,
respectively, and define the corresponding length and energy
scales in the system.

It is customary to use dimensionless variables by defining
the reduced temperature T̃ = T/(kBε) and density ñ = nσ 3.
The particle mass defines the dimensionless time variable,
t̃ = t

√
ε/(mσ 2). Most properties of the LJ fluid, including

the phase diagram in temperature/density plane, become in-
dependent of σ and ε in these variables.

Although the equation of state of LJ is not known exactly,
it has been studied extensively with molecular dynamics

simulations. The phase diagram of the LJ fluid contains a
rich phase structure, including a first-order liquid-gas phase
transition with a CP in 3D-Ising universality class [28],
located at T̃c = 1.321 ± 0.007 and ñc = 0.316 ± 0.005 [29].

B. Molecular dynamics

MD simulations proceed by numerically integrating New-
ton’s equations of motion. The simulations are performed
using the velocity-Verlet integration method for the sys-
tem of N particles with periodic boundary conditions in the
minimum-image convention form.1 In the previous work [21],
we used the simulations to study the behavior of particle num-
ber fluctuations along the supercritical isotherm T̃ = 1.06T̃c.
This was achieved by performing the simulations for a long
period of time at each value of particle number densities and
computing the moments of particle number distribution as
time average.

In the present work, we explore the same conditions of
temperature and density as in Ref. [21] and use the same
GPU-accelerated MD simulation code from Ref. [31]. We
refer to Sec. III of Ref. [21] for the details of MD simulation
framework. The key difference to Ref. [21] is that here we
calculate the observables as ensemble averages, namely, by
performing a large number of MD simulations at each density,
each simulation initialized with random initial conditions. In
this way we are able to compare ensemble averaging with time
averaging in Ref. [21] and study equilibration dynamics at dif-
ferent conditions of particle number density. Our simulations
here are performed for N = 400, which approximately corre-
sponds to the total number of baryons in central collisions of
heavy ions when the production of baryon-antibaryon pairs is
negligible.

C. Workflow

1. External conditions

We perform simulations at three points in the phase dia-
gram. They all correspond to the same temperature of T̃ =
1.4 � 1.06 T̃c but different values of the number density:

1One can see details of method in Ref. [30] and find the simulation
setup source in Ref. [31].
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(i) ñ = 0.1 � 0.32 ñc (dilute), (ii) ñ = 0.3 � 0.95 ñc (criti-
cal), and (iii) ñ = 0.6 � 1.90 ñc (dense). The value of the
density determines the length of the simulation box, L̃ =
(N/ñ)1/3, where N = 400. The simulations are performed in
the microcanonical ensemble, where the energy per particle
ũ = Ũ/N , rather than the temperature T̃ is a fixed quantity
strictly conserved throughout the evolution. To achieve the
desired mapping of the microcanonical simulation to the de-
sired (T̃ , ñ) point on the phase diagram, we initialize the
system with the energy per particle ũ that matches the value
from the LJ equation of state (see Ref. [21] for the details on
this mapping). We crosscheck that the average value of the
kinetic temperature during the simulation matches T̃ = 1.4 to
a relative accuracy of about 1% once equilibrium is reached.

2. Initial conditions

For each (T̃ , ñ) point, we perform approximately 32000
simulations with random initial conditions. The sampling of
initial conditions proceeds as follows:

(1) The coordinates of all N particles are sampled
uniformly within the simulation box of length L̃.
Whenever we sample the coordinates of a particle, we
check its overlap with any of the previously sampled
particles by requiring that the distance to any other
particle is larger than 0.9σ . If an overlap is detected,
the coordinates of this particle are rejected and resam-
pled until there are no overlaps. This step is necessary
to maintain stability in the initial state by avoiding
large potential energy due to the overlap of any two
particles.

(2) The momenta of the particles are sampled indepen-
dently for each particle from the Maxwell-Bolztmann
distribution corresponding to the temperature of T̃ .

(3) For each spatial direction, the momentum components
of each particle are shifted by a constant amount such
that the total momentum in the system is zero.

(4) The momenta of each particle are rescaled by a con-
stant factor such that the total energy of the system
matches the desired input value of Ũ .

3. MD simulation

Each event is propagated from the initial time t̃ = 0 to
t̃ = 100 by solving the equations of motion with the GPU-
accelerated MD solver [31]. We use a time step size of
�t̃ = 0.004 for ñ = 0.32ñc and 0.95ñc, and a smaller value of
�t̃ = 0.002 for ñ = 1.9ñc. These values were found to be suf-
ficient to maintain the numerical stability and accuracy of the
simulations, which we verified by monitoring the conservation
of energy Ũ throughout the simulation. The coordinates and
momenta of all particles in each event are written to file with
a time step of �tout = 1 for further processing and analysis.

4. Analysis

The files with the events are processed to analyze the
behavior of particle number fluctuations in various setups.
This is achieved by computing the particle numbers Nacc in
the desired acceptances in each event, then computing the

FIG. 2. Time dependence of the corrected scaled variance w̃α

of particle number distribution inside longitudinal coordinate space
acceptance calculated through ensemble averaging at T = 1.06Tc for
three values of particle number density, n � 0.32nc (green band),
n � 0.95nc (yellow band), and n � 1.9nc (brown band). The band
width corresponds to the statistical error. The horizontal bands corre-
spond to equilibrium expectations from Ref. [21] computed as time
averages. The inset zooms into the ñ = 1.9nc calculation at small
times, t̃ < 5.

corresponding scaled variance

w̃[Nacc] = 1

1 − α
×

〈
N2

acc

〉 − 〈Nacc〉2

〈Nacc〉 (2)

from the sample. Here α = 〈Nacc〉/N is the fraction of the
whole system inside the acceptance and 1

1−α
is the correction

factor due to global baryon number conservation, as derived
in Ref. [32]. The moments 〈Nacc〉 and 〈N2

acc〉 are calculated
through event-by-event averaging.2

III. COORDINATE SPACE
FLUCTUATIONS AND ERGODICITY

A. Ergodicity

We first look at fluctuations in coordinate space acceptance
without any effects of collective flow and expansion. This is
achieved by performing a cut |z̃| < z̃cut on the longitudinal
coordinate of particles. In this case, the α parameter in Eq. (2)
is known beforehand and is simply equal to the ratio of the
subvolume relative to the total volume, α = 2 z̃cut/L̃.

Figure 2 depicts the time evolution of w̃ for the three
densities considered and a fixed value of z̃cut corresponding to
α = 0.5. In all three cases, one observes saturation of w̃ values

2We estimate their standard error through the Delta theorem by
using SAMPLE-MOMENTS package [33].
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FIG. 3. The corrected scaled variance w̃α of particle number distribution inside longitudinal coordinate space acceptance as a function
of acceptance fraction α, calculated through ensemble averaging at T = 1.06Tc for three values of particle number density, (a) n � 0.32nc,
(b) n � 0.95nc, and (c) n � 1.9nc. Different bands correspond to different values of time after initialization, while the band widths corresponds
to statistical error. The red bands corresponding to equilibrium expectations from Ref. [21] computed as time averages.

at large times, reflecting the equilibration of fluctuations. The
equilibrium values at large times are consistent within statisti-
cal errors with time averages, shown by horizontal bars, from
our earlier study [21]. This is true for all values of 0 < α < 1,
not just α = 0.5, see Fig. 3. This observation confirms the va-
lidity of ergodic hypothesis for particle number fluctuations in
pure phases, including the vicinity of the CP. This confirms the
suitability of using event-by-event fluctuations for searching
the CP in heavy-ion collisions.

At the initial time, the fluctuations are suppressed relative
to the baseline, ω̃ < 1, with stronger suppression at larger den-
sity. Recall that the initial conditions correspond to uniform
distribution of particles’ coordinates, with the additional con-
straint that no two particles are allowed to overlap. Prohibiting
the overlap corresponds to the effect of hard-core repulsion,
which suppresses particle number fluctuations [34].

B. Equilibration and critical slowing down

The time it takes for fluctuations to equilibrate is different
for different densities, as evident from Fig. 2. One can char-
acterize the equilibration time more rigorously by considering
relaxation time approximation, which is expected to be valid
at large times where system is sufficiently close to equilib-
rium. The time dependence of w̃α (t̃ ) reads

w̃α (t̃ ) = w̃eq
α + C̃αe−t̃/τ̃α , (3)

where w
eq
α is the equilibrium value, τ̃α is the equilibration

time, and Cα is a parameter dependent on initial conditions.
We perform fits to the time dependencies shown in Fig. 2

through Eq. (2) applied to an appropriate time interval where
relaxation time approximation is valid. We also perform the
fit for an additional simulation performed for n = 0.5nc. The
results are depicted in Table I.

The dependence of τ
eq
α on particle number density shows

interesting features. It first shows decrease with density, seen
by comparing the results for n = 0.3nc and n = 0.5nc. Larger
relaxation times at lower values of the density can be under-
stood in terms based on the correspondingly large mean-free

path, τmfp � (σn)−1. At large density, n = 1.9nc, the equili-
bration time is considerably smaller, τ̃α � 0.71, reflecting fast
diffusion in a dense system. The largest value of τ̃α � 4.06 is
observed near the critical density, n = 0.95nc, indicating that
the density dependence of τ̃α is a nonmonotonic with peak
around the critical density. This observation can be related to
the so-called critical slowing down, where it takes a long time
for critical fluctuations to reach equilibrium.

One can see that the equilibrium value of ω̃
eq
α at a den-

sity half the critical one, n = 0.5nc, is almost as large as
the one corresponding to n = 0.95nc. This begs the question
as to why fluctuations at a density considerably below nc

are as large as the fluctuations near the critical point. This
can be explained by stronger finite-size effects at n = 0.95nc

compared to n = 0.5nc when simulations are performed for
the same total number of particles. Indeed, the volume, de-
fined as V = N/n, is almost twice larger at n = 0.5nc. To
verify this assumption we performed additional simulation at
n = 0.5nc for N = 210 � 400 × 0.95

0.5 , which would make the
physical volume at n = 0.5nc approximately the same as on
for N = 400 simulation at n = 0.95nc. We find ω̃

eq
α � 1.682

at n = 0.5nc for N = 210, which is noticeably below ω̃
eq
α =

1.882 at n = 0.95nc. These results do indicate, however, the
challenges associated with controlling the finite-size effects
in fluctuations, especially in the presence of the CP.

TABLE I. Extracted parameters from the relaxation time approx-
imation [Eq. (3)] fits to the time dependence of corrected scaled
variance ω̃ of particle number in coordinate subspace at different
densities. The coordinate space cut corresponds to α = 0.5 and the
number of particles is N = 400 in all cases.

n/nc Fit range w̃eq
α C̃α τ̃α

0.3 5 < t̃ < 25 1.571 ± 0.003 −0.823 ± 0.079 3.853 ± 0.254
0.5 5 < t̃ < 25 1.868 ± 0.001 −1.361 ± 0.033 3.584 ± 0.168
0.95 5 < t̃ < 25 1.882 ± 0.001 −1.132 ± 0.112 4.055 ± 0.231
1.9 2.5 < t̃ < 10 0.289 ± 0.001 −0.275 ± 0.23 0.710 ± 0.160
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The equilibration times in Table I are given in dimension-
less units. Typical time scales corresponding to hydrodynamic
evolution in heavy-ion collisions correspond to 7–10 fm/c
[35]. Therefore it can be instructive to map the dimensionless
LJ units into fm/c to estimate to what extent the large fluc-
tuations can develop in a realistic setup that may be achieved
experimentally. We recall that physical time is related to the
dimensionless time as t = t̃

√
(mσ 2)/ε. The value of ε relevant

for heavy-ion collisions can be estimated as ε = Tfrz/T̃ where
Tfrz ≈ 150 MeV is the typical chemical freeze-out tempera-
ture and T̃ = 1.4 is the dimensionless temperature used in
the simulations, giving ε ≈ 107 MeV. On the other hand, σ

corresponds to the hard-core diameter of a nucleon, which we
take here to be σ ≈ 0.6–0.8 fm [36]. This gives

√
(mσ 2)/ε ≈

1.8–2.4 fm/c as the conversion factor from dimensionless
time to fm/c units. We can thus translate the heavy-ion time
scale of τHIC ≈ 7–10 fm/c into dimensionless units: τ̃HIC ≈
3–5. As seen from Figs. 2 and 3, this is sufficient to fully
equilibrate the fluctuations in the dense regime, n = 1.9nc,
where repulsive interactions dominate. On the other hand, for
τ̃HIC ≈ 3–5 finite-time effects decrease the magnitude in the
enhancement of fluctuations at n = 0.32nc and n = 0.95nc by
about a half.

One can note that for the dense system case, n = 1.9nc, the
time dependence of ω̃α exhibits a nonmonotonic oscillation
at short initial times, t̃ < 2. For this reason, these early times
are not included in the fit through Eq. (3). To interpret the
presence of such oscillation, one can consider the high-density
limit, where the coordinates of particles are arranged in a reg-
ular array, and where long-range order is present. In this limit,
the motion of the system would correspond to oscillatory per-
turbations from the equilibrium configuration, and thus make
the expected time dependence of ω̃α to exhibit periodicity and
oscillations. The density n = 1.9nc is not yet high enough for
the system to be in the crystal phase, but the remnants of the
long-range order can cause the initial oscillation of ω̃α .

C. Dependence on acceptance

Figure 3 shows the behavior of w̃α as a function of α

at different times. Each panel in the figure corresponds to a
different value of the density. For all values of α and density
n, one observes that the ensemble average based calculation
approaches the time average result of Ref. [21].

One can also see that the equilibration time τ̃α shows some
dependence on α: at all densities, equilibrium is generally
reached faster the further the value of α is from the midpoint
value, α = 0.5. One can also see some nonmonotonic behav-
ior of w̃α with respect to α at small values of α, for instance
at � 0.1 (and, by symmetry, at 1 − α � 0.1) for n = 0.95nc.
This behavior can be attributed to small longitudinal extent of
the coordinate space acceptance that becomes comparable to
the size of a single particle. Namely, one has

�zα = σα L̃ = σα(N/ñ)1/3. (4)

For ñ = 0.95nc = 0.3, N = 400, and α = 0.1 one has �zα �
1.1σ , which is comparable to the spatial extent σ of a single
particle. A similar effect has been observed in the van der

Waals model in Ref. [37] when the system volume becomes
comparable to the size of a single particle.

IV. COLLECTIVE FLOW AND MOMENTUM SPACE CUTS

A. Incorporating longitudinal flow

The results from the previous section confirm that the pres-
ence of a CP leads to large fluctuations of particle number
in coordinate space, and the behavior of fluctuations obeys
ergodicity. This confirms that large fluctuation signals of the
critical point can be studied both through time and ensem-
ble averaging, the latter one being particularly relevant to
heavy-ion collisions. However, heavy-ion measurements are
performed in momentum space acceptances rather than coor-
dinate space ones. In a previous work [21], we have shown
that, in a box calculation, the large fluctuations due to CP
point disappear as soon as one replaces coordinate cuts with
momentum cuts. The reason is that particle interactions via the
LJ potential occur in the coordinate space, while the momenta
and coordinates in a uniform LJ system are uncorrelated. As
a result, momentum space fluctuations in LJ system do not
show any enhancement due to the CP. In fact, one only sees
an additional suppression, w̃α < 1, which comes from the
global energy-momentum conservation in the microcanonical
ensemble.

The situation in heavy-ion collisions is different. Due to
collective flow, coordinates and momenta of particles at the
final stage of hydrodynamic evolution are correlated. It is thus
feasible that large fluctuations can be observed in momentum
acceptance due to the presence of such correlation. Here we
introduce the effect of longitudinal flow into our simulations
in a simplified way to evaluate fluctuations in rapidity accep-
tances typical for heavy-ion collisions.

Our considerations are restricted to longitudinal direction
only, meaning that transverse momenta of particles are in-
tegrated over. Specifically, we define for each particle the
longitudinal rapidity3 y as a sum collective and thermal
components,

y = ycoll + yth. (5)

The LJ fluid simulations in the box setup have no collective
motion, thus the velocities ṽLJ

z from the simulation define the
thermal component of the rapidity, yth ∝ ṽLJ

z . To define the
conversion factor, recall that the ṽLJ

z distribution in LJ sim-
ulation corresponds to the Maxwell-Bolztmann distribution
with a width of σṽLJ

z
=

√
T̃ . On the other hand, the width

of the thermal rapidity distribution in heavy-ion collisions is
σy = √

Tfrz/mN . Therefore,4

yth =
√

Tfrz

mN T̃
ṽLJ

z . (6)

3The rapidity y and velocity vz coincide in the nonrelativistic limit.
4Here we neglected relativistic effects, which allowed us to equate

the longitudinal velocity and rapidity thermal components. Such an
approximation is justified when mN/Tfrz � 1. For mN = 938 MeV
and Tfrz = 150 MeV, one has mN/Tfrz ≈ 6.
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FIG. 4. Schematic illustration of the correlation between coordinate space (space-time rapidity ηs) and momentum space (longitudinal
rapidity y) at different collision energies. The shaded red region corresponds to momentum space acceptance, |y| < ycut , while the dashed
horizontal line depict the equivalent coordinate space acceptance. The momentum cut is chosen in each case to cover approximately half of all
particles, i.e., α = 0.5. Open red points and solid black points depict, respectively, false positives and false negatives—the particles that are
inside (outside) momentum acceptance but outside (inside) the equivalent coordinate acceptance.

The collective component of the rapidity is a function of
coordinate. Due to the ultrarelativistic nature of the motion
in the longitudinal direction, it is common to work in Bjorken
variable, where instead of Minkowski time t and the longitudi-
nal coordinate z one uses Milne coordinates, the longitudinal
proper time τ = √

t2 − z2 and the space-time rapidity, ηs =
1
2 ln t−z

t+z , are used instead. In the Bjorken-like longitudinal
flow picture, collective component of the rapidity coincides
with the space-time rapidity ycoll = ηs. To make a connection
between the LJ longitudinal coordinate z̃LJ and ηs at a given
collision energy

√
sNN, we make a linear map between the

interval z̃LJ ∈ [−L̃/2, L̃/2] and the space-time rapidity extent
ηs ∈ [−ybeam

cm , ybeam
cm ], where

ybeam
cm (

√
sNN) = ln

⎡
⎢⎣

√
sNN +

√
sNN − 4m2

N

2mN

⎤
⎥⎦, (7)

is the beam rapidity in the center-of-mass frame of the colli-
sion. Therefore,

ycoll = 2ybeam
cm

L̃
z̃LJ. (8)

Our implementation assumes that the density of particles is
flat as a function of space-time rapidity ηs, i.e., that the system
is boost-invariant up to the beam rapidity, n(ηs) ∝ 
(ycm

beam −
ηs). In a more involved study, one can explore nonuniform
distribution with respect to ηs, which we leave for future work.

Calculations of fluctuations in longitudinal rapidity accep-
tance for a given energy, therefore, proceed as follows:

(1) In each event, the rapidity of each particle is calculated
through

y = 2ybeam
cm

L̃
z̃LJ +

√
Tfrz

mN T̃
ṽLJ

z , (9)

where ybeam
cm = ybeam

cm (
√

sNN) is given by Eq. (7). We
use Tfrz = 150 MeV and mN = 938 MeV/c2.

(2) The number of accepted particles Nacc is computed by
performing a rapidity cut |y| < ycut.

(3) The corrected scaled variance w̃αycut
is computed

through (2), where

αycut = 〈Nacc〉
N

. (10)

The procedure described above is the simplest one for
implementing longitudinal flow into the system, which corre-
sponds to the transformation of a single fireball in a box into
an expanding one (see Fig. 4). It relies on the Bjorken picture
[the second term in Eq. (9)] as well as the absence of event-
by-event fluctuations of in the longitudinal flow. As such, the
description must be improved for quantitative applications,
especially at lower energies from RHIC beam energy scan.
In the present work, we retain the picture presented above to
make a first estimate of the effect of longitudinal flow under
the most favorable (and simplified) conditions possible.

B. Fluctuations at fixed α

We first explore the behavior of fluctuations at different
energies for a fixed value of α. We take α = 0.5 and vary
the value of ycut at each energy to match α = 〈Nacc〉/N = 0.5.
Figure 5 shows the resulting dependence of w̃αycut

on the beam
c.m. rapidity ycm for n = 0.95nc. Calculations are performed
at large times t̃ = 100 corresponding to an equilibrated sys-
tem. w̃αycut

monotonically increases with ybeam and saturates
at a value consistent with the coordinate space result from
Sec. III, shown by the horizontal band. The result confirms
that a strong collective flow allows one to map coordinate
space fluctuations to momentum space ones. Mathematically,
this conclusion follows from Eq. (9), where the first term
becomes dominant at large ycm and thus cuts in rapidity y
become equivalent to cuts in coordinate z̃LJ. On the other
hand, for ybeam → 0 we reproduce box simulation results from
Ref. [21] where large fluctuations in momentum space are
absent. The dependence of w̃αycut

on α at different energies is
shown in Fig. 6 and shows a consistent approach toward the
coordinate space result at all values of αycut .

C. Fluctuations at fixed ycut

In heavy-ion collisions, the measurements are usually per-
formed in a fixed interval around midrapidity. For instance,
STAR measurements of proton number cumulants [5,6] were
done in acceptance |y| < 0.5. Fixing the value of ycut differs
from fixing the acceptance fraction α: for a fixed value of
ycut, the value of α will be smaller at larger collision energy,
see Fig. 7. This is easy to explain because larger energies
lead to a larger total coverage in rapidity. Thus, a fixed
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FIG. 5. Corrected scaled variance ω̃α of particle number in ra-
pidity acceptance as a function of ycm for a fixed value of α = 0.5.
Calculations are performed for a LJ system of N = 400 particle near
the CP, T = 1.06Tc and n = 0.95nc.

FIG. 6. Corrected scaled variance ω̃y of particle number in ra-
pidity acceptance as a function of the fixed acceptance fraction αy.
Calculations are performed for a system of N = 400 particles at
T = 1.06Tc and n = 0.95nc at large times (t̃ = 100) where finite-
time effects can be neglected. Different bands correspond to different
collision energies, with the incorporation of collective expansion
in the longitudinal direction, as detailed in the text. The limiting
cases of coordinate (red band, labeled ω̃coord) and rapidity acceptance
[black line, labeled ω̃y(ycm = 0)] in the absence of collective expan-
sion are also shown.

FIG. 7. The dependence of acceptance fraction α = 〈Nacc〉/N
corresponding to the rapidity cut ycut = 0.5 on the collision energy,√

sNN, evaluated for t̃ = 100.

rapidity cut covers a smaller fraction of the whole system for
larger

√
sNN.

The left panel of Fig. 8 shows the collision energy depen-
dence of nucleon number fluctuations in acceptance |y| < 0.5
covering one unit of midrapidity, for the three densities con-
sidered. Calculations are performed at the large time, t̃ = 100,
corresponding to equilibrium5 expectations. Let us focus on
the n = 0.5nc calculation (blue band). This calculation depicts
the expected behavior of fluctuations under the assumption
that the freezeout of fluctuations at a given collision energy
occurs near the CP. As such, the results should not be con-
sidered as predictions of the collision energy dependence
measured by the experiment.

Our calculations indicate that the maximum CP signal
would be observed at

√
sNN ≈ 5 − 7 GeV, i.e., if the CP is

accessible in heavy-ion regime, these collision energies are
optimal for observing its signatures in baryon number cumu-
lants based on our description. This sweet spot in

√
sNN is

an interplay of two effects. At lower collision energies, the
CP signal is diluted due to a weak collective flow and the
absence of correlations between coordinates and momenta.
On the other hand, larger collision energies correspond to
smaller values of α.6 Thus, the finite-size effects are stronger
at large

√
sNN, and these dampen the CP signal (see Fig. 3).

Interestingly, a similar, broader maximum is observed for
n = 0.32nc, where the fluctuations also show enhancement,
albeit smaller in magnitude compared to the CP. At large
density, n = 1.9nc, the fluctuations are suppressed due to

5Including effects of collective flow and finite system size.
6In the limit

√
sNN → ∞ we have α → 0 and thus ω̃α → 1.
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FIG. 8. Corrected scaled variance of particle number as a function of
√

sNN in rapidity acceptance |y| < 0.5 calculated through molecular
dynamics with collective flow at (a) t̃ → ∞ (equilibrium) and (b) t̃ = 3 (heavy-ion time scale). Different bands have the same meaning as in
Fig. 2. The bands are shaded at

√
sNN > 19.6 GeV to reflect the absence of antibaryons in our modeling, which is relevant at those collision

energies. The symbols correspond to the experimental data of the STAR Collaboration [6] for protons (blue) and reconstructed baryon (red).
The data are corrected for global baryon conservation by diving over 1 − α factor, estimated at each collision energy through hydrodynamic
simulations from Ref. [38].

repulsive interactions, this suppression decreases monotoni-
cally with collision energy. Of course, given the limitations
of our approach (Sec. IV F) and the complexity of the sys-
tem created in heavy-ion collisions at moderate energies,
our conclusions could be modified in a more involved ap-
proach. However, we do expect the qualitative interplay
between the increase of system size at fixed ycut and the di-
lution of space-momentum correlations as

√
sNN is decreased

to hold.
It should be noted that our simulations neglect the pro-

duction of antibaryons, which becomes increasingly relevant
at high collision energy. This can be quantified by the p̄/p
ratio, measured by STAR at different collision energies [39].
Antibaryons can be neglected at

√
sNN � 11.5 GeV, as STAR

has measured p̄/p � 0.01 at
√

sNN = 7.7 GeV and p̄/p �
0.03 at

√
sNN = 11.5 GeV. The antiproton fraction becomes

more sizable at
√

sNN = 19.6 GeV, where p̄/p � 0.12. For
these reasons, our results in Fig. 8 at energies above

√
sNN �

19.6 GeV are shaded to emphasize the absence of antiparticles
in our calculations, which should not be neglected at these
energies.

We also depict in Fig. 8 the experimental data of the
STAR Collaboration [6] on the corrected scaled variance
of proton number, ω̃p = ωp/(1 − αp) (green symbols) and
reconstructed baryon number, ω̃B = ωB/(1 − αB) (blue
symbols)7 in the same rapidity acceptance |y| < 0.5 as our

7Note that here we depict fluctuations of the particle number, rather
than the commonly used net particle number.

calculation.8 As before, 1 − αp(B) factors implement the
correction due to baryon number conservation. To correct
the data, we take9 αp(B) from Ref. [38] from state-of-the-art
(3+1)D hydrodynamic simulations [40].

We note that baryon fluctuations are not measured directly
in the experiment. Instead, we reconstruct ωB from the mea-
sured ωp through the unfolding method from Ref. [41]. We
perform this reconstruction to ensure a meaningful correspon-
dence between the measured quantities and those computed
in our model. The experimental data show enhancement of ω̃

with respect to unity at low collision energies and suppression
at large energies. The maximum value of ω̃B � 1.15 is reached
at the lowest available BES energy of

√
sNN = 7.7 GeV. This

indicates enhancement of fluctuations, although the data are
considerably closer to the baseline than our equilibrium cal-
culations for n = 0.32nc and n = 0.95nc. We would like to
emphasize here, however, that our model is not sufficiently
sophisticated to draw conclusions from quantitative compar-
isons with experimental data. Instead, we make comparisons
with data in Fig. 8 to study qualitative behavior, as well as to
estimate the possible magnitude of the CP signal in heavy-ion
collisions under the most favorable conditions possible.

At large energies,
√

sNN � 20 GeV, the data indicates
mild suppression with respect to the baseline, ω̃B � 0.95 < 1.

8The experimental measurements contain additional cut in trans-
verse momentum, 0.4 < pT < 2.0 GeV/c. This effect is absent in
our calculations.

9We include contributions of antibaryons when calculating αp(B) for
correcting the data.
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FIG. 9. Scaled variance as a function of time for the given√
sNN = 7.7 GeV at fixed volume in the momentum space. The red

band represents ω̃y at t̃ = 100, corresponding to the equilibrium ex-
pectation where finite-time effects are negligible. The vertical green
band corresponds to time scales relevant to heavy-ion collisions (see
the text for details).

This suppression can be attributed to repulsive interactions,
which suppress fluctuations [42]. The suppression in the data
is not as strong as in our n = 1.9nc calculation, where the
effects of repulsive interactions are very strong, and where
antibaryons are neglected, but was shown in Ref. [38] to
be described well by excluded volume effects of moderate
strength.

D. Finite-time effects

Our calculations shown in Fig. 6 correspond to large
time, t̃ = 100. Given that equilibration times are much
smaller, τ̃α � 4 (see Table I), the calculation essentially
corresponds to the equilibrium expectation. However, the
system in heavy-ion collisions is short lived (τHIC ≈ 7–10
fm/c), which corresponds to τ̃HIC ≈ 3–5 in dimensionless
units (see Sec. III B). Therefore, it is important to incor-
porate these finite-time effects, especially for fluctuations
near the CP.

Here we address this question, focusing on fluctuations in
the rapidity space for fixed ycut = 0.5 and fixed energy of√

sNN = 7.7 GeV. Figure 9 depicts the time dependence of
ω̃. This quantity reaches the equilibrium expectation shown
by the red band at t̃ � 10. At shorter times, however, large
deviations from the equilibrium value are seen. In particular,
this is the case for t̃ ≈ 3–5 relevant for heavy-ion collisions,
as discussed above. Of course, given the limitations of our ap-
proach, in particular the difference between initial conditions
in our simulations and those in heavy-ion collisions, these
estimates can give only a qualitative picture of the possible
finite-time effects.

FIG. 10. Corrected scaled variance as a function of rapidity cut
ycut for at fixed collision energy of

√
sNN = 7.7 GeV, calculated with

molecular dynamics at time t̃ = 3 and density n = 0.32nc (purple
band) and n = 0.95nc (blue band). The blue points depict the pro-
cessed experimental data [6] of the STAR Collaboration for baryons
and have the same meaning as in Fig. 8.

We, therefore, recalculate the behavior of fluctuations at
different collision energies by analyzing the molecular dy-
namics data for t̃ = 3, which is representative of the time
scales relevant for heavy-ion collisions. The corresponding
results are shown in the right panel of Fig. 8. The enhancement
of fluctuations for n = 0.32nc and n = 0.95nc is signifi-
cantly suppressed by the finite-time effects, especially for n =
0.95nc. We obtain that both n = 0.32nc and n = 0.95nc are in
fair agreement with experimental data on ω̃B at

√
sNN = 7.7

GeV. This observation confirms that the data at
√

sNN = 7.7
GeV are consistent with the presence of sizable attractive
interactions that enhance the scaled variance, although it does
not pinpoint how close the system is to the CP. Both the
freezeout of fluctuations near the CP (n = 0.95nc case) or at
a density considerably below the critical one (n = 0.32nc) are
consistent with the data for ycut = 0.5.

Finite-time effects have a very mild effect on the calcu-
lation at n = 1.9nc given that the time t̃ = 3 is considerably
larger than the corresponding equilibration time for fluctua-
tions, which for n = 1.9nc is τ̃eq ≈ 1 (Table I). Qualitatively,
one can draw a conclusion that a system dominated by repul-
sive interactions shows a suppression of fluctuations, which
locally equilibrate on faster time scales than those driven by
attractive interactions.

E. Acceptance dependence

Figure 10 shows the dependence of ω̃ at t̃ = 3 on the
value of rapidity cut ycut at the collision energy

√
sNN = 7.7

GeV, along with the available experimental data. The calcula-
tions indicate that ω̃ continues to increase with ycut unit the
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acceptance covers two units of rapidity (ycut = 1). ω̃ has a
maximum around ycut � 1 and the decreases with ycut at larger
acceptances. This behavior can be mapped to the symmetric
shape of ω̃ with respect to αy shown in Fig. 6, with ycut = 1
approximately corresponding to αy = 0.5. We note that the
behavior of ω̃ at αy > 0.5 may be sensitive to the choice
of (periodic) boundary conditions and thus may not directly
apply to heavy-ion collisions. For this reason we only show
the results up to ycut = 1.

The experimental data are available up to ycut = 0.5, shown
in Fig. 10 for the reconstructed baryons. The data agrees
qualitatively with both the n = 0.32nc and n = 0.95nc cases,
indicating that it may be challenging to distinguish whether
the system is close to the CP or not. Quantitatively, a better
agreement is seen for the n = 0.32nc case, however, we must
emphasize again here that our model is not yet suited for
drawing robust quantitative conclusions. Both cases predict
continued growth up to ycut = 1, which can be verified with
BES-II measurements utilizing expanded rapidity coverage.

F. Limitations

It is important to emphasize the limitations of our approach
when applied to measurements from heavy-ion collisions. The
main caveat is that we do not simulate the full dynamics of
heavy-ion collisions but perform box simulations of the sub-
system of nucleons near the CP, and implement the collective
flow effect on top of these simulations. It is thus assumed that
our LJ molecular dynamics simulation models the behavior of
(critical) fluctuations nucleons in the local rest frame, where
we rely heavily on the universality of critical behavior, while
collective expansion is described through a separate mecha-
nism. In particular, this implies that, in our approach, particles
in a box reach equilibrium10 first and then the shift of yacc is
applied. On the other hand, local equilibrium may be main-
tained at best in heavy-ion collisions, while the system never
reaches a global equilibrium due to the continued expansion.
Furthermore, we also neglect event-by-event fluctuations of
the longitudinal flow, as well as fluctuations and the inhomo-
geneous rapidity distribution of baryon stopping.

Our simulations are performed at fixed values of tem-
perature and nucleon number densities, corresponding to an
idealized picture of fluctuations being determined at a fixed
point on the phase diagram at each collision energy, for in-
stance, at chemical freezeout. As heavy-ion collisions are
highly dynamic processes, the fluctuations may instead reflect
the history of the collision, which is characterized by different
temperatures and densities. Furthermore, even at freezeout,
the densities and temperatures are different at different colli-
sion energies, therefore, the bands shown in Fig. 8 should not
be viewed as predictions for the possible

√
sNN dependence

of the scaled variances. Rather, these calculations indicate the
expectation for the possible value of ω̃α at a given

√
sNN if

collisions at this energy correspond to a certain point on the
phase diagram relative to the CP location. Furthermore, our

10In the case of a finite-time calculation (τ̃ = 3), the equilibrium
may be incomplete.

simulations are performed for a nonrelativistic system without
incorporating any mesonic or partonic degrees of freedom.

Due to the above limitations, our results should mainly be
viewed as qualitative expectations for the possible CP signals
in fluctuations, which nevertheless do include such essen-
tial effects as exact baryon conservation, difference between
coordinate and momentum space, and finite-size and finite-
time effects.

Our implementation can be improved in different ways to
make the predictions more quantitative. For instance, instead
of a single box, we could consider a collection of boosted fire-
balls along the longitudinal axis, each described by a separate
LJ system in the local rest frame. This could mimic better
the local equilibrium of the expanding system in heavy-ion
collisions but will have to be accompanied by an analysis of
the meaningful box size, conservation laws, crosstalk between
the boxes, and so on. Another possibility would be incor-
porating the interactions responsible for critical fluctuation
dynamics into transport model framework such as SMASH
[43] or UrQMD [44,45].

V. DISCUSSION AND SUMMARY

In this paper, we studied the behavior of fluctuations,
namely the scaled variance, near the critical point by perform-
ing molecular dynamics simulations of the Lennard-Jones
fluid. The simulations were performed in a box with pe-
riodic boundary conditions along the supercritical isotherm
T = 1.06Tc, where Tc is the critical point temperature. As a
microscopic model calculation, it naturally incorporated ef-
fects such as correlation length, exact conservation laws, and
finite system size. Compared to our previous work [21], we
have incorporated additional phenomena, such as ensemble
averaging, longitudinal collective expansion, and finite-time
effects, to bring our calculations closer to the conditions en-
countered relativistic heavy-ion collisions. We summarize our
main findings as follows:

(1) We observe large particle number fluctuations in
coordinate space near the critical point of the Lennard-
Jones system when calculating them as ensemble
averages. The results are in quantitative agreement
(Figs. 2 and 3) with our earlier study [21] that em-
ployed time averaging, confirming that the ergodic
hypothesis holds for fluctuations. In the context of
heavy-ion collisions, if one interprets these events as
samples from an ensemble, as is commonly done, this
observation confirms the suitability of fluctuations for
the search for critical behavior.

(2) Analysis of the time dependence allowed us to eluci-
date equilibration dynamics of fluctuations. Generally,
the equilibration time τ̃α depends on the choice of
acceptance in which the fluctuations are analyzed. By
comparing the values of τ̃α for the same acceptance but
different densities, we observe indications for a (local)
maximum in the dependence of equilibration time on
density in the vicinity of the critical density (Table I),
meaning that fluctuations near the CP take more time
to develop.
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(3) The presence of collective flow is crucial for observing
large fluctuations in momentum space acceptance rel-
evant for experimental measurements. For sufficiently
strong collective flow, such as the Bjorken flow at high
energies, the momentum (rapidity) space fluctuations
reflect those in coordinate space (Figs. 5 and 6).

(4) Fluctuations near the critical point measured in ac-
ceptance spanning one unit at midrapidity, |y| < 0.5,
show the maximum value in collision energy range√

sNN ≈ 5–7 GeV, indicating that these collision en-
ergies are optimal for the search of critical behavior
is it exists in a heavy-ion regime. It may be counter-
intuitive that the strongest signal is observed at the
intermediate collision energies rather than at the high-
est collision energies where the longitudinal flow is
the strongest. This comes from an interplay between
flow and finite system-size effects: the increase of the
signal with

√
sNN due to stronger flow is compensated

by larger finite-size effects, given that a fixed value of
rapidity cut corresponds to a smaller number of parti-
cles (baryons) inside the acceptance at higher

√
sNN,

effectively corresponding to a smaller size of the sys-
tem (smaller number of particles) captured inside the
acceptance.

(5) Experimental data of the STAR Collaboration on
proton number scaled variance shows enhancement
of fluctuations at lowest BES-I energies relative to
the baseline of unity when the 1 − α correction for
baryon conservation is accounted for. In particular,
we find ω̃p � 1.06 for protons and ω̃B � 1.15 for
baryons at

√
sNN = 7.7 GeV. Interestingly, these val-

ues agree with the corresponding molecular dynamics
calculation near the CP (T = 1.06Tc, n = 0.95nc),
incorporating finite-size and finite-time effects. There-
fore, the experimental data at

√
sNN = 7.7 GeV is

compatible with the freezeout of fluctuations near the
CP, although this does not rule out other scenarios.
Our results do motivate a detailed analysis of proton
number cumulants in collision energy range

√
sNN ≈

3–10 GeV, which will be filled with experimental
measurements from RHIC-BES-II, RHIC-FXT, and
CBM-FAIR programs in the foreseeable future.

It should be emphasized that our present approach needs
further improvements for more quantitative applications to
experimental measurements. In particular, the system in
our simulations evolves at a constant particle number and
energy density, which is not the case for heavy-ion colli-
sions. As mentioned before, we also neglect the production
of antibaryons, which would be required for applications at√

sNN � 20 GeV. The modeling can also be improved by con-
sidering more realistic longitudinal density and flow profiles
(as opposed to the Bjorken-like picture employed here), their
event-by-event fluctuations, as well as incorporating trans-
verse expansion and pT cuts. One can also implement local
equilibrium relevant for heavy-ion collisions by considering
a collection of boosted fireballs along the longitudinal axis
instead of a single fireball. Each fireball would be described
by a separate LJ system in the local rest frame and will have
to be accompanied by an analysis of the meaningful box size,
conservation laws, crosstalk between the boxes, etc. These
extensions will be the subject of future studies.

We also plan to explore the behavior of high-order (non-
Gaussian) cumulants, such as skewness and kurtosis. On the
one hand, these are expected to exhibit increased sensitivity
to the CP. On the other hand, high-order cumulants may also
be affected by finite-size and finite-time effects. Studying
the cumulants of different order within a single microscopic
description will allow us to elucidate which observables are
most promising in the search for critical behavior.

Another potential avenue is the study of the mixed-phase
region of the first-order phase transition and its possible sig-
natures in expanding systems created in heavy-ion collisions.
In particular, the production of clusters (light nuclei) can be
particularly sensitive to the existence of mixed phase and the
associated critical point.
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