
UNIVERSITY OF CALIFORNIA

Los Angeles

Adaptive Distributed Systems

Spanning Cloud-Edge Networks

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Joseph George Noor

2021

© Copyright by

Joseph George Noor

2021

ABSTRACT OF THE DISSERTATION

Adaptive Distributed Systems

Spanning Cloud-Edge Networks

by

Joseph George Noor

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2021

Professor Mani Srivastava, Chair

The edge computing domain is notably diverse in its composition. Capabilities including

sensing, actuation, and mobility are often constrained by limitations such as those in en-

ergy, storage, and hardware-specific implementations. Leveraging the diversity of cloud-edge

systems when building applications pose fundamental challenges that constrain expressivity,

portability, and reconfigurability. Given this complexity, system tooling is necessary to aid

application development and deployment in order to provide a stable runtime foundation by

which environment dynamics can be accounted for. This dissertation explores the notion of

incorporating self-awareness into autonomous systems spanning the cloud and edge, such

that they might observe the constantly changing state of their applications and resources to

implicitly adapt for optimized behavior.

Key thrusts include (1) DDFlow, a macroprogramming abstraction that organizes dis-

tributed applications into a visual dataflow representation, (2) Portkey, an adaptive key-

value store that reconfigures data placement based on access patterns, and (3) EdgeRM, a

distributed resource manager that unifies a heterogeneous computing cluster spanning high-

ii

performance servers and low-power sensors, which leverages a WebAssembly execution model

and system interface extension for unified sensing.

Ultimately, this research seeks to lift IoT and embedded devices into the general-purpose

computing domain, thereby enabling a carry-over of technical contributions pioneered by the

distributed systems community. As systems researchers continue to introduce new paradigms

in how to design, deploy, and support applications spanning cloud-edge, our community can

help manage the difficulty in harnessing the capabilities of these networks.

iii

The dissertation of Joseph George Noor is approved.

Harry Xu

Ravi Netravali

Carlo Zaniolo

Mani Srivastava, Committee Chair

University of California, Los Angeles

2021

iv

May we all achieve the fullest expression of our creation.

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 The Problem: A Heterogeneous, Ad Hoc, and Dynamic Edge 2

1.2 The Future: A World of Interconnected IoT 3

1.3 The Vision: Self-Awareness for Adaptive Systems 7

1.3.1 (Macro) Programming . 7

1.3.2 Execution Environment . 8

2 Enabling Adaptive Systems via Declarative Macroprogramming 10

2.1 Motivating Application . 11

2.2 Background and Related Work . 14

2.3 Capturing the Sense ⇒ Compute ⇒ Actuate Paradigm 16

2.4 The DDFlow Macroprogramming Abstraction 17

2.4.1 Node . 18

2.4.2 Wire . 19

2.5 Considerations . 20

2.6 The DDFlow System Runtime . 21

2.6.1 Programming Interface . 21

2.6.2 System Architecture . 23

2.6.3 Runtime Scaling and Placement . 25

2.6.4 Dynamic Reconfiguration . 26

2.6.5 Case Study . 27

vi

3 Portkey: Adaptive Key-Value Placement over Dynamic Edge Networks 29

3.1 Before there was Portkey, there were Pebbles 29

3.1.1 Scalable Storage of High-rate Sensor Data 30

3.2 Portkey Introduction . 32

3.3 Target Applications . 36

3.3.1 Edge Applications and Goals . 36

3.3.2 Representative Dataset and Testbed 38

3.4 Background and Motivation . 41

3.4.1 Existing Placement Strategies . 41

3.4.2 The Case for Adaptive KV Placement 43

3.5 Design . 45

3.5.1 Efficient Data Collection . 46

3.5.2 Fast Placement Decisions . 50

3.6 Implementation . 54

3.7 Evaluation . 56

3.7.1 Request Latency Speedups . 56

3.7.2 Varying Edge Settings . 57

3.7.3 Profiling Portkey . 59

3.7.4 Small-Scale Deployments . 63

3.8 Discussion . 64

3.9 Related Work . 66

3.10 Conclusions . 68

4 EdgeRM: Practical Cluster Computing for Modern Edge Devices 69

vii

4.1 Motivation . 72

4.1.1 The Edge Needs More Compute . 72

4.1.2 Diversity Calls for Flexibility . 74

4.1.3 Infrastructure Should Be Shared . 74

4.2 Background & Related Work . 75

4.2.1 Better Sensor Programming . 75

4.2.2 Resource Managers . 77

4.2.3 Edge Computing Frameworks . 78

4.3 Design . 81

4.3.1 End-to-End Workflow . 81

4.3.2 Definition of a Resource . 82

4.3.3 EdgeRM Messaging Protocol . 84

4.3.4 WebAssembly Execution Environment 87

4.3.5 Active Scheduling for Dynamic Devices 89

4.3.6 Location, Context & Other Metadata 90

4.4 Implementation & Frameworks . 91

4.4.1 Application Frameworks . 92

4.5 Evaluation . 94

4.5.1 EdgeRM Cluster Utilization . 94

4.5.2 EdgeRM Agent Overhead . 96

4.5.3 WebAssembly Overhead . 101

4.6 Discussion . 102

4.7 Conclusions . 103

viii

5 The ADAPT2 Principles for Robust Adaptation 105

5.1 System and Adversary Models . 106

5.1.1 System Model . 106

5.1.2 Adversary Model . 108

5.1.3 Assumptions . 109

5.2 Attacks on Adaptation . 110

5.2.1 Falsely reporting low utilization . 110

5.2.2 Falsely reporting high utilization . 112

5.2.3 Inferring action from adaptation . 115

5.3 Adapting Adaptation . 115

5.3.1 Detecting False Device Utilization Statistics 116

5.3.2 Obfuscation of Leaked Spatio-temporal Characteristics 118

5.3.3 Adapt2 Principles . 118

5.4 Related Work . 120

5.5 Conclusions . 121

6 Conclusion . 123

6.0.1 Future Directions and Limitations . 124

6.0.2 The Breadth of My Research . 126

6.0.3 Final Thoughts . 128

References . 129

ix

LIST OF FIGURES

1.1 The Vision Illustrated . 6

2.1 Example Motivating Application . 12

2.2 The Motivating Application in DDFlow . 17

2.3 Screenshot of DDFlow Programming Interface 22

2.4 DDFlow Runtime System Architecture . 24

2.5 Adaptation during device overload . 28

2.6 Adaptation during access point failure . 28

3.1 Maximum write throughput with increasing write size. Pebbles achieves 92% of

the optimal write throughput while SQLite and SQLite cluster (used in AWARE)

achieve 22% and 18% respectively at their steady states while writing large blocks

of data. 30

3.2 An example smart city deployment for coordinating autonomous vehicles. Dis-

tributed datastore servers are attached at access points spread throughout the

edge network. The primary replica for a key-value (KV) pair shared by clients A,

B, and C should intuitively be placed at their nearest host, which may vary over

time as the clients move. The randomized placement used in existing systems

ignores this locality, resulting in potentially large request latencies. 34

3.3 Testbed Setup. 25 access points, each housing a datastore server, are overlaid onto

a 5x5 city grid. 25 autonomous vehicles move throughout the city according to

real taxi mobility traces. Each vehicle acts as a datastore client, deploying one

of the representative workloads. Network latencies are assigned in a three-tier

approach, such that contacting farther access points involves longer delays. . . . 39

x

3.4 In consistent hashing, servers and keys are hashed onto a ring. Replicas are

selected by traversing the ring. In hash slot sharding, the ring space is divided

into equal slots, with each slot assigned to datastore servers. 42

3.5 Performance impact (for average and 95th percentile tail latency) of an optimal

KV placement policy that explicitly considers client mobility, versus the stan-

dard randomized placement policy. Results are normalized to those with the

randomized policy. 43

3.6 Overview of Portkey. Data accesses and latency information are collected by

clients and periodically uploaded to the Adaptive Placement Engine, which de-

termines near-optimal placements and issues the corresponding migration instruc-

tons to datastore servers. 46

3.7 Portkey’s locality-aware reprofiling. In subsequent profiling windows, clients only

contact their nearest datastore servers, and use the observed latency values to

determine if placement-altering motion has occurred; if so, clients then collect

latencies to the remaining servers. 48

3.8 Portkey’s sketches for efficiently tracking client data accesses. Access counts and

aggregate payload size capture individual client workload patterns. 50

3.9 Portkey’s average and tail (95th percentile) latency speedups over existing random

placement strategies and locality-aware heuristics. Results are normalized to the

random approach. The median and entire range for five runs of each workload

and placement strategy are plotted. 58

3.10 Performance impact of varying the percentage of our testbed’s 25 edge APs that

can serve as datastore servers. Results use the per-client workload, and points

represent medians with error bars covering the spread across five runs. APs were

randomly selected before each run. Portkey’s speedups grow as datastore server

density grows. 59

xi

3.11 Impact of edge network latencies on Portkey’s performance; §3.7.2 defines the

four scenarios. Results use the per-client workload and are normalized to random

placement. Portkey’s performance is largely unaffected by latency values, other

than when all client-server latencies are equivalent (eliminating the importance

of placements). 60

3.12 Tail latency improvement over time for Portkey. Results are a snapshot of win-

dowed performance over the first five minutes and are normalized to randomized

placement. Placements converge after approximately two minutes, when client

workload patterns and network perspective have been sufficiently inferred. Fur-

ther adjustments are mostly in response to client mobility. 61

3.13 Scalability of Portkey’s placement solver when varying (a) cluster size and (b)

key set size. 62

3.14 Impact of restricting edge bandwidth for the all-RW workload. Portkey’s relative

advantages persist across the considered bandwidths. Bars list medians (normal-

ized to the 1000 Mbps random placement values) with error bars spanning the

range of values across 5 runs. 62

3.15 Portkey’s speedups in two real deployments. Portkey was enabled after 120 secs

of random placements. 64

4.1 Microprocessor advancements outpace radio technology. Each year the most

energy-efficient commercially available MCU is compared to the commercial radio

with the lowest energy per bit transmitted at 10 m. Since the start of the wireless

embedded systems field in the 90’s, the number of cycles per bit transmitted have

increased, and currently appears to be trending exponentially. 73

xii

4.2 EdgeRM Architecture. Inspired by Apache Mesos, EdgeRM agents send available

resources to a master to be offered to multiple frameworks with their own indepen-

dent schedulers. Key differences include support for small WASM runtimes with

communication protocols designed for resource-constrained agents with attached

sensors. 79

4.3 A step-by-step workflow of using EdgeRM through the Sensor MapReduce frame-

work (§4.4.1.3). (1) A user submits map and reduce jobs to the application

framework; (2) The framework’s interpreter wraps user code in boilerplate com-

munication code and compiles it into WASM modules and docker containers.

(3) These tasks are sent to framework’s scheduler, (4) which uses the EdgeRM

scheduling library to fetch available resources, plan task placement, and configure

tasks (i.e. with source and destination addresses). Active scheduling techniques

such as agent profiling are used to assist placement (§4.3.5). (5) Tasks are issued

to the EdgeRM Master, (6) and forwarded to EdgeRM Agents to execute. . . . 80

4.4 Utilization of the edge cluster (top) and a single sensor (bottom) by three pro-

gramming frameworks over a ten minute period. Multiple users deploy jobs to

the edge cluster through three programming frameworks using EdgeRM. These

three frameworks are capable of multiplexing the cluster and can deploy tasks

on both sensor and server nodes simultaneously. The mediation of resources

through EdgeRM enables multi-tenancy on constrained, embedded devices that

are traditionally singe-purpose. 95

4.5 Time of interactive development cycles. Sensor MapReduce applications are iter-

atively deployed on devices with a ping rate of 20 s, and results are received and

evaluated between each iteration. EdgeRM enables short interactive development

cycles not achieved by many other ways of programming clusters of edge devices. 97

xiii

4.6 Compute and power overhead of the EdgeRM agent, plotted as a function of agent

ping interval. As the ping interval is increased, overhead falls proportionately.

On the embedded agent (evaluated on an NRF52840 MCU) ping intervals greater

than 1 s have CPU utilization below 5 %, and ping intervals greater than 100 s

have a power consumption of less than 34 µW. A bounded exponential back-off

on ping interval maintain interactivity while decreasing power. 98

4.7 Latency overhead of accessing on-board sensors through WASM. Sensors are ac-

cessed a number of times using a WebAssembly task with the WASM sensor

interface and access time is compared to directly accessing the sensor with the

underlying platform SDK. WebAssembly introduces less than 5 % latency overhead.101

5.1 An example distributed network illustrating four attack vectors that can be used

to compromise devices in an autonomic system. 1) An attacker has launched

a physical attack. 2) An attacker has injected a device into the network. 3)

An attacker has exploited a device’s software vulnerability. 4) An attacker has

obtained meta-information via side-channel attack. 107

5.2 The expected behavior of workload placement for the first-fit algorithm (PM =

Physical Machine, VM = Virtual Machine). 111

5.3 The behavior of workload placement when an adversary is reporting low utiliza-

tion for a physical machine.Workloads are exfiltrated to an adversarial entity (PM

= Physical Machine, VM = Virtual Machine). 113

5.4 The behavior of workload placement when a malicious VM reports high utilization

in order to replicate malicious code onto other physical machines (PM = Physical

Machine, VM = Virtual Machine). 114

xiv

5.5 An example illustration of how adaptation can leak location information. As

vehicles traverse the smart city, nearby devices are activated. An attacker can

observe the active set of compromised devices and make inferences on the location

of the vehicle. 116

5.6 Adapt2 system components, serving as an extension to existing resource manage-

ment. The three main components are a state estimator, a moving target defense

generator, and a spatio-temporal location obfuscator. In tandem, state estima-

tion generates challenge-responses to identify suspicious devices, which may be

isolated and tested with dummy workloads. 119

xv

LIST OF TABLES

4.1 Resources and attributes in an EdgeRM deployment. All devices list common

resource types such as CPU and memory, however resources such as devices, do-

main names, and the available power are unique to a wide area sensor deployment.

Device resource types have properties such as shareability among tasks and the

API through which a device is accessed to facilitate their management. 83

4.2 EdgeRM messaging protocol. An overview of the messages between different

components in EdgeRM and their fields, with submessages separated for clarity.

Required fields are marked with *. All messages are client-initiated, where the

Agent and Framework act as clients, and the master is the server. The master

then responds, piggybacking information onto the response. This allows agents to

control their energy usage at the cost of higher latency for task execution, and it

allows for agents and frameworks to communicate with the Master from behind a

NAT. Many fields are left optional so that agents can further limit communication

to strictly what is necessary to keep their resources and task states up to date.

Currently COAP is used as the communication protocol, however any client-server

protocol could be used. 85

4.3 WebAssembly Sensor Interface. API primitives offered by the WebAssembly Sys-

tem Interface extension in support of generic and portable sensor access to de-

ployed WebAssembly tasks on the WAMR runtime. The runtime mediates sensor

accesses to the underlying platform SDK to ensure valid accesses from sandboxed

WebAssembly tasks. 87

xvi

4.4 Memory and code footprints of the EdgeRM agent implementations. The em-

bedded agent flash and RAM utilization are decomposed into constituent compo-

nents. A significant portion of Flash and RAM utilization is due to the network-

ing stack and the underlying OS, which would also be required by a monolithic

firmware. Remaining unused memory is available to store and execute WASM

tasks. The minimum memory for each task is 22,269 Bytes, which includes all

task state, thread stack and heap, and the minimum 16,384B required to execute

a WASM module. 100

xvii

ACKNOWLEDGMENTS

Thank you to my advisor, Mani Srivastava, for your inspiring intellect, wise words, thoughtful

guidance, provocative questions, and strict regiment.

Chapter 2 is a version of Noor, Joseph, et al. ”DDFlow: Visualized Declarative Pro-

gramming for Heterogeneous IoT Networks.” Proceedings of the International Conference

on Internet of Things Design and Implementation. 2019. Chapter 3 is a version of Noor,

Joseph, et al. ”Portkey: Adaptive Key-Value Placement over Dynamic Edge Networks.”

Proceedings of the Twelfth ACM Symposium on Cloud Computing. 2021. Chapter 4 is a

version of work under preparation with co-author Joshua Adkins, UC Berkeley. Chapter

5 is a version of Noor, Joseph, et al. ”The Case for Robust Adaptation: Autonomic Re-

source Management is a Vulnerability.” MILCOM 2019-2019 IEEE Military Communications

Conference (MILCOM). IEEE, 2019.

Thank you to CONIX and IoBT, funded by SRC and the Army Research Lab, for your

enabling me to pursue my research; furthermore to the United States and California for

providing the foundation for this institution which serves as the fruit of modern civilization.

Research in this dissertation was sponsored in part by the Army Research Laboratory (ARL)

under Cooperative Agreement W911NF-17-2-0196, and by the CONIX Research Center, one

of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by

DARPA. The views and conclusions contained in this document are those of the authors and

should not be interpreted as representing the official policies, either expressed or implied, of

the ARL, DARPA, SRC, or the U.S. Government. The U.S. Government is authorized to

reproduce and distribute reprints for Government purposes notwithstanding any copyright

notation here on.

Finally, thank you to my parents, for imparting in me a burning passion for advancing

human intellect, the technique necessary to absorb and create knowledge, and the spiritual

intensity to relentlessly pursue that to which I set my mind.

xviii

VITA

2009 Programmer Intern, JPL Space Radiation Lab, Caltech.

2012 Software Engineering Intern, Center for Domain-Specific Computing,

UCLA.

2013 Research Assistant, Physical Chemistry Lab, UCLA.

2013 B.S. (Computer Science & Engineering), Magna Cum Laude, UCLA.

2014 GPU Architect Intern, NVIDIA.

2013–2015 Teaching Assistant, CS31, CS32, CS244, Computer Science Department,

UCLA.

2015 M.S. (Computer Science), UCLA.

2015–2018 Graduate Student Researcher, Scalable Analytics Institute, Computer Sci-

ence Department, UCLA.

2018–present Graduate Student Researcher, Networked & Embedded Systems Lab, Com-

puter Science Department, UCLA.

PUBLICATIONS

I Always Feel Like Somebody’s Sensing Me! A Framework to Detect, Identify, and Localize

Clandestine Wireless Sensors. 30th USENIX Security Symposium (USENIX Security 21).

2021.

xix

How Can I Explain This to You? An Empirical Study of Deep Neural Network Explanation

Methods. Advances in Neural Information Processing Systems (NeurIPS). 2020.

Time Awareness in Deep Learning-Based Multimodal Fusion Across Smartphone Platforms.

2020 IEEE/ACM Fifth International Conference on Internet-of-Things Design and Imple-

mentation (IoTDI). IEEE, 2020.

Exploiting Smartphone Peripherals for Precise Time Synchronization. 2019 IEEE Inter-

national Symposium on Precision Clock Synchronization for Measurement, Control, and

Communication (ISPCS). IEEE, 2019.

DDFlow: Visualized Declarative Programming for Heterogeneous IoT Networks. Proceed-

ings of the International Conference on Internet of Things Design and Implementation

(IoTDI). 2019.

The Case for Robust Adaptation: Autonomic Resource Management is a Vulnerability.

MILCOM 2019-2019 IEEE Military Communications Conference (MILCOM). IEEE, 2019.

mCerebrum: A Mobile Sensing Software Platform for Development and Validation of Digital

Biomarkers and Interventions. Proceedings of the 15th ACM Conference on Embedded

Network Sensor Systems (SenSys). 2017.

Apache REEF: Retainable Evaluator Execution Framework. ACM Transactions on Com-

puter Systems (TOCS) 35.2. 2017.

Optimizing Interactive Development of Data-Intensive Applications. Proceedings of the

Seventh ACM Symposium on Cloud Computing (SoCC). 2016.

xx

CHAPTER 1

Introduction

Edge computing is a tremendous shift from the decades of advancements in cloud computing.

The emergence of sensor networks and the Internet-of-Things has led to a world where an

incredibly diverse collection of sensors, actuators, hardware accelerators, and mobile devices

are connected to enable complex and emerging applications, including those spanning smart

cities and military domains. As the number of IoT and edge devices rapidly increases [Col18],

the complexity and capability of hardware continues to evolve, resulting in an unprecedented

amount of information residing at the edge. Given the sheer volume of latency-sensitive data

that is continuously collected, mechanisms that remove the edge-to-cloud from the critical

path are necessary, as it places unacceptable restrictions on availability, throughput, and

latency, with projected trends only serving to further exacerbate these limitations [Fut19].

In an effort to aid in the development and deployment process, new classes of distributed

system tooling are specializing to focus on the problems arising in this domain.

The fabric onto which IoT and edge computing applications run possess fundamentally

unique characteristics. First, embedded devices have traditionally demanded low power con-

straints with limited computational and networking capabilities. Second, many of these

devices, especially sensors and actuators, are supplanted with the intention of capturing and

interacting with the surrounding environment – the physical location of a device plays an es-

sential role in its purpose within the sensor network. Third, due to the inherent juxtaposition

of embedded devices within the physical world, privacy and security implications become a

primary concern. These devices are not only exposed to a new physical attack vector, but

1

are able to capture highly sensitive information which must be carefully managed.

1.1 The Problem: A Heterogeneous, Ad Hoc, and Dynamic Edge

In recent years, new and emerging capabilities have further exacerbated the problem of sys-

tem management in the IoT and edge computing space. First, new enterprise and research

devices have created even more heterogeneity and hardware isolation. Enterprise frameworks

such as Samsung SmartThings and Apple HomeKit attempt to stitch together disjoint de-

vices into a fully integrated system; however, these solutions are closed source and limited

in both capability and supported devices, resulting in redundancy and isolation. Second,

new accelerators and hardware, especially in support of deep neural networks and machine

learning, have further increased the variation in device efficiency. Third, entirely new sets

of capabilities have emerged at the edge, including actuation (e.g., control operators for

industrial systems, assembly line automation, valve operation), and device mobility, where

the location of a particular device is no longer fixed (e.g., camera PTZ, phones, drones, and

vehicles). Finally, and most importantly, the edge is no longer one that is reliably instru-

mented and statically pre-configured. Instead, applications are being deployed over ad hoc

and constantly changing networks, with devices entering and exiting a system at runtime, for

example in first responder and military scenarios. Capturing and accounting for environment

dynamics in these domains pose significant and previously unexplored challenges.

The nature of the edge network is increasingly different, discordial, and dynamic. In

this transition, many of the previous paradigms for systems spanning the edge fail to map

to this new world; a static deployment cripples application behavior. In essence, there is a

fundamental need for a systematic approach to building high-quality and adaptive distributed

applications. To this end, I posit the following three open and unsolved problems constitute

the essential elements of a robust autonomic cloud-edge system:

Req 1 A means to dynamically assemble a heterogeneous collection of devices into a resource

2

pool that implicitly exposes the individual and diverse capabilities of its composition.

Req 2 An approach to efficiently program non-trivial (i.e. more complex than IFTTT) appli-

cations which are able to take advantage of the diverse capabilities of the underlying

devices while providing portability across networks with different compositions.

Req 3 Resource management mechanisms to provide efficient execution and resilience to

changes that occur in environment dynamics at runtime, all while preserving appli-

cation semantics.

The evolution of edge computing towards an ad hoc and dynamic network inherently

requires an adaptive distributed system; applications deployed in a static fashion can no

longer maintain quality-of-service for practical deployments. In this dissertation, I introduce

a unified vision for enabling cloud-edge system self-awareness, such that an underlying system

runtime may be empowered to (1) prepare and configure a generic application over a diverse

yet unified resource pool, (2) track or infer network and environment state during runtime,

in order to (3) reconfigure an application execution to preserve semantics while maximizing

performance. The components of this system serve to bring us one step closer to a future of

interconnected and widely-accessible IoT.

1.2 The Future: A World of Interconnected IoT

The future is a world where the hardware that comprises today’s edge network is no longer

isolated through special-purpose programming abstractions and custom-built application

stacks. Instead, these networks are simply a logical extension of the existing cloud computing

infrastructure that is readily accessible to developers today. When designing IoT applica-

tions of the future, leveraging sensors and actuators will be just as straightforward as lever-

aging scalable computing infrastructure or virtual private servers that accelerate generically-

written applications based on their hardware-optimized specification. The emerging trend of

3

“Infrastructure-as-Code” is one such realization of this definitive pattern [Mor16], and

its application to IoT is all but certain.

Consider the smart city of the future, where autonomous vehicles, municipal sensor fleets,

and user deployed smart home systems are woven together into a unified, communicable, and

shared platform. Given the current state of IoT design, this is simply impossible, as each

vendor isolates their devices with a custom application stack and incompatible networking

interface. As a result, distributed system administrators undergo an enormous undertaking

simply to coalesce the hardware owned by a single entity. The most practical solution is

far from the most ideal: each device is treated either as (1) a complete, standalone (and

therefore limited) system (e.g. autonomous vehicle), or (2) as a dummy data-forwarder (e.g.

sensor fleet), with system intelligence confined to the cloud. Moreover, these incompatibilities

restrict the sharing of infrastructure across users and applications, ultimately inhibiting the

natural growth of IoT into an extension of general-purpose computing that can uniquely

sense and interact with the physical world.

To illustrate this point more clearly, let us consider three tangible use cases of distributed

IoT systems: (1) developing hyper-local traffic-aware routing algorithms, (2) empowering

first responders during disaster management, and (3) detecting and mitigating violent crime.

Firstly, and most obviously, municipal sensors such as those deployed at street lights, traffic

intersections, cellular towers, and public service vehicles offer an obvious means to serve

each of these three use cases, whether it be in the generation of live traffic activity, provid-

ing high-fidelity AR information to first responders, or detecting and tracking any public

display of weapons. Additionally, user homes, smartphones and autonomous vehicles offer a

incredibly rich suite of sensor data that can be voluntarily contributed to aid in the enhanced

performance of each of these applications.

Yet the practical achievement of the three aforementioned use cases is limited by the

isolated and disjoint state of IoT. Deploying multiple applications against these distributed

systems is currently infeasible due to the lack of shared IoT infrastructure. With each device

4

group or vendor confined to their own isolated silo, there exists no means to simultaneously

multiplex these use cases over the same hardware, even if wholly owned by a single entity,

not to mention incorporating voluntary and ephemeral crowd-sourced devices. The only way

to enable multi-tenancy is to coalesce application intelligence at the nearest general-purpose

computing environment. That is, as of today, the cloud. This ultimately results in one of two

scenarios: either applications posing low-latency QoS requirements are dismissed, or a ded-

icated system is custom built specifically for that application. This disappointing outcome

is fundamentally limiting the practical adoption and applicability of IoT. Without designing

for generic compatibility, IoT will continue to remain a niche environment for wealthy users

and embedded developers. On the other hand, if we were to design a practical means for

sharing infrastructure with multi-tenant usage of flexible and diverse computational capa-

bilities, perhaps IoT can ascend to it’s utopian image of a sensor-rich and highly capable

environment accessible to the standard developer with reasonable development tools and

general-purpose computing resources.

Bridging the Gap. The broad vision of this research is to unify IoT through a shared

resource manager with access to a persistent shared data layer. As opposed to treating de-

vices as single-purpose data forwarders, IoT devices will be capable of hosting multi-tenant

applications with access to peripheral devices and compute pushed out to the microprocessor

itself. Whereas prior systems aimed to design frameworks that serve only a subset of appli-

cations, we argue that a novel layer of abstraction is needed to truly enable general-purpose

and interactive computing hosting multiple frameworks at the edge, similar to the general-

purpose capabilities offered by current cloud computing platforms. The core idea proposed

is a self-aware adaptive system, aiming to project one step toward bridging the gap between

the limitations of the current state of IoT and a realization of the interconnected future.

5

Figure 1.1: The Vision Illustrated

6

1.3 The Vision: Self-Awareness for Adaptive Systems

Self-awareness refers to the notion that an autonomous system has the means to model itself

and evaluate its ability to manage application execution. The model encompasses a set of

possible layouts and/or configurations; at any given moment, applications are mapped to

the system using one instance of the possible configurations. Given this instance, the system

tracks quantifiable performance metrics. The key enabling feature of self-awareness is the

ability to simulate the results of altering its configuration, potentially shifting to another

instance of possibly layouts. This “what if” thought experiment provides a means for the

system to move towards optimal performance by deciding on desirable configuration changes,

justifying its decision, committing an update, consulting the impact on performance metrics,

and re-evaluating its configuration. Achieving self-awareness requires defining (1) a flexible

system model, (2) the space of possible configurations, (3) the performance metrics to track,

and (4) a means for the system to collect, evaluate, and act on this information.

Figure 1.1 depicts the high-level elements comprising the vision for the self-aware au-

tonomous system, with each component serving to satisfy one of the essential requirements

introduced in Section 1.1. Each chapter of this dissertation highlights an element of this

vision, taking a top down approach from macroprogramming to core system contributions.

1.3.1 (Macro) Programming

The Macroprogramming components provide a hierarchical planning and programming ab-

straction that specifies application tasks in a declarative manner. It aims to avoid designing

applications specifically for a particular deployment or resource pool configuration. Instead,

the end-user should describe what a system is meant to accomplish, without explicit regards

to the how. This flexible specification empowers systems to make decisions about how to effi-

ciently distribute and execute a particular application while taking advantage of the available

resources and capabilities inherent to a particular deployment. Furthermore, a declarative

7

programming abstraction enables portability across networks, such that the same specifica-

tion can be effectively accomplished across varying hardware and network configurations.

DDFlow introduces a declarative dataflow-style programming abstraction that dynam-

ically assembles a list of capabilities over a resource cluster. Each device deploys a manager

that implicitly collects and reports its available tasks to a central coordinator. In this man-

ner, hardware-specific implementations are abstracted for a particular task; for example,

two different devices may offer the same camera sensing task with differing underlying im-

plementations. Applications are constructed visually by organizing Nodes into a streaming

set of tasks, with support for user-defined functions. Upon issuing a DDFlow application

to the coordinator, a scheduler dynamically scales up the application based on Node con-

straints and Wire specifications, issues the relevant task requests, monitors each device in

the application deployment, and reissues tasks if needed based on environment dynamics.

Subsequent work on EdgeRM addressed the strict definition of constructing DDFlow

Nodes with JavaScript wrappers, which limits the overall portability and universality of

application expression. To this end, EdgeRM supports application definition as a set of

containerized tasks via Docker and WebAssembly. These tasks can then be dynamically

issued and managed across a resource cluster through the EdgeRM messaging protocol.

1.3.2 Execution Environment

The core of the system comprises three thrusts serving as the autonomic execution environ-

ment over which applications are managed. The execution model consists of a distributed

resource manager spanning high-performance servers and low-power sensors with access to a

low-latency external state management platform augmented with principles guiding robust

adaptation. When enabled by macroprogramming, these key elements provide scope and

mechanisms by which an adaptive system utilizes information gained via self-awareness.

EdgeRM provides a unified resource management interface for applications spanning

8

cloud-edge network deployments. An aggregate view over the entire cluster lifts IoT and

embedded devices, previously confined to the “sensor network,” into the general purpose

computing cluster. Applications defined as sets of Docker containers and WebAssembly

modules can be issued across the cluster via a shared interface. To support portability

across embedded devices, an execution model supporting WebAssembly for IoT integrates the

WASI-SN extension to the WebAssembly System Interface for unified sensing across varying

device drivers. EdgeRM provides a foundational platform over which complex application

frameworks can be developed, such as our Sensor MapReduce Framework, while enabling

multi-tenant resource sharing. The scheduling interface offers a means for custom-built

application logic while supporting dynamic deployment, monitoring, and adaptation of task

bindings over the resource pool.

For cloud-edge applications requiring a distributed storage platform, Portkey provides

low-latency access to a persistent key-value store. Whereas previous works have attempted

to design a one-size-fits-all approach to data placement, Portkey customizes key-value place-

ment to a deployment based on its particular network and access patterns. Client accesses are

tracked, summarized, and reported to the Portkey placement engine, which uses information

about application and network state to continuously optimize KV placement to minimize

client request latency. This allows networked deployments to implicitly learn data hosting

without requiring any external inputs from system administrators or domain experts.

Finally, adaptation in-and-of-itself offers an attack surface by which adversaries may

negatively influence system decisions. Guarding against these potential threats led to the

introduction of the ADAPT2 principles of secure adaptation. The incorporation of state es-

timation, moving target defense, and location obfuscation helps protect a self-aware system

from the risks of naive adaptation. While not a system in its own right, the ADAPT2 prin-

ciples are widely applicable to most resource management designs, and help guide systems

developers into incorporating preventative measures that limit adverse configurations.

9

CHAPTER 2

Enabling Adaptive Systems via Declarative

Macroprogramming

The most fundamental problem limiting the ability for adaptive systems in autonomic com-

puting is an application description and implementation which binds itself to a particular

suite of devices within a particular network deployment. The ability for a system to decide

how to place and manage an application requires a specification that is abstract and high-

level enough to enable such freedom. A designation of computation to a particular device or

subset of devices inherently restricts the possible space of execution solutions.

How might applications be constructed to express complex tasks spanning cloud, edge,

and IoT networks, while simultaneously allowing for the maximal set of placement options?

An obvious first step is move away from defining tasks as they relate to a particular device.

Instead, one should describe the desired end-to-end behavior over the entirety of the network.

This notion of global application specification is broadly referred to as macroprogramming.

Describing an application as a macroprogram prevents a tangible binding to any particu-

lar set of devices, thereby offering portability and resilience across diverse network character-

istics. Previous work in macroprogramming abstractions (e.g. [GGG05, NMW07, KWA03,

HLR13]) achieve this through various techniques, including SQL-style languages or event-

driven callbacks, while including necessary spatiotemporal primitives to capture the physical

properties of sensors and edge devices. However, these systems were designed in an era that

precedes the modern edge environment, which now includes actuation and mobility over

a diverse and dynamic network. As such, they lack the sufficient mechanisms to enable

10

current applications. A problem emerges in providing an efficient means to specify coordi-

nated behavior across the cloud-edge while exploiting device heterogeneity and enable system

adaptation/reconfiguration, all while providing portability across varying networks.

In recent work published at IoTDI, we introduce DDFlow [NTG19, NSG19], a macropro-

gramming abstraction and accompanying system runtime which offers the appropriate prim-

itives to properly isolate application semantics from an arbitrary deployment environment.

Application specification is accomplished through a declarative and visual user interface,

implemented as an extension of the Node-RED IoT system [Fou18]. Developers visually

describe what the application should accomplish, without explicit regards to the how. This

allows for effective visualization, programmability, and resusability. Furthermore, this pro-

vides an opportunity for a system runtime to have flexibility in decision-making, thereby

enabling adaptive systems at the edge.

This chapter introduce the macroprogramming abstraction that provides an initial pro-

totype enabling adaptive systems. I begin with an example motivating application that

represents a real-world latency-constrained scenario. After touching upon related work, I

then introduce the DDFlow macroprogramming abstraction for declaratively programming

distributed applications spanning a diverse and dynamic edge.

2.1 Motivating Application

Emerging applications at the edge range from those spanning smart homes, smart cities,

military and medical domains. In order to ground the discussion, I will introduce an exam-

ple scenario highlighting the key requirements and issues emerging from this environment.

This motivating application, while simply one example, illustrates the latency-constrained,

heterogeneous, and dynamic nature of modern applications that are now actively deployed

over IoT networks.

With a sensor network that spans college campus cameras, drones, a speaker, and cloudlet

11

Figure 2.1: Example Motivating Application

servers, the objective is to achieve the following:

1. Recruit cameras in a specified region to identify a target or object-of-interest

2. Classify the captured image frames from the cameras to detect the target

3. Upon initial detection, play a sound on the speaker at a command center in order to

alert those nearby that the target has been identified

4. Available nearby drones are tasked to pursue the target and provide a live video feed

This example application, illustrated in Figure 2.1, showcases many of the pain points

associated with system management and application development over a cloud-edge network.

First, minimizing end-to-end latency is a critical quality-of-service requirement; similarly,

due to the sensitive nature of the application, maximizing up-time availability is essential.

12

Second, the devices comprising the system have fundamentally different and diverse ca-

pabilities, spanning sensing, actuation, mobility, and computational capacity. Some devices,

for example cameras, may offer similar high-level functionality, but across varying hardware

and quality metrics. There exists large heterogeneity across devices serving the same func-

tionality. For example, different devices may offer image classification, but with varying

accuracy, granularity, and throughput.

Third, the network over which the systems operates is prone to significant change at

runtime; devices may be moving, devices may enter/leave the network, and overall network

conditions (e.g. link latencies, bandwidth) are prone to fluctuating. Configuring and re-

configuring in spite of the ad hoc nature of this network is nontrivial. Variable network

characteristics significantly affect optimal computation placement, for example whether to

stream video to a nearby classifier, or accept less accurate local classification to maintain

acceptable throughput. Coordinating and reconfiguring devices to maintaining application

semantics while minimizing latency and maximizing availability given these constraints is a

challenging problem.

Fourth, new devices, for example cameras and drones, are constantly being created and

integrated into modern systems. Accounting for, inserting, and implicitly exposing these

capabilities without having to fully rearchitect the system or recompose the application

specification poses an additional burden.

Fifth, providing an abstraction which enables portability, such that moving to a new

campus or enviornment does not require rebuilding the entire distributed system every time.

Reconfiguring an application to a new environment should be a minor modification, and

require minimal pre-instrumentation.

Finally, providing an abstraction which is powerful enough to express complex applica-

tions of this nature, as they span across varying hardware and sensors. An abstraction which

addresses the previously defined pain points without capturing a rich suite of nontrivial ap-

plications is insignificant. Is it possible to design an abstraction which enables this flexibility

13

and expressivity, write once, and deploy everywhere?

The key idea in DDFlow is to take a declarative approach to application specification.

Before introducing the abstraction and its inspiration, I will briefly touch upon previous

related work in macroprogramming for edge and IoT networks, how they attempt to address

many of the problems introduced by this motivating application, and where they fall short.

2.2 Background and Related Work

The notion of macroprogramming refers to a field of research that aims to provide centralized

specification for applications spanning distributed sensor networks [WM04]. The goal was to

enable complex coordinated activity without forcing developers to configure individual de-

vice or account for a particular network. The typical approach is to define a language (often

with an accompanying runtime framework) that allows efficient description of global appli-

cation behavior. There have been many proposed approaches, abstractions, and languages

introduced in order to accomplish this task [GGG05, HLR13, KGM07, KWA03, NW04].

Each approach makes various assumptions on the set of target applications, and in doing

so adopts differing design decisions for the proposed abstraction; some examples include

whether to focus on local node behavior or global computations, whether to offer a network

independent or dependent abstraction, and how to express computation as a function of the

network topology [MP11]. Aside from the convenience of centralized specification, the key

contribution of macroprogramming is the flexibility it grants to the runtime system in how

to efficiently manage the execution of the application.

DFuse[KWA03] is a macroprogramming framework focused on aggregating sensor data

into higher order evaluations; that is, simple streaming operators over collected sensor

streams. Applications are defined as dataflow graphs composed of sensors, fusion point

operators, and outputs. The runtime determines where to place computation in a heteroge-

neous network. Given the flexibility in placement, application adaptation occurs with devices

14

suggesting the transfer of a subset of their current compute tasks to a nearby device. While

effectively capturing data fusion applications, DFuse lacks support for external actuation,

mobility, and scalability; tasks such as sensing should often be subdivided across a set of

available devices.

Kairos [GGG05] is a programming language to define global behavior of distributed

computation by expressing pairwise interactions between neighboring nodes. The language

primitives involve accessing neighboring devices and writing shared data values. The no-

tion of pairwise expression places a constraint on application portability and expressivity,

potentially leading to unexpected behavior in the mobile IoT environment.

Regiment [NMW07] offers a functional macroprogramming language that groups data

streams into regions based on spatial locality, allowing an expressive language that captures

many sens-compute applications in sensor networks. Due to the high-level of the language

abstraction and its basis on the Token Machine Language programming model [NW05], it

is generally ineffective at expressive heterogeneous network capabilities. With no language

support for mobility or actuation, it falls short in control applications.

Mobile Fog [HLR13] presents a programming model for IoT applications spanning the fog

(cloud-edge) network heirarchy. Applications are constructed using event-driven message-

passing callbacks. With support for dynamic scaling, complex event processing, and dis-

tributed key-value storage [MGS17], Mobile Fog offers a flexible programming interface that

offers single-file centralized specification. This abstraction works well for simple, constrained

tasks. However, for complex applications spanning heterogeneous edge devices, grouping all

devices’ application logic into a unified callback function can become unwieldly and difficult

to understand.

The most directly related work to DDFlow is the D-NR system described in [GBL15].

Their work provides an initial implementation of a distributed extension to Node-RED.

Developers define a master flow composed of sub-flows which each deploy to different devices

in the overall network. Heterogeneity is accomplished by explicitly categorizing devices into

15

edge, IO, and compute, with inter-device communication leveraging MQTT. Ultimately, D-

NR provides an interesting prototype for visual programming. However, with a lack of

declarative specification, scaling, fault tolerance, and dynamic adaptation, it falls short in

delivering a robust system framework for IoT application extending outside a controlled

home environment.

2.3 Capturing the Sense ⇒ Compute ⇒ Actuate Paradigm

A useful programming abstraction for building distributed applications across the distributed

cloud-edge must have the ability to capture a complex set of applications while maintaining

an abstraction that is high-level enough to empower an underlying runtime to enact adaptive

system decision-making. In this way, it can provide portability across networks with a

unified framework by which distributed systems can be easily assembled. Key shortcomings

of related work include a lack of support for actuation, and a lack of implicit scaling, where

the optimal scaling of an application cannot be known until deployment, and as such should

not be explicitly stated as part of the application specification. An added bonus would

be a programming model that is intuitive to understand; building complex applications by

encoding all application logic in unified callback functions will quickly become unmanageable.

Applications spanning the cloud-edge, especially those involving sensing and actuation,

typically follow a universal paradigm structure which can be referred to as the IoT app

archetype. Regardless of domain, this paradigm is prevalent across a wide variety of appli-

cations. The paradigm is as follows:

1. Applications begin with sensing, or some other form of event trigger.

2. Sensing data is fed into some sort of machine learning model to extract higher-level

deductions.

3. Aggregates (e.g. windowing, grouping) and filters are typically performed on extracted

16

Generate Frame

REGION: (lat, lon, r)
Classify

Image
Filter

“Target Object”
Follow

Location: Frame.location
Target: “Target Object”

Play Sound

DEVICE: 131.179.64.45

Figure 2.2: The Motivating Application in DDFlow

features before and/or after the ML model is applied.

4. Downstream results are presented to the end-user and/or used to trigger actuation(s).

Dataflow is a natural choice for both visualizing and describing applications spanning IoT

networks. It is a programming model that has been previously validated by the community

(e.g., [ABC15, KWA03]), and is a logical choice for an event-driven abstraction that begins

with sensing and ends with actuation, capturing the perception ⇒ cognition ⇒ actuation

paradigm that is pervasive across edge networks. Applications developed in this manner

are highly visual and intuitively understood, providing an interface that allows developers,

project managers, and future engineers to fully grasp an application at a glance. Further-

more, dataflow decouples application specification from the deployment network, enabling

both portability between networks, and an opportunity for a system runtime to provide

optimization. However, dataflow in-and-of-itself lacks the sufficient primitives necessary to

fully capture application expression of this nature. This essential insight led to the creation

of DDFlow.

2.4 The DDFlow Macroprogramming Abstraction

Figure 2.2 depicts a DDFlow specification for the motivating application described in Section

2.1. It begins by generating image frames in the region of interest. These frames pass

17

through an image classifier, which is filtered to focus solely on identification of the target.

Once identified, a speaker is notified to play a sound, and drones are deployed to the last

observed location of the target, initiating a follow sequence.

There are a set of abstraction primitives provided by DDFlow extending dataflow to

support a declarative application programming interface. More specifically, dataflow lacks

the sufficient descriptors necessary to enable runtime scaling. In deploying an application to

diverse environments with varying regions, devices, and capabilities, the precise scale of an

application is often not known a priori. DDFlow aims to allow an application to be implicitly

and dynamically scaled depending on the resources available at runtime and the constraints

of an application. Existing work generally lacks this notion; not only should multiple tasks

be assignable to the same device, but an individual task may be collectively accomplished by

replicating across a dynamic set of devices. DDFlow achieves runtime scaling via the Node

and Wire fundamental primitives.

2.4.1 Node

DDFlow applications are defined as a sequence of actions, or Nodes in a dataflow graph. A

Node is a computational abstraction representing a stateful function that maps inputs to

outputs, either of which are optional. Each Node corresponds to at least one instantiation of

a task that must be deployed onto a device in the network (e.g., generating camera frames,

classifying images, playing a sound). Inputs and outputs are key-value dictionaries (i.e.,

JSON messages) that contain application data as well as metadata including timestamp and

sender.

Nodes are constrained via a set of parameters relevant to a particular task (e.g., Filter

contains a key-value to filter incoming messages). Due to the spatiotemporal nature of

IoT applications, two fundamental parameters underlying all Nodes are Region and Device,

optional parameters restricting the deployment of a task to a particular spatial region or set

of devices. In Figure 2.2, the Node generating camera frames is associated with a circular

18

region (lat, lon, r). Only devices capable of generating camera frames within the specified

region of interest are potential candidates during runtime scaling. Regions can be described

as a bounding box, with other structured location information, or as a list. Dynamic and

moving regions can be specified via the input keyword, which monitors a given Node’s

inputs for a region value to update the existing deployment region. The Device parameter

supercedes the Region parameter and allows for precise Node placement.

To deploy the motivating application to a new environment, a developer needs only to

change the Region parameter for generating camera image frames and the Device parameter

for playing a sound. During deployment, the system runtime will dynamically scale the

application to the available devices in the regions of interest that are capable of accomplishing

the specified Node tasks.

2.4.2 Wire

In defining a sequence of actions, Nodes are connected via Wires, representing a connection

in a dataflow graph. Each Wire carries a key-value dictionary from the output of one Node

to the input of the downstream Node. Due to the elastic runtime scaling of Nodes, WIres

definitions follow one of three forms: Stream (one-to-one), Broadcast (one-to-many), and

Unite (many-to-one).

In the motivating application, all devices that are performing the Follow task should

receive updates to target location regardless of which camera generated the detected frame.

As such, the connection between Filter and Follow is a Broadcast Wire. On the other hand,

only one device is responsible for playing a sound upon target identification; as such the

connection from Filter to Play Sound is a Unite Wire. Finally, in order to take advantage of

motion detection capabilities, each camera generates a stream of frames to an independent

Classify instance; as such, Generate Frame and Classify are connected via a Stream Wire.

19

2.5 Considerations

Defining applications in a declarative manner using DDFlow enables application portability

and provides an opportunity for a system runtime to make decisions regarding application

management for a particular deployment. This abstraction can be used to express a wide

array of applications spanning cloud-edge networks, especially those involving sensing and

acutation across heterogeneous devices. In the next section, I describe the initial work on

building a system to support the abstraction, which serves as an initial prototype for the

self-aware adaptive system. However, the work in application expression still has oppor-

tunity for further exploration. As applications are developed, intricacies requiring further

constraints may require changes to the existing primitives (e.g. a new Wire type). Further-

more, this work in Macroprogramming is targeted towards an audience of individuals with

basic knowledge of programming; selecting the appropriate nodes and wires require a basic

understanding of how the application will scale and deploy. While this visual programming

interface provides a flexible declarative means to design applications, a higher-order pro-

gramming interface is also desirable; “Command-by-Intent” aims to achieve this via verbal

programming.

One can view programming systems of this nature across multiple levels: systems devel-

opers typically require low-level control, whereas application developers look to abstractions

to simplify specification. Furthermore, for certain classes of end users, for example police

commanders, specification must be accomplished at a very high level, with abstractions sim-

ilar to those given to digital assistants such as Google Home and Amazon Alexa. Previous

work in macroprogramming does not suffice in this regard; end users may not be willing to

sit and wire up dataflows in high-stress environments. Instead, macroprogramming serves as

yet another intermediary representation between application developers and physical code,

offering a functional means of declaratively issuing tasks over a distributed collection of

devices. To provide an end-user solution, we can look to Command-By-Intent, a military

20

concept that reduces commander orders to a desired outcome or end-state instead of ex-

plicitly defining the plan sequence. This concept can be mapped to adaptive systems by

defining a repository of macroprograms that can be dynamically recalled and issued using

oral commands, thereby increasing overall utility by offering a level of abstraction suitable

to wider set of end-users.

2.6 The DDFlow System Runtime

To provide an adaptive system prototype, the work published at IoTDI provided an initial

runtime implementation accompanying the DDFlow macroprogramming abstraction pre-

sented in [NTG19]. This runtime provides a first step towards self-awareness and a founda-

tion for the adaptive system elements to be explored during my PhD research. This chapter

briefly introduces the basic elements of this system, comprised of a programming interface,

system architecture, dynamic runtime scaling, and dynamic adaptation/reconfiguration, such

that further research direction may have a grounding system onto which implementations

can be evaluated.

2.6.1 Programming Interface

A key aspect of the DDFlow macroprogramming abstraction is its visual composition. To

support this notion of visual and declarative programming, the DDFlow system runtime

repurposed the Node-RED [Fou18] IoT programming tool, which provides a single-device

programming environment. In essence, the front-end visual “wiring” of single-device flows is

now used to express DDFlow applications that are composed of DDFlow Nodes connected

by DDFlow Wires. Figure 2.3 presents a screenshot of the motivating application expressed

in the DDFlow interface.

Nodes themselves are implemented as lightweight JavaScript classes bootstrapped into

the DDFlow system. An example implementation of a basic filtering Node is provided in

21

Figure 2.3: Screenshot of DDFlow Programming Interface

22

Listing 2.1. A Node implementation consists of three primary functions: init upon node

instantiation, receive upon message recieval, and terminate upon node termination. The

params value optionally provides a list of configuration parameters to request in the visual

DDFlow interface for a particular node, provided to the init function as a config object.

Finally, a Node instance may have local state, in this case filter_key and filter_value,

stored as key-values within the class.

Listing 2.1: Filter Node Example

module . exports = {

f i l t e r k e y : "default" ,

f i l t e r v a l u e : "default" ,

params : ["fkey" , "fvalue"] ,

in i t (c on f i g) {

this . f i l t e r k e y = con f i g . fkey ;

this . f i l t e r v a l u e = con f i g . f v a l u e ;

} ,

receive (data) {

i f (data [f i l t e r k e y] . i n c l ud e s (f i l t e r v a l u e)) {

this . send (data) ;

}

} ,

terminate () {

}

}

2.6.2 System Architecture

The DDFlow system follows a service-oriented architecture, a proven architecture for dataflow

and IoT systems [IBG16, KWA03], depicted in Figure 2.4. Each device offers a distinct set

of Services. Services represent a particular implementation for a Node in the DDFlow ab-

straction (e.g. image classification, camera frame capture). In a heterogeneous environment,

different physical devices have have different underlying implementations, but offer the same

Service to DDFlow via the same high-level Node interface.

23

 Device
Service

Coordinator

Client Web Interface

Placement Solver

Deployment Manager

Device
Manager

Service

Service

Device Information
& Capabilties

 Device
Service

Device
Manager

Service

Service

Device Information
& Capabilties

Control Flow
Data Flow

Figure 2.4: DDFlow Runtime System Architecture

Intra-device coordination is achieved through the Device Manager, a lightweight web

server that is deployed on every device participating in the system. It is responsible for

activating and deactivating service instances, and providing device information (e.g. available

resources, utilization, location) to the Coordinator. Resource constrained hardware that

cannot deploy a Device Manager expose themselves to the system through a more capable

nearby proxy device.

Inter-device coordination is accomplished through a Coordinator, a web server that ac-

cepts and manages DDFlow applications as they are issued onto the available network. The

Coordinator is composed of three main components: a web interface, a deployment man-

ager, and a placement solver. The web interface, presented in Figure 2.3, is hosted by the

Coordinator. Developers design DDFlow applications and submit them to the system via

this interface. Upon acceptance, the Deployment Manager contacts the available devices and

24

retrieves up-to-date information regarding capability and availability. Using this informa-

tion, the DDFlow application is scaled to a particular task graph that fits the given network.

Using the Placement Solver, tasks are assigned to particular devices, and the Deployment

Manager issues the relevant service startup requests. The Coordinator monitors deployed

applications to detect significant network changes, such as a disconnected or failing node,

and adjusts the deployment mapping as needed. For resilience, the Coordinator can be repli-

cated onto many device; placement of the Coordinator is recommended on device with high

availability.

2.6.3 Runtime Scaling and Placement

When an application is deployed, the Coordinator contacts all Device Managers to obtain

updated state information and decide which devices to map an application task graph. In

doing so, it may map many services to the same device, such as a powerful server with

accelerators, and it may map the same service to many devices, such as a fleet of drones or

sensors performing a group task.

Each Device Manager provides the Coordinator with information including location, uti-

lization, estimated service and network latency, and devices within wireless range. From

this information, the Coordinator constructs a network topology graph and a task graph.

The topology is modeled with wired devices connected to a backbone network and wire-

less devices connected to other devices within range. The task graph is generated from

the DDFlow application graph by scaling Nodes based on the region, availability, and

capability constraints.

Given a network topology, task graph, and device capabilities, the Coordinator formulates

computation mapping as a linear programming problem with the objective to minimize

the longest path’s end-to-end latency in the task graph. While admittedly a simplified

metric, latency serves as baseline by which a system can begin to compare relative network

speeds and model network characteristics. The solver will find the best solution to the

25

objective function given the following constraints: (1) Neighbors in the task graph must

also be accessible from each other in the network graph. (2) Devices must possess the

necessary Node implementations for all assigned tasks. (3) Devices must have available the

necessary resources required to execute the assigned task. The Coordinator solves this linear

programming problem and issues task requests to all the relevant Device Managers. This

placement algorithm, described in detail in [TS18], is only one such algorithm for assigning

tasks to devices. It is trivial to swap for another placement solver.

2.6.4 Dynamic Reconfiguration

To enable dynamic adaptation and recovery, the Coordinator probes devices in the network at

an application-defined periodicity to monitor for environmental changes (e.g., disconnected

node, overloaded device). Upon detection of a significant deviation of system characteristics

(i.e., compute or network latency), the Coordinator computes a new placement mapping of an

application. This new mapping is evaluated with respect to the objective function (e.g., end-

to-end latency). In the case of projected improvement greater than a threshold, a remapping

is triggered. Any failed or disconnected device will additionally trigger a remapping.

The Library system service provides a key-value data storage API for services to preserve

local state. Thus, when the Coordinator issues the pertinent task activation/deactivation

requests, all task-relevant key-values are forwarded from the terminating service to the device

launching the new task instance.

Communication adapts at a finer granularity. The Router system service hides network-

specific details by providing transparent messaging to devices. For a given device-service

destination, a forwarding table identifies the optimal next-hop, either pushing the packet via

TCP/IP infrastructure mode or via peer-to-peer Wi-Fi ad hoc mode.

26

2.6.5 Case Study

To showcase the benefits of a declarative programming interface with an adaptive runtime, we

developed a simulation testbed. Devices are inserted into the Airsim [SDL18] environment

simulator and connected via the Mininet [FAB15] network emulator. The main system

components simulated in this evaluation, to represent a simplified version of the motivating

application, are the following:

1. A camera used to identify the target

2. Three servers that are capable of providing image classification: a server with a GPU,

a server without a GPU, and a camera-local accelerator

3. A client device with accompanying speaker used to alert upon target identification

4. A drone that follows the target after identification

5. Three wireless access points that provide the drone with communication to the back-

bone network.

Single-hop wired network links are modeled with a 2ms link latency, to account for

processing, queuing, transmission, and propagation delays [MZP08]. Due to the inherent

variability, wireless links are modeled as varying from 30-50ms [SZL16].

Three devices are capable of providing classification. The first is a server using an

NVIDIA Titan X GPU and the YOLOv3 model (˜20ms per frame) [RF18]. The second

is a server relying on its Intel Xeon CPU E5-2620 v3 @ 2.4GHz with the YOLOv3-tiny

model (˜880ms per frame). Finally, a Google Vision Kit camera comes equipped with an

Intel Movidius VPU [Goo18]. It contains support for constrained TensorFlow Lite models,

with its default image classifier requiring ˜3.2s per frame.

In the first application scenario, the camera is streaming image frames to an available

classifier. Upon successful target classification, the speaker is notified to play a sound. A

27

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60 70 80 90

La
te

nc
y

(m
s)

Time Interval

Static DDFlow

Figure 2.5: Adaptation during device over-

load

0

40

80

120

160

200

240

0 10 20 30 40 50 60 70 80 90

La
te

nc
y

(m
s)

Time Interval

Static DDFlow

Figure 2.6: Adaptation during access point

failure

static deployment streams frames to the fastest classifier, the GPU server. If that server

becomes overloaded, performance degrades. DDFlow is able to switch to another available

device to minimize impact on end-to-end latency and preserve application semantics. This

is shown in Figure 2.5. As the GPU server becomes overloaded, both static mapping and

DDFlow see end-to-end latency increase. After a certain threshold it becomes advantageous

to switch to the CPU server, and as such DDFlow is able to maintain minimal impact

to end-to-end latency. Eventually, the GPU server fails, crashing the statically deployed

application, but the DDFlow application continues.

The second application scenario illustrates adaptation during network over-utilization

and access point failure. The objective is to stream live video from the drone to the client.

As the drone moves in physical space, it switches wireless access points. When a backbone

access point fails, the static deployment becomes unable to establish a routing path from

drone to client. In DDFlow, upon wireless access point failure the networking system

service dynamically switches to a Wi-Fi ad hoc peer-to-peer communication protocol. With

only a single peer-to-peer hop, we can re-establish a routing path to the client and preserve

the application. The results are shown in Figure 2.6.

28

CHAPTER 3

Portkey: Adaptive Key-Value Placement over

Dynamic Edge Networks

3.1 Before there was Portkey, there were Pebbles

In my initial research on how to design advanced mobile sensing applications, we stumbled

upon a pervasive problem when collecting high-frequency data on smartphones: there is no

mobile data storage engine that can support the rate of collection needed for modern health

applications, aside from writing straight to the file system.

SQLite is the de facto datastore layer on mobile devices including Android and iOS, but

it is unsuitable for storing high-frequency raw sensor data streams. Its design of saving

data as a flat file presents limitations on throughput, particularly as the overall database

size increases. For workloads that are write-dominant, such as sensor data collection, data

is seldom deleted or updated (e.g., sensor samples) and is often small in record size e.g., a

single message record could be a few hundred bytes.

Writing data streams to SQLite can be prohibitively expensive due to SQLite database

journaling and its update-in-place semantics i.e., records reside at a particular location in

stable storage, and updates mutate the record directly. Furthermore, flash memory (the

dominant stable storage medium in mobile devices) is page-oriented, which means that each

record write corresponds to read and write of an entire page [OKL15]. Common page sizes

for NAND Flash memory chips today are around 8KB, which further increases write ampli-

29

10
1

10
2

10
3

10
4

10
5

10
6

0

20

40

60

80

Write size (B)

M
a

x
 T

h
ro

u
g

h
p

u
t

(M
B

p
s)

Pebbles

SQLite

SQLite Cluster

Optimal

Figure 3.1: Maximum write throughput with increasing write size. Pebbles achieves 92% of

the optimal write throughput while SQLite and SQLite cluster (used in AWARE) achieve

22% and 18% respectively at their steady states while writing large blocks of data.

fication1 for small records that our target applications exhibit. In general, a single record

inserted into a table with k indexes results in 2 × (k+1) pages written under SQLite [OKL15].

Consequently, when using SQLite to store raw sensor data, as data size grows, the query

performance begins to degrade and fall behind the rate necessary for real-time computation

of biomarkers. For the mCerebrum [HHS17] system, after about 8 hours of data collection,

biomarker computations begin to timeout due to growing query response time.

3.1.1 Scalable Storage of High-rate Sensor Data

Log-structured storage systems such as RocksDB [roc17] may provide an alternative to

SQLite; however, RocksDB aims to support general RDBMS workloads and lacks the min-

imized overhead necessary to support mobile devices. To address the specific requirements

1Write amplification refers to the actual amount of data that is rewritten for a given record e.g., if records
are stored in 8KB pages, then writing a 12 byte record results in writing at least an 8KB page.

30

of mobile sensor data workloads, we have developed a custom log-structured storage layer

called Pebbles, which is optimized for high-frequency append-only writes of data arriving in

batch or record streams. Pebbles also provides transparent data sync, allowing applications

to offload data to the cloud for further processing and data archive. On the mobile device,

data is stored in a circular log to maximize the throughput of flash memory. To support

fast queries, Pebbles maintains a lightweight index on a logical timestamp and topic, which

is used to identify data streams.

Figure 3.1 shows the max write throughput by varying data write sizes of Pebbles versus

SQLite and a cluster of multiple SQLite databases (used in AWARE [FKD15]). This bench-

mark was performed on the internal flash memory of a Samsung Galaxy Tab S2 SM-T713.

Each system was configured with an 8MB in-memory buffer (split across database instances

for the cluster with round-robin writes) and performed a total of 4GB writes. The optimal

throughput of 72 MBps was determined by performing one large consecutive write to the

internal memory.

At lower data write sizes, such as those exhibited by typical mCerebrum [HHS17] appli-

cations, Pebbles outperforms SQLite by more than 20x. The performance gain of Pebbles

is directly related to the lower write amplification relative to SQLite. In the lower data

write sizes, the CPU becomes the bottleneck, preventing Pebbles from saturating maximum

storage bandwidth. Nevertheless, the achieved throughput is sufficient for mCerebrum.

At large data writes, such as those to be exhibited by the mCerebrum batch data work-

loads, Pebbles is able to saturate storage bandwidth and outperforms SQLite by more than

4x. SQLite is not capable of saturating the storage bandwidth at these large write sizes

due to system overhead, including primary key constraints and index maintenance, which

attribute to increased write amplification. The SQLite cluster suffers even more performance

due to its reduced ability to perform sequential writes. In Pebbles, write amplification is

minimized through the use of a circular log that is clustered with the primary index i.e.,

both are append-only on new data writes and garbage collection is performed, on both,

31

sequentially with an optional cloud data sync.

3.2 Portkey Introduction

The expansion of IoT and mobile systems has resulted in deployments of high-volume data

producers and consumers residing at the network edge. Example applications include au-

tonomous vehicular networks [SBS17, AQE20, QAB18, NSB18, WGM20, STA19], feder-

ated learning [BEG19, KMY16, ZWH19], drone-assisted disaster management [EN16, Cro19,

EKN17], and AR/VR [CKY20, BBC17, EPB18]. Key to these applications are the inher-

ent mobility and resource constraints of clients and (potentially) servers, as well as the

requirement of low-latency data accesses [TWB20, ZWH19, REF16]. Consequently, these

applications typically employ lightweight datastores (e.g., key-value (KV) stores such as Re-

dis [Red20b] and Apache Cassandra [LM10]) entirely at the edge [MBL18, RG18, CLB18,

MGS17], in order to avoid high edge-to-cloud communication latencies [NAE18].

Unfortunately, existing distributed KV stores are ill-suited for edge settings, and instead

were designed for datacenter environments with relatively uniform client-server latencies, e.g.,

when servers reside on the same rack. Accordingly, KV stores typically opt for randomized

KV assignment strategies [DCB19] such as consistent hashing and hash slot sharding that

prioritize load balancing and fault tolerance, but ignore client mobility and the resulting

client-server latencies (§3.4.1). The result is that retargeting KV stores to the edge computing

context can yield largely inefficient data placements. For example, using our dataset for an

autonomous vehicular application (§3.3.2), we find that existing placement strategies yield

1.7-11.9× higher access latencies than an optimal strategy that explicitly incorporates client

mobility (§3.4.2); Figure 3.2 illustrates the intuition behind this suboptimality.

To fill this void, we present Portkey, the first distributed KV store that explicitly in-

corporates the time-varying mobility and latency patterns experienced by edge applications.

Portkey formulates data placement as an online optimization problem, whereby data access

32

patterns and client locations/latencies are continuously tracked and used to tune KV place-

ments in a manner that globally minimizes access latencies (e.g., average, tail). To realize

this, Portkey must overcome two challenges with regards to efficient data collection and fast

placement decisions. The underlying insight to both of our solutions (described below) is

that, due to the very nature of dynamic systems, an optimal placement now is likely to

become stale in the near-future. Thus, Portkey prioritizes rapid but potentially suboptimal

decisions over delayed optimal ones.

Challenge 1: efficient data collection. At its core, the ideal placement for a given

KV pair (or simply KV) at any time is impacted by two factors: which clients access that

KV, and what is their latency to each available datastore server. The former can be logged by

transparent request proxying, while the latter involves generating a logical network distance

matrix across distributed clients. Though conceptually straightforward, collecting latency

information is difficult under the tight resource constraints imposed by edge networks (i.e.,

bandwidth [WZZ17]), as well as edge devices such as IoT gateways and sensor nodes (i.e.,

energy and memory [SCZ16]).

To solve this, Portkey generates succinct latency sketches [MRL19, GDT18] using a se-

ries of lightweight techniques inspired by Network Tomography [Vou14]. First, to generate a

holistic view, Portkey profiles the end-to-end latency of the datastore from the perspective

of each client by (1) passively profiling application-generated requests, and (2) judiciously

inserting active probes to servers that are not accessed by client workloads. Then, in subse-

quent time windows, Portkey employs locality-aware reprofiling such that latency information

is recollected only if there exists sufficient evidence that a client’s motion might affect KV

placements. Importantly, due to the short time windows that Portkey operates over, repro-

filing decisions consider only proximal servers whose client-server latencies would be most

affected by short-term mobility. The same servers should already house the KVs that a client

accesses, resulting in low reprofiling overheads (i.e., few active probes).

Challenge 2: fast placement decisions. Even with the necessary information, making

33

A B C

Adaptive Data Placement

Random Placement

Figure 3.2: An example smart city deployment for coordinating autonomous vehicles. Dis-

tributed datastore servers are attached at access points spread throughout the edge network.

The primary replica for a key-value (KV) pair shared by clients A, B, and C should intu-

itively be placed at their nearest host, which may vary over time as the clients move. The

randomized placement used in existing systems ignores this locality, resulting in potentially

large request latencies.

placement decisions involves solving a computationally hard optimization problem (reducing

to the NP-hard Partition problem [KK03, BRS08]) that incorporates all of the influenc-

ing factors including client location, server capacity, network state, and workload patterns

(§3.5.2). Worse, the ideal placements can change as any of the aforementioned properties

change, which can occur at very short time-scales in settings with high client mobility. For

example, in our mobility trace of taxis moving through Rome [BBL14], there is a 72% prob-

ability that at least one client will switch access points every 10 seconds.

To generate real-time placement decisions in response to changing system dynamics,

34

Portkey’s adaptive solver operates on keys independently, and handles host storage con-

straints by using a greedy assignment that prioritizes KVs with the largest marginal impact

on overall datastore performance, i.e., balancing storage requirements with access frequency.

Overheads are further reduced by having non-contentious keys, e.g., those that are accessed

frequently but only by a single client, skip the formal solver. This greedy heuristic foregoes

optimal placement in exchange for rapid placement of the most important KVs at any time.

However, suboptimalities (e.g., from ignoring the impact of colocating KVs) only persist for

short time scales, and subsequent profiling and solver iterations will reveal the missed latent

effects, allowing for timely readjustment.

We implement Portkey as an immediately deployable modular extension to the Redis

KV store that can transparently adapt data placements to arbitrary workloads and network

characteristics. Unfortunately, to our knowledge, there does not exist a public dataset for

our target edge applications that includes the associated client mobility. Thus, to evaluate

Portkey, we first developed representative datasets for an autonomous vehicular application

that incorporate real taxi mobility traces over public distributed KV benchmark workloads

(§3.3.2); our datasets and testbed cover a wide range of values for parameters that affect

datastore performance including data locality and client-server latencies. We also deployed

Portkey in two (small-scale) smart building and crowd sourcing applications that use Rasp-

berry Pis and live mobile networks. In comparison to the predominant randomized placement

policy and a variety of locality-aware heuristic strategies, Portkey reduced average and tail

(95th percentile) request latencies by 21-82% and 26-77%, while delivering low network (1-

3%) and memory (< 1MB for thousands of servers and KVs) overheads. We will open-source

Portkey and our datasets post-publication.

35

3.3 Target Applications

In this section, we first describe our target edge applications and their intrinsic properties

(§3.3.1), and then describe the representative workloads (§3.3.2).

3.3.1 Edge Applications and Goals

Autonomous Vehicular Networks. Applications over vehicular networks commonly re-

quire access to a distributed data management platform. For example, rapid (10s-100s of

ms) updates to 3D feature maps (e.g., CarMap [AQE20]) offer real-time information needed

for localization and route-planning over varying traffic and road blocks. These feature maps

are naturally disaggregated based on location, while the sets of accessing vehicles depend on

current location and active route. In contrast, enhancing situational awareness by expanding

line-of-sight perception through inter-vehicle data sharing (e.g., AVR [QAB18]) can reduce

accidents and improve driving experience. Unlike stationary 3D feature maps, AVR informa-

tion is inherently attached to mobile vehicles whose locations vary over time. For practical

collision avoidance, latencies on the order of tens of milliseconds are needed [JS14, BTD06].

Finally, future ride-hailing services that coordinate a large fleet of autonomous vehicles must

perform rapid data access and decision making to determine optimal route planning and

customer-vehicle matching [NSB18, WGM20, STA19].

Disaster Management. Embedded technologies have dramatically impacted our abil-

ity to predict and respond to natural disasters at the edge. These data processing pipelines

are fundamentally latency-sensitive; faster detection provides a better response opportunity.

For example, early earthquake and wildfire detection sensor systems leverage crowdsourced

data across mobile clients (e.g., IMU or inertial measurement unit values, locations) to deter-

mine disaster areas (e.g., earthquake hotspots) and offer advanced notification enabling vital

preparation [KLA19, MBG15, Pay19]. Incorporating UAV and drone deployments further

enhances situational awareness and augments disaster response, ranging from firefighting

36

to search & rescue [Cro19, EKN17, EN16]. These systems commonly rely on a distributed

storage platform for unified data collection, fusion, sharing, coordination, and localization.

Federated Learning. Federated learning is a novel approach to distributed machine

learning over multiple edge devices that does not need to exchange or centralize local data

samples [BEG19]. As it involves continual data updates between edge devices and shared

parameter servers, early implementations have been shown to suffer from inefficient network

communication [KMY16]. These delays are further exacerbated by the mobile and disparate

nature of clients in edge settings. Accordingly, solutions have noted the importance of low-

latency datastore accesses for federated learning [ZWH19].

Augmented and Virtual Reality. Avoiding “VR sickness” is a difficult challenge in

AR/VR applications. Although a number of sources contribute to this effect, reducing round-

trip latency is a primary factor impacting application integrity and user discomfort [CKY20,

BBC17]. To this end, researchers have noted the need for a low-latency data management

platform for AR/VR applications, with a gold standard of 15–20ms [EPB18]. Use cases for

such a datastore include persisting and quickly sharing virtual environment information (e.g.,

locations, textures, state) to enable faster rendering and real-time updates for end users.

3.3.1.1 Key Workload Properties

Although emerging applications in the edge network setting are diverse in nature, they share

key workload characteristics that distinguish their datastore requirements from traditional

cloud applications.

1. High Latency Sensitivity. Low-latency data access (i.e., no more than tens of mil-

liseconds) is critical for all of the aforementioned applications. As application data is

commonly produced and consumed at the edge, this motivates data storage to also

occur entirely at the edge (to avoid costly cloud-edge network latencies [NAE18]).

Note that this is true even for data streaming systems that use a data management

37

broker for pub/sub messaging with data persistence (e.g., for fault tolerance and re-

covery) [Red20a].

2. Large Client-Server Latency Discrepancies. The networks onto which these ap-

plications are overlaid do not offer the relatively uniform client-server latencies of a

cloud cluster. Instead, geo-distribution results in certain edge datastore servers resid-

ing “closer” to a client than others (with respect to latency).

3. Device Mobility. A unique aspect of these applications is the inherent mobility

of the client devices. From smartphones to autonomous vehicles, locations change

over time. The movements of a given client can also directly affect its client-server

latencies. Accounting for and adjusting to this volatility is essential in optimizing for

access latency.

3.3.2 Representative Dataset and Testbed

To the best of our knowledge, there are no openly available datasets representative of the

workloads in the aforementioned edge applications. Thus, to provide a baseline for testing

and evaluating improvements to data placement policies, we developed an in-house edge-

KV dataset; we will open-source this dataset post publication. Our dataset is inspired

by the autonomous vehicular network application, and incorporates realistic client mobility

patterns and distributed data access characteristics. More specifically, our dataset leverages

real mobility traces of taxis moving through Rome [BBL14], and its data accesses are derived

from the de-facto KV benchmark, YCSB (augmented with its distributed extensions [PPR11,

CST10]). Of course, precise data access/locality patterns and network latencies play a large

role in edge datastore performance; we next describe how our setup and datasets cover wide

ranges of values for these different properties.

Network Setup. Given an autonomous vehicular network, deployments can range from

zero-infrastructure peer-to-peer routing to a those that rely on wireless access points and/or

38

Local

Region

Other

Figure 3.3: Testbed Setup. 25 access points, each housing a datastore server, are overlaid

onto a 5x5 city grid. 25 autonomous vehicles move throughout the city according to real taxi

mobility traces. Each vehicle acts as a datastore client, deploying one of the representative

workloads. Network latencies are assigned in a three-tier approach, such that contacting

farther access points involves longer delays.

base stations connected via a wired backhaul [JSF18, FH08]. Portkey is explicitly designed to

operate across this spectrum of potential network topologies. While its operation is agnostic

to the particulars of the network setup, its advantages are most pronounced when there

is a large latency discrepancy between clients and datastore servers. For the purposes of

evaluation and analysis, we opted for a setup as depicted in Figure 3.3, with 25 Wi-Fi access

points (APs) each housing a datastore server, overlaid onto a 5x5 grid with an inter-AP

distance of 400m (approximately 2x the outdoor range of 802.11n [AMO15]). Vehicles act

as datastore clients as they move throughout the region based on their corresponding taxi

mobility trace. For a flexible environment enabling an evaluation of cases where the benefits

of adaptive data placement are minimized, we emulated this network using Mininet [min20,

FAB15], with datastore clients and servers running on a shared server.

39

Given a network setup that most closely resembles a wireless last-hop to wired backbone

network, we opted to assign network latencies in a three-tier approach guided by the reported

end-to-end vehicular network latencies as described in [CBM17, NF13, SMA04, PNS18]. In

our default configuration, clients access their local AP with a random latency ranging from

5-10ms [SZL16, MRS18], regional APs with a random latency between 20-30ms, and all other

APs with a random latency between 40-50ms. In §3.7.2, we evaluate different latency ranges

for each tier, including cases where the benefits of Portkey are minimized (i.e., when there

is minimal client-server latency discrepancy). Additionally, §3.7.4 presents results from two

small-scale applications running over real (not emulated) networks and edge devices.

Application Workloads. Edge applications vary in terms of the relationship between

data locality and data access patterns. To incorporate these properties, we decomposed the

YCSB benchmark suite into 6 workload traces that holistically cover both regional locality

and the local vs. global nature of KV ownership:

• per-client: comprises KVs that are owned and modified by singular clients.

• regional: KVs are assigned to individual regions, and clients only access (read or

write) KVs for the region they are currently located in.

• group: splits KVs and clients into random groups (irrespective of region). Clients

only access the KVs within their group.

• global: contains global KVs accessed and updated by all clients, e.g., full dataset

scans.

• all-RW: combines all previous workloads, with request type evenly split across KV

reads and writes.

• all-R: contains the same KV access patterns as “all-RW,” but all accesses are reads.

Each workload has a data access trace per client, and each trace consists of 20,000 read

40

or write (i.e., get or set) requests to a subset of 1,000 keys. All KVs are sized at 1KB. Inter-

request delays are sampled from a Generalized Pareto distribution with a shape parameter

of 0.155, and are scaled to an average delay of 100ms in line with prior work [AXF12].

3.4 Background and Motivation

Here, we provide a brief overview of existing KV datastore placement strategies (§3.4.1),

and present measurements illustrating why these placement strategies are suboptimal for

deployments spanning edge networks (§3.4.2). Note that while KV stores such as Redis

can be used as a front-end cache for another backing datastore, our focus is on distributed

implementations (e.g., Redis Cluster) that serve as a persistent (i.e., durable) store tolerant

to machine failure via replication, fault tolerance, and failover mechanisms.

3.4.1 Existing Placement Strategies

Random KV Assignment. The vast majority of distributed KV stores employ hash-based

sharding when partitioning keys across a cluster [DCB19]. Figure 3.4 depicts two popular

implementations: consistent hashing (used by Cassandra [LM10] and memcached [Dor20])

and hash slot sharding (used by Redis Cluster [Red20b] and MongoDB [Mon20]). Both of

these approaches result in a random assignment of KVs to datastore servers; the difference

is in the granularity of assignment. In consistent hashing, each key is hosted and replicated

at its nearest servers in a hash ring. On the other hand, hash slot sharding groups keys

into slots, with each slot having an individual assignment to replica servers. Although such

randomized placements ignore the effects of non-uniform client-server latencies (§3.4.2), they

do offer desirable load balancing properties.

Data Replication. Consistency and fault tolerance across a replica set are accomplished

through either quorum consensus or primary-secondary replication [DCB19]. Primary-

secondary replication allows consistent data accesses to be optimized by only focusing on the

41

A

D

B

C
F

E

hash (“key”)G
A

B

C

D

E
F

G

D

A

C

hash (“key”)

Consistent Hashing Hash Slots

Figure 3.4: In consistent hashing, servers and keys are hashed onto a ring. Replicas are

selected by traversing the ring. In hash slot sharding, the ring space is divided into equal

slots, with each slot assigned to datastore servers.

42

Figure 3.5: Performance impact (for average and 95th percentile tail latency) of an optimal

KV placement policy that explicitly considers client mobility, versus the standard randomized

placement policy. Results are normalized to those with the randomized policy.

primary replica placement. In a quorum, request latency is based on the slowest reply, thus

requiring the colocation of a quorum near the accessing clients. We target primary-secondary

approaches and focus on optimizing placements of a key’s primary replica. However, we note

that Portkey’s placement strategy can be directly applied to secondary or quorum replicas as

well. Further, as discussed in §3.6, Portkey adopts the same fault tolerance and consistency

guarantees as the datastore it runs atop.

3.4.2 The Case for Adaptive KV Placement

To illustrate the performance benefits of adaptive placement, we compared the Random

placement strategy used by existing KV stores to an Optimal placement strategy that lever-

ages future (perfect) knowledge of client locations and data accesses. Using this information,

the Optimal strategy predetermines the ideal placement for each KV over a short (near-

43

instantaneous) time window. More specifically, each KV is hosted at the datastore server

that minimizes average or tail (95th percentile) request latency across all client accesses in

the current window. §3.5.2 formalizes the optimization problem that underlies the Optimal

strategy.

Figure 3.5 shows the results for both strategies across all of our workloads (§3.3.2). As

shown, the Random strategy results in average request latencies that are 1.7-5.4× worse

than the Optimal across the workloads; suboptimalities are 1.4-11.9× for tail latencies. The

main issue with Random placement is that it ignores the (time-varying) locality of datastore

clients and their KV accesses, and thus potentially places KVs far away from their accessing

clients. Of course, the impact of this omission is more pronounced in certain workloads

than others. For example, when considering average request latency, the inefficiency is most

pronounced (4.8-6.4×) for the per-client and regional workloads where client KV accesses

are inherently localized (to the client’s location or its encapsulating region). In contrast, the

discrepancies between Random and Optimal placements are lower (1.5-1.8×) for the group

and global workloads where KV accesses are not explicitly centered around spatial locality.

However, even in these cases, the Optimal strategy outperforms the Random one, primarily

by hosting KVs at the servers nearest the majority of (potentially dispersed) accessing clients.

Takeaway. These results suggest that incorporating knowledge of client mobility and

data access patterns into KV placement decisions can substantially improve overall datas-

tore performance (as measured by client-perceived request latency). Of course, the afore-

mentioned Optimal placement strategy presents a loose upper bound and is unrealistic in

practice given its oracle-like knowledge of future data accesses and client locations. In the

next section, we describe how Portkey realizes many of these benefits in a practical manner,

by using continuous (but efficient) workload and network profiling, and an online migration

strategy to achieve real-time, dynamic KV placement.

44

3.5 Design

This section details the system design that Portkey uses to practically realize adaptive KV

placement with near-optimal performance. Doing so requires addressing two key questions.

First, how can the essential information needed to determine an optimal placement (i.e.,

data accesses, time-varying client-server latencies) be efficiently collected across resource-

constrained edge devices and networks? Second, despite the associated computational com-

plexity, how can the collected information be used to make rapid but effective placement

decisions that keep pace with time-varying networks and client mobility?

The intuition underlying Portkey’s design is to lean into the client mobility and dynamism

intrinsic to edge settings. More specifically, without an oracle, Portkey must rely on recent

client access patterns and locations/latencies to predict future accesses and latencies. Of

course, accurate predictions become more challenging to obtain over long time horizons.

Further, in our target settings, recent accesses and current predictions are likely to become

outdated quickly as clients move around and client-server latencies adjust accordingly. Thus,

Portkey prioritizes fast (and frequent) approximate decisions over slow optimal placements.

Accordingly, Portkey opts for an iterative, fast-correcting approach to KV placement for

real-time adaptation to edge system dynamics.

Figure 3.6 illustrates Portkey’s processing pipeline and workflow. Portkey is incorporated

as a modular extension atop existing datastore systems. The client datastore library is

augmented to track each KV access and judiciously monitor end-to-end client-server latencies

(§3.5.1); §3.6 discusses why we opt for client-side profiling. This data is uploaded to the

Adaptive Placement Engine at an application-defined window size.2 Upon reception from

all clients, the engine first computes a global network distance matrix. Along with the

aggregate sets of client-key accesses, the Placement Solver performs fast global approximation

2The frequency of upload affects both the agility with which Portkey adapts to system dynamics, and
the network overheads imposed by shipping profiling information. We use a default window of 10 seconds.

45

Datastore
Client

App Runtime

Client

Log

Datastore Node

Datastore
Client

App Runtime

Log

Client

KV KV KV

Datastore Server

KV KV KV

Datastore Server

Migrate
Datastore Node

Key
Access

Server
Latencies

Client Access Logs

Adaptive Placement Engine

Network
Distances

Placement
Solver

Figure 3.6: Overview of Portkey. Data accesses and latency information are collected by

clients and periodically uploaded to the Adaptive Placement Engine, which determines near-

optimal placements and issues the corresponding migration instructons to datastore servers.

of optimal KV placements and issues migration instructions to the appropriate datastore

servers (§3.5.2).

3.5.1 Efficient Data Collection

Efficient profiling of information that influences optimal KV placements can be broadly

decomposed into two categories: minimizing network (and accordingly, device energy) over-

heads with judicious client-server latency probing (§3.5.1.1), and succinctly storing latency

information and KV access statistics to minimize device memory overheads (§3.5.1.2).

3.5.1.1 Judicious Network Probing

Identifying the optimal KV hosts requires an understanding of the latency delays that each

client would incur in contacting each potential datastore server. This latency should encap-

sualate both the network delays in contacting a server, as well as the processing delays that

46

the server imposes in serving a requested key. A naive strategy to collecting this information

would be for each client to simply, in each time window, issue a probe request to each server

to log the necessary information. However, this additional (per client-server pair) traffic

would add undue stress to servers and edge networks, as well as client devices that must

expend energy to support such network transfers.

Instead, Portkey employs a lightweight, end-to-end probing technique that is inspired

by Network Tomography [Var96]; importantly, we eschew approaches that rely on support

from intermediary network nodes as we target general edge applications with varying ad-

ministrative policies. At a high level, tomography seeks to infer network internals using only

end-to-end measurements that take one of two forms: passive tomography leverages data

from traffic generated naturally by users, while active tomography inserts probes into the

network to glean measurements. The goal of Portkey’s approach is to leverage its operation

over short time-scales (i.e., short windows) to minimize the number of active probes required

to obtain accurate and holistic client-server latency information, despite client mobility.

Approach. To develop a comprehensive latency profile to all servers in a given time

window, Portkey’s client datastore library passively profiles every application-generated re-

quest to log the accessed server, as well as the incurred round-trip latency (including server

processing delay). Of course, a client’s natural data accesses may result in incomplete la-

tency information by failing to contact certain datastore servers; this is especially true with

adaptive placement, as distant servers should be minimally contacted. To fill in the missing

information, Portkey actively injects requests targeting only the excluded servers, thereby

limiting overheads.

Given the short windows over which Portkey makes placement decisions, regenerating

an entirely new set of latency values in each window is impractical. This is true even with

Portkey’s judicious injection of active probes, as clients are unlikely to contact many servers

in a short period of time. To handle this, Portkey uses locality-aware reprofiling, depicted in

Figure 3.7, to recollect client-server network information only if there is sufficient evidence

47

window0 window1

Figure 3.7: Portkey’s locality-aware reprofiling. In subsequent profiling windows, clients only

contact their nearest datastore servers, and use the observed latency values to determine if

placement-altering motion has occurred; if so, clients then collect latencies to the remaining

servers.

that latency values have changed enough to potentially alter KV decisions. In each time

window, a client collects latency information (preferably passively, but if not, actively) only

to the k -nearest datastore servers; k is a configurable parameter that is set to 5 by default in

our experiments. If the relative ordering of latency values amongst those servers changes, or

if any latency values change by more than a configurable threshold (20% by default), then

a client is deemed to have moved enough to warrant full reprofiling, and active probes are

injected to any remaining datastore servers that are not passively contacted.

The guiding intuition is that a client’s mobility is inherently localized over short durations,

and latencies to the nearest servers are the best indicators of how much motion has occurred.

Importantly, with adaptive placement, the nearest servers to a client are the most likely ones

to host the KVs that the client accesses. Thus, latency information to the k -nearest datastore

servers will often be passively profiled, resulting in low overheads.

48

3.5.1.2 Efficient Storage.

During normal operation in a window, a client may passively collect multiple latency values

per server. Given the potential memory constraints on edge clients, this information must

be stored efficiently. To do this, Portkey provides a succinct latency sketching framework

that enables applications to specify which part of the latency distribution they would like to

consider. When tracking average request latency, each client stores the number of accesses

and total aggregate latency for a server, which can be used to derive average request la-

tency while requiring only an 8-byte memory footprint per server. If the application instead

wishes to optimize for a metric that requires the full latency distribution (e.g., tail latency),

Portkey employs the DDSketch [MRL19] and moments [GDT18] sketching techniques to

track approximate quantiles with a minimal memory footprint.

Tracking Data Accesses. In addition to latency information, Portkey clients must also

track KV accesses. In particular, for each data request, Portkey must record which KV was

accessed, as well as the corresponding payload size. Payload sizes must be collected because

they dictate which KVs can fit on a given server, and they provide a mechanism with which

to compare the relative importance of different key placements; indeed, Portkey’s Placement

Solver (§3.5.2.2) relies on payload sizes to scale each KV placement to a marginal per-byte

cost benefit.

The process of logging client data accesses is fairly straightforward: Portkey transpar-

ently proxies each request/response in the client datastore library. Instead, the primary

consideration here is efficient storage, particularly since each client can access a given KV

multiple times in a given window. Portkey relies on a key sketch, depicted in Figure 3.8, to

bound the memory overhead at each client. Key access counts and aggregate payload size

are stored to infer an average payload size for a KV. Given the sparse nature of client-key

accesses, Portkey’s implementation only stores non-zero key counts, consuming 8 bytes each.

49

C1

P1

C2

P2

C3

P3

C4 + 1

P4 + v

…

…

…

…

CK-2

PK-2

CK-1

PK-1

CK

PK

Profiled Client Request

server
 s

key
k

latency
x

payload size
 v

Payload

Count

Figure 3.8: Portkey’s sketches for efficiently tracking client data accesses. Access counts and

aggregate payload size capture individual client workload patterns.

3.5.2 Fast Placement Decisions

Given the information collected in §3.5.1, the Portkey Placement Solver is responsible for

making adaptive placement decisions. Solving for optimal data placement is known to be

NP-hard, as it reduces to the Partition problem [KK03, BRS08]. Worse, an optimal solution

is likely to change with client mobility, which can occur at very short time-scales in the edge

network setting. This section begins by formalizing the placement optimization problem

(§3.5.2.1) and then describes Portkey’s greedy approximation to enable fast placements that

closely resemble optimal decisions (§3.5.2.2). We center the discussion on optimizing average

request latency, and conclude with a description of modifications to support tail latency

optimization (§3.5.2.3).

3.5.2.1 Problem Formalization

Given a datastore spanning N nodes, the solver’s objective is to identify the best host servers

for the K keys contained in the system. The best host for a particular key k is chosen by

minimizing the overall cost C(k) across all candidates. The specific cost metric depends on

the desired performance objective, e.g., minimizing average or tail request latency; we focus

50

on average latency for now. Accordingly, the host is chosen by minimizing

C(k) = min
n

Cn(k) ∀ n ∈ N

where Cn(k) is the cost (i.e., latency) of hosting a key k at node n. This latency cost can

be computed as an average over every client’s distance from the candidate node weighted by

the frequency of client access to the given key,

Cn(k) =
N∑
i=1

fi(k) · din

where din refers to the distance between nodes i and n (e.g., the average request latency

in serving a client i from host n), and fi(k) represents the relative frequency that client i

accesses key k. Client access patterns for each key can be modeled as a frequency access

vector
−−→
f(k) =

[
f1(k) f2(k) . . . fN(k)

]
which is dictated by each client’s access count for the specified key in its data access sketch.

Network distances can be represented via the following distance matrix:

D =

d11 d12 d13 . . . d1N

d21 d22 d23 . . . d2N
...

...
...

. . .
...

dN1 dN2 dN3 . . . dNN

Such a distance matrix can be extracted from the statistics collected across each client’s

network sketch. Given this formulation, the key’s cost vector can be computed as a vector-

matrix multiplication:
−−→
C(k) =

−−→
f(k) ·D

This process can then be independently repeated for each key. If each key’s frequency

access vector were to be instead represented as a row in a key access matrix, multiplying

the key access matrix with the distance matrix derives a cost matrix containing cost vectors

51

across all keys with a single matrix-matrix operation. The computational complexity in

computing this cost matrix scales linearly with the number of keys, and in polynomial time

with the number of nodes; that is, O(kn2). The k × n cost matrix must then be scanned

to identify the best candidates for placement. An optimal assignment of KVs over this cost

matrix is NP-hard when considering the limited storage capacity at each server [BRS08].

3.5.2.2 Portkey’s Adaptive Placement

Portkey’s solver is predicated on the notion that an optimal assignment in any given moment

is likely to become stale over time, especially with moving clients. As such, Portkey employs

an approximate solver that can quickly and iteratively respond to system dynamics using the

latest client-provided information. This is accomplished via a three-fold approach. First,

KV costs are treated as independent. While this ignores the impact of colocating KVs

onto the same server, subsequent request profiling and solver iterations will account for this

effect, readjusting if needed. Second, to address host storage limitations, a greedy assignment

prioritizes the KVs with the largest marginal impact on performance. This sacrifices optimal

placement in exchange for a rapid adjustment of the most important KVs accessed at any

given moment. Finally, to ensure efficiency with data-intensive systems, a fallback heuristic

is selectively applied to the least contentious KVs; for example, a KV accessed only by a

single client can forego the solver and quickly be placed at its nearest host.

While this approach deviates from the optimization formulation in §3.5.2.1, it allows for

fast and self-correcting placement decisions that closely mimic optimal decisions (§3.7). We

next detail the three principles of Portkey’s solver in turn.

Independent KV Cost Analysis. An optimal placement assignment should consider

the impact of colocating KVs on the same server. This results in an exponential decision

space; reassigning a KV affects server load and latency, thereby requiring a cost matrix

update for all remaining KVs. The Portkey placement engine opts to treat costs as inde-

pendent, ignoring the impact of KV assignment. The guiding intuition is two-fold. First, we

52

predict that in many cases the larger contributor to round-trip request latency is network

delays as opposed to server processing time. More importantly, given the iterative nature

of Portkey’s placement decisions, subsequent profiling (which incorporates both network

and server delays, as per §3.5.1) will quickly reveal this latent effect, allowing for prompt

self-correction.

Greedy Assignment. To greedily place KVs, Portkey first computes a utility score per

KV, indicating the marginal benefit of prioritizing its reassignment. Specifically, the utility

score is calculated as the difference in cost (i.e., latency) between the current assignment and

the optimal assignment, scaled by the KV payload size. This provides a per-byte marginal

cost benefit. These utility scores are then sorted from largest to smallest impact, and KVs

are greedily assigned in order of importance. Once a server reaches its storage capacity,

keys are assigned to the next best host. When including the cost matrix computation, this

assignment process results in overall solver complexity of O(kn2 + k log k).

Skipping the Formal Solver. For very large systems (with many KVs) and small

window sizes, even a polynomial-time solution may be insufficient. To this end, Portkey

selectively employs a locality-aware heuristic that attempts to skip the formal solver. To do

so, the placement engine maintains a notion of the max number of keys that can have the full

cost matrix computed and analyzed in sufficient time, based on the (1) number of datastore

servers, (2) window size, and (3) reusability of computational profiling from prior iterations.

If the number of keys accessed in a given window exceeds this max value, a first pass over

the key access matrix sorts the keys by the number of accessing clients. Keys accessed by the

largest number of clients are solved with cost vector analysis, and the remaining ones use a

dominant-node heuristic where keys are assigned to the server nearest the most frequently-

accessing client. The idea is that the formal solver is most helpful in balancing placement

across a large number of (potentially dispersed) accessing clients; keys accessed by a single

client are optimally placed nearest that client.

53

3.5.2.3 Optimizing for Tail Latency

Portkey’s solver is not inherently tied to optimizing for average latency across clients and

accesses. Supporting other optimization metrics simply involves altering the generation of

the cost matrix used by the adaptive placement solver. For example, to optimize for tail

latency, each client uploads its tail latency (instead of average latency) to every datastore

server. Then, to compute the cost for hosting a given key on a given candidate server,

we generate a distribution of accesses to that key where a client’s latency to that server

appears a number of times equal to the number of times that client accessed the key. The

latency component of the cost is then set to be the tail (e.g., 95th or 99th percentile) of

that distribution, rather than a weighted average across all clients’ accesses to that key. The

remainder of the Portkey solver then operates in the same way as above.

3.6 Implementation

We implemented Portkey as a modular extension to the Redis Cluster distributed KV store.

Aside from being one of the most popular data management systems [Sol20], Redis natively

supports deployment over lightweight embedded devices, such as Raspberry Pis and Android

smartphones [Red20d], thereby offering compatibility with our target edge applications. As

Redis Cluster uses hash slot sharding (§3.4.1), we implement adaptive placement by dynam-

ically adjusting the slot assignment map and migrating the associated keys. This coarsens

the granularity of adaptive placement from individual KVs to hash slots; however, we discuss

placements in terms of keys for ease of disposition.

Our implementation of Portkey includes (1) altering the Redis client library to support the

collection of datastore usage statistics (we consider the redis-clustr npm package [GoS20]),

and (2) developing a standalone program encompassing the placement solver engine. In total,

our implementation required ≈1,000 new LOC. A key benefit of client-side modification

is that it allows for adaptive placement on unmodified servers, thereby supporting future

54

versions without needing to fork the code base. Further, clients can optionally prioritize

which requests are latency-sensitive with selective logging, and in doing so forego modification

to the request protocol.

Consistency. As our implementation required no internal modifications to the Redis

Cluster, the consistency of Portkey is the same as that of Redis Cluster. According to its

specification [Red20b], Redis Cluster cannot guarantee strong consistency, as the primary

replica will acknowledge writes before ensuring propagation to a quorum of secondary repli-

cas. As such, primary replica failure could potentially result in the loss of writes that have

been acknowledged.

Fault tolerance and recovery. Portkey leverages the standard Redis Cluster mech-

anisms for fault tolerance and recovery. In the case of a primary node failure, a failover

mechanism promotes a secondary replica to replace the primary, adjusting the cluster as

needed [Red20b]. This failover is maintained even if a node fails during key migration.

Ensuring consistency during migration. The migration mechanism used in our im-

plementation follows the recommended Redis Cluster protocol typically used to redistribute

keys for nodes entering or exiting the system during deployment [Red20c]. The main benefits

of this approach are that (1) no data loss can occur in the case of migration or node failure,

and (2) concurrent updates are allowed during migration. This ensures that client workloads

remain uninterrupted during migration; adaptive placement can be transparently performed

with the only noticeable effect on clients being a reduction in access latency. However, a

notable drawback in the Redis Cluster reassignment protocol is a restriction that limits bulk

migration. This is due to specifics in the Redis Cluster epoch mechanism used to propagate

assignment map updates. In order to maximize the immediate benefit of adaptive placement,

Portkey’s Placement Solver sorts key assignments based on marginal cost reduction before

issuing migration commands.

55

3.7 Evaluation

To evaluate Portkey, we primarily use the autonomous vehicular workloads and experimental

setup described in §3.3.2. §3.7.4 additionally describes results from two real, small-scale

application deployments. Throughout the evaluation, we consider two versions of Portkey

that optimize for either average request latency or 95th percentile tail latency.

3.7.1 Request Latency Speedups

We compared Portkey with four alternative placement strategies. Random refers to the

randomized placement strategy used by default Redis and most other existing KV stores

(§3.4.1). Accessing Node is a heuristic that selects the nearest server to a random client

that accesses a given KV. Dominant Node is an alternative heuristic that places KVs

closest to their most frequently accessing client. Both heuristics provide simple yet realistic

locality-aware placements based on past accesses. Finally, Optimal presents the unachiev-

able lower bound described in §3.4.2 that uses perfect knowledge of future client-server

latencies and data accesses.

As shown in Figure 3.9, Portkey delivers 21-82% and 16-45% lower average request la-

tencies than the Random and locality-aware heuristics; Portkey’s tail latency improvements

are 26-77% and 4-75%. Perhaps more importantly, despite lacking oracle-like knowledge of

future latencies and KV accesses, the resulting performance with Portkey’s placements are

always within 15% for average latency, and almost always within 4% for tail latencies. The

one exception for the latter is the per-client workload. The reason is that suboptimalities

with Portkey stem from delays in learning workload/latency information and shifting KVs

to their ideal servers (the optimal strategy knows ideal placements a priori). This is more

pronounced in the per-client workload since the latency discrepancy between the ideal (i.e.,

local) server and all other servers is large, crossing a tier in our testbed. In contrast, for

the regional workload, although there is still a single optimal server, the latency discrepancy

56

with several other servers (in the same region) is low.

Of course, performance with each approach varies based on workload characteristics. For

example, when considering average request latency, in the per-client workload, all locality-

aware placements perform substantially (70-81%) better than the random assignment strat-

egy. On the other hand, the performance discrepancies between the locality-aware heuristics

and Portkey was most noticeable in the group and global workloads. In those cases, the

Portkey solver was able to more intelligently balance placements across the large number of

accessing clients, resulting in a 2.1-2.6x relative performance improvement.

3.7.2 Varying Edge Settings

In addition to the workload characteristics considered in §3.7.1, Portkey’s performance is

affected by datastore server density and client-server network latencies. Here, we present

results showing Portkey’s performance as these properties vary.

Impact of Datastore Server Density. Figure 3.10 presents the performance impact

of increasing the fraction of edge APs that serve as candidate datastore hosts. For instance,

20% corresponds to 5 of the 25 APs supporting a Redis instance. As shown, Portkey’s

speedups grow as the density of datastore servers increases. For instance, peak speedups

grow from 2.3× to 5.2× when the server density jumped from 40% to 100%. The reason is

that a higher server density enables regional locality to be exploited: KVs can more often

be placed such that requests are commonly served within the local region. Accordingly, in a

deployment where limited resources are available, spreading out the datastore instances will

maximize the regional coverage and available locality.

Varying Network Latency. As described in §3.3.2, our testbed follows a three-tier ap-

proach to setting client-server latencies. More specifically, local, regional, and other servers

are randomly assigned client-server latencies between 5-10ms, 20-30ms, and 40-50ms, respec-

tively. To understand how Portkey performs under different network settings, we considered

57

Figure 3.9: Portkey’s average and tail (95th percentile) latency speedups over existing ran-

dom placement strategies and locality-aware heuristics. Results are normalized to the ran-

dom approach. The median and entire range for five runs of each workload and placement

strategy are plotted.

four variants for latency assignment: fast follows the strategy from §3.3.2, slow increases

the minimum latency in each tier by 5× while keeping the width the same, spread in-

creases the maximum value in each range by 5× while keeping the minumum values the

same, most akin to expected wireless latencies from peer-to-peer network routing [AS18],

and collapse reduces all client-server latencies across all tiers to the same value (i.e., the

latency to all servers is the same), as might be observed in a wide-area cellular network setup

58

Figure 3.10: Performance impact of varying the percentage of our testbed’s 25 edge APs

that can serve as datastore servers. Results use the per-client workload, and points represent

medians with error bars covering the spread across five runs. APs were randomly selected

before each run. Portkey’s speedups grow as datastore server density grows.

with a very high-speed wired backhaul. As shown in Figure 3.11, altered latency values do

not significantly affect the speedups that Portkey delivers. Instead, the key determinant to

Portkey’s wins is the existence of latency discrepancies between servers, which in turn lead

to speedups when KVs migrate close to their accessors. Consequently, Portkey offers little

advantage in the collapse scenario; placement becomes unimportant as client-server latencies

are all uniform.

3.7.3 Profiling Portkey

Convergence. Figure 3.12 presents Portkey’s performance over time when optimizing for

tail latency. Results are windowed and averaged over thirty second intervals. These temporal

results indicate the pattern in Portkey’s approach to extracting client workload information.

As shown, the first iterations of the adaptive placement engine result in the largest number

of migrations. Over time, the datastore is able to converge to an asymptotic performance

baseline once sufficient data about client workload patterns and network state has been

59

Figure 3.11: Impact of edge network latencies on Portkey’s performance; §3.7.2 defines the

four scenarios. Results use the per-client workload and are normalized to random placement.

Portkey’s performance is largely unaffected by latency values, other than when all client-

server latencies are equivalent (eliminating the importance of placements).

inferred. In other words, after an initial warm up period of approximately 1-2 minutes,

performance remained relatively stable and varied primarily in response to continual client

mobility.

Placement Solver Scalability. An important aspect of the Portkey placement solver

is its ability to scale up to large workloads and deliver fast decisions. Figure 3.13 presents the

scalability of a solver instance computing placement of (a) 1024 keys over a varying number

of servers, and for (b) a varying number of keys over a 1024-server cluster. Profiling was done

on a 2019 Macbook Pro. The full placement solver as described in Section 3.5.2.2 scales

linearly with the number of keys, and quadratic to the number of nodes. The heuristic-

based approaches scale linearly across both dimensions. Portkey’s adaptive solver leverages

this notion to selectively fallback to heuristic placement for large cluster and key sizes. For

example, with a window size of 10 secs, a single solver operating on a 1,024 node cluster will

60

Figure 3.12: Tail latency improvement over time for Portkey. Results are a snapshot of

windowed performance over the first five minutes and are normalized to randomized place-

ment. Placements converge after approximately two minutes, when client workload patterns

and network perspective have been sufficiently inferred. Further adjustments are mostly in

response to client mobility.

perform full cost matrix analysis for up to 65,536 keys (consuming 1 sec) and use heuristic

placement for additional keys.

Memory Overhead. The memory overhead for the data access log at each client is

determined by the number of KV accesses and servers within the system. The key sketch

and network sketch each grow linearly with the cardinality of client-key accesses and servers

in the system, respectively. Each key access requires 8 bytes to store the client access count

and aggregate payload, while each server consumes 8 bytes to store its access count and

aggregate latency. Thus, a datastore spanning thousands of nodes and tens of thousands of

keys consume less than 1MB at each client.

61

Figure 3.13: Scalability of Portkey’s placement solver when varying (a) cluster size and (b)

key set size.

Figure 3.14: Impact of restricting edge bandwidth for the all-RW workload. Portkey’s

relative advantages persist across the considered bandwidths. Bars list medians (normalized

to the 1000 Mbps random placement values) with error bars spanning the range of values

across 5 runs.

Network Overheads. We profiled the aggregate requests and associated payloads is-

sued by the cluster with and without Portkey for our workloads. Bandwidth overheads

62

ranged from 0.75% to 3.11%, depending on the magnitude of KV migration. To ensure that

the added bandwidth requirements do not result in a cost of migration that outweighs the

benefits, we ran an experiment that increasingly restricted the amount of AP bandwidth.

As shown in Figure 3.14, the most notable impact of restricting bandwidth is the drop from

10 to 1 Mbps, where both Portkey and the default Redis Cluster experience significant slow-

down. However, Portkey retains its relative speedup, which consistently falls within 2.1-2.5×

across all considered bandwidths.

3.7.4 Small-Scale Deployments

We deployed two small-scale applications to validate Portkey over real networks and edge

devices. The primary objective in these experiments is to highlight how Portkey’s benefits

in these conditions are similar to those observed in our testbed.

Smart Building Interface. The first application consisted of a Redis Cluster deploy-

ment over ten Raspberry Pis (RPi) spread throughout a building and connected over a

wireless network, with a single RPi running the Portkey placement engine. Each RPi up-

dates the datastore with (1) frequent updates to the latest reading from attached sensors

(e.g., camera image, ambient noise level, wireless network signal strength), and (2) infrequent

updates to a key corresponding to device status. An accompanying smartphone application

provided user access to view device status and the latest published values. The difference

in read-write dominance of each key resulted in varying placements; in particular, the fre-

quently updated sensor value keys migrate to each RPi’s local Redis instance, enabling faster

system writes and a 5x average latency improvement over randomized placement.

Crowd-Sourced Data Collection. A wide-area Redis Cluster was deployed over nine

RPis spread across three campuses, with one RPi designated to host the Portkey engine. User

smartphones ran an app that passively updated each user’s current GPS coordinates within

the datastore to provide crowd-sourced live traffic information. This live activity map could

be optionally accessed and viewed on each smartphone. User mobility, including changing

63

Figure 3.15: Portkey’s speedups in two real deployments. Portkey was enabled after 120 secs

of random placements.

physical location or network connectivity (Wi-Fi vs cellular), resulted in the continual mi-

gration of user data to their nearest host. With Portkey, a user’s location data migrated to

their nearest RPi within their currently occupied campus, yielding a 2.5x improvement in

request latency over randomized placement.

Takeaway. Portkey’s request latency speedups for both applications are summarized in

Figure 3.15, and closely match those from our emulated testbed. Importantly, without any

developer-specific input providing insight into the particular network deployment or work-

load, Portkey was able to optimize for the most frequent datastore accesses. The designated

RPis executing these extensions consumed additional memory footprints of less than 20MB,

with less than 2% increase in overall CPU utilization.

3.8 Discussion

Distinction from caching solutions. Caching techniques are often used to bring data

closer to the primary producers and consumers,

64

Caching and secondary replicas for eventually consistent reads. In support

of reads that do not require strong consistency, secondary replicas or content caches can

improve access latency and/or reduce the load on the primary replica. Such approaches are

orthogonal to this work, which focuses on primary replica placement to optimize consistent

data accesses to the underlying datastore.

Security risks with client-side logging. Trusting statistics reported by client libraries

inherently poses security risks. A compromised client may negatively influence placement

by misreporting or falsely injecting unnecessary requests. To this end, Portkey supports an

optional configuration that limits the overall impact of a compromised client. When enabled,

key access vectors (§3.5.1.2) are scaled to a unit vector, resulting in each client equally

contributing to placement decisions (§3.5.2.1), thereby mitigating the effect of nefarious

clients. This comes at the expense of a potentially superior placement decision if clients

honestly report genuine data accesses.

Migration overhead. Portkey currently does not consider the bandwidth overhead

of migration when reassigning KVs. However, this is not fundamental to the placement

solver, and can be incorporated by adding a loss component to the utility score computed in

§3.5.2.2, e.g., with a minimum threshold that scales with the KV payload size. Further, we

note that even with this omission, Portkey’s network overheads (including from migration)

are consistently low, between 1-3% (§3.7.3).

Spanning geographic regions. Deployments spanning geographic regions pose unique

constraints when considering an idealized datastore architecture. Quorum architectures en-

able load balancing across an individual key at the expense of an increased number of client-

side system requests. Alternatively, a primary-secondary architecture reduces the required

number of requests for consistent access at the risk of overburdening the primary. This

work aims to mitigate the downsides of a primary-secondary architecture by migrating the

primary replica such that consistent requests can be made fast. Meanwhile, load balancing

is achieved by spreading key placements across alternative datastore hosts.

65

When is adaptive placement not beneficial? The ability to place data at the

best available host is directly related to the frequency by which the network state and

workload locality change. In the case of a static network and consistent workload, the

system will asymptotically stabilize placement. In contrast, if the network were randomly

shuffled immediately after client profiling data is uploaded, system performance would be

effectively equivalent to a randomized placement. The same is true for client workloads where

previous KV accesses offer no indication to future ones. Ultimately, adaptive placement is

valuable only if there is some inherent pattern that can be learned from network state and

client accesses.

Tuning the window size. The window size provides a mechanism enabling the data-

store administrator or application developer to tune the tradeoff between latency speedups

and network overheads based on preferences and perceived notions of dynamism. In par-

ticular, larger window sizes imply less responsiveness to changing dynamics, but also lower

network overheads from shipping client profiling information. Thus, relatively static deploy-

ments require less agility, thereby maintaining high performance with minimal overhead by

using large windows. In contrast, rapidly changing networks should configure Portkey for

increased agility (i.e., small windows) to more quickly respond to changes.

3.9 Related Work

Improving Data Locality. Previous work seeking to improve the locality of clients ac-

cessing a distributed datastore can be broadly categorized into approaches that either (1)

intelligently select across a set of existing replicas, or (2) explicitly migrate data across dat-

acenters. C3 [SCS15] enables each client to determine the best subset of replicas to issue

datastore requests to. Pando [UHG20] built upon this notion by splitting object data such

that the effective spread across datacenters is increased, thereby increasing available locality.

Volley [ADJ10] migrates data between datacenters by cross-referencing a reverse-IP look-up

66

of user location derived from application logs with known datacenter locations; their iter-

ative solver then triggers application-specific migration mechanisms at a relatively course

granularity across weeks and months. Tuba [AT14] increased the frequency of reconfigura-

tion to hours in order to adjust replication parameters based on which datacenter regions

are most active. Akkio [ARS18] groups small shards of KVs based on developer insight

into joint client accesses, migrating shards across datacenters depending on which regions

are currently serving a client. Physalia [BCP20] uses infrastructure-aware KV placement

and migration to maximize availability across availability zones. TripS [OCW17] included

the storage tiers offered by cloud providers as an additional migration parameter. More

generally, custom hashing methods including locality-sensitive hashing [LJW07] and Social

Hash [SKK16] leverage application-specific information to collocate jointly accessed data

with clients. Finally, in the context of cellular networks, historical work on call handoff tech-

niques take an analogous approach of maximizing QoS by dynamically adjusting allocated

cellular tower bandwidth based on user locality and range [ESK05, TRV98].

In focusing on the cloud computing setting, placements across individual hosts within a

cluster have been left relatively ignored. In contrast, Portkey focuses on retargeting these

datastores to edge contexts and adapting to the inherent mobility and latency variations.

Edge Datastores. Recent works have explored datastore platforms that are customized

to the inherent variability and distribution of edge networks. FogStore [GR18] sought to

provide a datastore spanning the near-edge by incorporating the notion of a context-of-

interest, defined by a system administrator or domain expert, that dictates regional con-

straints on a replica quorum placement. All data and clients are then associated with the

notion of a location; data accesses performed within the context-of-interest receive strong

consistency, while those outside resort to eventually consistent access. Nebula [ROC14] in-

troduced an HDFS-like storage system spanning the edge-cloud, with large immutable files

spread across participating storage devices. PathStore [MBL18] proposed an edge datastore

that uses a write-back cache hierarchy with eventual propagation to enforce session consis-

67

tency. Application-specific KV systems, such as those for computer vision, have also been

proposed [RG18].

Each of these datastore platforms sacrifice certain flexibility in application support. They

require prior knowledge of application or network characteristics, either by explicitly associ-

ating a location with data, sacrificing consistency, or focusing on domain-specific workload

patterns. In contrast, Portkey offers a generalized solution to improve the locality of clients

accessing a datastore. The objective is to customize a given deployment to specific and vari-

able client accesses while offering the equivalent consistency guarantees of the underlying

system, all without necessitating developer input. To the best of our knowledge, none of the

previously proposed systems are openly available for use; our Redis Cluster extensions serve

to provide a tangible implementation.

3.10 Conclusions

This research presents Portkey, the first distributed KV store that explicitly targets the

intrinsic mobility and time-varying client-server latency profiles experienced in edge appli-

cations. Unlike prior datastores that opt for randomized data placement policies, Portkey

dynamically adapts data placements according to periodically-profiled latencies and data

access patterns. Key to Portkey is its treatment of mobility as a first-class primitive, and

its prioritization of rapid (but approximate) placement decisions over slow optimal ones.

These insights enable efficient profiling strategies that adhere to edge device and network

constraints, as well as greedy placement heuristics that are self-correcting over short time-

scales. Results with an autonomous vehicle dataset, as well as two small-scale application

deployments, show that Portkey reduces average and tail request latencies by 21-82% and

26-77% compared to existing placement strategies.

68

CHAPTER 4

EdgeRM: Practical Cluster Computing for Modern

Edge Devices

Generality, interactivity, and multi-usability defined the rise of modern computing. The

success of early operating systems like Multics and Unix relied on these ideals—generality

enabled early adopters to discover the full set of capabilities of this nascent domain; interac-

tivity fostered iteration and sped up this discovery; multi-usability was required to efficiently

use the expensive and difficult-to-deploy physical resources. While these had long been goals

in early computing, they were not broadly realized until system designers had access to suf-

ficient memory, storage, and networking, which, for Unix was represented by the PDP-11/45

with 144 KB of memory and 1 MB of fixed disk.

The low-power processors which drive the sensors and actuators at the edge of today’s

IoT do not yet live up to the ideals of early operating systems. In enterprise and research

IoT programming systems alike these processors are considered fixed-function devices, data-

forwarders to more general and interactive Linux-class machines. They are so ignored that

despite quite literally being at the edge of the network, the literature has instead come to

explicitly define the nearby cloudlets and gateways as the IoT’s “edge.” But these processors

are now being released with 128-256 KB of memory, 1 MB of flash, and off-the-shelf IP-based

networking. They should be capable of achieving those early ideals and realizing a more

complete role as the IoT’s edge, and we claim that now is the time for this ascension.

IoT ascension would have marked and lasting impacts on our ability to collect, process,

and apply data from the physical world. Due to the low cost of computation relative to

69

communication, enabling general computation on these devices would allow us to write,

and, more importantly, discover applications that would otherwise not be feasible within the

device’s resource constraints, such as our Sensor MapReduce framework (§4.4.1.3). Interac-

tivity would enable a new set of programmers to access devices that are currently reserved

for embedded experts. Multi-usability would allow us to share infrastructure, amortizing

the difficulty of deploying devices in the physical world. Furthermore, it would help unify

the fragmented approach of deploying every IoT system with its own vertical stack, custom

gateway, and cloud service.

This paper, therefore, proposes EdgeRM, a novel resource manager which extends the

general purpose computing cluster to include the resource constrained devices that comprise

the true edge of the IoT. We are not the first to propose the use of cloud architectures to

program Linux-class IoT devices, nor are we the first to propose the interactive programming

of resource-constrained IoT devices en masse (macroprogramming), however we are the first

to propose a unification of these two visions. Recent increases in the memory available on

the low-power processors and developments in memory efficient and safe virtual machine

technologies such as Web Assembley (WASM) now allow us to create a resource manager

which can extend the reach of existing edge programming frameworks and facilitate the

operation of multiple macroprogramming frameworks simultaneously.

EdgeRM is architecturally similar to Apache Mesos, aggregating resources from agent

nodes and offering them to multiple programming frameworks, however it must aggregate

new sensor and actuator resources while embracing heterogeneous and mobile devices under

significant resource constraints. To aggregate sensor and actuator resources in addition

to compute resources, we create a new resource type which exposes not just the amount

of a resource, but also the supported APIs by which that resource can be accessed. To

support heterogeneity and mobility, we propose the use of an Active Scheduler to profile the

capabilities of compute and networking resources while monitoring device location and other

relevant context. To handle resource constraints, we create a non-POSIX implementation of

70

the resource manager’s agent, adopt lightweight networking protocols and communication

patterns, and support WASM tasks in addition to Docker containers.

We implement EdgeRM so that it’s central resource manager runs on a server-class ma-

chine, but agent nodes can range from servers down to embedded platforms. To demonstrate

the capabilities of EdgeRM, we create a Sensor MapReduce framework for collecting and pro-

cessing sensor data, we adapt an existing edge computing framework, Edge Dataflow, and we

implement a generic sensor sampling framework to allows users to specify sensor sampling

rates, filters, and the destination of the sensor data. Additionally, because we expect the

creation of new programming frameworks to be frequent, we provide a library to facilitate

their creation.

We evaluate EdgeRM by measuring its computational, memory, and energy overhead for

both embedded platforms and Linux-class edge devices. We find for Linux-class machines

that utilization and memory are small, even for sub-second task distribution latency. On

energy constrained embedded platforms, EdgeRM uses less than 0.1 % of CPU time and

34µW of power for a 100 s task update latency, even less power for longer update times, and

can operate with only 128 KB of RAM. While this overhead does not yield individual tasks

that are as efficient as those implemented by a skilled embedded programmer, we believe this

is a small price to pay for the features necessary to make this class of computing accessible

to a broader audience.

In summary, this work:

1. Introduces EdgeRM, the first resource manager capable of managing resources for, and

executing tasks across, both Linux-class and embedded-class devices.

2. Proposes active scheduling to more efficiently schedule tasks among the quickly chang-

ing context and heterogeneous device types present at the edge.

3. Demonstrates several application frameworks, including a Sensor MapReduce frame-

work, which use EdgeRM and its scheduling libraries to interactively collect and process

71

data from a deployment of sensor agents.

4. Provides EdgeRM, along with its scheduling and application frameworks, as open

source artifacts which can be used and expanded upon by the community.

4.1 Motivation

The EdgeRM motivation breaks down into three high level arguments: (1) executing code

near the data source yields improvements in efficiency, reliability, and privacy, (2) to truly

take advantage of executing code near the edge this code must be unconstrained and general,

and (3) the ability to share access to sensors will increase the value they yield relative to the

difficulty of deploying the devices.

4.1.1 The Edge Needs More Compute

The advantages of in-network compute have been well recognized in prior work [BHS07,

MFH05, HKS05]. Due to the relatively high cost of networking compared to compute, placing

computation closer to the data source can lower latency, total energy, cost, and enable

applications that would otherwise not be feasible [LZH17]. Running applications locally

limits the number of wide-area network links, potentially improving application reliability,

and computing near the data source can prevent private data from needing to be stored and

analyzed on remote servers. Technology trends and the rise of smart objects in the home

are amplifying these drivers for in-network compute rather than alleviating them.

Specifically, Figure 4.1 indicates that microcontrollers’ ability to perform local computa-

tion is continuing to out-pace their ability transmit that data to the cloud. We see similar

trends in sensing, leading to data that can be more efficiently collected but not transmitted

without encountering bandwidth or energy constraints. Finally, as applications are more

broadly deployed, they are going to gain access to more private information. These prob-

72

Figure 4.1: Microprocessor advancements outpace radio technology. Each year the most

energy-efficient commercially available MCU is compared to the commercial radio with the

lowest energy per bit transmitted at 10 m. Since the start of the wireless embedded systems

field in the 90’s, the number of cycles per bit transmitted have increased, and currently

appears to be trending exponentially.

73

lems could be addressed, with the opportunity of lowering processor power, by pushing more

compute toward the edges of our sensing networks.

4.1.2 Diversity Calls for Flexibility

To truly realize the benefits of computing at the edge, abstractions must be general enough

to efficiently explore new application domains, thereby easing the transition of applications

from exploratory data analysis to long-running processing workloads. Evidence of this point

can be found in the fate of sensor programming models that have been proposed in the

past. Systems like TinyDB enabled the querying of sensor data through an interactive

SQL query interface, and Regiment facilitated in-network stream aggregation, however these

systems have not gained traction as de facto methods for programming embedded sensor

deployments [MFH05, NMW07].

We hypothesize that this is because no single programming framework is general enough

to meet all the needs of a sensor deployment. Even a single programmer may want to access

their sensors with multiple programming models throughout the lifetime of a deployment,

and in the future they may access the same sensors with new programming frameworks. We

need a layer of abstraction flexible enough to facilitate all existing and future programming

models.

4.1.3 Infrastructure Should Be Shared

One key advantage of resource-constrained sensor networks is their ability to to collect data

from previously uninstrumented locations, however deploying sensors in these locations is

often physically difficult [DL20]. Many of the most compelling use cases for these sensors,

especially in densely populated environments, call for their data to be used by multiple

parties for disparate applications [WRB18]. The need for data sharing is so common that

it is often achieved by deploying sensors which collect and stream the data believed to be

74

the common denominator for applications to the cloud through a publish/subscribe system

where it can then be shared in an iterative and interactive manner [AMP16, RBB11, AKC17].

Unfortunately, IoT vendors often package devices, gateways, and cloud services into

isolated silos that inhibit resource sharing [Ama20, FJP16]. These systems are in direct

contrast with in-network and on-sensor compute, often resulting in sensors which send more

data than necessary for most applications and an insufficient amount for some applications.

To achieve the efficiency promised by pushing compute to the edge while still enabling

simultaneous access to sensor data by multiple consumers, we need a system to facilitate the

multi-tenant management of multiple programs.

4.2 Background & Related Work

There exists significant prior work in scheduling and resource management for server class

machines and no shortage of prior work which applies these techniques to the single board

cloudlets and gateways that are commonly present in edge computing deployments. Sep-

arately, a body of work explores improved programming models for resource constrained

sensors. EdgeRM sits firmly at the intersection of these domains, adopting key ideas from

prior work to enable the programmability of the cloud extended to clusters of resource-

constrained sensors. We explore each of these domains, noting our inspiration and where

the EdgeRM architecture enables that which was previously untenable.

4.2.1 Better Sensor Programming

Since the rise of networked embedded systems the field has been plagued by the difficulty

of programming these devices. Their resource constraints demand highly efficient programs,

their hardware heterogeneity prevents standardization, and, because code is often deployed

as a single binary, updates are high-risk operations, slowing iterative development.

75

4.2.1.1 Incremental configuration and updates

The sensor networks community began by introducing methods by which fixed-function

programs can be dynamically reconfigured without performing a full code update, such

as value dissemination in TinyOS [LMP05]. Then to improve generality works such as

SoS dynamically loaded more expressive code modules [HKS05]. Most recently Tock en-

abled generality and isolated multi-tenancy on embedded processors by taking advantage

of recently-introduced hardware memory protection capabilities to allow multiple applica-

tions to be executed on top of a shared kernel [LCG17]. Tock lowers the barrier to iterative

single-board embedded development, but does not on its own solve the cluster programming

problem.

4.2.1.2 Virtual Machines and Runtimes for Embedded Devices

Starting with Maté [LC02], and iterated upon by Impala and SensorWare [BHS07, LM03],

sensor-node-specific virtual machine runtimes improved portability, enabled isolation be-

tween applications, and reduced code update size compared to full binaries. Later more

common languages like Java, Javascript, and Python had stripped down to run on sensor

nodes [The16, Win20, BCL08, Geo20]. These options lacked the tooling and standardization

required to make them easily usable. Recently, Web Assembly (WASM) has gained trac-

tion as an instruction format to safely and efficiently execute code in the browser and the

Web Assembly Micro Runtime (WAMR) has successfully enabled its execution on embedded

nodes [HRS17a, Byt20a]. The existence of a portable, safe, efficient, and broadly-supported

execution format is crucial to the success of a resource manager, and EdgeRM adopts WASM

as an execution environment.

76

4.2.1.3 Macroprogramming

Early macroprogramming systems began to enable the programming of sensors en masse

through unified programming models like SQL queries or domain specific languages for

stream aggregation [MFH05, NMW07, GGG05, KWA03, BHS07]. Later Ravel provided

a system for programming cloud, gateway, and sensor devices through a unified program-

ming model [RHL15]. However, the lack of an underlying resource manager meant that all of

these solutions tied sensors into a specific programming model, which is not general enough

to meet diverse applications. We hope the the existence of EdgeRM will enable multiple of

these programming models to run simultaneously and ultimately see their resurgence.

4.2.2 Resource Managers

Resource managers are standard components for hosting multiple applications or program-

ming frameworks over clusters of server-class machines. Most programming frameworks have

paired resource managers like Hadoop’s YARN or Kuberenetes’ combined scheduler/resource

manager [VMD13, BGO16]. Some resource managers, like Apache Mesos, support multiple

frameworks each with their own scheduler [HKZ11].

We long-considered extending an existing resource manager to support resource-constrained

devices. Unfortunately, no existing solution can operate in a non-POSIX, limited-memory

environment, and the networking protocols used to communicate from devices to the central

manager were too complex to be ported. While it may be possible to create a resource-

proxy which acts on the sensor nodes’ behalf to register nodes and subsequently distribute

tasks from that resource manager to the node, the changes in necessary executors and re-

source types to support general computing on the edge devices themselves further motivated

EdgeRM.

77

4.2.2.1 Non-standard Device Management in the Cloud

While the architecture of EdgeRM is similar to Apache Mesos, the one key difference is that

EdgeRM intends to support aggregation of sensor and actuator resources. In recent years,

the aggregation of device resources has become more necessary in the cloud as well, with the

potential for nodes that have local FPGAs or GPUs that could accelerate a computing task.

Kuberenetes supports a device plugin which allows for each node to register devices by vendor

and type with the kuberenetes node manager (kubelet) [Kub], and Mesos’s resource types

theoretically allow the registration of any resource, and only limits the types of resources by

convention. We find both of these to be insufficient to handle the heterogeneity of devices

and drivers that may be found on sensor nodes, and EdgeRM implements a specific device

resource type to better capture this heterogeneity.

4.2.3 Edge Computing Frameworks

Many projects have aggregated distributed resources near the edge of the network to put their

computational power to use. Volunteer Edge Computing systems addressed challenges in re-

source monitoring, management, and task scheduling over wide-area clusters with limited

availability [TTL05, ROC14]. As mobile devices rose in ubiquity, so did efforts in designing

localized clustering and efficient task offloading specific to smartphones [HAH15, SLA12,

CBC10]. Application specific approaches have applied similar ideas to complex event pro-

cessing, neural network acceleration, federated machine learning, and industry-specific (e.g.

medical cyber-physical systems) deployments [RJK05, TMK17, GZG15, YLC19].

More recently, fog and edge computing frameworks have further fueled the desire to bring

compute closer to the edge of the network. Numerous architectures, domain-specific lan-

guages, and frameworks have been built, many of which are inspired by or extensions of cloud

programming frameworks, resource management, and virtualization abstractions [HV19,

WVM17, LWB16, BZ17, MCD18, GND17, Hyp20]. Modern enterprise solutions take similar

78

Figure 4.2: EdgeRM Architecture. Inspired by Apache Mesos, EdgeRM agents send available

resources to a master to be offered to multiple frameworks with their own independent

schedulers. Key differences include support for small WASM runtimes with communication

protocols designed for resource-constrained agents with attached sensors.

approaches, extending their cloud container orchestration and function-as-a-service offerings

to local linux-class gateways and cloudlets [Ama20, Azu20].

All of these systems consider the sensor and on-board microcontroller as a data-forwarder.

The true “edge” has been left relatively ignored, mostly due to prior technical limitations in

appropriately leveraging these devices within a resource cluster.

79

Figure 4.3: A step-by-step workflow of using EdgeRM through the Sensor MapReduce frame-

work (§4.4.1.3). (1) A user submits map and reduce jobs to the application framework; (2)

The framework’s interpreter wraps user code in boilerplate communication code and com-

piles it into WASM modules and docker containers. (3) These tasks are sent to framework’s

scheduler, (4) which uses the EdgeRM scheduling library to fetch available resources, plan

task placement, and configure tasks (i.e. with source and destination addresses). Active

scheduling techniques such as agent profiling are used to assist placement (§4.3.5). (5) Tasks

are issued to the EdgeRM Master, (6) and forwarded to EdgeRM Agents to execute.

80

4.3 Design

EdgeRM is heavily inspired by the architecture of Mesos, however the details of communi-

cation patterns and resource types are modified to fit into a new application domain.

The high-level architecture is presented in Figure 4.2. The system is orchestrated through

an EdgeRM master, the central entity responsible for resource aggregation, resource offering,

task distribution, and system monitoring. Each device in the computing cluster advertises

its available resources through an EdgeRM agent process. The agent is responsible for

interfacing with the master to expose and maintain an updated list of available resources,

as well as accept and launch tasks. Docker containers and WebAssembly tasks are both

supported, with each of these runtimes incorporating the ability to access on-board sensor

resources. Application frameworks rely on a scheduling library to request resource offers

from the master and issue task requests.

4.3.1 End-to-End Workflow

Figure 4.3 presents a high-level overview of the Sensor MapReduce framework deploying

a job (§4.4.1.3) in EdgeRM. Because EdgeRM supports multiple frameworks, the exactly

details of each framework may differ, but Figure 4.3 can provide one example of how one

framework may function.

A user begins by writing basic map and reduce functions and issuing the MapReduce job

via command line. The job is accepted by the MapReduce framework, which independently

constructs corresponding map and reduce tasks. The map function is wrapped in boiler-

plate communication code and the WASI-SN sensor interface (§4.3.4) and compiled into a

WebAssembly module via clang/LLVM. The reduce function is built into a Docker reduce

container. These tasks are then sent to the MapReduce scheduler. The scheduler leverages

the EdgeRM Active Scheduling library (§4.3.5) to request a resource offer (§4.3.3) that meets

both the necessary resources of the tasks, and user defined parameters (such as the sensor

81

being sampled) (§4.3.2). The library fetches and provides relevant profiling statistics and

other pertinent metadata including location information to enable the framework’s scheduler

to make intelligent placement decisions (§4.3.6). Tasks are then issued to the cluster through

the EdgeRM master, which forwards those tasks sensor and server agents. The MapReduce

framework continues to monitor the cluster (§4.3.5.2) to schedule new map and/or reduce

jobs onto newly entering devices. Results are presented to the user’s console in real-time,

with support for immediate job termination and re-issuance.

4.3.2 Definition of a Resource

In addition to providing an isolated execution environment, a resource manager is primarily

used to facilitate scheduling decisions by one or more schedulers. In the cloud, the infor-

mation used to make scheduling decisions is the same information tracked by the resource

manager. For example, scheduling decisions are primarily made based on a machine’s suffi-

ciency in CPU, memory, and data locality, all of which is inherently tracked by the resource

manager.

As we extend to sensors placed throughout a physical environment, this no longer holds

true. While schedulers still need to make decisions based on CPU and memory sufficiency,

they also need to make scheduling decisions based on location, network topologies, and events

that occur in the physical world. This begs the question—is this type of meta information a

resource, and is it the resource manager’s role to aggregate this information for a scheduler?

We take the stance that such metadata should not be handled by the resource manager

because collecting this information often itself takes resources, and we cannot know a priori

which types of metadata a given scheduler may need or the rate at which that metadata

should be collected.

Therefore, EdgeRM supports: (1) Resources, which are physical devices that are isolated

by and accessed through the resource manager’s execution environment, and (2) Attributes,

82

RPi with Camera Server Embedded Sensor

Resources:

Scalar: CPU - 1.0

Scalar: Memory - 4GB

Scalar: Disk - 8GB

Range: Ports-3000-3005

Device: Camera /dev/vchi

shareable raspistill

Resources:

Scalar: CPU - 4.0

Scalar: Memory - 8GB

Scalar: Disk - 100GB

Range: Ports-3000-4000

Resources:

Scalar: CPU - 1.0

Scalar: Memory - 50KB

Scalar: Disk - 100KB

Scalar: Power - 1mW

Device: Humidity - hum

shareable - WASIv1

Device: Pressure - press

shareable - WASIv1

Attributes:

Text: OS - debian-armv7l

Set: Executors - [Docker]

Text: ID - picam01

Attributes:

Text: OS - debian-amd64

Set: Executors - [Docker]

Text: Domain: pub.com

Text: ID - server1

Attributes:

Text: OS - zephyr

Set: Executors - [WASM]

Text: ID - sensor01

Table 4.1: Resources and attributes in an EdgeRM deployment. All devices list common

resource types such as CPU and memory, however resources such as devices, domain names,

and the available power are unique to a wide area sensor deployment. Device resource types

have properties such as shareability among tasks and the API through which a device is

accessed to facilitate their management.

which are static device properties that do not change through the deployment of a device.

While these are the same categories used by Mesos, their definitions require clarification in

the edge computing environment.

4.3.2.1 System resource types

EdgeRM initially used Mesos’ resource types: scalar, text, range, and set, and we find these

to be sufficient for both traditional resource types like CPU, memory, and networking ports,

as well as previously unconsidered resource types that are important for embedded systems,

such as energy consumption. These resource types, however, assume that a task understands

the methods by which these resource may be accessed, and also assume that these resources

must be strictly isolated between tasks. Neither of these assumptions hold for sensor devices

83

which must be accessed through EdgeRM.

To facilitate sensor devices, we introduce a new resource type “device.” Similar to other

resource types, device types have a name, but they also have a handle by which they can be

uniquely referenced on the sensor, a flag to indicate whether or not they can be shared, and

a field to indicate an API by which the device can be accessed. This was necessary to handle

device heterogeneity and enable schedulers to ship tasks that align with the supported sensor

access API.

4.3.2.2 Attributes

Attributes are system constants which do not change throughout a device deployment. We

commonly implement attributes specifying a unique device ID, the architecture and OS of

a device, the executors supported by the device, and the public IP or domain name of a

device if one is present. These attributes are critical to making scheduling decisions. For

instance, many tasks can only be scheduled on machines that are publicly reachable because

they need to collect sensor readings from a wide range of devices behind NATs. Example

platforms and their EdgeRM resources are shown in Table 4.1.

4.3.3 EdgeRM Messaging Protocol

Resources and attributes are coordinated through the EdgeRM messaging protocol. Table

4.2 provides an overview of the messaging API. Unlike other resource managers that establish

and maintain bi-directional communication between entities, EdgeRM opts for client-server

communication model that is initiated by the agent or framework. The reasons for this are

two-fold: first, the overhead involved in establishing and maintaining long-lived persistent

connections on resource-constrained agents is impractical. Second, these clusters are often

comprised of devices spanning wide-area networks and devices behind NATs. As a result,

only the master is assumed to expose a public network address; thus the master serves as

84

Message Type From → To Fields Actions Taken

Ping Agent → Master AgentID*, PingRate*, Resources, Attributes, TaskStatus Register Agent, Update Agent State

Pong Master → Agent Ack*, TaskInfo Run or Kill Task if Requested

RequestOffers Framework → Master — Collect Offers

ResourceOffers Master → Framework OfferID*, Array{AgentID*, Resources*} —

RunTask Framework → Master OfferID*, AgentID*, TaskInfo* Queue Task for Agent

TaskStatus Master → Framework Ack*, TaskStatus* —

SubMessage Types — Fields —

Resources — Array{ResourceName*,ResourceType*,ResourceValue*} —

Attributes — Array{AttributeName*,AttributeType*,AttributeValue*} —

TaskInfo — TaskID*, TaskContainer*, TaskEnvironment, TaskResources* —

TaskStatus — Array{TaskID*, TaskState*, ErrorMessage} —

Table 4.2: EdgeRM messaging protocol. An overview of the messages between different

components in EdgeRM and their fields, with submessages separated for clarity. Required

fields are marked with *. All messages are client-initiated, where the Agent and Framework

act as clients, and the master is the server. The master then responds, piggybacking infor-

mation onto the response. This allows agents to control their energy usage at the cost of

higher latency for task execution, and it allows for agents and frameworks to communicate

with the Master from behind a NAT. Many fields are left optional so that agents can further

limit communication to strictly what is necessary to keep their resources and task states up

to date. Currently COAP is used as the communication protocol, however any client-server

protocol could be used.

85

the centralized endpoint connecting the cluster components. Agents that are also publicly

accessible can include their endpoint information as an attribute within the resource man-

ager.

Resource Aggregation. Each agent connects to the cluster via a Ping issued to the

master. The ping contains agent details, resource information, device attributes, current

availability, and task statuses. The master aggregates the information from agents within

the cluster to maintain an updated view of the resource pool. If an agent does not ping the

master within its specified window the master does not consider its resources available, but

the master imposes no requirements on the rate at which an agent pings to accommodate

resource-constrained devices.

Resource Offering. Frameworks seeking to deploy tasks over the resource pool issue a

RequestOffers message to the master. The master replies with ResourceOffers containing

a subset of the current available resources based on the resource offering policy, which is

configurable by the system administrator. Each offer is associated with an expiration, at

which point unclaimed resources are made available for subsequent framework offer requests.

Task Scheduling. A framework can claim an offered resource by issuing one or more Run-

Task messages specifying a Docker or WebAssembly task to deploy on resources contained

within the offer. Included in this message are configurations and environment variables nec-

essary to launch the task on the specified agent. The master forwards the task request to

the chosen agents on their next ping by attaching a RunTask message to the pong response.

Frameworks can monitor task status via a ping request that collects TaskStatus updates,

and can issue requests to kill running tasks.

86

4.3.3.1 Fault Tolerance

A fault tolerant master is critical to system reliability, as both frameworks and agents rely

on the master coordinate resources offering and task execution. We designed the master to

be able to reconstruct its complete state from the pings received by agents and framework

schedulers. As such, recovery from a failed master simply requires that connected frameworks

and agents redirect requests to a backup or standby master. Fault tolerance is achieved by

running backup masters in standby mode. A standby master registered with the current

master is added to a configuration disseminated to frameworks and agents with a total

master ordering. Upon failure, the first standby master is promoted. Requests issued to any

standby master are redirected to the current master.

Any agent or task failures are reported to framework schedulers on subsequent ping,

allowing for framework-specific handling of these failures.

4.3.4 WebAssembly Execution Environment

Interface Parameters Return Value Functionality

getSensors None String array Fetch list of available sensor IDs

turnOn Sensor ID Boolean Initialize the sensor if needed

turnOff Sensor ID Boolean Deinitialize the sensor

config Sensor ID, configuration, value Boolean Update a sensor’s configuration (e.g. sampling rate)

read Sensor ID, (capability — configuration), buffer, length Boolean Update buffer with current sensor or configuration value

Table 4.3: WebAssembly Sensor Interface. API primitives offered by the WebAssembly

System Interface extension in support of generic and portable sensor access to deployed

WebAssembly tasks on the WAMR runtime. The runtime mediates sensor accesses to the

underlying platform SDK to ensure valid accesses from sandboxed WebAssembly tasks.

A key requirement of EdgeRM is a general execution environment and runtime suit-

able to the resource-constrained and low-power processors driving sensors and actuators.

Linux-class machines in an edge environment may also benefit from low latency and low

87

overhead task execution compared to continaers. To this end, EdgeRM adopts WebAssem-

bly [HRS17b], a portable instruction format initially designed for secure and sandboxed

computation in browser environments with near-native performance, that has also recently

received attention as a suitable intermediary representation for embedded device applica-

tions [PPW20]. Specifically, we include the WebAssembly Micro Runtime (WAMR) in the

embedded agent [Byt20a]. Embedded agents running WAMR can receive and launch ar-

bitrary tasks compiled to WebAssembly; when augmented with a suitable sensor access

interface, WebAssembly enables general and isolated computing.

4.3.4.1 Sensor Interface

Unlike Docker containers, where access to system resources is available through a well-defined

POSIX interface, WebAssembly enforces a sandbox that constrains applications to structured

control flow within a pre-allocated linear memory region. Any sort of external resource,

such as filesystem access, is provided by explicitly granting functions to a WebAssembly

module. While this design is well-suited to a resource management abstraction, the actively

developed and in-progress WebAssembly System Interface currently lacks the notion of a

sensor interface.

To support portable sensor access for WebAssembly tasks across the resource cluster, we

propose a standard system interface for sensor access in WASM. When loading a module

that requires sensor resources, the runtime explicitly grants the sensor API to the executing

task, and each access to that API is validated by the runtime before a platform-specific

implementation of the API function is called.

The sensor access API is summarized in Table 4.3. Sensors are defined by a set of

capabilities, which refer to the raw underlying sensors (e.g. temperature), and configuration,

which denote configuration parameters (e.g. sampling rate). Every sensor exposes two

universal read-only configurations that allow a task to query for the current availability of

capabilities and configuration. This generic interface allows tasks to update, and read from

88

the set of on-board sensors.

We note that this sensor access API is not enforced by EdgeRM, and each EdgeRM agent

specifies the API by which a device is accessed, however standardization of sensor access will

improve task portability.

4.3.5 Active Scheduling for Dynamic Devices

As mentioned in §4.3.2 scheduling decisions in edge environments are often not strictly made

due to resource availability, but also due to a devices’ physical location, the network topology,

events sensed by other devices, and many other possible optimizations. Additionally, in a

cluster of heterogeneous devices, the capabilities of a unit amount of resources are necessarily

also heterogeneous (i.e. 1 microcontroller CPU is not equivalent to 1 server CPU, and

network links have very different throughput and latency).

To address this problem we propose Active Schedulers which schedule meta-tasks that

are not designed directly to serve any one application, but which can be used to inform the

scheduling decisions for all of the applications. There are several high-level classes for such

meta-tasks that we have identified and included within the EdgeRM base scheduling library,

including profiling and monitoring.

4.3.5.1 Profiling.

The Profiler meta-tasks periodically benchmarks the CPU and network link performance of a

device to assist the scheduler in determining task placement. Both Docker and WebAssembly

profiling meta-tasks are issued based on device supported executors, and results are made

available within the scheduling library. Task scheduling can then consult the profiling data

to determine, for example, the closest gateway available to a sensor.

89

4.3.5.2 Monitoring.

The Monitoring meta-tasks run on devices to alert a scheduler of device state change. The

scheduler can then respond by scheduling tasks in response to this change. For instance, a

scheduler may want to schedule a large task on a mobile device in a specific location, and

could use a monitoring meta-task to avoid using the resources required by the large task

until the device enters the specified area.

The writing and deploying of meta-tasks may be cumbersome for developers, especially

if they are required to effectively use the underlying resources of the cluster. We envision an

expanding library of services which schedulers can call for common meta-tasks. Associating

this library with the scheduler rather than the resource manager allows for resources used

by meta-tasks to be fairly attributed to a specific framework, and should be more efficient

as meta-tasks will only be scheduled in response to the needs of a specific application being

deployed by that scheduler.

4.3.6 Location, Context & Other Metadata

Schedulers rely on the ability to obtain necessary device context, including location, sup-

ported executors, and device architecture. Most of this metadata is naturally associated

via static attribute properties that are presented to the master during device registration

(§4.3.3). However, when considering dynamic device attributes, such as location, such in-

formation may not be statically pre-configured, or even known, to a device. Instead, this

context may be associated with a device after deployment. For example, a homogeneous

group of sensors may be collectively instrumented throughout an environment, with specific

location information unknown until a particular sensor is placed. In these circumstances, we

propose using EdgeRM attributes to provide a layer of indirection to a metadata store that

is externally managed.

All attributes that are known to a device can be specified directly through the device’s

90

registration ping. Unknown or externally managed device attributes can instead be provided

via a URI. For example, all EdgeRM devices can provide a location attribute whose value

is a JDBC connection [FEB03]. The EdgeRM scheduling library unwraps these attributes

by establishing a connection the the database and issuing a query for the specified attribute

given the device ID provided during registration. The interface supporting attribute layer-of-

indirection is easily extensible to support custom connections that are not yet implemented

within the scheduling library.

4.4 Implementation & Frameworks

A POSIX-based agent implementation is written in Python which uses Docker as its container

runtime and WAMR as its WebAssembly runtime. Embedded agents are implemented for

the Zephyr OS [The20] and the Particle [Par20] embedded platform. Both of these systems

use WAMR to execute WebAssembly modules. The embedded agent is currently capable of

executing seven simultaneous WebAssembly tasks. This number is limited by both memory

and the minimum footprint of a WAMR WebAssembly runtime, which uses excess memory

due to memory alignment requirements that could be mitigated through additional imple-

mentation effort. The central EdgeRM master is implemented in Python along with a small

local database to track updated system state.

Porting the edge agent to a new platform requires the implementation of a timer, malloc,

free, thread creation, UDP send and receive, and functions to access the sensors which can

be called from WebAssembly modules. Implementations are encouraged but not required to

implement part of a standard system interface for WebAssembly modules. This standardizes

sensor access and other common functionality such as timing and networking in WebAssem-

bly [Byt20b]. While this functionality is not always present on embedded platforms, it is

supported by most embedded operating systems.

In addition to the resource manager and agent implementations, we also implement a

91

Python library to simplify the process of creating a new framework scheduler. This library

assists with requesting resource offers, filtering based on task requirements, and subsequently

issuing one or more task execution requests on the provided resource offer. We expect

subsequent development of additional libraries to perform other common frameworks tasks,

such as sensor node data forwarders or device performance profiling.

4.4.1 Application Frameworks

We implement several applications frameworks which use EdgeRM to program an edge clus-

ter. Specifically we implement a sensor sampling and filtering framework, a MapReduce

framework, and we port an existing edge computing framework to use EdgeRM.

4.4.1.1 Sensor Sampling and Filtering Framework

The sensor sampling framework allows users to specify the sensor they wish to sample, the

sampling rate, and several optional filters, then issues tasks to sample the sensor for several

minutes before exiting. It consists of a container which runs a COAP server to receive and

host client-specific sensor results and a WebAssembly task which samples and forwards data

to the COAP server. If the selected sensor is a camera, an optional argument allows for

image classification via a Docker container implementation using YOLOv3 [RF18].

A visual web interface provides users with a high-level view of all devices and tasks within

the EdgeRM cluster, allowing them to select a sensor and issue a request. The framework

is written statelessly; upon user request, the framework searches for an existing COAP

server container, and, if one is not already executing, starts one on a publicly-accessible

node. Once these infrastructure tasks are running, the framework searches for the device-of-

interest within the resource offer. The sensor fetch task is then issued using EdgeRM with

environment variables to specify the sensor, sample rate, filters, and COAP server location.

This generic framework has been used by dozens of users simultaneously, with EdgeRM

92

providing support for the scheduling or queuing of tasks depending on resource availability.

4.4.1.2 Porting an Edge Computing Framework

Retargeting existing edge computing systems to EdgeRM enable immediate benefits includ-

ing isolation, multi-framework tenancy, and the inclusion of resource-constrained embedded

devices into the computing cluster. Whereas these systems were classically deployed adja-

cent to the sensor network, they can now be incorporated into the same unified resource

pool, enabling future iterations of edge computing frameworks to take full advantage of the

resources nearest to the sensors.

To this end, we ported the Edge Dataflow 1 system to EdgeRM to validate its practicality

and ease-of-use. Edge Dataflow allow developers to declaratively construct edge computing

applications as directed dataflow graphs of microservice tasks to be distributed across the

resource cluster. As is commonly the case in this setting, the intended target devices are

gateways, wireless access points, and other near-edge devices. Porting the (1) client inter-

face and (2) device webserver to a Docker container allows deployment using the EdgeRM

abstraction over the same suite of devices.

Given the natural decomposition of distributed applications into containers [WVM17,

LWB16, BZ17], porting edge computing systems to EdgeRM is a straightforward process.

These systems can now also include previously ignored microcontrollers and IoT devices into

their programming framework.

4.4.1.3 Sensor MapReduce

As initially described in §4.3.1 and illustrated in Figure 4.3, we have developed a Sensor

MapReduce framework that operates on a cluster comprised of resource-constrained em-

bedded devices and server-class machines. Users can develop map functions which can be

1Citation and exact name omitted to preserve author anonymity.

93

deployed on all sensors or specific sensors based on metadata filters. The output of these map

functions is forwarded to a reduce function which can aggregate and publish the resulting

data. A utility also displays the results of MapReduce dataflow on the user’s terminal.

Map tasks are compiled and issued as WASM modules, while reducers are issued via

Docker containers. The MapReduce framework continuously monitors the cluster to adjust

deployed tasks based on the available resources, such as a newly registered sensor device,

with support for killing and/or re-issuing MapReduce jobs. The framework leverages Active

Scheduling principles incorporated into the EdgeRM scheduling library, including network

profiling information, to schedule Reduce tasks to the nearest available and accessible server

endpoint.

4.5 Evaluation

Our evaluation begins by demonstrating the multi-tenancy enable by EdgeRM and showing

a snapshot the cluster’s utilization (§4.5.1) and iteration time (§4.5.1.1) when being pro-

grammed by multiple users. We then perform an overhead analysis of the EdgeRM agent

implementations (§4.5.2) and the WebAssembly execution environment (§4.5.3).

4.5.1 EdgeRM Cluster Utilization

To demonstrate the multi-tenancy enabled by EdgeRM we collect the share of the cluster

CPU used by three frameworks as multiple users use the cluster. This 10 minute snapshot

is shown in Figure 4.4. We see that multiple frameworks and users are able to share the

cluster and its resources, with short-running tasks such as those generated by the Sensor

Sample and Filter framework creating spikes in utilization. We also see the CPU utilization

of a single sensor, seeing that tasks from both the Sensor Sample and Filter framework and

the MapReduce framework are executing simultaneously. When resources are not available

for more tasks, the frameworks may direct tasks to other sensor nodes as appropriate. The

94

Figure 4.4: Utilization of the edge cluster (top) and a single sensor (bottom) by three

programming frameworks over a ten minute period. Multiple users deploy jobs to the edge

cluster through three programming frameworks using EdgeRM. These three frameworks

are capable of multiplexing the cluster and can deploy tasks on both sensor and server

nodes simultaneously. The mediation of resources through EdgeRM enables multi-tenancy

on constrained, embedded devices that are traditionally singe-purpose.

95

running of multiple simultaneous tasks, and specifically the dynamic deployment of simulta-

neous tasks from multiple programming frameworks onto a resource-constrained embedded

node would not be possible without EdgeRM.

4.5.1.1 Development Iteration Time.

A key disadvantage of most embedded development is the high time between code itera-

tions, especially if testing must occur across multiple embedded nodes. Manually flashing

each node is difficult and time-consuming, and cloud services may also have to change with

each code iteration if data formats between the embedded device and the cloud change.

EdgeRM addresses these problems by allowing frameworks to manage the deployment of

new applications across multiple embedded and server-class nodes.

A snapshot of a user performing iterative development using the MapReduce framework

and EdgeRM is shown in Figure 4.5. We see that a user is able to deploy 10 iterations of the

MapReduce code in under 6 minutes, retrieving, collecting, and analyzing results between

each iteration.

4.5.2 EdgeRM Agent Overhead

4.5.2.1 Memory and Code Size.

The memory footprint and code size of the EdgeRM agent implementations are presented

in Table 4.4. The Python agent implementation was profiled on a Raspberry Pi 3B+,

corresponding to a 2.4% memory footprint overhead [Ras20]. The embedded agent was

profiled on an NRF52840 MCU. 65 kB of the embedded agent code size and 2.6 kB of the

embedded agent SRAM are from the resource manager implementation and WAMR runtime.

An additional 22.3 kB of SRAM is needed for every task executed on the embedded agent

no matter the task size (and more is required of the task itself uses more memory). This

relatively high per-task overhead is primarily due to the minimum memory region of 16 kB

96

Figure 4.5: Time of interactive development cycles. Sensor MapReduce applications are

iteratively deployed on devices with a ping rate of 20 s, and results are received and evaluated

between each iteration. EdgeRM enables short interactive development cycles not achieved

by many other ways of programming clusters of edge devices.

97

Figure 4.6: Compute and power overhead of the EdgeRM agent, plotted as a function of

agent ping interval. As the ping interval is increased, overhead falls proportionately. On

the embedded agent (evaluated on an NRF52840 MCU) ping intervals greater than 1 s have

CPU utilization below 5 %, and ping intervals greater than 100 s have a power consumption

of less than 34 µW. A bounded exponential back-off on ping interval maintain interactivity

while decreasing power.

98

needed to execute a task in WAMR, however we expect this could be significantly decreased

with a more optimized implementation. The remainder of the code and RAM are used by

networking and OS libraries that the EdgeRM agent uses, but would also be required by

most applications.

While the overhead introduced by EdgeRM on an embedded device is not insignificant,

it nevertheless falls within the practical range of modern microcontrollers, especially when

considering the computational benefits enabled by integrating an EdgeRM agent into the

resource cluster. On the NRF52840, which has 256 kB of SRAM, we are able to execute seven

simultaneous WASM tasks, and we expect this number to increase with more optimized

WASM runtime implementations and ever-growing MCU memory sizes.

4.5.2.2 Compute and Power Overhead.

Compute and power overhead of the EdgeRM agent is directly proportional to the frequency

at which an agent pings the master. Figure 4.6 presents the average compute utilization and

power consumption as the interval between successive agent pings is increased. The standard

agent compute utilization was profiled on a Raspberry Pi 3B+, while the embedded agent

compute utilization and power consumption were profiled on an NRF52840 MCU connected

to an OpenThread 802.15.4 network. Most of the CPU utilization and power consumption

are used by the networking operations required to ping the master. For powered embedded

devices, a ping rate of greater than 1 s keep CPU utilization below 5 %; for energy-constrained

devices a ping rate of 10 s uses 340 µW and a ping rate of 100 s uses 34 µW. To conserve

energy while still enabling fast iteration during interactive periods embedded agents can

exponentially back-off their ping rate.

99

Code Segment Text (B) Data (B) BSS (B)

Total 317,918 3,748 90,460

Openthread (Net) 149116 — 38,087

Agent Library 15,764 — 1,401

WAMR Runtime 51,564 — 1,250

WASM Task (min. ea.) — — 22,269

(a) embedded agent

Memory Usage (MB)

Python Agent 22.8

(b) python agent

Table 4.4: Memory and code footprints of the EdgeRM agent implementations. The em-

bedded agent flash and RAM utilization are decomposed into constituent components. A

significant portion of Flash and RAM utilization is due to the networking stack and the

underlying OS, which would also be required by a monolithic firmware. Remaining unused

memory is available to store and execute WASM tasks. The minimum memory for each

task is 22,269 Bytes, which includes all task state, thread stack and heap, and the minimum

16,384B required to execute a WASM module.

100

Figure 4.7: Latency overhead of accessing on-board sensors through WASM. Sensors are

accessed a number of times using a WebAssembly task with the WASM sensor interface and

access time is compared to directly accessing the sensor with the underlying platform SDK.

WebAssembly introduces less than 5 % latency overhead.

4.5.3 WebAssembly Overhead

The overhead analysis of the WebAssembly execution environment is decomposed into a (1)

sensor access latency overhead and a (2) compute overhead analysis. The former is encoun-

tered when tasks are issued to collect sensor data, while the latter indicates the overhead

required to sandbox execution of pure compute tasks with the WebAssembly interpreter.

Device memory consumed by the runtime is included in the memory footprint presented in

Table 4.4.

4.5.3.1 Sensor access latency

Figure 4.7 presents a latency overhead analysis of the WebAssembly runtime and sensor

interface with respect to native implementations. Latency was profiled by fetching temper-

ature values from a BME280 sensor a varying number of times to indicate (1) the fixed

startup cost of loading the WAMR runtime, and (2) the marginal overhead of individual

101

sensor accesses, with respect to native.

The startup cost of booting the WebAssembly runtime is on the order of hundreds of

microseconds, indicating a less than 10% overhead with respect to a sensor access. Once

loaded, an individual WebAssembly sensor task access has a latency overhead of 5% with

respect to the latency required by the underlying platform SDK.

4.5.3.2 WebAssembly compute overhead

The current implementation of the EdgeRM agent uses the WAMR runtime in interpreter

mode, directly interpreting WASM bytecode. Currently WAMR reports that interpreted

WebAssembly runs 11-16x slower than native code for common benchmarks such as Core-

mark and Fibonacci [Hua20, Shy20]. We soon hope to integrate ahead-of-time compilation

and execution, which runs at 85-95 % of native speed, as a service so that EdgeRM can

better support computationally intensive tasks. EdgeRM could transparently compile We-

bAssembly to a target architecture if the architecture attribute is present.

4.6 Discussion

As an early system we still envision significant future work will be done on EdgeRM, and we

hope that as an open source system the community will help to define the direction of that

work. We use this section to discuss several directions that we believe EdgeRM may need

to take to better fulfill its role as the resource manager for the modern edge.

Programming in Accessible Languages. We hope that EdgeRM can facilitate the

programming of sensor networks with higher level languages and specifically higher level lan-

guages that are commonly used by domain scientists who need sensor data. Many scientists

use languages like R, and we believe enabling them to use an R API to program sensors

directly would reduce the time and increase the precision of data processing compared to

translating requirements to an embedded programmer.

102

Orchestrating Long Running Tasks. In most example frameworks built for EdgeRM

we find that some of tasks are long-running (i.e. servers, databases, messaging brokers) and

some tasks are intended to be more ephemeral (sensing, filtering, processing). As many

other projects such as Kubernetes and the work leading to its creation have discovered, long

running tasks have their own needs for monitoring, restarting upon failure, auto-scaling, and

log aggregation. We do not intend nor do we think it necessary that framework builders

recreate these features to support what has become a common application paradigm.

As future work we hope to explore how to layer in existing container orchestration solu-

tions so that they can be easily used by application frameworks. This would allow container

orchestration mechanisms to do what they were designed for, while still allowing framework

developers the flexibility to create diverse schedulers for the data pipelines of more ephemeral

jobs feeding into these infrastructure containers.

Networking and Failure Domains. One key piece of scheduling information that

EdgeRM does not yet collect is the explicit network topology or a sense of failure domains.

We have considered allowing users to specify failure domains as device attributes, where de-

vices that have the same failure domain attribute have more reliable internet networking. We

have also considered creating active scheduler jobs which scan the network at a framework’s

request, attempting to automatically map LANs. We plan to attempt these techniques in

future deployments so that frameworks can better realize the reliability improvements that

should be associated with placing computation in local area networks.

4.7 Conclusions

The ascension of IoT sensors into the computing cluster is a logical next-step over the com-

mon practice of maintaining two separate systems established in two separate domains. Our

results indicate that the low-power processors driving sensors and actuators now possess the

sufficient memory and computational capability to host a complete resource manager process

103

and support isolated and generic application execution. We offer the EdgeRM abstraction

and open-source implementation in hopes that its use can extend the edge computing cluster

to the true edge of the network.

Further, EdgeRM aspires to bridge the distributed systems and sensor networks com-

munities by serving as a shared framework spanning both domains. This common medium

could offer a communication channel by which research innovations and technological ad-

vancements can be carried over from one to the other. The inclusion of isolated, interactive,

and multi-tenant resource sharing into the sensor network enables security and usability

innovations introduced into the systems community, while the incorporation of sensor and

actuator nodes into the compute cluster enables more accessible, exploratory, and impactful

application development.

104

CHAPTER 5

The ADAPT2 Principles for Robust Adaptation

The essence of autonomic resource management in computer systems is to adapt resource

allocation based on trusted load measurement data reported from the physical devices. We

argue that one largely overlooked concern is the opportunity for an attacker to use infor-

mation about adaptation triggers to launch an attack. These vulnerabilities in autonomic

resource management enable complex attacks that leak cyber-physical aspects of the system,

propagates malicious or exploitative code, and/or launch side-channel attacks against other

co-located users. We enumerate cases where an attacker can report false utilization statistics

to invoke adaptive network behaviors in a targeted fashion, e.g., over-reporting utilization

to request additional resources from the resource manager.

Even without controlling a device in the system, a malicious entity can infer sensitive

spatio-temporal information by merely observing the current state of network activation.

The vast inter-connectivity of edge networks increase both the visibility and accessibility of

network nodes. This inference of activity based on adaptation has significant implications in

safety-critical applications, such as those in smart cities, industrial IoT, and the Internet-of-

Battlefield-Things [SWW15]. Failing to obfuscate location information of these devices can

be crippling in mission-critical contexts.

We use three attack scenarios derived from the aforementioned vulnerabilities to propose

the ADAPT2 framework for secure and robust resource management. Using techniques

derived from Moving Target Defense [JGS11], we suggest state estimation of computational

models to identify, isolate, and invalidate devices that are reporting false utilization statistics.

105

To obfuscate cyber-physical characteristics of the network, ADAPT2’s resource manager

injects dummy workloads to attest suspicious nodes. These dummy workloads will also be

used to activate idle regions for the purpose of obfuscating latent activation patterns of the

network.

Our contributions can be summarized as follows. In Section 5.1 we present the system

and adversary models considered. In Section 5.2, we discuss and exemplify how an attacker

can manipulate and/or compromise the system using knowledge about vulnerabilities in

the resource manager. In Section 5.3, we discuss ADAPT2, a suite of autonomic resource

manager system extensions designed to protect against the previously discussed attacks. We

compare our work to the state-of-the-art in Section 5.4.

5.1 System and Adversary Models

We begin by presenting the system model considered followed by the proposed adversary

model for each of the attacks on adaptation. We elaborate on the feasibility of each assump-

tion of the adversary model by enumerating four possible attack vectors.

5.1.1 System Model

We consider a distributed autonomic edge cloud system that is comprised of a networked

set of devices with a centralized entity responsible for resource management, referred to as

the autonomic resource manager. The autonomic resource manager controls the amount of

capacity allocated to an application, e.g., how many instances of an application software

component and which devices they are mapped to. This allocation can be based on applica-

tion load (e.g., increased load might require extra instances to maintain QoS), the type of the

application (e.g., critical applications require replication for availability), and the workload

dynamics (e.g. device movement may require migrating associated computations to mini-

mize transmission latency). The resource manager has the ability to communicate with any

106

Resource
Manager

1
2 3 4

Figure 5.1: An example distributed network illustrating four attack vectors that can be used

to compromise devices in an autonomic system. 1) An attacker has launched a physical

attack. 2) An attacker has injected a device into the network. 3) An attacker has exploited

a device’s software vulnerability. 4) An attacker has obtained meta-information via side-

channel attack.

107

networked device, thereby having a full view of the distributed computation of workloads.

Finally, computing resources are shared between the software components using light weight

virtualization such as Micro-VMs, thus providing multi-tenancy on the network’s sensing,

computation, and actuation resources [MBS17, YPK14].

5.1.2 Adversary Model

The adversary’s goal is to manipulate resource allocation and infer sensitive application

information. We assume that the adversary wants to maintain stealthiness, so as not to

raise suspicion. Stealthy attacks such as Stuxnet [FMC11] have proven that stealthiness

enables longer and more impactful attacks, especially in a cyber-physical context. We focus

on attacks that specifically target the resource adaptation mechanism.

Attack vectors. In order to manipulate resource allocation, an attacker must compromise

at least a single device. However, an attacker can still derive system information without

compromising a device. In summary, we consider the following attack vectors:

1. An attacker has gained access to at least one physical device. Gaining physical access

to a device is significantly easier in an edge network [SST16]. This allows an attacker

to mount a physical attack by either attaching malicious hardware or manipulating the

device platform [GRB12].

2. In IoT networks that allow ad-hoc admission of IoT devices, an attacker uses a malicious

device to join the network, and is accepted by a Resource Manager via the legitimate

admission interface.

3. The attacker has not gained access to a physical device, but has gained access to a

software component. The attacker may exploit a software or network vulnerability

to gain root or user access. While this type of attack is not specific to the IoT edge

domain, IoT and mobile software are often less robust, thereby offering more exploits

when compared to typical machines [SST16].

108

4. The attacker has not gained device access, but can obtain meta-information regarding

device activation. This information can be obtained via side-channel attacks, such

as remotely detecting changes in signal output, generated heat, or electromagnetic

leakage [LDP15].

5.1.3 Assumptions

These four attack vectors, illustrated in Figure 5.1, lead to an assumption of an untrusted

edge network. The attacker has managed to circumvent existing security mechanisms im-

plemented on the system to gain access to devices. This model also assumes that we cannot

attest the integrity of either the software or hardware for some devices1. Similarly, we assume

that any trusted execution environments can be circumvented by attackers [Van18].

Number of compromised devices. We assume the attacker can only compromise a subset

of the system, as a distributed attack spanning all heterogeneous devices located in different

physical regions would be infeasible.

Trusted resource management. The resource manager is assumed to be a trusted entity

that has much stronger security guarantees than other devices, particularly those residing at

the edge. We assume this entity has more stringent cyber and physical security mechanisms.

Computing power. We assume an attacker has access to an adversarial pool of external

resources that can be used for processing and offloading of computations. While not nec-

essary, this effectively provides an attacker infinite compute resources by which to fool any

source of compute validation checker.

Applications. We assume the applications of interest are deployed and managed by an auto-

nomic resource manager over a distributed edge network. For the purposes of our discussion,

1Although remote attestation can be implemented, this typically requires a hardware root-of-trust. If a
device doesn’t support such hardware, software-based attestation can be used but typically requires very
strong assumptions regarding the timing and authenticity guarantees of the communication channels between
the device and the external verifier [SS04]

109

we will look to applications that span a smart city environment to aid law enforcement and

first responders.

5.2 Attacks on Adaptation

In this section, we enumerate three attacks on autonomic resource managers in edge com-

puting systems. The first two focus on using the utilization statistics reported by a device to

the monitoring entity to attack the system. The latter attack focuses on making inferences

about spatio-temporal network characteristics given a network’s resource allocation and sys-

tem meta-information. There are many more attacks that can be launched from a set of

compromised devices in a autonomic computing system; we focus on those that target the

resource management substrate.

5.2.1 Falsely reporting low utilization

Resource managers often implement a dynamic scheduling policy that considers current

device utilization or computational capacity (e.g. CPU cores, memory, etc). Tasks are more

likely to be assigned to devices experiencing low utilization as opposed to those experiencing

high utilization. Reported utilization and/or capacity is often accepted at face-value without

verification from the resource manager; however, in an ad-hoc network it may be important

to treat device-reported statistics with scrutiny. A compromised device can fool a resource

manager by providing false utilization information.

In this attack, a compromised device reports under-utilization and/or claims to have

very large capacity. The resource manager may then choose to map more tasks to the

underutilized device, allowing the compromised node to gain access to more application

semantics. In order to maintain stealthiness, the compromised node can offload some assigned

computations to an adversarial external cluster.

The attacker can use the placement of multiple application components by the resource

110

1 2 3 4 5 6
Time (epoch)

PM1

PM2

PM3

PM4

PM5

VMVM Workload Occupied

Figure 5.2: The expected behavior of workload placement for the first-fit algorithm (PM =

Physical Machine, VM = Virtual Machine).

111

manager on the compromised node to stage other attacks such as data-poisoning. In the worst

case, the attacker will have access to all applications’ semantics, as the resource manager

will blindly place software components onto the device with the lowest resource utilization

in the network.

Example attack. An application deployed over a smart city is likely to span a wide

range of devices. Exfiltrating semantic behavior to untrusted entities can ultimately cripple

application objectives. We present this attack against the first-fit placement algorithm,

a simple but efficient placement algorithm [CKM19]. Given a software component, e.g., a

virtual machine, first-fit assigns to the first available physical machine with sufficient capacity

to meet QoS requirements. For our example, we define a scenario with 5 homogeneous

physical machines (PMs) capable of supporting 3 equivalent virtual machine (VM) workloads

each. The placement algorithm fits these 10 VM workloads onto the PMs at each time

epoch, with each workload requiring 2 time epochs to complete. Figure 5.2 presents this

scenario under normal operation. Figure 5.3 illustrates an attacker exfiltrating workloads to

an external entity via a compromised PM. At each time epoch, the compromised PM reports

underutilization, thus gaining access to 3 VM workloads at every epoch.

5.2.2 Falsely reporting high utilization

One of the key tasks of a resource manager is to maintain Quality-of-Service (QoS). Variations

in device and application performance are common, typically a result of workload burstiness,

energy dynamics, and device mobility. A resource manager may initiate an adaptation to

remap computation to resources and maintain QoS with respect to a pre-defined system

metric (e.g. latency, energy, utilization). While important for all applications, maintaining

strict QoS is essential for mission-critical and real-time applications, such as those in search-

and-rescue and military applications [CHM18]. When faced with an over-utilized device or

unacceptable QoS, a resource manager will typically assign more resources to the application,

either by horizontally scaling, i.e., adding replicas of a software component to additional

112

1 2 3 4 5 6Time (epoch)

PM1
Exfiltrated workloads

PM2

PM3

PM4

PM5

PM1

VMVM Workload Occupied Compromised

Figure 5.3: The behavior of workload placement when an adversary is reporting low uti-

lization for a physical machine.Workloads are exfiltrated to an adversarial entity (PM =

Physical Machine, VM = Virtual Machine).

113

1 2 3 4 5 6
Time (epoch)

PM1

PM2

PM3

PM4

PM5

VMMalicious VM

Figure 5.4: The behavior of workload placement when a malicious VM reports high uti-

lization in order to replicate malicious code onto other physical machines (PM = Physical

Machine, VM = Virtual Machine).

devices, or by vertically scaling, i.e., increasing the memory or CPU allocation to a particular

software component.

In this attack, the compromised software component reports that it has experienced

an increase in utilization and violated QoS. If vertically scaled, the resource manager will

allocate more resources to the compromised software component, allowing the malicious

component to control more resources that now can not be used by legitimate applications.

Figure 5.4 illustrates how a compromised VM workload is horizontally replicated by

114

the resource manager at each time epoch if it is consistently reporting that it requires an

additional PM. The resource manager scales the malicious component creating more replicas

of the malicious software, thereby allowing an attacker to infect more devices and mount

serious attacks, such as cross-VM side channel attacks [ZJR12]. By replicating malicious

software, the total available resources will be effectively reduced, leading to a Denial-of-

Service launched by the resource manager itself. This style of DoS attack is quite common

in the IoT and edge computing domains, including those incorporating robust autonomic

resource management systems [KKS17].

5.2.3 Inferring action from adaptation

Resource Managers often optimize computation placement based on a particular heuristic, for

example end-to-end latency. Applications with a spatio-temporal aspect may leak sensitive

location information as a direct result of a resource manager adapting computation placement

or sensor/actuator activation.

In this attack, we consider an application that computes data over a dynamic region.

For example, consider a smart city environment where a set of law enforcement vehicles are

moving through an IoT and infrastructure-rich environment. An application is deployed to

identify suspicious activity and potential threats surrounding the vehicles. As these vehicles

traverse the territory, edge devices are active depending on whether a vehicle is located

nearby. An attacker can observe the currently active set of devices to infer information on

vehicle locations. In this way, adaptation can leak sensitive spatio-temporal information to

an attacker, who can construct a location heat-map based on device activity.

5.3 Adapting Adaptation

To counter the aforementioned attacks on adaptation, we present how existing characteristics

of adaptive models can be instrumented to detect false reports of device utilization statistics

115

Active Region

Active Region

Figure 5.5: An example illustration of how adaptation can leak location information. As

vehicles traverse the smart city, nearby devices are activated. An attacker can observe the

active set of compromised devices and make inferences on the location of the vehicle.

and obfuscate leaked spatio-temporal information.

5.3.1 Detecting False Device Utilization Statistics

Due to potential attacks on a resource manager’s placement algorithm, a robust system

must scrutinize reported device utilization statistics. An obvious solution to detect if a

device has been compromised is to verify the integrity of the device’s software state via

device-fingerprinting [FSL16] or standard trusted computing techniques [Mit05]. However,

in dynamic distributed IoT systems where new devices are being recruited onto the network,

it is difficult both to build deterministic fingerprints for devices as well as to ensure that

these devices are enabled with trusted platform modules to perform remote attestation. As

such, we opt for a solution that depends on the state of the network’s resource consumption

model.

116

5.3.1.1 State estimation for resource consumption

The first component is analogous to state estimation for detection of false data injection

attacks [MGC10]. We propose generating probabilistic models of expected resource con-

sumption based on device characteristics. For a given task and device, a predicted target

is compared to reported statistics. This enables a challenge-response against each device to

verify that a reported resource utilization is within certain bounds of the model. An attacker

may have the ability to spoof responses given a particular workload challenge, but can no

longer report drastically inaccurate utilization statistics, thus preventing a crippling attack

leveraging reported resource utilization.

5.3.1.2 Moving target defense for more robust state estimation

If an attacker can learn a probabilistic model of resource consumption for a given application

workload, then the attacker may be able to provide spoofed data to fool the challenger. To

counter this spoof, a resource manager can rely on Moving Target Defense (MTD) techniques,

where resource mappings are constantly changed to randomize computation assignment to

devices [JGS11]. As a device’s workload changes, accurately predicting expected resource

consumption becomes more difficult, and an increased opportunity arises for identifying

malicious devices. To spur workload changes, we can adapt MTD by randomly initiating

an unprovoked “adaptation” to remap computation to devices and initiate a new round of

challenge-response. The resource manager can improve initial state-estimation models by

collecting utilization and resource consumption data from each round of MTD for all the

components and devices. This presents a clear security-performance trade-off dependent on

overhead in adaptation; furthermore, meeting QoS requirements under network constraints

may restrict the space of possible MTD configurations.

117

5.3.1.3 Isolating suspicious devices

Suspicious devices that are marked as deviating significantly from an expected model can be

isolated and further evaluated. This group can be tested with either latency-tolerant appli-

cations or dummy workloads. Dummy workloads can be explicitly designed to intentionally

generate resource consumption outside a given model’s expectations. In doing so, it becomes

easier to determine whether a device is intentionally misreporting utilization statistics.

5.3.2 Obfuscation of Leaked Spatio-temporal Characteristics

Although the state estimation model with induced randomness can provide a means of ver-

ifying a device’s resource utilization characteristics, it does not obfuscate the side channels

that are exposed by adaptation, e.g., identifying movement by detecting computational work-

load patterns in different locations. As such, we propose instrumenting the aforementioned

redundant workloads in a way that randomizes the activation of different nodes. Dummy

workloads, initially spanning the set of suspicious devices, can additionally span devices that

would otherwise be relatively inactive. In this way, application-specific location data can be

obscured such that attackers can no longer generate a valid activity heatmap. Furthermore,

for applications that are not latency sensitive, a resource manager can move these applica-

tions to idle regions in a manner that is cognizant of the resource allocation’s entropy. In

this way, we can trade-off latency for security.

5.3.3 Adapt2 Principles

To enhance resource managers with the capabilities required to shield against the above at-

tacks, we propose Adapt2, a model framework for resource manager extensions that include

a state estimator, MTD, and spatio-temporal obfuscation.

Figure 5.6 illustrates the Adapt2 extension to resource management, which is comprised

of three main system components. The first is a state estimator that is used to construct

118

IDLE

Location Obfuscation

A

B

C

State Estimation Moving-Target
Defense

Challenge
—————————————

Response

Isolation
 ?

Figure 5.6: Adapt2 system components, serving as an extension to existing resource man-

agement. The three main components are a state estimator, a moving target defense gen-

erator, and a spatio-temporal location obfuscator. In tandem, state estimation generates

challenge-responses to identify suspicious devices, which may be isolated and tested with

dummy workloads.

119

a probabilistic model that maps device characteristics and application tasks to a predicting

range of resource consumption. The second incorporates MTD by monitoring adaptation

history and application mapping in order to determine appropriate times to initiate a ran-

domization. It tracks suspicious devices based on challenge-response information generated

from the state estimator to determine appropriate workloads to deploy onto suspicious de-

vices. Suspicious devices can additionally be isolated to enable in-depth testing. Finally, the

location obfuscation component uses current resource mappings to identify latent idle regions

and have (potentially dummy) workloads scheduled in order to minimize spatio-temporal lo-

cation leakage as a result of localized activity.

Implementing the Adapt2 model framework as an extension of an existing resource

manager prevents the attacks on resource usage discussed in Section 5.2. In doing so, one

can reduce the attack surface exposed by the Resource Manager in distributed edge-cloud

networks.

5.4 Related Work

IoT devices have been the target of a number of attacks. DDoS-as-a-service attacks such as

the Mirai botnet have shown how the vast quantity of these deployed devices can be exploited

as a cyber weapon [KKS17]. As the Internet-of-Things has encompassed more safety critical

applications, we have also seen cyber-physical attacks on autonomous vehicles [MV15].

Securing edge-cloud systems and their applications has received considerable attention [HCT18,

RLM18, SWW15]. Similarly, the problem of securing IoT networks has also received sig-

nificant attention in the research community [CHM18, DK18, MJ17]. Fundamentally, the

work on IoT and edge network security can be broadly divided into two main subcategories:

work illustrating novel attacks, and work introducing mitigation techniques. To the best of

our knowledge, we are unaware of any other work that focuses on exploiting or securing the

resource management substrate.

120

Among the plethora of work considering side channel attacks exploiting IoT and mobile

devices, Chen et al. discuss a number of attacks on real-time IoT systems [CHM18] focused

on four main attack classes, namely, integrity violations due to malicious code injection,

side-channel attacks, attacks on the communication channels, and Denial-of-Service attacks.

Chen et al. [CBI18] discuss how IoT devices at home can reveal sensitive information about

the users. Mitigation techniques include systems like CellPot [LLB14], a novel honeypot

for cellular networks to detect threats and provide defence against malicious mobile devices

in the network. Naveed et al. [ACS17] introduce the idea of using Physical Unclonable

Functions (PUFs) to provide secure authentication protocols for IoT devices in an ad-hoc

network. Other techniques such as Post-Quantum public cryptography systems to secure

edge devices [LCG18], Chen and Xu design a collaborative based edge cloud system where

social trust networks are built for managing security risks among the cloud edges due to

collaboration [CX17].

5.5 Conclusions

In this work, we enumerated and characterized the side-channel vulnerabilities in distributed

IoT systems that arise as a result of network adaptation. We showed how an attacker can

falsify utilization statistics for the purpose of manipulating a network’s resource allocation.

Furthermore, we illustrated how adaptation can leak a system’s valuable meta-information

about an IoT node. We then describe ADAPT2, a framework for distributed IoT systems

that can attest device utilization statistics and obfuscate system meta-information. To de-

tect false utilization statistics, ADAPT2 uses a state estimation model of the computation

workloads for each device to determine if there is a discrepancy in the device’s reported statis-

tics versus the device’s expected statistics. ADAPT2 can use dummy workloads to isolate

suspicious devices and perform the attestation procedure. To obfuscate meta-information,

ADAPT2 can either issue dummy workloads or workloads that are not latency-sensitive onto

121

idle nodes to obfuscate the node-activation characteristics of the distributed IoT system.

122

CHAPTER 6

Conclusion

My research explores the notion of enabling an adaptive system runtime spanning the cloud,

fog, and edge. At its core, the focus is on coalescing the inherent heterogeneity of cloud-edge

resource pool composition to support the future of IoT. I seek to lift embedded systems

into the general purpose resource cluster to bridge the gap between sensor networks and

distributed systems. This ambitious goal has yet to be attained; the efforts I have taken

aim to bring our community one step closer, building upon those that have paved the way

in an attempt to address the three unsolved problems that constitute the essential elements

of a robust autonomic cloud-edge system as described in Section 1.1. DDFlow ameliorates

the complexity of coalescing hardware specific implementations for unified management of

distributed applications. Portkey aims to address the unique geo-distribution of high-volume

data producers and consumers at the edge. EdgeRM builds upon these notions with a layer

of abstraction offering a central entity supporting dynamic resource aggregation and task

management. Finally, ADAPT2 defines autonomic computing principles that ensure adap-

tion itself does not create system vulnerability. The precepts of these compositional elements

realize aspects of the overarching vision for a self-aware system. By observing system state,

predicting the impact of proposed adaptations, and efficiently executing reconfiguration, the

self-aware adaptive system can tune itself to the specifics of a deployment environment,

thereby providing the performance of a custom solution while maintaining the flexibility of

a generic framework.

123

6.0.1 Future Directions and Limitations

There are a number of limitations and directions for future research that have been revealed

from my efforts.

General-Purpose Machine Learning for the Edge. Machine learning is undeni-

ably one of the most important technological advancements in recent years, and its nascent

application to IoT systems continues to require research innovation. WebAssembly, and

by extension EdgeRM, have yet to consider a unified approach to machine learning applica-

tions. Its practical implementation requires many important considerations. First, a number

of competing ML frameworks are vying for the spotlight, and compiling these systems to

WebAssembly, particularly such that it can fit on an embedded device, is in-and-of-itself an

arduous challenge. Second, each device offers certain resource limits, and balancing model

selection across the set of available devices provides key tradeoffs in performance and la-

tency. Third, even if a highly resource-efficient model is developed and selected, how should

it be deployed over an embedded device? Perhaps this requires the exploration of a We-

bAssembly System Interface extension for ML. How should these systems take advantage of

potential hardware accelerators, such as an Edge TPU [Cas19]? Ultimately, can a unified

ML model representation in WebAssembly be deployed over varying hardware and varying

ML frameworks? Is the same applicable to model training, such as in federated learning?

Energy as a First-Class Resource. Energy and power are resources currently miss-

ing from EdgeRM, yet are key factors in determining whether an application should run

on a particular resource constrained device or be scheduled elsewhere in the system. Ex-

tending the scheduling profiler to infer energy and/or power consumption of an application,

and incorporating that information into an energy-aware scheduler is a difficult challenge.

While trends continue to indicate that on-device compute is more advantageous than incur-

ring wireless radio, identifying those dynamic thresholds to optimize for energy is a current

limitation and necessary direction of future research.

124

Extending to the Most Resource Constrained. No matter how efficient a resource

management agent implementation is, there will seemingly always be a class of embedded

device that falls below the minimum threshold. This is particularly revealed when considering

the extension of EdgeRM to battery-less and energy-harvesting devices. As researchers

continue to design system tooling to execute over minimum-energy devices, EdgeRM agent

implementations and scheduling decisions will likely require revisiting to target these systems.

Intelligent RL Scheduling over Dynamic Systems. While my initial prospectus

proposed a complete approach to scheduling, developments in EdgeRM revealed that a one-

size-fits-all scheduler is neither practical nor possible in the cloud-edge computing domain.

This led to the introduction of a lower level of abstraction in an attempt to capture all possi-

ble deployment scenarios, thereby seeking to enable EdgeRM as a foundational platform for

future scheduling solutions. As such, a logical next-step in research is the exploration of vari-

ous means to intelligently schedule subsets of cloud-edge applications in a self-aware fashion.

Similar to how the Sensor MapReduce framework continuously monitors the set of available

sensing resources to potentially reschedule Map tasks, a reinforcement learning-based ap-

proach to task scheduling can potentially allow developers to specify optimization metrics

that dictate how distributed applications are managed under particular circumstances.

A Novel WebAssembly Runtime for IoT. Embedded systems are often developed

for specific platforms or devices; for example, our initial implementation of the embedded

resource management agent sits atop Zephyr. While the messaging protocol and architecture

may remain the same, expanding the compatibility of EdgeRM across embedded platforms

will undoubtedly aid in its adoption. Similarly, the WAMR runtime serves as an initial, but

potentially suboptimal solution to executing WebAssembly modules on resource constrained

devices. Recent attention has been placed on developing a runtime custom tailored to the

embedded device setting. While retargeting our distributed resource manager to a new

WebAssembly runtime is not a complex task, it certainly requires engineering effort and

serves as a valuable complement to this research. Finally, I personally ascribe to the notion

125

that the best research is driven by real-world problems, as opposed to developing ideas from

within an isolated bubble. As frameworks begin to build atop EdgeRM, they are likely to

expose unsolved mysteries that will be certain to inspire the best innovations.

A Serverless Execution Model. Finally, I’d like to touch upon a logical next-step in

exploring a serverless runtime and system architecture for cloud-edge applications. As the

execution model of containerized applications continues to develop, it is undoubtedly leading

toward finer-grain modular tasks that can quickly bind and unbind to resources. With the

introduction of Portkey as an adaptive state management solution, serverless functions-at-

the-edge developed in a stateless fashion can truly be realized. The key factor preceding

serverless IoT is a stable and production-ready runtime for WebAssembly on embedded

devices. I am confident that this solution is imminently approaching, and truly believe that

serverless is the future of distributed application design. Our Sensor MapReduce framework

is one such implementation.

6.0.2 The Breadth of My Research

While my thesis is focused on exploring system self-awareness, the full scope of my research

covered tangentially related efforts that serve to compliment this notion. Although these

projects may not be best served within the core thesis, I am compelled to briefly touch upon

their design and utility:

Self-awareness without sufficient explanation leads to opaque decision-making. Despite

the ubiquity and unrivaled performance of deep neural networks in certain tasks, its black

box nature often inhibits its application in practice. Moreover, DNN explanation methods

have typically focused on tasks that operate over image, audio, or textual data, leaving

sensing applications relatively ignored. To this end, we developed ExMatchina [JNC20],

an explanation-by-example framework that leverages training data to provide high-quality

explanations for DNN inferences. Our user study indicated that explanation-by-example

was not only applicable to sensing tasks, but was preferred over superimposition explanation

126

methods for image, audio, and sensing data. To support user or admin-facing deployments

that require explainable decisions yet desire the incorporation of deep neural network models,

we provide ExMatchina as an open-source explanation-by-example framework.

Time awareness is too often overlooked when designing distributed systems. One-way

online profiling and shared synchronization depend upon a shared notion of time, however

relying on a device’s system clock can unexpectedly degrade application performance. As

part of designing reliable profiling, we observed notable deviations in the smartphone system

clock, leading to an observation study and analysis of the discrepancy in “synchronized”

system clocks on smartphones. At the current observable scale of timing discrepancies,

on the order of seconds, applications fusing data across smartphones can expect dramatic

performance drops with up to an order-of-magnitude increase in error rates. To this end, we

designed GoodClock, a system clock replacement for smartphones, and introduced data

augmentation techniques that increase the resilience of machine learning models to timing

discrepancies [SNA19, SNA20].

In conjunction with the availability of low-cost instrumentation of sensors and actuators,

there has been an increase in adversarial sensing, where nefarious entities invade upon the

privacy of individuals occupying a third-party space. Self-awareness in this context takes

a different approach, revealing the existence of unknown wireless sensors to ensure a more

trusted physical environment. We introduced SnoopDog [SGN21], a generalized framework

to detect clandestine wireless sensors monitoring a user in a private space. SnoopDog

uses Granger Causality to determine if the values of a trusted ground-truth sensor cause

patterns in Wi-Fi traffic of other nearby devices. Once detected, a localization approach

systematically reduces the search space to find the hidden sensor using the notion of sensor

coverage, thus allowing users to identify and localize any bugs spying on them.

127

6.0.3 Final Thoughts

I have truly been blessed to be given the opportunity to spend the last decade of my life

studying, exploring, and creating knowledge at UCLA. My research culminates in this vision

for an adaptive, self-aware system, able to comprehend its state to work towards one that

is superior. My proposal for edge computing is not unlike the aspirations I set for my own

life, navigating the path to fulfill the most complete expression of my creation.

128

REFERENCES

[ABC15] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J
Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, et al. “The dataflow model: a practical approach to balancing
correctness, latency, and cost in massive-scale, unbounded, out-of-order data pro-
cessing.” Proceedings of the VLDB Endowment, 8(12):1792–1803, 2015.

[ACS17] Muhammad Naveed Aman, Kee Chaing Chua, and Biplab Sikdar. “Physically
secure mutual authentication for IoT.” In IEEE Conference on Dependable and
Secure Computing, pp. 310–317. IEEE, 2017.

[ADJ10] Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, Alec Wolman,
and Harbinder Bhogan. “Volley: Automated Data Placement for Geo-distributed
Cloud Services.” In Proceedings of the 7th USENIX Conference on Networked Sys-
tems Design and Implementation, NSDI’10, Berkeley, CA, USA, 2010. USENIX
Association.

[AKC17] Michael P Andersen, John Kolb, Kaifei Chen, David E. Culler, and Randy Katz.
“Democratizing Authority in the Built Environment.” In Proceedings of the 4th
ACM International Conference on Systems for Energy-Efficient Built Environ-
ments, BuildSys ’17, New York, NY, USA, 2017. Association for Computing Ma-
chinery.

[Ama20] Amazon Web Services, Inc. “AWS IoT Greengrass - Amazon Web Services.”
https://aws.amazon.com/greengrass/, 2020.

[AMO15] Ramia Babiker Mohammed Abdelrahman, Amin Babiker A Mustafa, and
Ashraf A Osman. “A Comparison between IEEE 802.11 a, b, g, n and ac Stan-
dards.” IOSR Journal of Computer Engineering (IOSR-JEC), 17:26–29, 2015.

[AMP16] Aleksandar Antonić, Martina Marjanović, Krešimir Pripužić, and Ivana Podnar
Žarko. “A mobile crowd sensing ecosystem enabled by CUPUS: Cloud-based
publish/subscribe middleware for the Internet of Things.” Future Generation
Computer Systems, 56:607 – 622, 2016.

[AQE20] Fawad Ahmad, Hang Qiu, Ray Eells, Fan Bai, and Ramesh Govindan. “CarMap:
Fast 3D Feature Map Updates for Automobiles.” In 17th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 20), pp. 1063–1081,
2020.

[ARS18] Muthukaruppan Annamalai, Kaushik Ravichandran, Harish Srinivas, Igor
Zinkovsky, Luning Pan, Tony Savor, David Nagle, and Michael Stumm. “Sharding
the shards: managing datastore locality at scale with Akkio.” In 13th {USENIX}

129

Symposium on Operating Systems Design and Implementation ({OSDI} 18), pp.
445–460, 2018.

[AS18] Irshad Ahmed Abbasi and Adnan Shahid Khan. “A review of vehicle to vehicle
communication protocols for VANETs in the urban environment.” future internet,
10(2):14, 2018.

[AT14] Masoud Saeida Ardekani and Douglas B Terry. “A self-configurable geo-replicated
cloud storage system.” In 11th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 14), pp. 367–381, 2014.

[AXF12] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
“Workload analysis of a large-scale key-value store.” In Proceedings of the 12th
ACM SIGMETRICS/PERFORMANCE joint international conference on Mea-
surement and Modeling of Computer Systems, pp. 53–64, 2012.

[Azu20] Microsoft Azure. “Azure IoT – Internet of Things Platform: Microsoft Azure.”
https://azure.microsoft.com/en-us/overview/iot/, 2020.

[BBC17] Tristan Braud, Farshid Hassani Bijarbooneh, Dimitris Chatzopoulos, and Pan
Hui. “Future networking challenges: The case of mobile augmented reality.”
In 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS), pp. 1796–1807. IEEE, 2017.

[BBL14] Lorenzo Bracciale, Marco Bonola, Pierpaolo Loreti, Giuseppe Bianchi, Raul Am-
ici, and Antonello Rabuffi. “CRAWDAD dataset roma/taxi (v. 2014-07-17).”
Downloaded from https://crawdad.org/roma/taxi/20140717, July 2014.

[BCL08] Niels Brouwers, Peter Corke, and Koen Langendoen. “Darjeeling, a Java Com-
patible Virtual Machine for Microcontrollers.” In Proceedings of the ACM/I-
FIP/USENIX Middleware 08 Conference Companion, Companion ’08, p. 18–23,
New York, NY, USA, 2008. Association for Computing Machinery.

[BCP20] Marc Brooker, Tao Chen, and Fan Ping. “Millions of Tiny Databases.” In
17th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 20), pp. 463–478, 2020.

[BEG19] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex In-
german, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,
H Brendan McMahan, et al. “Towards federated learning at scale: System de-
sign.” arXiv preprint arXiv:1902.01046, 2019.

[BGO16] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John
Wilkes. “Borg, Omega, and Kubernetes: Lessons Learned from Three Container-
Management Systems over a Decade.” Queue, 14(1):70–93, January 2016.

130

[BHS07] Athanassios Boulis, Chih-Chieh Han, Roy Shea, and Mani B Srivastava. “Sensor-
Ware: Programming sensor networks beyond code update and querying.” Perva-
sive and mobile computing, 3(4):386–412, 2007.

[BRS08] Ivan Baev, Rajmohan Rajaraman, and Chaitanya Swamy. “Approximation algo-
rithms for data placement problems.” SIAM Journal on Computing, 38(4):1411–
1429, 2008.

[BTD06] Subir Biswas, Raymond Tatchikou, and Francois Dion. “Vehicle-to-vehicle wire-
less communication protocols for enhancing highway traffic safety.” IEEE com-
munications magazine, 44(1):74–82, 2006.

[Byt20a] Bytecode Alliance. “WASM Micro Runtime.”
https://github.com/bytecodealliance/wasm-micro-runtime, 2020.

[Byt20b] Bytecode Alliance. “WebAssembly System Interface.” https://wasi.dev/, 2020.

[BZ17] Paolo Bellavista and Alessandro Zanni. “Feasibility of fog computing deployment
based on docker containerization over raspberrypi.” In Proceedings of the 18th
international conference on distributed computing and networking, pp. 1–10, 2017.

[Cas19] Stephen Cass. “Taking AI to the edge: Google’s TPU now comes in a maker-
friendly package.” IEEE Spectrum, 56(5):16–17, 2019.

[CBC10] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan
Saroiu, Ranveer Chandra, and Paramvir Bahl. “MAUI: making smartphones last
longer with code offload.” In Proceedings of the 8th international conference on
Mobile systems, applications, and services, pp. 49–62, 2010.

[CBI18] Dong Chen, Phuthipong Bovornkeeratiroj, David Irwin, and Prashant Shenoy.
“Private Memoirs of IoT Devices: Safeguarding User Privacy in the IoT Era.” In
Proceedings of the 38th IEEE International Conference on Distributed Computing
Systems (ICDCS’18), 2018.

[CBM17] Sergio Correia, Azzedine Boukerche, and Rodolfo I Meneguette. “An architec-
ture for hierarchical software-defined vehicular networks.” IEEE Communications
Magazine, 55(7):80–86, 2017.

[CHM18] Chien-Ying Chen, Monowar Hasan, and Sibin Mohan. “Securing real-time
internet-of-things.” Sensors, 18(12):4356, 2018.

[CKM19] Maxime C Cohen, Philipp W Keller, Vahab Mirrokni, and Morteza Zadimoghad-
dam. “Overcommitment in Cloud Services: Bin Packing with Chance Con-
straints.” Management Science, 2019.

131

[CKY20] Eunhee Chang, Hyun Taek Kim, and Byounghyun Yoo. “Virtual reality sick-
ness: a review of causes and measurements.” International Journal of Human–
Computer Interaction, 36(17):1658–1682, 2020.

[CLB18] Aakanksha Chowdhery, Marco Levorato, Igor Burago, and Sabur Baidya. “Urban
iot edge analytics.” In Fog computing in the internet of things, pp. 101–120.
Springer, 2018.

[Col18] Louis Columbus. “10 Charts That Will Challenge Your Perspective Of IoT’s
Growth.”, 2018.

[Cro19] Steve Crowe. “How drones & robots helped extinguish Notre Dame
fire.” https://www.therobotreport.com/how-drones-robots-helped-extinguish-
notre-dame-fire/, 2019. Accessed: 2020-12-26.

[CST10] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Rus-
sell Sears. “Benchmarking cloud serving systems with YCSB.” In Proceedings of
the 1st ACM symposium on Cloud computing, pp. 143–154. ACM, 2010.

[CX17] Lixing Chen and Jie Xu. “Socially trusted collaborative edge computing in ultra
dense networks.” In Proceedings of the Second ACM/IEEE Symposium on Edge
Computing, p. 9. ACM, 2017.

[DCB19] Miguel Diogo, Bruno Cabral, and Jorge Bernardino. “Consistency Models of
NoSQL Databases.” Future Internet, 11(2):43, 2019.

[DK18] Daniel Dinu and Ilya Kizhvatov. “EM Analysis in the IoT Context: Lessons
Learned from an Attack on Thread.” IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, 2018(1):73–97, 2018.

[DL20] Bradley Denby and Brandon Lucia. “Orbital Edge Computing: Nanosatellite
Constellations as a New Class of Computer System.” In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’20, p. 939–954, New York, NY, USA,
2020. Association for Computing Machinery.

[Dor20] Dormando. “memcached - a distributed memory object caching system.”
https://memcached.org/, 2020. Accessed: 2020-12-26.

[EKN17] Milan Erdelj, Micha l Król, and Enrico Natalizio. “Wireless sensor networks
and multi-UAV systems for natural disaster management.” Computer Networks,
124:72–86, 2017.

[EN16] Milan Erdelj and Enrico Natalizio. “UAV-assisted disaster management: Appli-
cations and open issues.” In 2016 international conference on computing, net-
working and communications (ICNC), pp. 1–5. IEEE, 2016.

132

[EPB18] Mohammed S Elbamby, Cristina Perfecto, Mehdi Bennis, and Klaus Doppler.
“Toward low-latency and ultra-reliable virtual reality.” IEEE Network, 32(2):78–
84, 2018.

[ESK05] Nasif Ekiz, Tara Salih, Sibel Kucukoner, and Kemal Fidanboylu. “An overview
of handoff techniques in cellular networks.” International journal of information
technology, 2(3):132–136, 2005.

[FAB15] Ramon R Fontes, Samira Afzal, Samuel HB Brito, Mateus AS Santos, and Chris-
tian Esteve Rothenberg. “Mininet-WiFi: Emulating software-defined wireless
networks.” In Network and Service Management (CNSM), 2015 11th Interna-
tional Conference on, pp. 384–389. IEEE, 2015.

[FEB03] Maydene Fisher, Jon Ellis, and Jonathan Bruce. JDBC API tutorial and refer-
ence. Addison-Wesley Professional, 2003.

[FH08] Marco Fiore and Jérôme Härri. “The networking shape of vehicular mobility.” In
Proceedings of the 9th ACM international symposium on Mobile ad hoc networking
and computing, pp. 261–272, 2008.

[FJP16] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. “Security analysis of
emerging smart home applications.” In 2016 IEEE symposium on security and
privacy (SP), pp. 636–654. IEEE, 2016.

[FKD15] Denzil Ferreira, Vassilis Kostakos, and Anind K Dey. “AWARE: mobile context
instrumentation framework.” Frontiers in ICT, 2:6, 2015.

[FMC11] Nicolas Falliere, Liam O Murchu, and Eric Chien. “W32. stuxnet dossier.” White
paper, Symantec Corp., Security Response, 5(6):29, 2011.

[Fou18] JS Foundation. “Node-RED.”, 2018.

[FSL16] David Formby, Preethi Srinivasan, Andrew Leonard, Jonathan Rogers, and Ra-
heem A Beyah. “Who’s in Control of Your Control System? Device Fingerprint-
ing for Cyber-Physical Systems.” In NDSS, 2016.

[Fut19] Futuriom. “5G, IoT and Edge Compute Trends: Technology chal-
lenges, solution, and forecasts for the low-latency edge.” ”"http:
//wan.velocloud.com/rs/098-RBR-178/images/Analyst%20Report%205G%

2C%20IoT%20and%20Edge%20Compute%20Trends%20with%20Futuriom.pdf"”,
2019. Accessed: 2021-05-15.

[GBL15] Nam Ky Giang, Michael Blackstock, Rodger Lea, and Victor CM Leung. “Devel-
oping iot applications in the fog: A distributed dataflow approach.” In 2015 5th
International Conference on the Internet of Things (IOT), pp. 155–162. IEEE,
2015.

133

[GDT18] Edward Gan, Jialin Ding, Kai Sheng Tai, Vatsal Sharan, and Peter Bailis.
“Moment-based quantile sketches for efficient high cardinality aggregation
queries.” Proceedings of the VLDB Endowment, 11(11):1647–1660, 2018.

[Geo20] Damien George. “MicroPython.” https://micropython.org/, 2020.

[GGG05] Ramakrishna Gummadi, Omprakash Gnawali, and Ramesh Govindan. “Macro-
programming wireless sensor networks using Kairos.” In International Conference
on Distributed Computing in Sensor Systems, pp. 126–140. Springer, 2005.

[GND17] Alex Glikson, Stefan Nastic, and Schahram Dustdar. “Deviceless edge computing:
extending serverless computing to the edge of the network.” In Proceedings of the
10th ACM International Systems and Storage Conference, pp. 1–1, 2017.

[Goo18] Google. “Google Vision Kit.”, 2018.

[GoS20] GoSquared. “gosquared/redis-clustr: Redis Cluster client for Node.js.”
https://github.com/gosquared/redis-clustr, 2020. Accessed: 2020-12-26.

[GR18] Harshit Gupta and Umakishore Ramachandran. “Fogstore: A geo-distributed
key-value store guaranteeing low latency for strongly consistent access.” In Pro-
ceedings of the 12th ACM International Conference on Distributed and Event-
based Systems, pp. 148–159. ACM, 2018.

[GRB12] Nico Golde, Kevin Redon, and Ravishankar Borgaonkar. “Weaponizing Femto-
cells: The Effect of Rogue Devices on Mobile Telecommunications.” In NDSS,
2012.

[GZG15] Lin Gu, Deze Zeng, Song Guo, Ahmed Barnawi, and Yong Xiang. “Cost effi-
cient resource management in fog computing supported medical cyber-physical
system.” IEEE Transactions on Emerging Topics in Computing, 5(1):108–119,
2015.

[HAH15] Karim Habak, Mostafa Ammar, Khaled A Harras, and Ellen Zegura. “Femto
clouds: Leveraging mobile devices to provide cloud service at the edge.” In 2015
IEEE 8th international conference on cloud computing, pp. 9–16. IEEE, 2015.

[HCT18] Hamed Haddadi, Vassilis Christophides, Renata Teixeira, Kenjiro Cho, Shigeya
Suzuki, and Adrian Perrig. “SIOTOME: An edge-ISP collaborative architecture
for IoT security.” Proc. IoTSec, 2018.

[HHS17] Syed Monowar Hossain, Timothy Hnat, Nazir Saleheen, Nusrat Jahan Nasrin,
Joseph Noor, Bo-Jhang Ho, Tyson Condie, Mani Srivastava, and Santosh Ku-
mar. “mCerebrum: A Mobile Sensing Software Platform for Development and
Validation of Digital Biomarkers and Interventions.” In Proceedings of the 15th
ACM Conference on Embedded Network Sensor Systems, p. 7. ACM, 2017.

134

[HKS05] Chih-Chieh Han, Ram Kumar, Roy Shea, Eddie Kohler, and Mani Srivastava.
“A dynamic operating system for sensor nodes.” In Proceedings of the 3rd inter-
national conference on Mobile systems, applications, and services, pp. 163–176,
2005.

[HKZ11] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D.
Joseph, Randy Katz, Scott Shenker, and Ion Stoica. “Mesos: A Platform for
Fine-Grained Resource Sharing in the Data Center.” In Proceedings of the
8th USENIX Conference on Networked Systems Design and Implementation,
NSDI’11, p. 295–308, USA, 2011. USENIX Association.

[HLR13] Kirak Hong, David Lillethun, Umakishore Ramachandran, Beate Ottenwälder,
and Boris Koldehofe. “Mobile fog: A programming model for large-scale applica-
tions on the internet of things.” In Proceedings of the second ACM SIGCOMM
workshop on Mobile cloud computing, pp. 15–20. ACM, 2013.

[HRS17a] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Hol-
man, Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. “Bringing the
Web up to Speed with WebAssembly.” SIGPLAN Not., 52(6):185–200, June
2017.

[HRS17b] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. “Bringing the web up to
speed with WebAssembly.” In ACM SIGPLAN Notices, volume 52, pp. 185–200.
ACM, 2017.

[Hua20] Wenyong Huang. “WASM Micro Runtime Performance.”
https://github.com/bytecodealliance/wasm-micro-runtime/wiki/Performance,
2020.

[HV19] Cheol-Ho Hong and Blesson Varghese. “Resource management in fog/edge com-
puting: a survey on architectures, infrastructure, and algorithms.” ACM Com-
puting Surveys (CSUR), 52(5):1–37, 2019.

[Hyp20] Hypriot. “Docker Pirates ARMed with explosive stuff.”
https://blog.hypriot.com/, 2020.

[IBG16] Valérie Issarny, Georgios Bouloukakis, Nikolaos Georgantas, and Benjamin Billet.
“Revisiting service-oriented architecture for the IoT: a middleware perspective.”
In International conference on service-oriented computing, pp. 3–17. Springer,
2016.

[JGS11] Sushil Jajodia, Anup K Ghosh, Vipin Swarup, Cliff Wang, and X Sean Wang.
Moving target defense: creating asymmetric uncertainty for cyber threats, vol-
ume 54. Springer Science & Business Media, 2011.

135

[JNC20] Jeya Vikranth Jeyakumar, Joseph Noor, Yu-Hsi Cheng, Luis Garcia, and Mani
Srivastava. “How can i explain this to you? an empirical study of deep neu-
ral network explanation methods.” Advances in Neural Information Processing
Systems, 2020.

[JS14] Rafa l S Jurecki and Tomasz L Stańczyk. “Driver reaction time to lateral entering
pedestrian in a simulated crash traffic situation.” Transportation research part F:
traffic psychology and behaviour, 27:22–36, 2014.

[JSF18] Xiaolin Jiang, Hossein Shokri-Ghadikolaei, Gabor Fodor, Eytan Modiano, Zhibo
Pang, Michele Zorzi, and Carlo Fischione. “Low-latency networking: Where la-
tency lurks and how to tame it.” Proceedings of the IEEE, 107(2):280–306, 2018.

[KGM07] Nupur Kothari, Ramakrishna Gummadi, Todd Millstein, and Ramesh Govindan.
“Reliable and efficient programming abstractions for wireless sensor networks.”
In ACM SIGPLAN Notices, volume 42, pp. 200–210. ACM, 2007.

[KK03] Srinivas Kashyap and Samir Khuller. “Algorithms for non-uniform size data
placement on parallel disks.” In International Conference on Foundations of
Software Technology and Theoretical Computer Science, pp. 265–276. Springer,
2003.

[KKS17] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jeffrey Voas.
“DDoS in the IoT: Mirai and other botnets.” Computer, 50(7):80–84, 2017.

[KLA19] Qingkai Kong, Qin Lv, and Richard M Allen. “Earthquake early warning and be-
yond: Systems challenges in smartphone-based seismic network.” In Proceedings
of the 20th International Workshop on Mobile Computing Systems and Applica-
tions, pp. 57–62, 2019.

[KMY16] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. “Federated learning: Strategies for
improving communication efficiency.” arXiv preprint arXiv:1610.05492, 2016.

[Kub] Kubernetes. “Device Plugins.” https://kubernetes.io/docs/concepts/extend-
kubernetes/compute-storage-net/device-plugins/.

[KWA03] Rajnish Kumar, Matthew Wolenetz, Bikash Agarwalla, JunSuk Shin, Phillip
Hutto, Arnab Paul, and Umakishore Ramachandran. “DFuse: A framework for
distributed data fusion.” In Proceedings of the 1st international conference on
Embedded networked sensor systems, pp. 114–125. ACM, 2003.

[LC02] Philip Levis and David Culler. “Maté: A Tiny Virtual Machine for Sensor Net-
works.” In Architectural Support for Programming Languages and Operating Sys-
tems, 2002.

136

[LCG17] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat Pannuto,
Prabal Dutta, and Philip Levis. “Multiprogramming a 64kB Computer Safely
and Efficiently.” In Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, p. 234–251, New York, NY, USA, 2017. Association for
Computing Machinery.

[LCG18] Zhe Liu, Kim-Kwang Raymond Choo, and Johann Grossschadl. “Securing edge
devices in the post-quantum Internet of Things using lattice-based cryptography.”
IEEE Communications Magazine, 56(2):158–162, 2018.

[LDP15] Jake Longo, Elke De Mulder, Dan Page, and Michael Tunstall. “SoC it to EM:
electromagnetic side-channel attacks on a complex system-on-chip.” In Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems, pp. 620–640.
Springer, 2015.

[LJW07] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. “Multi-probe
LSH: efficient indexing for high-dimensional similarity search.” In Proceedings of
the 33rd international conference on Very large data bases, pp. 950–961. VLDB
Endowment, 2007.

[LLB14] Steffen Liebergeld, Matthias Lange, and Ravishankar Borgaonkar. “Cellpot: a
concept for next generation cellular network honeypots.” Internet Society, pp.
1–6, 2014.

[LM03] Ting Liu and Margaret Martonosi. “Impala: A Middleware System for Manag-
ing Autonomic, Parallel Sensor Systems.” Proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPOPP, 38, 06
2003.

[LM10] Avinash Lakshman and Prashant Malik. “Cassandra: a decentralized structured
storage system.” ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[LMP05] Philip Levis, Samuel Madden, Joseph Polastre, Robert Szewczyk, Kamin White-
house, Alec Woo, David Gay, Jason Hill, Matt Welsh, Eric Brewer, et al.
“TinyOS: An operating system for sensor networks.” In Ambient intelligence,
pp. 115–148. Springer, 2005.

[LWB16] Peng Liu, Dale Willis, and Suman Banerjee. “Paradrop: Enabling lightweight
multi-tenancy at the network’s extreme edge.” In 2016 IEEE/ACM Symposium
on Edge Computing (SEC), pp. 1–13. IEEE, 2016.

[LZH17] Gierad Laput, Yang Zhang, and Chris Harrison. “Synthetic sensors: Towards
general-purpose sensing.” In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, pp. 3986–3999, 2017.

137

[MBG15] Sarah E Minson, Benjamin A Brooks, Craig L Glennie, Jessica R Murray, John O
Langbein, Susan E Owen, Thomas H Heaton, Robert A Iannucci, and Dar-
ren L Hauser. “Crowdsourced earthquake early warning.” Science advances,
1(3):e1500036, 2015.

[MBL18] Seyed Hossein Mortazavi, Bharath Balasubramanian, Eyal de Lara, and
Shankaranarayanan Puzhavakath Narayanan. “Toward session consistency for
the edge.” In USENIX Workshop on Hot Topics in Edge Computing (HotEdge
18), 2018.

[MBS17] Amardeep Mehta, Rami Baddour, Fredrik Svensson, Harald Gustafsson, and Erik
Elmroth. “Calvin Constrained—A Framework for IoT Applications in Heteroge-
neous Environments.” In Distributed Computing Systems (ICDCS), 2017 IEEE
37th International Conference on, pp. 1063–1073. IEEE, 2017.

[MCD18] Roberto Morabito, Vittorio Cozzolino, Aaron Yi Ding, Nicklas Beijar, and Jorg
Ott. “Consolidate IoT edge computing with lightweight virtualization.” IEEE
Network, 32(1):102–111, 2018.

[MFH05] Samuel R Madden, Michael J Franklin, Joseph M Hellerstein, and Wei Hong.
“TinyDB: an acquisitional query processing system for sensor networks.” ACM
Transactions on database systems (TODS), 30(1):122–173, 2005.

[MGC10] Yilin Mo, Emanuele Garone, Alessandro Casavola, and Bruno Sinopoli. “False
data injection attacks against state estimation in wireless sensor networks.” In
Decision and Control (CDC), 2010 49th IEEE Conference on, pp. 5967–5972.
IEEE, 2010.

[MGS17] Ruben Mayer, Harshit Gupta, Enrique Saurez, and Umakishore Ramachandran.
“Fogstore: Toward a distributed data store for fog computing.” In 2017 IEEE
Fog World Congress (FWC), pp. 1–6. IEEE, 2017.

[min20] mininet. “mininet/mininet: Emulator for rapid prototyping of software-defined
networks.” https://github.com/mininet/mininet, 2020. Accessed: 2020-12-26.

[Mit05] Chris Mitchell. Trusted computing, volume 6. Iet, 2005.

[MJ17] Arsalan Mosenia and Niraj K Jha. “A comprehensive study of security of internet-
of-things.” IEEE Transactions on Emerging Topics in Computing, 5(4):586–602,
2017.

[Mon20] MongoDB. “Sharding – MongoDB Manual.”
https://docs.mongodb.com/manual/sharding/, 2020. Accessed: 2020-12-26.

[Mor16] Kief Morris. Infrastructure as code: managing servers in the cloud. ” O’Reilly
Media, Inc.”, 2016.

138

[MP11] Luca Mottola and Gian Pietro Picco. “Programming wireless sensor networks:
Fundamental concepts and state of the art.” ACM Computing Surveys (CSUR),
43(3):19, 2011.

[MRL19] Charles Masson, Jee E Rim, and Homin K Lee. “DDSketch: A fast and fully-
mergeable quantile sketch with relative-error guarantees.” Proceedings of the
VLDB Endowment, 12(12):2195–2205, 2019.

[MRS18] Sumit Maheshwari, Dipankar Raychaudhuri, Ivan Seskar, and Francesco
Bronzino. “Scalability and performance evaluation of edge cloud systems for la-
tency constrained applications.” In 2018 IEEE/ACM Symposium on Edge Com-
puting (SEC), pp. 286–299. IEEE, 2018.

[MV15] Charlie Miller and Chris Valasek. “Remote exploitation of an unaltered passenger
vehicle.” Black Hat USA, 2015:91, 2015.

[MZP08] Ratul Mahajan, Ming Zhang, Lindsey Poole, and Vivek S Pai. “Uncovering
Performance Differences Among Backbone ISPs with Netdiff.” In NSDI, pp.
205–218, 2008.

[NAE18] Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. “Dpaxos: Managing
data closer to users for low-latency and mobile applications.” In Proceedings of
the 2018 International Conference on Management of Data, pp. 1221–1236, 2018.

[NF13] Diala Naboulsi and Marco Fiore. “On the instantaneous topology of a large-scale
urban vehicular network: the cologne case.” In Proceedings of the fourteenth
ACM international symposium on Mobile ad hoc networking and computing, pp.
167–176, 2013.

[NMW07] Ryan Newton, Greg Morrisett, and Matt Welsh. “The regiment macroprogram-
ming system.” In 2007 6th International Symposium on Information Processing
in Sensor Networks, pp. 489–498. IEEE, 2007.

[NSB18] Piotr Nowakowski, Krzysztof Szwarc, and Urszula Boryczka. “Vehicle route plan-
ning in e-waste mobile collection on demand supported by artificial intelligence
algorithms.” Transportation Research Part D: Transport and Environment, 63:1–
22, 2018.

[NSG19] Joseph Noor, Sandeep Singh Sandha, Luis Garcia, and Mani Srivastava. “DDF
LOW visualized declarative programming for heterogeneous IoT networks on He-
liot testbed platform: demo abstract.” In Proceedings of the International Con-
ference on Internet of Things Design and Implementation, pp. 287–288. ACM,
2019.

139

[NTG19] Joseph Noor, Hsiao-Yun Tseng, Luis Garcia, and Mani Srivastava. “DDFlow:
visualized declarative programming for heterogeneous IoT networks.” In Pro-
ceedings of the International Conference on Internet of Things Design and Im-
plementation, pp. 172–177. ACM, 2019.

[NW04] Ryan Newton and Matt Welsh. “Region streams: Functional macroprogramming
for sensor networks.” In Proceeedings of the 1st international workshop on Data
management for sensor networks: in conjunction with VLDB 2004, pp. 78–87.
ACM, 2004.

[NW05] Ryan Newton, Matt Welsh, et al. “Building up to macroprogramming: an in-
termediate language for sensor networks.” In IPSN 2005. Fourth International
Symposium on Information Processing in Sensor Networks, 2005., pp. 37–44.
IEEE, 2005.

[OCW17] Kwangsung Oh, Abhishek Chandra, and Jon Weissman. “TripS: Automated
multi-tiered data placement in a geo-distributed cloud environment.” In Pro-
ceedings of the 10th ACM International Systems and Storage Conference, p. 12.
ACM, 2017.

[OKL15] Gihwan Oh, Sangchul Kim, Sang-Won Lee, and Bongki Moon. “SQLite Opti-
mization with Phase Change Memory for Mobile Applications.” Proc. VLDB
Endow., 8(12):1454–1465, August 2015.

[Par20] Particle Industries. “Particle Platform.” https://www.particle.io/iot-platform/,
2020.

[Pay19] Ben Paynter. “Could a network of sensors give first responders more time to
control wildfires?” https://www.fastcompany.com/90424260/could-a-network-
of-sensors-give-first-responders-more-time-to-control-wildfires, 2019. Accessed:
2020-12-28.

[PNS18] Petar Popovski, Jimmy J Nielsen, Cedomir Stefanovic, Elisabeth De Carvalho,
Erik Strom, Kasper F Trillingsgaard, Alexandru-Sabin Bana, Dong Min Kim,
Radoslaw Kotaba, Jihong Park, et al. “Wireless access for ultra-reliable low-
latency communication: Principles and building blocks.” Ieee Network, 32(2):16–
23, 2018.

[PPR11] Swapnil Patil, Milo Polte, Kai Ren, Wittawat Tantisiriroj, Lin Xiao, Julio López,
Garth Gibson, Adam Fuchs, and Billie Rinaldi. “YCSB++: benchmarking and
performance debugging advanced features in scalable table stores.” In Proceedings
of the 2nd ACM Symposium on Cloud Computing, p. 9. ACM, 2011.

[PPW20] Gregor Peach, Runyu Pan, Zhuoyi Wu, Gabriel Parmer, Christopher Haster, and
Ludmila Cherkasova. “eWASM: Practical Software Fault Isolation for Reliable

140

Embedded Devices.” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 39(11):3492–3505, 2020.

[QAB18] Hang Qiu, Fawad Ahmad, Fan Bai, Marco Gruteser, and Ramesh Govindan.
“Avr: Augmented vehicular reality.” In Proceedings of the 16th Annual Inter-
national Conference on Mobile Systems, Applications, and Services, pp. 81–95,
2018.

[Ras20] Raspberry Pi Foundation. “FAQs - Raspberry Pi Documentation.”
https://www.raspberrypi.org/documentation/faqs/, 2020.

[RBB11] A. Rowe, M. E. Berges, G. Bhatia, E. Goldman, R. Rajkumar, J. H. Garrett,
J. M. F. Moura, and L. Soibelman. “Sensor Andrew: Large-scale campus-wide
sensing and actuation.” IBM Journal of Research and Development, 55(1.2):6:1–
6:14, 2011.

[Red20a] RedisLabs. “Pub/Sub - Redis.” https://redis.io/topics/pubsub, 2020. Accessed:
2020-12-28.

[Red20b] RedisLabs. “Redis Cluster Specification.” https://redis.io/topics/cluster-spec,
2020. Accessed: 2020-12-26.

[Red20c] RedisLabs. “Redis Commands - CLUSTER SETSLOT.”
https://redis.io/commands/cluster-setslot, 2020. Accessed: 2020-12-26.

[Red20d] RedisLabs. “Redis on ARM.” https://redis.io/topics/ARM, 2020. Accessed:
2020-12-26.

[REF16] Ashish Rauniyar, Paal Engelstad, Boning Feng, et al. “Crowdsourcing-based
disaster management using fog computing in internet of things paradigm.” In
2016 IEEE 2nd international conference on collaboration and internet computing
(CIC), pp. 490–494. IEEE, 2016.

[RF18] Joseph Redmon and Ali Farhadi. “YOLOv3: An Incremental Improvement.”
arXiv, 2018.

[RG18] Arun Ravindran and Anjus George. “An Edge Datastore Architecture For
Latency-Critical Distributed Machine Vision Applications.” In USENIX Work-
shop on Hot Topics in Edge Computing (HotEdge 18), 2018.

[RHL15] Laurynas Riliskis, James Hong, and Philip Levis. “Ravel: Programming IoT
Applications as Distributed Models, Views, and Controllers.” In Proceedings of
the 2015 International Workshop on Internet of Things towards Applications,
IoT-App ’15, p. 1–6, New York, NY, USA, 2015. Association for Computing
Machinery.

141

[RJK05] Shariq Rizvi, Shawn R Jeffery, Sailesh Krishnamurthy, Michael J Franklin,
Nathan Burkhart, Anil Edakkunni, and Linus Liang. “Events on the edge.” In
Proceedings of the 2005 ACM SIGMOD international conference on Management
of data, pp. 885–887, 2005.

[RLM18] Rodrigo Roman, Javier Lopez, and Masahiro Mambo. “Mobile edge computing,
fog et al.: A survey and analysis of security threats and challenges.” Future
Generation Computer Systems, 78:680–698, 2018.

[ROC14] Mathew Ryden, Kwangsung Oh, Abhishek Chandra, and Jon Weissman. “Neb-
ula: Distributed edge cloud for data intensive computing.” In 2014 IEEE Inter-
national Conference on Cloud Engineering, pp. 57–66. IEEE, 2014.

[roc17] “RocksDB.” ”http://rocksdb.org/”, 2017.

[SBS17] Guni Sharon, Stephen D Boyles, and Peter Stone. “Intersection management
protocol for mixed autonomous and human-operated vehicles.” Transportation
Research Part C: Emerging Technologies (Under submission TRC-D-17-00857),
2017.

[SCS15] Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann. “C3: Cutting
tail latency in cloud data stores via adaptive replica selection.” In 12th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 15), pp.
513–527, 2015.

[SCZ16] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. “Edge com-
puting: Vision and challenges.” IEEE Internet of Things Journal, 3(5):637–646,
2016.

[SDL18] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. “Airsim: High-
fidelity visual and physical simulation for autonomous vehicles.” In Field and
service robotics, pp. 621–635. Springer, 2018.

[SGN21] Akash Deep Singh, Luis Garcia, Joseph Noor, and Mani Srivastava. “I Always
Feel Like Somebody’s Sensing Me! A Framework to Detect, Identify, and Lo-
calize Clandestine Wireless Sensors.” In 30th {USENIX} Security Symposium
({USENIX} Security 21), 2021.

[Shy20] Volodymyr Shymanskyy. “WASM3 Performance.”
https://github.com/wasm3/wasm3/blob/master/docs/Performance.md, 2020.

[SKK16] Alon Shalita, Brian Karrer, Igor Kabiljo, Arun Sharma, Alessandro Presta, Aaron
Adcock, Herald Kllapi, and Michael Stumm. “Social hash: an assignment frame-
work for optimizing distributed systems operations on social networks.” In
13th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 16), pp. 455–468, 2016.

142

[SLA12] Cong Shi, Vasileios Lakafosis, Mostafa H Ammar, and Ellen W Zegura. “Serendip-
ity: Enabling remote computing among intermittently connected mobile devices.”
In Proceedings of the thirteenth ACM international symposium on Mobile Ad Hoc
Networking and Computing, pp. 145–154, 2012.

[SMA04] Minho Shin, Arunesh Mishra, and William A Arbaugh. “Improving the latency of
802.11 hand-offs using neighbor graphs.” In Proceedings of the 2nd international
conference on Mobile systems, applications, and services, pp. 70–83, 2004.

[SNA19] Sandeep Singh Sandha, Joseph Noor, Fatima M Anwar, and Mani Srivastava.
“Exploiting smartphone peripherals for precise time synchronization.” In 2019
IEEE International Symposium on Precision Clock Synchronization for Measure-
ment, Control, and Communication (ISPCS), pp. 1–6. IEEE, 2019.

[SNA20] Sandeep Singh Sandha, Joseph Noor, Fatima M Anwar, and Mani Srivastava.
“Time awareness in deep learning-based multimodal fusion across smartphone
platforms.” In 2020 IEEE/ACM Fifth International Conference on Internet-of-
Things Design and Implementation (IoTDI), pp. 149–156. IEEE, 2020.

[Sol20] SolidIT. “DB-Engines Ranking - popularity ranking of database management
systems.” https://db-engines.com/en/ranking, 2020. Accessed: 2020-12-26.

[SS04] Ahmad-Reza Sadeghi and Christian Stüble. “Property-based Attestation for
Computing Platforms: Caring About Properties, Not Mechanisms.” In Proceed-
ings of the 2004 Workshop on New Security Paradigms. ACM, 2004.

[SST16] Shachar Siboni, Asaf Shabtai, Nils O Tippenhauer, Jemin Lee, and Yuval Elovici.
“Advanced security testbed framework for wearable IoT devices.” ACM Trans-
actions on Internet Technology (TOIT), 16(4):26, 2016.

[STA19] Mauro Salazar, Matthew Tsao, Izabel Aguiar, Maximilian Schiffer, and Marco
Pavone. “A congestion-aware routing scheme for autonomous mobility-on-
demand systems.” In 2019 18th European Control Conference (ECC), pp. 3040–
3046. IEEE, 2019.

[SWW15] Ahmad-Reza Sadeghi, Christian Wachsmann, and Michael Waidner. “Secu-
rity and privacy challenges in industrial internet of things.” In 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), 2015.

[SZL16] Kaixin Sui, Mengyu Zhou, Dapeng Liu, Minghua Ma, Dan Pei, Youjian Zhao,
Zimu Li, and Thomas Moscibroda. “Characterizing and improving wifi latency in
large-scale operational networks.” In Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and Services, pp. 347–360. ACM,
2016.

143

[The16] The Hybrid Group. “JavaScript Robotics, By Your Command.”
https://cylonjs.com/, 2016.

[The20] The Linux Foundation. “Zephyr OS.” https://www.zephyrproject.org/, 2020.

[TMK17] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. “Distributed
deep neural networks over the cloud, the edge and end devices.” In 2017 IEEE
37th International Conference on Distributed Computing Systems (ICDCS), pp.
328–339. IEEE, 2017.

[TRV98] Nishith D Tripathi, Jeffrey H Reed, and Hugh F VanLandinoham. “Handoff in
cellular systems.” IEEE personal communications, 5(6):26–37, 1998.

[TS18] Hsiao-Yun Tseng and Sandeep Singh Sandha. “nesl/Heliot.”, Dec 2018.

[TTL05] Douglas Thain, Todd Tannenbaum, and Miron Livny. “Distributed computing in
practice: the Condor experience.” Concurrency and computation: practice and
experience, 17(2-4):323–356, 2005.

[TWB20] Animesh Trivedi, Lin Wang, Henri Bal, and Alexandru Iosup. “Sharing and
Caring of Data at the Edge.” In 3rd {USENIX} Workshop on Hot Topics in
Edge Computing (HotEdge 20), 2020.

[UHG20] Muhammed Uluyol, Anthony Huang, Ayush Goel, Mosharaf Chowdhury, and
Harsha V Madhyastha. “Near-Optimal Latency Versus Cost Tradeoffs in Geo-
Distributed Storage.” In 17th {USENIX} Symposium on Networked Systems De-
sign and Implementation ({NSDI} 20), pp. 157–180, 2020.

[Van18] Jo Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel {SGX}
Kingdom with Transient Out-of-Order Execution.” In 27th {USENIX} Security
Symposium ({USENIX} Security 18), pp. 991–1008, 2018.

[Var96] Yehuda Vardi. “Network tomography: Estimating source-destination traffic
intensities from link data.” Journal of the American statistical association,
91(433):365–377, 1996.

[VMD13] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Ma-
hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Benjamin Reed,
and Eric Baldeschwieler. “Apache Hadoop YARN: Yet Another Resource Nego-
tiator.” In Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC
’13, New York, NY, USA, 2013. Association for Computing Machinery.

[Vou14] Panagiotis Vouzis. “What is Network Tomography?”
https://netbeez.net/blog/network-tomography/, 2014. Accessed: 2020-12-
26.

144

[WGM20] Xiangpeng Wan, Hakim Ghazzai, and Yehia Massoud. “A Generic Data-Driven
Recommendation System for Large-Scale Regular and Ride-Hailing Taxi Ser-
vices.” Electronics, 9(4):648, 2020.

[Win20] Wind River Systems Inc. https://www.windriver.com/, 2020.

[WM04] Matt Welsh and Geoffrey Mainland. “Programming Sensor Networks Using Ab-
stract Regions.” In NSDI, volume 4, pp. 3–3, 2004.

[WRB18] Jonathan Woetzel, Jaana Remes, Brodie Boland, Katrina Lv, Suveer Sinha, Ger-
not Strube, John Means, Jonathan Law, Andrés Cadena, and Valerie von der
Tann. “Smart Cities: Digital Solutions for a more Livable Future.”, 2018.

[WVM17] Nan Wang, Blesson Varghese, Michail Matthaiou, and Dimitrios S Nikolopoulos.
“ENORM: A framework for edge node resource management.” IEEE transactions
on services computing, 2017.

[WZZ17] Shuo Wang, Xing Zhang, Yan Zhang, Lin Wang, Juwo Yang, and Wenbo Wang.
“A survey on mobile edge networks: Convergence of computing, caching and
communications.” Ieee Access, 5:6757–6779, 2017.

[YLC19] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. “Federated machine
learning: Concept and applications.” ACM Transactions on Intelligent Systems
and Technology (TIST), 10(2):1–19, 2019.

[YPK14] Jinhong Yang, Hyojin Park, Yongrok Kim, and Jun Kyun Choi. “IoT gadget
control on wireless AP at home.” In Consumer Communications and Networking
Conference (CCNC), 2014 IEEE 11th, pp. 1148–1149. IEEE, 2014.

[ZJR12] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. “Cross-VM
side channels and their use to extract private keys.” In Proceedings of the 2012
ACM conference on Computer and communications security, pp. 305–316. ACM,
2012.

[ZWH19] Guangxu Zhu, Yong Wang, and Kaibin Huang. “Broadband analog aggregation
for low-latency federated edge learning.” IEEE Transactions on Wireless Com-
munications, 19(1):491–506, 2019.

145

