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Abstract

Integrative Approaches to Behavior Prediction, Generation, and Skill Learning
in Autonomous Systems

by

Lingfeng Sun

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

Analyzing and learning diverse behaviors is pivotal in advancing embodied AI, particularly
in the realms of robotics and autonomous driving. This dissertation explores three critical
aspects of behavior-related research: prediction, generation, and skill learning.

The research begins by addressing the interactive behavior prediction problem in driving
scenarios. It employs probabilistic graphical methods to interpret and model the intention
changes of vulnerable road users, providing trajectory predictions in interactive scenarios.
It then introduces a learning-based approach that leverages domain-specific knowledge to
facilitate joint prediction for vehicle interactions, offering interpretable predictions of multi-
modal interactive trajectories.

Subsequently, the focus shifts to modeling and generating interactive behaviors. This in-
cludes introducing a generative model for learning conditional trajectory generation in joint
interactions from collected datasets, with capabilities for generating critical interactions
through controllable parameters in provided road scenarios. Further, the work extends to
more generalized and complex indoor scenarios where agents are controlled in distributed
settings without communication. Potential games are used to model collaborative behaviors
between humans and robots, and online optimizations are used to simulate human-like in-
teractions in challenging scenarios. This framework not only generates diverse interactions
but also serves to evaluate navigation algorithms.

The final part of the dissertation explores different methods for learning behavioral skills.
This includes a parameter compositional framework that utilizes multi-task reinforcement
learning and transfer learning to acquire generalized manipulation skills efficiently. An adap-
tive energy reward design is then detailed, aiding in natural locomotion behavior learning
across various speeds and gaits in quadrupedal robots. Moreover, a generalized framework
employing large language models addresses partially observable tasks in robotics, showcasing
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the utility of reinforcement and supervised learning across diverse behavioral contexts.

Overall, this dissertation integrates an array of innovative approaches for predicting, generat-
ing, and learning behaviors within autonomous systems, advancing the field of embodied AI.
These contributions extend the theoretical understanding of complex behavioral dynamics
and enhance practical implementations in real-world applications. By introducing robust,
scalable, and interpretable models and algorithms, this dissertation aims to increase the
adaptability and efficiency of robotic systems across diverse operational environments.
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Dedicated to the quiet confidence in one’s own journey.
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Chapter 1

Introduction

1.1 Understanding Behaviors: From Interpretable

Prediction to Interaction Generation

The advent of robotics and autonomous driving has profoundly transformed various sec-
tors, heralding a pivotal shift towards more intelligent and adaptive technologies. These
systems’ capacity to understand and emulate human behavior, as well as to learn novel
behaviors, is fundamental to embodied AI research.

My journey at Berkeley began with a focus on behavior prediction within autonomous
driving scenarios, especially interactions among drivers and between drivers and vulnerable
road users like pedestrians and cyclists. Predicting these interactive behaviors is crucial for
the safe decision-making required in self-driving vehicles. Initially, one of the most significant
challenges was data scarcity; interactive data were difficult to collect and label. Although to-
day’s availability of large public datasets has improved access to interaction data, the paucity
of tail events remains a critical safety-related issue. With limited data coverage, designing
methods that make the best use of existing data is essential. The first part of the dissertation
addresses this challenge by exploring interpretable methods that incorporate prior knowledge
of data generation into prediction processes. Specifically, it discusses two sub-topics in in-
terpretable interactive prediction:i) intention prediction in vehicle-pedestrian interaction ii)
multi-modality in joint prediction. Both areas adhere to the classical prediction formulation
of forecasting future behavior based on historical observations, where intention prediction
focuses on the causality between high-level decisions and key features, and multi-modality
in joint prediction addresses the practical issue of covering as many possible outcomes as
feasible to ensure that tail cases are not neglected.

As research progressed, a more fundamental issue emerged: traditional prediction bench-
marks often fail to represent complex, infrequent interactions that are crucial for safety and
reliability. These metrics might cover most everyday behaviors, yet the rarest events—those
that rarely occur but are critical to test—are often overlooked. Thus, the second part of
the dissertation shifts focus from prediction to interaction generation. This segment empha-
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sizes generating realistic interactions that are underrepresented in existing datasets, which
is crucial for both planning and evaluating planners. It explores how a closed-loop behavior
generation framework can serve both as a predictive tool and as a reactive evaluation module,
testing whether proposed algorithms can appropriately plan actions in interactive scenarios.
The discussions extend beyond autonomous driving to include general indoor environments,
highlighting the broader applicability of these methods.

1.2 Learning Behaviors: Generalized Skill Learning in

Robotics

The exploration of interaction generation naturally leads into the realm of generalized
learning, particularly within robotics, where the shift in representations and behaviors poses
significant challenges. Unlike prediction tasks, robotic tasks often feature diverse rewards,
horizons, and hardware settings, necessitating different input/output representations. The
third part of the dissertation introduces various approaches to address these challenges:

1. Generalized policy: Development of multi-task reinforcement learning policies aims to
find a generalized policy that can efficiently learn tasks with similar hardware and
environmental settings but differing rewards.

2. Generalized reward: Exploration of generalized energy rewards in locomotion seeks to
discover natural locomotion behaviors across multiple speeds.

3. Generalized planning framework: Utilization of Large Language Models to develop a
planning framework capable of solving open-vocabulary, long-horizon tasks, particu-
larly those that are challenging to describe with dense reward functions.

4. Generalized representation: Development of a contrastive learning framework for grasp
proposal networks aims to enhance grasp proposal generalizability and quality using
limited data.

1.3 Dissertation Outlines and Contributions

This dissertation is the culmination of these efforts, showcasing a suite of innovative meth-
ods for predicting, generating, and learning behaviors in autonomous systems. Interpretable
predictions of different types of road participants in autonomous driving are introduced in
the first part of the dissertation from Chapter 2 to Chapter 3. Going beyond prediction in
driving scenarios, critical interaction generation is discussed in Chapter 4, and an extended
distributed interaction generation framework for indoor scenarios are introduced in 5. From
Chapter 6 to Chapter 9, different approaches to learning behavioral skills in robotics are
discussed. Figure 1.1 shows the structure overview of the dissertation. The chapter outline
is as follows.
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Part III: Behavioral Skill Learning

Chapter 8
Energy-Efficient Locomotion

Chapter 7
LLM for Partially Observable Tasks 

Chapter 6
Multi-Task Reinforcement Learning

Chapter 9
Robust Grasp Proposal Net

Part II: Interactive Behavior Generation

Chapter 4
Critical Interaction Generation

Chapter 5
Distributed Interaction Simulation 

Part I: Interpretable Behavior Prediction

Chapter 2
Prediction with Hybrid DBN

Chapter 3
Prediction with Prior Knowledge

Figure 1.1: Structure of the dissertation

Part I

Prediction for Heterogeneous Agents using Probability Graphical Models

Interactive prediction with multiple traffic participants in highly dynamic scenarios is
extremely challenging for autonomous driving, especially when heterogeneous agents such as
vehicles and pedestrians are involved. Existing prediction methods encounter problems with
interpretability and generalizability to tackle such a complicated task. Chapter 2 constructs
an integrated framework to estimate and simultaneously predict the behavior of multiple
heterogeneous agents. A Multi-agent Hybrid Dynamic Bayesian Network (MHDBN) method
is proposed, which can model the state changes of multiple, heterogeneous agents in various
scenarios. We incorporate prior knowledge, such as map information and traffic rules, into
the graph structure and use Particle Filter (PF) to track and predict the intentions and
trajectories of the agents. Motion data with pedestrian-vehicle interactions from a four-way-
stop intersection in the real world is used to design the model and verify the effectiveness
of the estimation and interactive prediction capability of the proposed framework. This
research was published in [190].

Interpretable Prediction using Domain Knowledge

Motion forecasting in highly interactive scenarios is a challenging problem in autonomous
driving. In such scenarios, we need to accurately predict the joint behavior of interact-
ing agents to ensure autonomous vehicles’ safe and efficient navigation. Recently, goal-
conditioned methods have gained increasing attention due to their performance advantage
and ability to capture multimodality in trajectory distribution. Chapter 3 studies the joint
trajectory prediction problem with the goal-conditioned framework. In particular, we intro-
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duce a conditional-variational-autoencoder-based (CVAE) model to encode different inter-
action modes into the latent space explicitly. However, we discover that the vanilla model
suffers from posterior collapse and cannot induce an informative latent space as desired.
We propose a novel approach to address these issues to avoid KL vanishing and induce an
interpretable interactive latent space with pseudo labels. The proposed pseudo-labels al-
low us to incorporate domain knowledge on interaction flexibly. We motivate the proposed
method using an illustrative toy example. In addition, we validate our framework on the
Waymo Open Motion Dataset with quantitative and qualitative evaluations. This research
was published in [186].

Part II

Critical Interaction Generation in Autonomous Driving

Generating diverse and comprehensive interacting agents to evaluate the decision-making
modules is essential for the safe and robust planning of autonomous vehicles (AV). Due to
efficiency and safety concerns, most researchers choose to train interactive adversary (com-
petitive or weakly competitive) agents in simulators and generate test cases to interact with
evaluated AVs. However, most existing methods fail to provide natural and critical inter-
action behaviors in various traffic scenarios. To tackle this problem, Chapter 4 proposes
a styled generative model RouteGAN that generates diverse interactions by controlling the
vehicles separately with desired styles. By altering its style coefficients, the model can gen-
erate trajectories with different safety levels and serve as an online planner. Experiments
show that our model can generate diverse interactions in various scenarios. We evaluate dif-
ferent planners with our model by testing their collision rate in interaction with RouteGAN
planners of multiple critical levels. This research was published in [237].

Distributed Human-like Interaction Modeling for Enhanced Human-Robot
Collaboration

Interactive behavior modeling of multiple agents is an essential challenge in simulation,
especially in scenarios when agents need to avoid collisions and cooperate at the same time.
Humans can interact with others without explicit communication and navigate in scenarios
when cooperation is required. Chapter 5 aims to model human interactions in this realistic
setting, where each agent acts based on its observation and does not communicate with
others. We propose a framework based on distributed potential games, where each agent
imagines a cooperative game with other agents and solves the game using its estimation of
their behavior. We utilize iLQR to solve the games and closed-loop simulate the interac-
tions. We demonstrate the benefits of utilizing distributed imagined games in our framework
through various simulation experiments. We show the high success rate, the increased navi-
gation efficiency, and the ability to generate rich and realistic interactions with interpretable
parameters. This research was published in [185].
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Part III

Multi-task Learning and Transfer Reinforcement Learning

The purpose of multi-task reinforcement learning (MTRL) is to train a single policy that
can be applied to a set of different tasks. Sharing parameters allows us to take advantage
of the similarities among tasks. However, the gaps between contents and difficulties of
different tasks bring us challenges on both which tasks should share the parameters and
what parameters should be shared. In this work, we introduce a parameter-compositional
approach (PaCo) as an attempt to address these challenges. In Chapter 6, a policy subspace
represented by a set of parameters is learned. Policies for all the single tasks lie in this
subspace and can be composed by interpolating with the learned set. We demonstrate the
state-of-the-art performance on MTRL benchmarks in Meta-World, which contains various
manipulation tasks in robotics. In addition, we show our initial attempt at extending PaCo
to unseen tasks in a continual setting. The findings of this study were published in [187,
191].

Utilizing LLM for Partial Observable Task Planning

Designing robotic agents to perform open vocabulary tasks has been the long-standing
goal in robotics and AI. Large Language Models (LLMs) have recently achieved impressive
results in creating robotic agents for performing open vocabulary tasks. However, planning
for these tasks in the presence of uncertainties is challenging. It requires chain-of-thought
reasoning, aggregating information from the environment, updating state estimates, and
generating actions based on the updated state estimates. Chapter 7 presents an interactive
planning technique for partially observable tasks using LLMs. In the proposed method, an
LLM is used to collect missing information from the environment using a robot and infer
the state of the underlying problem from collected observations while guiding the robot to
perform the required actions. We also use a fine-tuned Llama 2 model via self-instruct and
compare its performance against a pre-trained LLM like GPT-4. Results are demonstrated
on several tasks in simulation as well as real-world environments. The findings of this study
can be found in [189].

Energy Regularization for Natural Behavior Learning

In reinforcement learning for legged robot locomotion, crafting effective reward strate-
gies is crucial. Pre-defined gait patterns and complex reward systems are widely used to
stabilize policy training. Drawing from the natural locomotion behaviors of humans and
animals, which adapt their gaits to minimize energy consumption, we propose a simpli-
fied, energy-centric reward strategy to foster the development of energy-efficient locomotion
across various speeds in quadruped robots. By implementing an adaptive energy reward
function and adjusting the weights based on velocity, we demonstrate that our approach
enables ANYmal-C and Unitree Go1 robots to autonomously select appropriate gaits—such
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as four-beat walking at lower speeds and trotting at higher speeds—resulting in improved
energy efficiency and stable velocity tracking compared to previous methods using complex
reward designs and prior gait knowledge. The effectiveness of our policy is validated through
simulations in the IsaacGym simulation environment and on real robots, demonstrating its
potential to facilitate stable and adaptive locomotion. The findings of this study can be
found in [113].

Representation Learning for Grasping Skills

While the existing grasp planning algorithm demonstrates proficiency with high-quality
observations, its performance is notably compromised under noisy visual observations. Such
conditions are frequently encountered due to robot vibration and camera miscalibration. To
address this limitation, Chapter 9 introduces a novel contrastive grasp proposal network
specifically designed to enhance the robustness of the grasp planner in the face of visual
noise. This grasp planer is trained using a synthetic grasp dataset, employing contrastive
learning techniques. A key feature of this training process is the deliberate augmentation of
each dataset sample to replicate real-world camera noise and extract noise-invariant features.
The result is a network capable of reliably identifying 6D collision-free grasps from a single-
view depth image. Rigorous experiments with a physical robot validate its effectiveness,
underscoring its potential to improve grasp planning reliability in real-world scenarios where
visual noise is an unavoidable challenge. This research was published in [254].
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Part I

Behavior Prediction
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Chapter 2

Prediction for Heterogeneous Agents
using Probability Graphical Models

2.1 Introduction

Predicting the future evolution of traffic scenes is essential for autonomous vehicles. It
is an essential prerequisite for risk assessment, decision-making, and motion planning mod-
ules to enable autonomous driving. Methods employing conventional prediction models can
achieve desirable performance in simple scenarios without complex interactions. However,
predicting the intentions and future motions of multiple heterogeneous traffic participants,
such as vehicles and pedestrians, is still an extremely challenging task.

Fig. 2.1 demonstrates a complicated scenario with a vehicle passing the stop sign and
interacting with pedestrians approaching or on the crosswalk. Although vehicles should
always yield to pedestrians in such kinds of scenarios according to the right-of-way, impatient
human drivers may often accelerate to avoid a long period of waiting. When the attentions
of the pedestrians are confirmed, and their distances and velocities are within a safe zone,
those drivers may inch forward and finally pass in front of the pedestrians. More pedestrians
or even other vehicles or cyclists getting involved in such scenarios makes the interactive
prediction problem much more complicated. The changes in the topology and geometry of
the scenarios can make the problem even more challenging.

In order to solve such a complicated problem, several challenges have to be overcome when
designing a prediction model. First, it should be a highly interpretable model that can easily
incorporate prior knowledge such as map information, traffic rules, as well as kinematics and
dynamics of different kinds of agents. Also, we need a model which can adjust the number
of entities interacting with each other. Moreover, the module designed for one type of
agent should be generalizable for either other homogeneous agents or heterogeneous agents.
Finally, the model should be transferable to different driving scenarios. Dynamic Bayesian
Network (DBN) is a model with interpretability to incorporate prior knowledge with causal
relations. It also has great potential to achieve the aforementioned generalizability.
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Figure 2.1: A demonstration of interaction between a crossing pedestrian and a vehicle
passing the stop sign already.

This chapter proposes an integrated framework for estimation and interactive prediction
for multiple heterogeneous traffic participants. We design a Multi-agent Hybrid Dynamic
Bayesian Network (MHDBN), which explicitly models the intention and state transition as
the traffic scene evolves. The prior knowledge of traffic rules and the interaction between
agents are modeled as dependencies and conditional independence in the MHDBN structure.
Map information is used to transform the observed positions of agents into a Frenét frame
to construct consistent and generalizable features. The Particle filter is used to approximate
the complex probabilistic distribution of variables using real-time observations as evidence.
The model can estimate the states of multiple, heterogeneous agents at each time step and
predict the future intentions and trajectories based on current estimation results.
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2.2 Prerequisite

Prediction and Estimation

When predicting the behavior of different agents, both their future motions and intentions
are necessary. Considerable amounts of methods have been proposed to tackle interactive
prediction problems for pedestrians [159] and vehicles [106][243]. Classification models such
as Support Vector Machine (SVM) [215] can recognize discrete intentions but cannot directly
predict continuous trajectories. End-to-end deep learning models, such as long short-term
memory (LSTM) [11] and convolutional neural network (CNN) [156][49], can provide predic-
tions on both motions and intentions. Although researchers incorporated vehicle dynamics
into recurrent models [123] and made the latent space interpretable [76], these black-box
models lack interpretability and generalizability in general, and they are typically very data-
hungry. Planning-based models such as inverse reinforcement learning [184] is a data-efficient
method to predict both intentions and trajectories, and it is highly interpretable to model
social interactions [193] and irrational behavior [194]. However, they are sensitive to growing
numbers of agents due to the computational complexity of planning algorithms.

Probabilistic Graphical Models (PGM) have the advantage of predicting intentions and
trajectories simultaneously for pedestrians [101][70] and vehicles [109] since the intentions
can be modeled as states in the structure. They are inherently interpretable due to the
causal structure with variables with explicit physical meanings. PGM is generalizable for
the prediction of multiple, heterogeneous traffic participants.

The most common interactive prediction problem with heterogeneous agents is pedestrian-
vehicle interaction prediction. For pedestrian-only predictions, single-agent PGMs are pro-
posed to track the pedestrian [98], predict discrete intentions [78] and predict intentions and
trajectories at the same time [101]. In [101], a context-based Dynamic Bayesian Network
(DBN) is used to predict cross intention and path. However, single-agent prediction models
can fail when the pedestrians significantly impact the motions of the vehicles. For vehicle-
only predictions, multi-agent PGMs are proposed to predict interactive motions [170], but
the prediction is still limited to homogeneous agents. Multi-agent model is needed for the
interactive prediction of heterogeneous agents.

Datasets

One key challenge in designing interactive models for heterogeneous agents is the data.
An overview of publicly available driving datasets is presented in [235]. These datasets may
have completely different application focuses. However, datasets focused on vehicles [58] or
pedestrians [40][95] usually do not have enough ground truth information for other categories
of agents. For datasets focused on the interactions between heterogeneous agents, [169] has
limited vehicle reactions, and [153] does not provide information to estimate pedestrian
position. We will provide more descriptions of data processing based on existing datasets in
Section 2.5.
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Hybrid Dynamic Bayesian Networks

Dynamic Bayesian Network (DBN) [138] is a directed graphical model commonly used to
model sequential data. The direction in the graph captures the temporal and interpretable
causal dependencies between variables.

Exact inference is possible for DBNs where all the hidden variables are discrete. However,
in hybrid DBNs where both discrete and continuous hidden variables exist, approximate
inference is preferred. For approximate inference in DBNs, deterministic algorithms such
as Variational Inference (VI) and stochastic algorithms such as Markov chain Monte Carlo
(MCMC) methods [162] are commonly used. MCMC methods can guarantee asymptotic
accuracy, but they are computationally expensive. VI methods are faster without an accuracy
guarantee. In this chapter, we propose using Sequential Monte Carlo (SMC) methods, also
known as Particle filters. Particle filters and their variations, such as Mixture Particle filter
[107], are widely used in tracking and prediction problems.

2.3 Methodologies

General Problem Formulation

The traffic scene formulated in this chapter is a generalization of that in [170] by including
various kinds of traffic participants with different features. At time step k, each agent
i = 0, 1, 2, ..., N under interaction has their continuous state Xi(k), discrete latent state
Zi(k), and action Ai(k). The continuous state describes its behavior features, including
kinematic states and gestures. In other words, these are observable features. Variables in the
discrete latent state space are defined to facilitate the analysis of its decisions and actions,
which are designed for different kinds of agents based on traffic rules. Action describes
its movement on the map at a specific time step, which reveals the estimated kinematic
transition of each agent under interaction. In addition, an observation Yi(k) is defined as
the noisy measurement of the observable states Xi(k). The trajectories are represented in a
Frenét frame [14] with longitudinal and lateral positions with respect to the reference path.
More details of the Frenét frame representation will be illustrated in Section 2.5.

There are two main tasks in this problem. The first is to estimate the intention of different
agents and justify if the intentions correspond to what people observed in the real world.
The second problem is to see if the model can predict the intentions and trajectories well.

Graphical Model

In order to make use of all kinds of features, the interaction described by a multi-agent
hybrid Dynamic Bayesian Network (MHDBN) is shown in Figure 2.2. Prior knowledge is
included inside the structure in different ways. In detail, map information and traffic rules
are used to design latent states of different kinds of agents, while causal dependencies are
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used to design conditional dependencies in the graph. Agent dynamic models are used to
design the state space of intention and action variables.

Figure 2.2: The designed multi-agent Hybrid DBN unrolled for two-time slices(left), decom-
position of latent state conditional dependency(right). Discrete and continuous nodes are
rectangular and circular, respectively. Solid lines, dashed lines, and dotted lines are causal,
temporal, and observation dependencies.

Notice the existence of latent discrete variables Zi(k) designed to include the inten-
tions of each agent. The distribution of Zi(k) is depended on all the observable states
X1(k), X2(k), ..., XN(k) but not on latent states of other agents Zj(k). This design avoids
the acyclic components in the Bayes net.

For each agent i, A(k) is a continuous distribution conditioned on Zi(k) and Xi(k). Since
Zi(k) is discrete and Xi(k) is continuous, this conditional distribution P (A(k)|Z(k), X(k))
can be written as Pz(A(k)|X(k)) where z can be any combination of the latent space vari-
ables. This works like a switching dynamics model. As a result, P (X(k + 1)|X(k), A(k)) ∼
N (X(k) + A(k), ΣA), where ΣA is the variance matrix of action.

As introduced before, latent discrete variables are defined to help estimate the intentions.
One of their use, to serve as indicators for the switching dynamics system, is introduced
above. Another important use of these latent variables is incorporating our prior knowledge
of traffic interaction inside the Bayes network. The probability of Zi at time k+1, P (Zi(k+
1)|X1:N(k + 1), Zi(k)), appears to be a probability of discrete variables conditioned on both
continuous and discrete variables. Such a structure is tough to model and infer. Therefore,
the assumption that Z(k + 1) of each kind of agent can be decomposed as Zc(k + 1) and
Zt(k + 1) is made: Zc(k + 1) is the latent variables that have no temporal dependence on
Z(k), and Zt(k) are the latent variables conditioned on Z(k) and Zc(k + 1) as shown in the



CHAPTER 2. PREDICTION FOR HETEROGENEOUS AGENTS USING
PROBABILITY GRAPHICAL MODELS 13

right of Figure 2.2. Using conditional independence:

P (Zci,k+1|X1:N,k+1, Zi,k) = P (Zci,k+1|X1:N,k+1) (2.1)

This is a conditional probability distribution from continuous variables to discrete ones. This
can be modeled as a classifier with probability output.

For time-dependent latent variable at time k + 1:

P (Zti,k+1|X1:N,k+1, Zi,k)

=P (Zti,k+1|X1:N,k+1, Zi,k, Zci,k+1) · P (Zci,k+1|X1:N,k+1, Zi,k)

=P (Zti,k+1|Zi,k, Zci,k+1) · P (Zci,k+1|X1:N,k+1)

(2.2)

In equation 2.2, the second term is introduced before the first term can be modeled with a
conditional probability table. The values in the probability table can either be parameters
learned from dataset distribution or values based on prior knowledge.

The observations Yi(k) provide evidence for the observable states of each agent.

P (Y (k)|X(k)) = ΠjP (yj(k)|xj(k)) (2.3)

The Probability of an observation is calculated as the product of all the probability of
the observed states, where each state is modeled by a normal distribution P (yj(k)|xj(k)) ∼
N (xj(k), σ

2
xj
). σxj is the measurement error coming from the tracking algorithm and mea-

suring devices.

Inference

For a hybrid DBN with mixed continuous and discrete variables, the exact posterior
probability for forward filtering of k steps would have to include |M |k normal distributions
for each continuous variable. Therefore, the Particle filter is used to do the approximate
inference for estimating Z and X. Given a sample-based representation of N agents with a
group ofM particles with initial weights of W (0) = {w1, w2, ...wM}. At time step k, particle
j has the form of

Sj(k) = [xj1:N(k), z
j
c,1:N(k), z

j
t,1:N(k), a

j
1:N(k)] (2.4)

with weight wj. The sampling algorithm can be divided into Dynamic update, Causal
update, and Observation update. The full process of particle filter is shown in Algorithm 1.

Dynamics update

This update is a one-step prediction of each agent. For each agent i and particle j,
xji (k + 1) is sampled from P (Xi(k + 1)|Xi(k) = xji (k), Ai(k) = aji (k)).
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Causal update

In this step, causal discrete variable zjci(k+1) is first sampled from P (Zci(k+1)|X1:N(k+

1) = xj1:N(k+1), Zi(k) = zji (k)), then z
j
ti(k+1) is sampled from the Conditional Probability

Table.

Observation update

Observation weight update and re-sampling are the key to the particle filter. For each
particle j, their weight is updated by multiplying the probability P (yi(k + 1)|Xi(k + 1) =
xji (k+1)) of each agent. Particles are re-sampled with their current weight distribution when
the effective weights are lower than the setting threshold.

Algorithm 1 Particle Filter Update for MHDBN

Input: S(k),W (k), y1:N(k + 1)
Output: S(k + 1),W (k + 1)

LOOP and Dynamic Update
1: for j = 1 to M do
2: for i = 1 to N do
3: Sample xji (k + 1) from xji (k), a

j
i (k)

4: end for
5: end for

LOOP and Causal Update
6: for j = 1 to M do
7: for i = 1 to N do
8: Sample zji (k + 1) from xj1:N(k + 1), zji (k)
9: Sample aji (k + 1) from xji (k + 1), zji (k + 1)
10: end for
11: end for
12: for j = 1 to M do
13: Update wj from y1:N(k + 1)
14: end for
15: Normalize weight to get W (k + 1)
16: if Meffect < threshold then
17: Re-sample Particles S(k + 1) from weight
18: end if
19: return S(k + 1),W (k + 1)

With weighted particles as outputs, probabilistic results for both continuous and discrete
variables can be calculated.
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Prediction

Prediction in hybrid DBN means that the model would develop without observation of
all the states. The critical point is to show if the model can capture possible interactions
between agents without observing state information. In our particle filter model, since the
update of the discrete latent variable states does not require observation, the model should
be able to capture the potential conflict between agents.

Each particle has its latent states, and they are sometimes different. Combining the
forward simulation of particles in different modes without weight update does not give much
information about the correct distribution. Therefore, full confidence is given to the dynamic
and causal transition results as observation for next step simulation.

2.4 Pedestrian-Vehicle Interaction Model

As introduced before, the framework proposed can model the interaction behavior of
multiple agents with an arbitrary category. Among all traffic participants, pedestrians and
vehicles are the most common ones. In this chapter, we focus on the interactions between
vehicles and pedestrians in a four-way-stop intersection. The interaction between them
usually happens when a pedestrian has the intention to cross the road and the vehicles in
other road directions have already passed the stop sign and started accelerating.

State Space Model

For vehicles, the states are defined as Xv = {x, y, θ, v} representing 2D position, heading
direction, and velocity, Zv = {Route = [0, 1, 2, ...], Conflict, Avoid} representing the route
candidate on map it’s following, the judgment on whether a pedestrian is in the conflict area
on the road, and the intention of the driver to give way to the pedestrian. Discrete variables
are binary if not stated. For pedestrians, the states are defined as Xp = {x, y} representing
the 2D position, Zp = {Curb,Danger, Cross} representing whether the pedestrian is still
on the curb, whether there are vehicle exist in a dangerous area, and whether the pedestrian
intends to cross the road. For the separation of latent variables as described in the inference
section, it is assumed that Zt = {cross}, Zc = {Curb,Danger} for pedestrians, and Zt =
{Avoid}, Zc = {Conflict, Route} for vehicles.

Action Model

Action models define the dynamic transition over time of different agents. For all agents,
δXt = A(Xt, Zt). For data efficiency and simplicity, basic dynamic models are used to model
the switching dynamics since these models are enough to give good filtering and prediction
results in the four-way-stop intersection case.
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Pedestrians

For pedestrians in the crosswalk case, a linear dynamic model is assumed for pedestrians
crossing the road. The average walking speed of pedestrians in this traffic scene is used as
a default speed, for pedestrians with a long sequence of motion observed before crossing,
average past walking speed is used.

Vehicles

For vehicle dynamics, two simple models are defined for vehicles intended to give way to
pedestrians and vehicles passing the intersection. In the first case, the vehicle will decelerate
and stop in front of the crosswalk. For the second case, the vehicle will accelerate to the
usual driving speed vm = 25km/h on the road after passing the intersection. For both cases,
the acceleration is calculated by the constant acceleration assumption.

2.5 Experiments

Dataset and Data Preprocessing

In this chapter, we are using the PedX dataset [95] collected in downtown Ann Arbor,
Michigan, USA. The dataset currently consists of data collected from three different four-
way-stop intersections. Since the dataset focuses mainly on pedestrians rather than vehicles,
we chose one of the three intersections with the heaviest traffic as our target. The PedX
dataset collected data with two sets of stereo RGB cameras and four Velodyne HDL-32E
LiDAR scanners. both 2D images and 3D point clouds are collected in 6Hz frequency,
therefore the time step for analysis is 0.1667s for all the following experiments.

Tracking and Smoothing

The PedX dataset doesn’t have labels on vehicles. The 2D trajectories of the vehicles
are extracted from 3D point clouds using the ground Segmentation methods for vehicles
described in [22]. Also, pedestrians and vehicles are frequently occluded by other traffic
participants, resulting in missing frames. The optimal filtering method with Kalman Filter
and smoothers described in [69] is used to get the trajectory of both pedestrians and vehicles.
2D trajectories are used as ground truth in the experiments, and the observations are assumed
to have Gaussian noise. An example frame of data and the tracking result is shown in Figure
2.3.

Frenét Frame for trajectories

Although vehicles and pedestrians in this traffic scene both move in 2D space on the map,
they are following limited routes. Unlike pedestrians, who move in a constant direction when
crossing, vehicles change their direction when passing the intersection. For vehicles, the two



CHAPTER 2. PREDICTION FOR HETEROGENEOUS AGENTS USING
PROBABILITY GRAPHICAL MODELS 17

Figure 2.3: Original data format and filtered vehicle and pedestrian trajectories: 2D im-
age from the camera (upper left), 3D point cloud from LiDAR (upper right), tracked and
smoothed trajectories of vehicles and pedestrians.
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straight lanes they come from and target decide the curve they are following while passing
the intersection. With each pair of start point (xs, ys) and end point(xe, ye), which we extract
from past vehicle trajectories, together with the road directions derived from the map, the
route can be described with third-order Parametric equations:{

x = a3t
3 + a2t

2 + a1t+ a0
y = b3t

3 + b2t
2 + b1t+ b0

(2.5)

t ∈ [0, 1] represents the relative position on the route from start to end. The distance along
the curve from starting point s, and the distance to the nearest point on curve d, describes
the relative position with respect to the route. Figure 2.4 shows the Frenét frame constructed
on this four-way-stop intersection using past trajectories and map information. Curves of
the same color in the figure represent routes for vehicles from the same direction based on
traffic rules.

Figure 2.4: The Frenét frame constructed for trajectories in the four-way-stop sign intersec-
tion
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Intention analysis

The key purpose of intention estimation in this chapter is to give probabilistic results of
certain discrete variables in Z that contribute to decisions of road participants. To be specific,
most attention is put on cross for pedestrian, route for vehicles. They are time-depend
in most cases and cannot be directly analyzed with single frame information. Therefore,
whether the time and trend of these intentions appear to be reasonable will decide if the
model captures the intention from the observable states.

In the experiment, the intention trends of a vehicle and pedestrian pair are analyzed
when the pedestrian decides to cross the road, and the vehicle in the other road direction
has already passed the stop sign. The model is initialized when both participants have
entered the zone, and the interaction ends when one leaves.

The result of the estimation in a case where the ground truth is the pedestrian chose to
stop and let the passing vehicle go first is shown in Figure 2.5.

To evaluate the position error, the Mean Squared Error (MSE) is used for both tracking
and prediction.

MSE =
1

N

N∑
k=0

∥X(k)−Xgt(k)∥2 (2.6)

In this sequence, tracking errors for pedestrians and vehicles are 0.0625m2 and 0.4759m2

for pedestrians and vehicles. Considering the errors from the difference between the Frenét
frame trajectories and the real trajectories are systematic errors and cannot be avoided. We
can conclude that the assumed switching dynamics model can track the trajectories well.

For this interaction, the human-labeled crossing time step for pedestrian is at k = 18.
An increase in the probability of crossing appears around 4 steps before the event starts and
reaches a high probability to cross at the event time. This means the model captures the
interactive reaction of the pedestrian.

Prediction

In prediction, human-defined variables are used to give rational predictions based on
the estimation. Short-time trajectory prediction requires the action model to be accurate to
describe the motion of the agents, while long-time prediction requires the predicted intention
to indicate real behavior. The prediction discussed here is focused more on long-horizon
prediction since discrete latent intentions are used to switch the agent dynamic model. For
each agent i, set

Yi(k + 1) = E[Xi(k + 1)|Xi(k), Ai(k)] (2.7)

as observed evidence for step k+1. The starting step for prediction also affects the prediction,
we use K = 15 and K = 18 as starting step for prediction in our experiment. The 2D images
at the key starting step are shown in Figure 2.6. At k = 15, the pedestrian was still waiting
and the vehicle was approaching, at k = 18 the vehicle just passed the crossing, and the
pedestrian started to pass.
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Figure 2.5: The estimation on key intentions of pedestrian(upper) and vehicle(lower) in
interaction at the intersection
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Figure 2.6: 2D image on starting step of the prediction. The pedestrian and vehicle are
labeled with green and purple boxes. The pedestrian was standing on the curb when k = 15
(down) and just got started to cross when k = 18 (up)

To evaluate the prediction, the intentions predicted are compared to the intention esti-
mated in the previous part. Predicted pedestrian intention change is plotted in Figure 2.7.
The predicted behavior starting from k = 18 is quite similar to the estimated one, while
the predicted behavior starting from k = 15 has some delay in the crossing decision. As is
shown in Figure 2.6, at k = 15 the pedestrian is still standing, while at k = 18 it has started
to move. The model can predict better after more observation of existing states.

For future trajectory prediction, the predicted trajectory starting from k = 15 is shown
in Figure 2.8. Delays can be found compared to the ground truth. However, this mostly
results from short-term prediction errors of action prediction. The long-term prediction error
would significantly improve if better case-defined action models were introduced.

In order to see the effects of taking interaction into account, the prediction error in
Table 2.1 compares the prediction error of pedestrian with the baseline Switching Linear
Dynamics System (SLDS) introduced in [101] without adding vehicle action into prediction.
Notice that The SLDS model cannot predict the behavior if the intention of crossing is very
low at predicting start time. Single-agent models cannot give predictions to the vehicle
motion.
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Figure 2.7: Predicted Intention of the pedestrian starting from step k = 15 and k = 18,
compared with estimated intention.

Table 2.1: MSE of prediction

Ours, k = 18 Ours, k = 15 SLDS, k = 18
0.0753 0.3600 0.2203

2.6 Chapter Summary

In this chapter, we proposed an integrated estimation and prediction framework based
on a Multi-agent Hybrid Dynamic Bayesian Network (MHDBN) for multiple, heterogeneous
agents, where agent interactions, prior knowledge of traffic rules and map information, and
switching action models are incorporated into the structure of a hybrid Dynamic Bayesian
Network. The proposed framework can estimate and predict the intentions and trajectories of
different kinds of agents. The proposed method was designed and tested using a pedestrian-
vehicle interaction dataset with real-world motions. With its generalizability, the proposed
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Figure 2.8: Trajectory for pedestrian and vehicle with prediction starting from k = 15. The
ground truth observed trajectories are also plotted for comparison.

model can be extended to various kinds of agents, such as big buses, cyclists, runners,
etc., with corresponding action models and the walking pedestrians and cars in the dataset
used. Furthermore, higher-level and context-based features extracted from images such as
2D skeleton poses can facilitate the estimation of gait and intention. Combining the current
MHDBN model with more features and advanced sub-modules for intention analysis could
help extend the current framework to more complex scenarios.
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Chapter 3

Interpretable Prediction using
Domain Knowledge

3.1 Introduction

In the previous chapter, we focused more on vulnerable road users like pedestrians and
their intention/trajectory prediction. In this chapter, we focus more on vehicle trajectories,
especially in interactive scenarios.

Autonomous vehicles are required to predict other road participants’ behaviors to nav-
igate safely and efficiently in complex driving scenarios. Previous prediction benchmarks
mainly focus on single-agent settings [244]. When multiple agents exist, each agent’s pre-
dicted trajectories are evaluated independently. Consequently, predicting the marginal dis-
tribution of vehicle trajectories suffices for achieving good results on those benchmarks.
However, such models may generate unrealistic predictions in highly interactive scenarios.
For example, at the intersection illustrated in Fig. 3.1a, each vehicle has two possible motion
patterns: entering and yielding before the intersection. A model predicting the marginal
distributions might predict infeasible joint behaviors (i.e., both cars follow the same motion
pattern). To accurately assess such kinds of interactive behaviors, it is then necessary to pre-
dict the joint distribution of the interacting agents’ future trajectories (Fig. 3.1b). Recently,
Waymo provided an interaction prediction benchmark based on the Waymo Open Motion
Dataset (WOMD) [44], where the trajectories of two interacting agents are predicted and
evaluated jointly. It is an ideal test bed and motivates us to study the interaction prediction
problem.

We are particularly interested in the interaction prediction problem under the goal-
conditioned framework, as goal-conditioned methods can effectively capture the modalities
in trajectory distribution [129, 250, 63]. Under this framework, we first explicitly predict
the distribution of an agent’s endpoint over a discretized goal set and then complete the
trajectories conditioned on the selected goal points. However, previous methods mainly fo-
cus on single-agent prediction. For multiple agents, these methods predict the trajectories
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Figure 3.1: A motivating toy example. (a) depicts the scenario of the toy example, where
two cars are driving towards a collision point at an intersection. (b) shows the ground-truth
joint distribution and marginal distribution of sa, sb at the 20

th time step when the behavior
of the cars is governed by the model described in Sec. 3.3.

independently for each agent. To model the joint distribution of interacting agents’ goals,
we extend the goal set to a goal-pair set, allowing joint prediction of two agents’ endpoints.
By choosing a dense set as in [63], this categorical distribution of goal pair can reasonably
approximate the joint distribution in any interactive scenarios.

In practice, downstream modules require a small set of representative predictions [33].
The limited onboard computational resource also restricts the number of sampled trajecto-
ries. For the downstream module to understand the interactive scenario precisely, ensuring
that different interaction modes can be efficiently captured with a limited number of sampled
trajectories is critical. To this end, we leverage the Conditional Variational Auto Encoder
(CVAE) framework [179, 108, 197] and introduce a discrete latent space to capture the in-
teraction modes explicitly [83, 165]. For instance, in the toy example, we want different
latent variables to represent different right-of-ways, corresponding to the two modalities in
the joint distribution of goal pairs shown in Fig. 3.1b. However, it is not guaranteed that the
model can always learn an informative latent space distinguishing interaction modes useful
for downstream modules.

In our goal-conditioned CVAE-based framework, the goal pair follows a categorical distri-
bution. It changes the reconstruction task into a multi-label classification problem. Without
knowing the distance between the goal pairs, we find it difficult for the model to distinguish
between them. Therefore, it becomes difficult to determine which goal pairs should be en-
coded into the same latent variable, leading to a posterior collapse in CVAE, resulting in an
uninformative latent space.

To tackle this problem, we propose to guide the training with pseudo labels1 designed

1For clarification, we refer to any generated labels other than the ground-truth ones as pseudo labels.
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based on domain knowledge. For each ground-truth goal pair, we assign positive target values
to similar goal pair candidates. The model learns to encode similar goal pairs into the same
latent variable by minimizing the distance between the decoded distribution and the pseudo
labels. Since the goal pair distribution is defined over a fixed finite set, the pseudo labels can
be pre-computed for each goal pair candidate. Therefore, we do not require the computation
of pseudo labels to be differentiable. It allows us to incorporate domain knowledge into the
pseudo labels flexibly and specify any interaction modes for the latent space to capture.

The main focus of this chapter is: (1) To present a goal-conditioned CVAE model for
interacting pairs’ joint trajectory prediction task. (2) To propose a novel and flexible ap-
proach to induce an interpretable interactive latent space using pseudo labels. In particular,
we introduce three types of pseudo labels corresponding to different domain knowledge on
interaction and show that the proposed pseudo labels can effectively enforce an interpretable
latent space in an illustrative toy example and on real-world traffic datasets.

3.2 Problem Formulation

Background: Goal-Conditioned Prediction

In general, a trajectory prediction model learns to model the distribution p(y|T ), where y
denotes the future trajectory of the target agent, and T denotes the embedding of the agent’s
history and context information. In a goal-conditioned trajectory prediction framework, the
prediction task consists of two stages: goal prediction and trajectory completion, resulting
in the decomposition of p(y|T ):

p(y|T ) =
∫
g∈G

p(y|g,T ) · p(g|T )dg,

where G is the goal space. The goal-prediction model p(g|T ) can capture the multi-modality
in driver intention, while the goal-conditioned trajectory completion module models the
driving behavior to reach the goals.

The overall framework has three stages. The first stage is goal distribution prediction.
Depending on the goal space, p(g|T ) can be modeled as either a continuous or discrete
distribution. We are particularly interested in the formulation of [63], in which G is defined
as a dense and discretized goal set covering the drivable area. In such a way, p(g|T ) directly
models the distribution of goal points instead of anchor points as in [250]. The second stage
is goal-conditioned trajectory prediction, where the conditional distribution of future motions
is modeled as a simple unimodal distribution (e.g., Gaussian distribution). The third stage
is sampling and selecting, where a final small number of predictions are selected to fulfill the
requirement of downstream applications. The commonly used techniques are heuristic-based
algorithms, such as non-maximum suppression (NMS) [250].

They are not necessarily generated for semi-supervised learning or self-supervised learning.
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Goal-conditioned Interactive Prediction

The framework described in Sec. 3.2 is primarily designed for single-agent prediction.
The extension of this two-stage prediction scheme to multi-agent settings is not straight-
forward. In multi-agent trajectory prediction, we need to model the joint distribution of
all agents’ future trajectories, i.e., p (y1,y2, · · · ,yN |T ). We can decompose the interacting
agents at the trajectory completion stage by adopting the assumption that the trajecto-
ries are independent after conditioning on the goals. However, we still need to model the
joint distribution of their goals, i.e., p(g1, g2, · · · , gN |T ). We cannot simply assume the
trajectories of interacting agents are independent and decompose the joint distribution into∏N

i=1 p(gi|T ). The simplified distribution cannot model the interaction between agents, for
instance, the fundamental interaction rule —collision avoidance. Meanwhile, if we directly
model the joint distribution, we need to select a discrete goal set Gi for each modeled agent i.
The overall dimension of the joint distribution becomes

∏N
i=1 |Gi|, which grows exponentially

with the number of agents.
To mitigate the curse of dimensionality, we first predict the marginal distributions of

the goals. Afterward, we use the marginal distributions to prune the goal sets {Gi}Ni=1.
Concretely, we selectM goal candidates with the highest marginal probability for each agent.
In our experiments, we find that we can reasonably approximate the marginal distribution
with M << |Gi|. It is then sufficient to model the distribution of |M |N goal combinations,
which is applicable for the prediction task of interacting pairs.

3.3 Inducing Interpretable Interactive Latent Space

with Pseudo Labels

In this section, we take the scenario illustrated in Fig. 3.1a as a running example to in-
troduce the proposed pseudo labels. Specifically, we explain the motivation and demonstrate
how the pseudo labels may help induce an interpretable interactive latent space in this toy
example.

As shown in Fig. 3.1a, Vehicle A and B are driving towards a collision point. The states
of the vehicles are sa, sb and va, vb, where sa,b are the displacements of the vehicles A,B
relative to the collision point and va,b are the absolute velocities. Each vehicle is assigned
a target position to follow at each step, depending on which vehicle has the “right-of-way”.
If a vehicle has the right-of-way, we assign a point that is substantially far away along its
driving direction as its target point. If the other vehicle has the right-of-way and has not
passed the collision point, we assign the collision point as the target point. We assume that
the right-of-way is affected by the difference of time headway at the initial time since the
car with a shorter headway time to the collision point is more likely to get the right-of-way

in interaction. The time headway at timestep t is defined as Thead,t = max
(
st
vt
, 0
)
. The
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(a) Vanilla CVAE Model (b) CVAE Model with Pseudo
Distance Labels

Figure 3.2: Joint goal distributions decoded from different latent variables with different
models. With the pseudo distance labels, the model is able to capture the two modes in its
latent space. The results are the same when using other pseudo labels.

probability of Vehicle A getting the right-of-way is set as:

pA = 0.5

(
tanh

Ta,head,0 − Tb,head,0
η

+ 1

)
,

where η controls the rate of transition between entering into the intersection and yielding.
The dynamics of the vehicles is governed by the intelligent driver model [208]. Each vehicle
follows the target position set according to its right-of-way.

The task is to jointly predict the endpoints g = (ga, gb) = (sa,20, sb,20) of both vehicles
after 20 timesteps, given the initial condition T = (T a,T b) = ([sa,0, va,0], [sb,0, vb,0]). It is
analogous to the goal prediction stage in the goal-conditioned prediction framework. The
joint goal distribution is defined over a discrete set Ga,b obtained by discretizing the spaces of
sa,20 and sb,20. Given the same initial conditions, there are two interaction modes, i.e., Vehicle
A yields to Vehicle B and vice versa. These two interaction modes result in a multi-modal
joint goal distribution as shown in Fig. 3.1b.

To model the joint goal distribution, we leverage the CVAE framework with a discrete
latent space. The CVAE model consists of three modules: 1) An encoder qθ(z|T , g) ap-
proximating the posterior distribution of z; 2) A conditional prior pϕ(z|T ); 3) A decoder
pψ(g|T , z) modeling the conditional joint goal distribution. We use MLPs for all the mod-
ules. The model is trained by maximizing the evidence lower bound (ELBO):

L(θ, ϕ, ψ) = − ET ,g,y∼D

{
Ez∼qθ(z|T ,g) [f (y, pψ (·|T , z))]

− βDKL [qθ(z|T , g)∥pϕ(z|T )]
}
, (3.1)

where D is the dataset consisting of initial states T , goal pairs g, and ground-truth labels y.
The vector y ∈ {0, 1}|Ga,b| collects ground-truth scores of the goal pairs in Ga,b. We assign one
to the ground-truth goal pair and zero to the others. We choose the Binary Cross-Entropy
(BCE) loss as the function f to define the reconstruction loss.
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Avoiding KL Vanishing with Pseudo Labels

Our experiments with the CVAE model formulated above show that the KL divergence
tends to vanish, and the conditional prior distribution always concentrates on a single value.
As shown in Fig. 3.2a, the latent space is completely uninformative. While the decoder can
still model the joint distribution, the model does not fulfill our objective to capture inter-
action modes with the latent space explicitly. This phenomenon is similar to the posterior
collapse problem that occurs when an autoregressive decoder is used in sequence modeling
[53]. The MLP decoder we use can model the joint distribution without the latent space.
With such a powerful decoder, the model is prone to ignoring the latent space to minimize
the KL divergence.

We find it difficult for the model to escape from posterior collapse in our case. To
gain some insights into the reason behind this, consider a special case where the dataset
is collected under the same conditions, and the weight of KL regularization β equals zero.
A zero β value occurs during the training procedure when KL annealing [53] is applied to
mitigate KL vanishing. We will show that it is still difficult to prevent posterior collapse
even if we set β = 0. In this case, the optimal posterior distribution always assigns all
the probability mass to a single latent variable. Consequently, we can consider the VAE as
solving a clustering problem. Given a dz-dimensional discrete latent space, the VAE model
essentially clusters Ga,b into dz subgroups, denoted as {Sk}dzk=1, and finds a distribution of
goal pairs minimizing the BCE loss for each subgroup. We can easily obtain the minimal
value of the BCE loss within a given subgroup analytically. It is then straightforward to see
that the optimal clustering scheme essentially minimizes the sum of the objectives over the
subgroups, which is the following objective function:

L({Sk}) =
dz∑
k=1

∑
j∈Sk

(nj − nSk
) log(1− nj

nSk

)− nj log(
nj
nSk

),

where we define nj and nSi
as:

nj =

|D|∑
i=1

1
(
yij = 1

)
, nSk

=
∑
j∈Sk

nj.

In other words, nj counts how many times the jth goal pair appears in the dataset, and nSk

counts how many times the goal pairs in the subgroup Sk appear in the dataset.
With posterior collapse, the clustering scheme corresponds to having all the elements in

a single subgroup while leaving the rest empty. In our toy example, it is easy to check that
better solutions do exist, for instance, the one shown in Fig. 3.2. Since the two modes in the
joint distribution are separated in the latent space, the goal pairs have a higher likelihood
under the decoded distribution conditioned on the latent variable it corresponds to, which
leads to a smaller reconstruction error than the trivial solution resulting from posterior
collapse. However, it is difficult for the model to escape from the suboptimal solution shown
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in Fig. 3.2a. The objective L({Sk}) purely relies on the frequencies of different goal pairs
in the dataset. We can interchange goal pairs that appear with similar numbers of times
without affecting the objective. It is difficult for the model to learn which two goal pairs
should be assigned to the same latent variable to minimize the objective value.

To mitigate this issue, we propose to inform the model of the proximity between goal
pairs via pseudo labels. For each goal pair gj ∈ Ga,b, a pseudo label is a vector defined

over Ga,b with values ranging from zero to one, which we denoted as ŷj ∈ [0, 1]|Ga,b|. In ŷj,
we assign positive values to the ground-truth goal pair as well as those goal pairs that are
“close” to gj by the distance metric defined by domain knowledge, in contrast to the label
from the dataset where the positive value is only assigned to the single ground-truth goal
pair. We use the pseudo labels to define the following auxiliary loss function:

αET ,g,y∼D,z∼qθ(z|T ,g)

|Ga,b|∑
j=1

1(yj = 1)f
(
ŷj, pϕ(·|T , z)

)
,

where the function f quantifies the distance between the pseudo labels and the conditional
joint goal distribution. By minimizing the auxiliary loss, the model learns to assign high
probabilities to both the ground-truth goal pair and those “close” ones specified by the
pseudo labels in the distribution conditioned on the same latent variable. Consequently, the
model is guided to encode goal pairs that are close to each other into the same latent variable,
which prevents the latent space from being totally uninformative. It is worth noting that
since the pseudo labels are not required to be generated in a differentiable way, it allows us
to flexibly design pseudo labels based on domain knowledge of the proximity between goal
pairs. In the next subsection, we will introduce three types of pseudo labels we designed in
this chapter.

Pseudo Labels

Pseudo Distance Labels

Since the agents move continuously, their behaviors should be consistent if targeting goal
pairs that are close to each other in terms of Euclidean distance. Such goal pairs should then
be clustered into the same group. Consequently, we introduce the pseudo distance labels
defined as:

ŷdistance
j,i = exp

(
−
∥gj − gi∥2

2σ2

)
, i = 1, 2, · · · , d.

It essentially smooths the original singular label with the radial basis (RBF) kernel. We
choose f as the BCE loss.

With the auxiliary loss induced by the pseudo distance labels, the CVAE model learns
to separate the two interaction modes in the latent space (Fig. 3.2). Also, the prior proba-
bilities of the two latent variables are consistent with the ground-truth probabilities of the
corresponding interaction modes in the simulation. The interaction modes can be effectively
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separated because the Euclidean distance between goal pairs from different clusters is far
away.

Pseudo Marginal Labels

The joint goal distribution is the consequence of the interaction between agents. If Agent
A targets the same goal regardless of what goal Agent B follows, we may characterize the
interaction by the goal of Agent A. Therefore, we consider goal pairs that share the same
goal of one agent closer than those that are totally different. We then define two sets of
pseudo-marginal labels:

ŷmarginal,a
j,i = 1

(
gj,a = gi,a

)
, ŷmarginal,b

j,i = 1
(
gj,b = gi,b

)
,

and the corresponding loss function:

fmarginal
(
ŷmarginal,a
j , ŷmarginal,b

j , pϕ(·|T , z)
)

= log

|Ga,b|∑
i=1

1
(
ŷmarginal,a
j,i = 1

)
pϕ(gi|T , z)


+ log

|Ga,b|∑
i=1

1
(
ŷmarginal,b
j,i = 1

)
pϕ(gi|T , z)

 .

We essentially maximize the log-likelihood of the ground-truth goal pairs under the marginal
goal distributions.

With the pseudo marginal labels, we can guide the CVAE model to perfectly separate the
goal pairs into two interaction modes in the toy example. The result is the same as shown
in Fig. 3.2. The interaction modes can be perfectly identified because the goal pairs from
different clusters happen to have distinct coordinates in both dimensions in our toy example.
If only one of the agents changes his behavior in different modes, the pseudo-marginal labels
alone will not be helpful.

Pseudo Interaction Labels

The last type of pseudo labels we introduce allows us to incorporate domain knowledge
on interaction in a flexible way, which we refer to as pseudo interaction labels. From the
perspective of the downstream planner, we may want the latent space to distinguish specific
interaction modes for efficient planning and risk evaluation (e.g., collision vs. no collision,
yielding vs. passing). If we know that these interaction modes can be identified with certain
features, we can design the corresponding pseudo-interaction labels as follows:

ŷinteract
j,i (T ) = 1

(
h(T , gi) = h(T , gj)

)
,
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where the function h maps the goal pair and initial states to a vector of discrete variables
characterizing the interaction. We assign positive values to those goal pairs that have the
same features as the ground-truth goal pair. It indicates that they are under the same
interaction mode as the ground-truth one. Regarding the loss function, maximizing the log-
likelihood of positive goal pairs could be misleading. There could be a large ratio of goal
pair candidates under the same interaction mode. Inspired by [96], we adopt a loss function
to minimize the probabilities of negative labels:

f interact
(
ŷinteract
j , pϕ(·|T , z)

)
=

|Ga,b|∑
i=1

1(ŷinteract
j,i = 0) log (1− pϕ(gi|T , z)) .

In the toy example, we adopt an interaction feature indicating which agent has longer dis-
placement in 20 steps, i.e., 1 (sa,0 − sa,20 > sb,0 − sb,20). With this feature, we can identify
which agent decides to yield. By incorporating this pseudo interaction label, we are able to
separate the interaction modes in the latent space and obtain a model similar to the one
shown in Fig. 3.2.

It is worth noting that pseudo-interaction labels are only applied to the distribution
decoded from the latent variable to which the ground-truth goal pair belongs. In other words,
we only require an interaction mode in the latent space consistent with the ground truth
instead of enforcing all the predicted goal pairs to satisfy the constraints. As a result, we can
avoid over-regularization and unnecessary bias. Also, we do not require a comprehensive set
of pseudo-interaction labels covering all kinds of interactive traffic scenes. We can apply the
pseudo labels designed for the specific scenarios of interest without worrying about harming
the model performance in the other scenarios. For those scenarios where the designed labels
are not applicable, all the goal pair candidates have the same features as the ground-truth
one. Therefore, the auxiliary loss is always zero, and the pseudo labels are ignored.

3.4 Framework Architecture

In this section, we introduce the architecture of the model we propose for interactive
trajectory prediction. As illustrated in Fig. 3.3a, the model consists of three modules: 1) A
marginal goal prediction module which predicts the goal distribution of each interacting agent
separately; 2) A joint goal prediction module which explicitly models the joint distribution of
goal pairs based on the predicted marginal distributions; 3) A trajectory completion module
which predicts the trajectory of each agent conditioned on sampled goal points.
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Figure 3.3: Overall Model Architecture and Pseudo Interaction Labels.

Modules

Marginal Goal Prediction

We choose DenseTNT [63] as the backbone model when designing the marginal goal
prediction module. Specifically, we extract features of maps and agents using the vectorized
encoding method proposed in [56]. Afterward, we use the context embeddings to generate
goal embeddings for a dense goal set G. The goal set is sampled from the HD maps to
cover the drivable area of the modeled agents. We follow DenseTNT to use the attention
mechanism in [212] to extract local information between the goals and the scene. We denote
the embeddings obtained at this stage for the dense goals and interacting agents as F ∈
R|G|×dg and L ∈ R2×dv respectively, where dg and dv are the dimensions of goal and agent
embeddings.

The interaction prediction track of WOMD has a prediction horizon of 8s. It is difficult
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to capture the multimodality in long-term trajectory distribution with a single goal point.
We follow [64] to model the goal distributions in an autoregressive manner at 3s, 5s, and 8s,
respectively. To encourage the usage of interaction information in goal prediction, we add
an MLP to update the interacting agents’ embeddings at each timestep as follows:

L̂t,i = MLP
(
Li,L−i,F ki1:t−1

,F k−i
1:t−1

)
,

where F ki1:t−1
collects the embeddings of the ith agent’s goals at prior timesteps. The marginal

probability of the kth goal for the ith agent at each timestep is then predicted as:

ϕit,k =
exp

(
MLP(F k, L̂t,i)

)
∑|G|

j=1 exp
(
MLP(F j, L̂t,i)

) . (3.2)

At the training stage, we follow the well-known practice in autoregressive model training by
feeding the ground-truth goals of the previous timesteps.

Joint Goal Prediction

With the marginal goal distributions at timestep t, we first select the top-M goal can-
didates for each agent based on their marginal probabilities and then models the joint dis-
tribution over the M2 goal pair candidates. As mentioned in Sec. 3.3, we model the joint
distribution with a CVAE and utilize the pseudo labels to induce an interpretable interac-
tive latent space. The conditional prior encoder models the distribution of z conditioned on
L. The posterior encoder further conditions z on F k11:T

and F k21:T
, i.e., the embeddings of

the two agents’ ground-truth goals. Both the conditional prior and posterior encoders are
modeled with simple MLPs. To decode the joint goal distribution from a sampled z, we first
obtain a joint agent embedding L̃t ∈ R1×dh as follows:

L̃t = MLP
(
L,F k11:t−1

,F k21:t−1
, z
)
.

We obtain the features of goal pairs by concatenating the corresponding goals’ embeddings
and their marginal probabilities and then encoding them into embeddings of the same di-
mension as the joint agent embedding with simple MLPs. We denote the resulting goal pair
embeddings as F̃ t ∈ RM2×dh . We then use the attention mechanism to gather the local
information of goal pairs:

Qt = F̃ tW
Q,

Kt =
[
F̃ tW

K
m; L̃tW

K
v

]
,

V t =
[
F̃ tW

V
m; L̃tW

V
v

]
,

F̄ t = softmax

(
QtK

⊺
t√

dk

)
V t,
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where WQ,WK
m,W

K
v ,W

V
m,W

V
v ∈ Rdh×dk are matrices for linear projection, dk is the di-

mension of query/key/value vectors. We predict the joint probability of the kth goal pair at
the given timestep in a similar way as Eqn. 3.2.

Trajectory Completion

The trajectory completion is similar to the one in [250] and [63]. Given a sequence of
goals, we pass their embeddings to a simple MLP to decode the whole trajectory. The
trajectories for the two agents are decoded separately. At the training stage, the teacher
forcing technique is applied by feeding the ground-truth goal sequences when training the
trajectory completion module.

Training Scheme

To train the overall model, we first train the marginal goal prediction module together
with the trajectory completion module. The loss function is the same as in [63]. Afterward,
we freeze the parameters of these modules and train the joint prediction module. The
objective function is essentially ELBO but with the auxiliary losses corresponding to the
three types of pseudo labels introduced in Sec. 3.3. In particular, the pseudo interaction
labels are defined for each pair of segments connecting goal points at neighboring timesteps
(e.g., 0s-3s, 3s-5s, 5s-8s). As illustrated in Fig. 3.3b, for each pair of segments, the pseudo
interaction labels are two indicators showing: 1) if the goal segments of the two vehicles
intersect; 2) if the goal segment of the first vehicle is longer than the one of the second
vehicle. The first feature gives us a hint on whether the two vehicles have a conflict zone
along their driving directions. The second feature provides a necessary condition on their
right-of-way. If a vehicle has the right-of-way, it should have a larger average speed than the
vehicle yielding to it.

Goal Selection

At test time, we need to select a final small number of goal pairs for prediction. The most
widely used algorithm is NMS. However, such a heuristic approach is difficult to tune and
is not guaranteed to find the optimal solution. To address this issue, an optimization-based
approach is proposed in [63] to select a goal set from a predicted distribution. While we may
adopt it to select goal pairs at a single timestep, it still remains heuristic when sampling from
the latent space as well as the autoregressive model. To ensure a fair comparison among
the different model variants studied in Sec. 3.5, inspired by [33], we instead first randomly
sample N sequences of goal pairs and then fit them to a Gaussian mixture model (GMM)
with K components. We take the mean values of the components as the final K goal pair
sequences and set the likelihood of each predicted goal pair sequence as the probability of
the corresponding component.
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3.5 Experiments

We evaluate the proposed prediction model on WOMD. In particular, we focus on the
interaction prediction track, where the future trajectories of an interacting pair for the next
8 seconds are predicted, given the historical observation for the past 1 second. We used the
subset of the dataset with labeled interaction pairs of vehicles for training and evaluation.
With the experiments, we would like to answer:

• Do the pseudo labels induce a meaningful latent space distinguishing different interac-
tive behaviors?

• Does a meaningful latent space improve prediction performance and sampling effi-
ciency?

Model Variants. Our experiment mainly focuses on ablation studies, comparing our
model against multiple variants of it. We compare the performance of three models: 1)
The Joint-Vanilla model, which is our joint prediction model without the pseudo labels; 2)
The Joint-NonInteract model, which uses pseudo distance and marginal labels in addition
to the vanilla version; 3) The Joint-Full model, which is the one we propose, i.e., the joint
prediction model with the auxiliary losses corresponding to all the proposed pseudo labels
(i.e., distance, marginal, interaction). We do not experiment with other methods from the
literature since our core contribution lies in utilizing the novel pseudo labels to induce a
non-trivial and interpretable latent space. Achieving state-of-the-art performance on the
benchmark is not our objective.

Training Settings. To train the overall model, we first train the marginal goal predic-
tion module together with the trajectory completion module following most of the hyper-
parameters introduced in [63]. Then, we selectM = 65 goal candidates based on the marginal
probability for each agent and train the joint goal prediction module. We add annealing on
the KL divergence weight.

Evaluation Metrics. We use these metrics—minADE, minFDE, and mAP—introduced
in [44] to evaluate the interactive prediction performance. The metrics for joint prediction
involve the predicted trajectories of two interacting vehicles at the same time. The definitions
of minADE and minFDE are similar to the single-agent case. However, the displacement
errors are computed between the trajectory pairs and their ground-truth labels jointly. The
mAP metric is a newly proposed metric for the Waymo Open Challenge. It computes the
average precision over eight different ground-truth trajectory primitives defined based on the
dataset.

Empirical Prediction Results

In Table 3.1, we compare the prediction performance of the model variants on the vali-
dation dataset. We evaluate the prediction over 20000 validation samples in 3s, 5s, and 8s
time horizons with the metrics introduced before. The results for the three-time horizons
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Table 3.1: Validation Results on All Samples

Method minADE minFDE mAP

Joint-Vanilla, N=120 1.58 3.44 0.078
Joint-Full, N=120 (Ours) 1.55 3.33 0.084
Joint-Vanilla N=8 1.98 4.28 0.020
Joint-Full N=8 (Ours) 1.89 4.09 0.027

Table 3.2: Ablation Study on Strong-Interactive Samples

Method minADE minFDE

Joint-Vanilla, N=8 1.89 (0.06) 4.11 (0.17)
Joint-NonInteract, N=8 1.88 (0.04) 4.02 (0.07)
Joint-Full, N=8 (Ours) 1.76 (0.02) 3.78 (0.04)

are averaged and reported. We show the evaluation results based on different numbers of
samples before GMM fitting, with N = 8 and N = 120. In all the experiments, we set
K = 6 regardless of the values of N to ensure a fair comparison in prediction errors. From
Table 3.1, we can see that the prediction performance is sensitive to the sample number
N . With larger N , the sampled trajectories are more likely to cover the multimodality in
joint distribution, which leads to more diverse and accurate predictions after GMM fitting.
From the table, we can see that the Joint-Full model always has better performance under
the same sample number N . Note that in online prediction, the maximum allowable N is
directly determined by the required computational time. Our purpose is to get accurate and
diverse predictions with a small sample number N to enable efficient online inference. We
indeed observe a larger improvement with the use of pseudo labels when N = 8 compared
to N = 120.

To evaluate our proposed joint prediction model in highly interactive scenarios, we select
a set of strong-interactive cases from the validation dataset. Joint modeling of the behavior
of the interacting agents is critical for these highly interactive scenarios, which is the main
motivation behind our proposed method. We select the data samples where goal segments
of two vehicles intersect by using the pseudo interaction labels introduced in Sec. 3.4. The
prediction results of models using different pseudo labels are shown in Table 3.2. Since mAP
is extremely sensitive to hyper-parameters when N is small, we do not consider the mAP
comparison for quantitative analysis. As the number of selected samples is small compared
to the complete validation set (351 of 20000), we evaluate each model three times and report
the mean and the standard deviation. We observe a significant improvement in prediction
performance and stability by adding interaction pseudo labels (Joint-Full model). With a
well-trained latent space, we are more likely to cover more interaction patterns even if the
number of samples is limited, leading to smaller prediction errors in these strong-interactive
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Figure 3.4: Comparison of 6 sampled first-step goal predictions conditioned on 2 different
selected latent z value Joint-Full. Different interaction modes can be found in different latent
values, meaning we have learned a meaningful latent space.

cases, especially when N is small.

Latent Space learned by CVAE with Pseudo Labels

During training, we indeed observed that pseudo labels, especially marginal pseudo labels,
help avoid KL vanishing in most cases. To demonstrate the interactive pattern encoded by
latent space, we visualize predicted trajectories for selected interactive scenarios from the
dataset, as shown in Fig. 3.4. We use the Joint-Full model under different latent variables
in the same scenario to make these predictions. Given the historical information, we sample
six different goal pairs from the joint goal distribution prediction model conditioning on two
different discrete latent variables z with the largest probabilities. In Fig. 3.4, we can clearly
see two different interaction modes with different z. The agents either change their speed,
route, right-of-way, or combinations of these features when switching the latent variables.
Meanwhile, the Joint-Vanilla model fails to give a separated latent space (e.g., predictions
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sampled from different latent variables are similar) in the same scenarios because of KL
vanishing. This shows that our proposed model indeed learns an interpretable latent space
capturing the interaction modes inherited from the pseudo labels.

3.6 Chapter Summary

In this chapter, we study the interaction prediction problem under the goal-conditioned
framework. To develop an interpretable and sampling-efficient prediction model, we leverage
the CVAE framework to capture diverse interaction modes in joint goal distribution explic-
itly. We find the vanilla model is prone to suffering from posterior collapse, resulting in an
uninformative latent space. We explore the underlying reasons in a toy example and pro-
pose a general and flexible approach to mitigate this issue with pseudo labels incorporating
domain knowledge on interaction. We show that the pseudo labels guide the model to learn
an interpretable latent space in our experiments.
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Part II

Interactive Behavior Generation
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Chapter 4

Critical Interaction Generation in
Autonomous Driving

4.1 Introduction

In Chapter 2 and 3, we introduce interpretable prediction on different agents in interac-
tions. In the following two chapters, we focus on how these interactions are generated and
whether we can generate realistic tail interactive events.

Self-driving vehicles are expected to make transportation systems much more efficient in
the future with smart decision-making systems that can avoid irrational behaviors leading
to potential dangers. The safety and robustness evaluation of autonomous vehicle planners
during online operation remains an essential but unsolved problem. As in all the other engi-
neering fields, one fundamental philosophy to tackle this problem is through comprehensive
testing. In reality, it takes hundreds of miles for autonomous vehicles to encounter various
safe-critical cases. Such an evaluation process is time-consuming and risky since we can-
not control other traffic participants’ behavior on the road. As a result, researchers have
proposed multiple evaluation methods in simulator environments, where the key problem de-
generates to designing diverse and natural test cases. To take advantage of prior knowledge
and collected natural interaction data, researchers propose data-driven learning methods
for planner evaluation. In the testing process, learned interactive adversary (competitive
or weakly competitive) agents are controlled to interact with the tested vehicle, and we
use safety metrics like collision rate to evaluate planners’ performance. We can figure out
possible failure modes by varying the environment and adversary agents in test cases and
improving the decision-making algorithms. A common approach in previous test case gen-
eration methods is to sample diverse initial states of the adversary agents [39, 38]. However,
one drawback of this approach is that they usually assume over-simplified adversary agents
with little reaction to the tested vehicle. In reality, the adversary agents usually alter the
speed and orientation based on observation of other vehicles during the interaction. Another
popular approach is to train adversary agents with Reinforcement Learning (RL) to minimize
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Figure 4.1: Left: Previous generative methods produce various interactions by generating
the trajectory of all the involved vehicles. Right: We plan on a single vehicle to generate
diverse interactions and allow the other vehicle to use arbitrary planners (including the
proposed RouteGAN).

the driving performance of tested agents [18]. The trained adversary agents have complex
driving behavior. Still, their reactions are usually unnatural since they do not learn from
human driving data and cannot be generalized to different road structures. To summarize,
our main question is:

Can we design interactive adversary agents for testing, which have diverse, natural
behaviors in various scenarios?

We notice that some previous data-driven trajectory generation methods can produce di-
verse, near-authentic trajectories [36, 37]. However, these methods aim to generate the whole
interaction data. In other words, they generate the trajectory of all the agents jointly rather
than controlling a single agent conditioning on its observation of other agents. Therefore,
we cannot directly use joint trajectory generation to control adversarial agents for testing
case generation. Our proposed method is designed to remove such restrictions and apply
data-driven methods to adversary agents training in planner evaluation. In this chapter, we
propose RouteGAN, a deep generative model that generates diverse interactive behaviors
of a controlled vehicle using observations of the surrounding vehicles. Instead of modeling
trajectories jointly as P (x0:T1 , x0:T2 |h,m) where h,m are history and map information respec-
tively, RouteGAN models a single vehicle behavior P (x0:T1 |x

g
2, h,m, q) that reacts to other
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Figure 4.2: This figure shows the overview framework of our proposed algorithm. The
generator network G only generates several key waypoints (darker pink circles), and the
other intermediate states are from interpolation (light pink circles). Our algorithm can be
used for V1’s planning as follows. At each planning step (i.e., 0, s, 2s, ...,ms), we will use the
past and current information of V2 to generate the next waypoint. Then, we use interpolation
to generate all the intermediate points on the trajectory.

tested vehicles as shown in Figure 4.1. To ensure the diversity of generated trajectories, we
use a style variable q to control the reacting behavior. In particular, one dimension of the
style variable represents how critical the generated trajectory is, which allows us to produce
safe, near-critical, and critical interactions using the estimated intentions of surrounding ve-
hicles xg2. As a result, RouteGAN can be used as a safe planning module and the adversary
agents’ planners during planner evaluation.

The goal of this chapter is to.

• Propose RouteGAN, which can produce the styled behavior of a single agent in multi-
agent interaction scenarios. The proposed model controls the styles of agents separately
and iteratively generates the whole interaction.

• Demonstrate Multi-branch safe/critical discriminators and Auxiliary Distribution Net-
works that are designed to ensure style control over the generated behavior of the in-
teracting vehicle. Experiments show that the model can generate diverse interactions
in various scenarios.

• Use RouteGAN as an online opponent vehicle planner to test the performance of differ-
ent planners. Results show that varying style input of RouteGAN-controlled opponent
vehicles increases the collision rate for rule-based and data-driven planning models.
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4.2 Prerequisite

Safe-critical Planner Evaluation

There are various kinds of frameworks designed to test the planner’s performance under
safe-critical cases. The purpose of these frameworks is to test if autonomous vehicles can
make safe decisions while interacting with unknown drivers in different environments. Cre-
ating critical test scenarios for testing is one popular direction [38]. [39, 38] use adaptive
sampling to generate multi-modal safe-critical initial conditions in cyclists-vehicle interac-
tions. [99] generates critical scenarios with evolutionary algorithms. Another way to test
the planners is to change the behaviors of other participating vehicles. Field Operational
Tests (FOT)[6] directly use collected data to simulate opponents, [18] uses reinforcement
learning (RL) to learn adversarial agents of critical driving styles. An obvious limitation of
data-driven methods like FOT is the rareness of natural critical cases. RL-based methods
suffer from poor generalization ability under different environments and unnatural generated
behavior affected by reward design. Our work follows the second way but aims to extract
diverse and controllable behavior from existing driving datasets.

Path Planning and Trajectory Representation

path planning in autonomous driving aims to find a trajectory (curve) that connects a
start position and an end position. Such trajectory should avoid collision with obstacles and
have some desired properties like smoothness and small curvature. The planned trajectory
is usually represented by parametric models. Common parametric models include polyno-
mials [79], splines [180, 100], clothoids [59], and Bezier curves [28, 154]. [155] provides a
review of these methods. We use optimization methods to search for the optimal parameters
of models that meet our requirements.

Deep Generative Models

In recent years, researchers have proposed various deep learning-based generative models
to represent the data distribution. VAE [97] assumes that the latent variable to generate the
data follows a Gaussian distribution. VAE is used by recent trajectory methods for latent
space interpolation [37]. There are several variants of VAE. One important variant is the
CVAE, whose generation process is conditioned on a controllable variable. GAN [62] trains
a generator network to produce near-authentic data by an adversary process. InfoGAN [23]
proposes to maximize the mutual information between latent variables and the generated
data. The mutual information maximization in InfoGAN is implemented by introducing an
auxiliary distribution network for variational lower bound maximization. InfoGAN is able
to learn disentangled and interpretable latent representation. Such property is used in our
work to produce data of various styles.
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4.3 Problem Formulation

Trajectory Generation

While trajectory prediction frameworks focus more on predicting future trajectories given
historical observations, styled trajectory generation focuses more on generating interactive
trajectories based on the initial states and goals of different agents. The reason is that styles
can be inferred from historical observations, and they usually remain the same during the
whole interaction. We assume that the collected interaction data follows this assumption.
As a result, the styled generation problem is formulated as generating trajectories of all k
interacting vehicles {x1:Ti }ki=1 given their initial states {x0i }ki=1 and controllable input c corre-
sponding to different interaction factors (styles, goals, etc.) Unlike most previous generation
works that jointly produce all vehicles’ trajectories, our proposed framework is designed to
generate diverse trajectories of one certain vehicle in a finite planning horizon s based on
the current state and goals of all the traffic participants {xg}ki=1 to create various kind of
reactions. Instead of controlling a single variable c for the whole interaction, we assume
different styles for all the vehicles {qi}ki=1. The future trajectory of the ith agent xt:t+si is
generated using [{xti}ki=1, {xg}ki=1, y, qi]. The agent plans every s step after observing other
vehicles’ up-to-date states, and the planning horizon s is a hyperparameter for decision fre-
quency in practice. In this way, we can generate the interacting behaviors of a participating
agent with controlled styles. If all vehicles are controlled by their styled generators, we can
iteratively generate the joint behavior of multiple vehicles. If we control only the ego vehicle,
the generation framework can be directly used as an online planner.

Planning and Planner Evaluation

For simplicity, we consider interactions between two vehicles on the road in the later
discussion and denote them as V1 and V2, respectively. In the planning setting, as discussed
before, the route generator can be used to plan the trajectory of vehicle V1 given past
observations and the estimated goal of an unknown driver V2. The first dimension of V1’s
style variable q(1) := q

(1)
1 in our generation model can be used to control the conservative

degree of the planner.
Using this generator as an opponent agent, we can also perform tests on different planners.

Assume V1 is still controlled by our generator with varying q1 representing different driving
styles, and V2 is controlled by a rule-based, data-driven, or human-controlled planner, we
can perform a safety evaluation on V2 planner by changing the style of V1 from conservative
to aggressive. For most planners, we can expect safety metrics like collision rate to increase
as we increase the critical factor q(1) of our RouteGAN controller.



CHAPTER 4. CRITICAL INTERACTION GENERATION IN AUTONOMOUS
DRIVING 46

4.4 Method

Overview

The proposed framework, RouteGAN, is illustrated in Figure 4.2. The generator network
G outputs the trajectory as follows. It first encodes V1’s initial positions x01, the final goal
g of V2, the road structure y, the style code q, and the noise z into an initial hidden vector
h−s. Here, the road structure y is represented by a bird-eye view image. The positions of V1
and V2 are based on such images. We use (-1, -1) and (1, 1) to describe the up left corner
and bottom right of y, respectively. The final goal g is the expected position of V2 in the
future and is represented by a coordinate. As is stated above, our planner plans for every
s step from time t = 0. At time ks, the planner module combines previous hidden vector
h(k−1)s with style code q and current observation of V2 to produce the next hidden vector
hks and next key waypoint of V1, denoted as x̃

(k+1)s
1 . Then, we use interpolation to generate

the trajectory of V1 between current position xks1 (i.e., x̃ks1 ) and the generated key waypoints

x̃
(k+1)s
1 :

x
ks:(k+1)s
1 = Interpolate(x̃ks1 , x̃

(k+1)s
1 ), k = 0, 1, ...,m− 1. (4.1)

In order to make the generator produce natural and diverse trajectories, a multi-branch
discriminator D (natural) and an auxiliary distribution network Q (diverse) are introduced.
Our method assumes access to a safe interaction dataset as well as a critical interaction
dataset. The discriminator D should determine whether a trajectory is natural and whether
a given interaction is from the safe dataset or the critical dataset. The auxiliary distribution
network Q should reconstruct q from the generated interaction to ensure that the generated
interaction contains the style information.

In the remaining subsections, we introduce the detailed structure of RouteGAN in 4.4,
the loss functions, and the training process of RouteGAN in 4.4. The interpolation method
is introduced in 4.4, and finally, in 4.4, we briefly discuss the difference between our methods
compared to prior generative methods.

RouteGAN

Generator G

The generator G first packs up the environment information of the interaction.

zscene = Fscene(y), (4.2)

zg = Fg(g), (4.3)

zinit = Finit(x
0
1). (4.4)

In the above equations, Fscene is a Convolutional Neural Network (CNN) [61]. Fg and Finit
are Multi-Layer Perceptrons (MLP) [61]. Then, we combine these vectors to produce the
initial hidden vector.

hinit = h−s = Hinit([zscene, zg, zinit, q, z]). (4.5)
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Hinit is an MLP. [·] refers to vector concatenation. Then, the generative network iteratively
uses the style variable q and the current observation of V2 to update the hidden vector and
predict the future position of V1. The update of the hidden vector is computed as

zt2 = H2(x
t
2), t = 0, s, 2s, ...,ms, (4.6)

ht = Fupdate([z
t−s
2 , ht−s]), t = s, 2s, ...,ms. (4.7)

H2 and Fupdate are MLPs. Finally, we use the hidden vector, the style code q, and noise z to
predict the next key waypoint.

x̃t+s1 = x̃t+s1,q = Ftrajectory([h
t, q, z]), t = 0, s, ..., (m− 1)s. (4.8)

s Ftrajectory is an MLP. q takes value from [−2, 2]c, where c is the dimension of q. As we have
discussed before, we use the first dimension of q, denoted as q(1), to represent the critical
rate of the interaction. z is a random vector and is sampled from a normal distribution.

Discriminator D

The discriminator is trained to distinguish the fake interactions from the real interactions.
To model the interaction style, we build two extra branches in the discriminator network for
safe and critical interactions. The three branches are denoted as Dvalid, Dsafe, and Dcritical

respectively. Dvalid takes the key point sequence and the scene as input, and it tries to
distinguish generated waypoint-scene pair (x̃0,s,...,ms1 , y) from real waypoint-scene pairs, which
are sampled from the dataset. Dsafe takes the interactions (i.e., the key waypoint sequences
of an interactive vehicle pair (x̃0,s,...,ms1 , x̃0,s,...,ms2 )) as input and it tries to distinguish the
generated interaction from real, safe interaction pairs drawn from the dataset. Similarly,
Dcritical takes the interactions as input, and it tries to distinguish the generated interaction
from real, critical interaction pairs drawn from the dataset.

Auxiliary Distribution Network Q

In order to ensure that the style of the generated key waypoint sequence can be controlled
by the style variable q, we use an auxiliary distribution network Q to maximize the mutual
information between q and x̃0,s,...,ms1 . This can avoid the case where the model treats style
variable q as a dispensable input and only uses past trajectories for future generations. In
practice, we train a auxiliary distribution network Q to reconstruct q with x̃0,s,...,ms1 , x̃0,s,...,ms2

and y.

Loss functions

We introduce the following loss functions to train our RouteGAN.
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Discriminator loss

The loss of Dvalid is defined as

LDvalid = −E(log(Dvalid(x
0,s,...,ms, y))+

log(1−Dvalid(x̃
0,s,...,ms
1 , y)).

Here, x0,s,...,ms, y is randomly drawn from the dataset. Concretely, we randomly select a
trajectory x0:T in the dataset and extract its key waypoints x0,s,...,ms. Then, we put x0,s,...,ms

and its corresponding scene observation y together to create a real sequence-scene pair. The
loss of Dsafe is defined as

LDsafe = −E(log(Dsafe(Γ(x
0,s,...,ms
safe:1 , x0,s,...,mssafe:2 )))+

log(1−Dsafe(Γ(x
0,s,...,ms
2 , x̃0,s,...,ms1 )))+

log(1−Dsafe(Γ(x
0,s,...,ms
critical:1, x

0,s,...,ms
critical:2)))).

In the above equation, x0,s,...,mssafe:1 and x0,s,...,mssafe:2 are key waypoint sequences extracted from

a safe interaction (x0:Tsafe:1, x
0:T
safe:2) sampled from the dataset. x0,s,...,mscritical:1 and x0,s,...,mscritical:2 are key

waypoint sequences extracted from a critical interaction (x0:Tcritical:1, x
0:T
critical:2) sampled from the

dataset. Γ is a differentiable augmentation operation. Such augmentation is a composition
of normalization and random rotation transformation defined as

Γ(x1, x2) = (U(x1 − µ(x1, x2)), U(x2 − µ(x1, x2))). (4.9)

Here, µ(x1, x2) is the mean position of the two trajectories, U is a random rotation matrix.
We find that such an augmentation step can help RouteGAN learn an invariant and robust
representation for diverse behavior generation. Minimizing LDsafe enforces Dvalid network
to discriminate critical interactions and fake interactions from the real, safe interactions.
Similarly, the loss function of Dcritical is defined as

LDcritical = −E(log(Dcritical(Γ(x
0,s,...,ms
critical:1, x

0,s,...,ms
critical:2)))+

log(1−Dcritical(Γ(x
0,s,...,ms
2 , x̃0,s,...,ms1 )))+

log(1−Dcritical(Γ(x
0,s,...,ms
safe:1 , x0,s,...,mssafe:2 )))).

The loss function of the discriminator is the combination of the above losses:

LD = LDvalid + LDsafe + LDcritical. (4.10)

Generator loss

The goal of the generator is to generate V1’s future trajectory x̃1 so as to create authentic
interactions which can confuse the discriminator. The loss function of the generator contains
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three terms LGvalid,LGsafe, and LGcritical. They correspond to the three discriminator loss terms
above, respectively. They are defined as

LGvalid = E(log(1−Dvalid(x̃
0,s,...,ms
1 , y)), (4.11)

LGsafe = E(log(1−Dsafe(x
0,s,...,ms
2 , x̃0,s,...,ms

1,q(1)<0
)), (4.12)

LGcritical = E(log(1−Dcritical(x
0,s,...,ms
2 , x̃0,s,...,ms

1,q(1)>0
)). (4.13)

Then, the loss of the generator is defined as

LG = αLGvalid + LGsafe + LGcritical. (4.14)

Here α is a hyperparameter balancing the weight of LGvalid. This is designed to encourage
diversity since some scenarios in the dataset only provide a single mode, such as following a
straight line. An α < 1 can introduce more possible modes into these scenarios.

Information loss

The goal of the Q network is to reconstruct the style variable q. Therefore, we minimize
the following L2 loss.

LQ =
1

2
E∥q −Q(x̃0,s,...,ms1,q , y)∥2.

Road constraint loss

We also find it useful to add in a road constraint loss. This term can ensure that the
generated key points lie within the road. It is defined as follows. First, we use a heat map
operation R2 → Rw×h to transform the generated key point onto a 2D map. It is defined as

Heatmap(x)(u, v) = exp

(
−(u− x1)2 + (v − x2)2

2σ2

)
. (4.15)

Here, σ is a hyperparameter. This mapping is differentiable so we can define the road
constraint loss as

Lroad = mean

(
1

m

m∑
k=1

(1− y) · (Heatmap(x̃ks1 ))

)
. (4.16)

The overall optimization process proceeds as follows. For each training step, we optimize
the D network using the loss function LD for four steps with G and Q fixed. Then we fix D
network and optimize G and Q using the loss function LG,Q defined by

LG,Q = LG + λ1LQ + λ2Lroad. (4.17)

Here, λ1 and λ2 are two hyperparameters balancing the weight of each loss term.
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Interpolation

To obtain the trajectory of the vehicle between discrete key waypoints, one simple ap-
proach is piecewise linear interpolation. However, piecewise linear interpolation will lead to
non-smoothness at each key waypoint. Therefore, we only use linear interpolation for the
first two key waypoints x01, x

s
1. For the interpolation between the latter key waypoints, we

use the Bezier curve, and the process is shown in Figure 4.3. Let P0, P1 be two consecutive
key waypoints. D0 is the orientation of the vehicle at P0. Then, we determine D1, the orien-
tation of the vehicle at P1 by the following heuristic. Let α be the angle (with sign) between
D0 and P0P1, β be the angle (with sign) between P0P1 and D1. Then, we set β = αk. k
is a scaling parameter and is heuristically defined as 0.25. Finally, the control point C of
the Bezier curve is set to be the intersection point of the two lines defined by (P0, D0) and
(P1, D1). It is explicitly given by

C = P0 +
(P1x − P0x)D1y − (P1y − P0y)D1x

D0xD1y −D0yD1x

D0. (4.18)

We compute the trajectory γ between P0 and P1 using P0, C and P1, i.e. γ(t) = P0(1− t)2+
2Ct(1− t) + P1t

2.

Discussion

There are two main factors that our model differs from the previously proposed learning
based trajectory generation models. First, previous methods usually use the generator net-
work to generate the full trajectory. In contrast, our generator network only generates few
key waypoints, and we obtain the full trajectory by interpolation. We find this modification
crucial in experiments as it makes the generation process focus more on the global shape
information rather than local details, which can bring out various styles.

Secondly, we split the discriminator into different branches and introduced an augmen-
tation step. This operation can decouple the interaction from a particular viewpoint and
avoid mode collapse.

4.5 Experiments

Settings

We use the Argoverse dataset [16] and the INTERACTION dataset [244] to evaluate
RouteGAN. Argoverse is used by the latest interaction generation method CMTS [37]. In
our experiments, we adopt the same modified Argoverse trajectory dataset used by CMTS,
which contains interaction data in the straight road and intersection scenarios. We also use
the interaction data in roundabout scenarios in INTERACTION. Since the number of critical
interaction data in these datasets is less than that of safe interactions, we apply some simple
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Figure 4.3: Bezier curve interpolation used in the proposed method.

data augmentation tricks to generate some pseudo-critical interactions. The tricks include
temporal realignment, which relabels the timestamps of safe interactions to turn them into
critical interactions, and local deformation, which slightly alters the trajectory’s shape to
produce intersections.

Qualitative Case Study

In this part, we visualize some typical generated interactions on Argoverse and INTER-
ACTION. In order to make it easier to understand the effect of q(1), which is the first
dimension of the style variable of vehicle V1, we assume that V2 simply follows the trajectory
in the dataset. We design three common intersection cases:
Case I. V1 and V2 go in the same direction. At the beginning, V1 is behind V2.
Case II. V1 and V2 go in the same direction. At the beginning, V1 is ahead of V2.
Case III. V1 and V2 go in the opposite direction. Note that in the roundabout scenario,
V1 and V2 can not go in the opposite direction since it is invalid. Therefore, this case is
substituted by intersection.

The generation interaction results of the above cases on two datasets are shown in Fig-
ure 4.4. We select two different scenarios for each case. From up to down, we set q(1) to
−2.0,−1.0, 0.0, 1.0, 2.0 with another dimension of style code q fixed, which shows a transi-
tion from safe interaction into critical interaction. Compared with our method, we find that
CMTS can not provide promising results on roundabout scenarios though it is verified on
Argoverse. Therefore, we do not display its result here, and we refer readers to the paper
directly for its result on Argoverse.
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Figure 4.4: Generated interaction examples on Argoverse dataset and INTERACTION
dataset. Throughout the later part of this chapter, the red line indicates the trajectory
of V1 (Rou,teGAN) and the blue line indicates the trajectory of V2. The start point is indi-
cated by the largest circle.

Result on Case I

For the safe interaction, V1 follows V2 slowly. As q(1) increases, V1 gradually speeds up
and hits V2 from behind.

Result on Case II

For the safe interaction, the typical result is that V1 speeds up and avoids collision with
V2. Another kind of generated interaction is that V1 turns to another lane and gives its way
to V2. However, as q

(1) increases, V1 stops in the center of the road or even goes backward,
which leads to crashes if V2 does not slow down in time.

Result on Case III, Argoverse

For the safe interaction, V1 turns to a different lane or slow down. As q(1) increases, V1
no longer stays away from V2 and runs into V2’s lane.

Result on Case III, INTERACTION

For the safe interaction, V1 proceeds based on the priority (i.e., V2 go first). But as q(1)

increases, V1 no longer waits for V2 and crashes into it regardless of its lower priority.
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Figure 4.5: The result of generating interactions jointly. Both V1 and V2 are controlled by
RouteGAN.

Joint Generation of Interactions

We also demonstrate that RouteGAN is able to generate interactions jointly as [36, 37,
65]. In this section, both V1 and V2 are controlled by RouteGAN, and their style codes are

denoted as q1 and q2, respectively. For a car-following scenario, we sweep q
(1)
1 and q

(2)
2 in

the latent spaces with step size 1.0 and fix z and all the other dimensions of q1 and q2. The
reason for this design is that the q

(2)
2 controls the geometry of the leading car V2 and q

(
11)

controls the interacting style of V1 in this car-following case. One example is shown in the
Figure 4.5. Similarly, when q

(1)
1 increases, the generated V1’s trajectories gradually become

more critical as expected. q
(2)
2 controls the ‘bending’ style of V2’s trajectory.
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Figure 4.6: The result of latent space sweeping.

Diversity of Generated Interactions

In this subsection, we verify that RouteGAN is able to generate diverse interactions.
Controlling both cars with RouteGAN and sweeping the latent space is more complicated
since the vehicles are affecting each other, making comparison between interactions hard.
Therefore, we control V1 here to show the diversity of planned trajectories given the same
observations. We sweep q(1) and q(2) := q

(2)
1 in the latent space [−2.0, 2.0]× [−2.0, 2.0] with

step size 1.0 and fix z and other dimensions of q. Then, we use these codes to generate
interactions. One example is shown in the Figure 4.6. When q(1) increases, the generated
V1’s trajectory gradually intersects with V2’s trajectory as expected. Meanwhile, q(2) controls
the ‘bending’ style of V1’s trajectory. As q(2) varies from −2.0 to 2.0, the trajectory of V1
will bend upwards and follow V2 from different directions.
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Application: Planner Testing

One direct application of RouteGAN is simulation-based autonomous driving decision
system testing. To test a planner’s response to various interactions, we can use RouteGAN
as its adversary in the interaction. In this experiment, we verify RouteGAN’s testing per-
formance. Since q(1) reflects the level of interaction safety, we expect that the collision rate
increases as q(1) increases. We assume that the tested system is able to carry out perfect
control. In other words, the low-level controller can strictly follow the trajectory calculated
by the upper-level planners. We choose the following decision-making systems to test.

Data Planner

A Data planner is a dummy planner that only follows the reference trajectory in the
dataset.

IDM Planner

Intelligent driver model (IDM) [117] is a differential dynamic system that models the
dynamics of multiple vehicles on an infinitely long line. To apply this model in 2-dimensional
planning, we project the coordinate of V1 onto V2’s reference trajectory and use the Runge-
Kutta 4 method [12] to calculate the future position.

Astar Planner

Astar [68] is a basic planning baseline in AI and autonomous driving. It will search for
optimal acceleration along the reference trajectory at each time step.

Table 4.1: The collision rates of planners interacting with different styles of RouteGANs

V1 V2
Coefficient q(1)

-2.0 -1.0 0.0 1.0 2.0

RouteGAN Data 4.2% 9.1% 47.1% 88.6% 95.3%

RouteGAN IDM 1.4% 3.0% 8.7% 18.1% 24.4%

RouteGAN Astar 0.0% 0.0% 1.5% 4.8% 6.5%

The testing result is shown in the Table 4.1. We observe that the collision rate increases
as q(1) goes up. Since the data planner simply follows the reference regardless of the motion
of V1, the collision rate of it is high when q(1) > 0. The collision rate of IDM and Astar
planner is in general much lower than that of the data planner. However, we find that IDM
planner is still not good enough when it comes to intersection cases since one assumption
of IDM planner is that V1 will move along V2’s reference trajectory. Note that the result
for RouteGAN itself is not shown in our planner evaluation. This is because we do not
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put collision as a soft or hard penalty in our model to generate critical cases. Therefore,
RouteGAN is not the best choice for collision avoidance. From the experiment, we can
see that the collision rate in planner evaluation is directly affected by the driving style of
adversary agents. Given the same initial conditions, aggressive drivers can better test the
robustness of planners in critical cases. Our designed planner evaluation framework can help
planners to improve their critical-case performance.

4.6 Chapter Summary

In this chapter, we investigate the problem of generating diverse interactive behavior
of controlled vehicles. We propose RouteGAN, a generative model to solve this problem by
controlling a style variable to produce safe or critical interaction behaviors with participating
vehicle observations. We demonstrate the diversity of generated trajectories in different
traffic scenarios, proving its ability to be a safe planner. Finally, we use it as an adversary
agent to perform safety evaluations on different planners and validate the collision rate
increase by varying the adversary agent’s style.
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Chapter 5

Distributed Human-like Interaction
Modeling for Enhanced
Human-Robot Collaboration

5.1 Introduction

In the previous chapter, we discuss interaction generation in autonomous driving sce-
narios, where roads are designed with structures and interactions happen following traffic
rules. We then switch to a more general indoor scenario and discuss the interactions between
human humans and human robots.

Modeling the interactive behavior of multiple agents in different scenarios is an essential
task in crowd simulation. One of the main challenges is to model the interactive behav-
iors of multiple agents, especially in narrow scenarios where they have to avoid obstacles
simultaneously. The agents’ decisions are interdependent, meaning that each agent’s deci-
sion influences and is influenced by the decisions of the other agents. In real life, humans
can cooperate without explicit communication; instead, we make decisions based on obser-
vations. In this project, we aim to analyze and model the interactions in a distributed game
setting without communication. The problems can be naturally formulated as a multi-agent
planning problem with separate goals and a shared environment. Some previous works have
used centralized [198, 34] algorithms, which solve trajectories of all agents together to con-
trol all robots. However, centralized methods are computationally expensive and require
full information about the environment and other agents. In contrast, distributed algo-
rithms separately solve the short-horizon reaction plans [9, 251] or long-horizon trajectory
plans [171, 121, 217] for each robot. Distributed methods are more scalable and robust but
suffer from deadlocks, especially in human-like interaction cases where no communication is
allowed. For instance, as shown in Figure 5.1, in a narrow-way situation, if both agents are
in the hallway, they have no collision-free navigation plans to their goals. If agents have no
information from the others, they need to estimate other’s intentions and figure out how to
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Plan:

Observations:
    states,     positions

Imagined
Cooperation:
     yield to

Closed-loop Planner for Agent

Potential Game

iLQR solver Closed-loop
Planner for
Agent

Target goals

Obstacles

Problem: No Collision-free Navigation Trajectories

Figure 5.1: A narrow-way problem challenging to solve in the distributed and no-
communication setting. There’s no collision-free for single-agent navigation, and agents
must cooperate (one moving backward to yield the other agent) to solve the problem. We
propose adding imagined cooperation in distributed planning to simulate cooperative inter-
actions.

cooperate in the distributed setting.
We propose to model and solve the interaction problem in a distributed manner where

each agent imagines a cooperation game with others. There are several works considering
game-theoretic frameworks [52, 51, 90, 221] to model cooperative behaviors. We follow
the dynamic game formulation introduced by [90], where the multi-agent potential game is
formulated into an equivalent single optimal control problem to find cooperative plans for all
agents. We assume an “imagined” game exists in all agents’ distributed planners to predict
others’ behavior and use the iterative LQR (iLQR) to solve optimal plans. In addition to the
basic formulation in [90], we add collision avoidance to environmental obstacles, observation
range, and blind area for agents in the optimization since they are essential causes of human-
like interactions.

We demonstrate the effectiveness of introducing the “Imagined Potential Game (IPG)”
formulation into the multi-agent planning problem without communication. The open-loop
plans are used to simulate the closed-loop behaviors using receding horizon control. Agents
may have different open-loop cooperative strategies but can gradually converge to cooper-
ative behaviors in closed-loop simulation. Experiments on the narrow-way scenario with
random initialization empirically show the improved success rate and navigation efficiency
in simulating cooperative interactions. Furthermore, we show the framework’s capability to
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Time = 0.1 s Time = 3.2 s Time = 4.7 s Time = 10.6 s 

Figure 5.2: An example interaction generated in T-intersection. From left to right is the
closed-loop trajectory over time. Solid lines are past trajectories; darker and lighter dotted
lines are plans of ego agents and predictions of other agents (e.g., the light blue line is the
predicted green agent behavior by the blue agent). All green lines are from the green agent’s
planner.

generate diverse and realistic interaction behaviors by varying parameters, such as safety
distance or objective weights. Lastly, we demonstrate that the IPG-controlled agents can
robustly interact with non-IPG-controller agents. The contribution of this work lies in the
following aspects:

1. We propose a multi-agent interaction generation framework using the imagined poten-
tial games under a distributed and no-communication setting to simulate interactions
in dense obstacle scenarios.

2. We use simulated experiments to empirically demonstrate the improvement in success
rate and navigation efficiency for simulating complex interactions.

3. We demonstrate the algorithm can generate diverse and realistic interactions using
interpretable parameters and interact with heterogeneous agents.

5.2 Related Works

Multi-robot planning

Multi-robot trajectory planning algorithms can be categorized based on where the com-
putation is done. Two main strategies to solve the problem are centralized and distributed.
Centralized planning algorithms solve the trajectories for all the agents in the same problem
utilizing the global information and then send the control commands to the robots. Most
previous works use multi-agent path finding (MAPF) solvers with trajectory optimization
algorithms[198, 145, 34, 218] to find feasible trajectories for all agents. A series of works
[51, 181, 221, 134, 30, 103, 132] models interactions in multi-agent planning via game theo-
retic frameworks. [90] utilizes potential games [52] for multi-agent trajectory planning with
symmetric inter-agent costs. Centralized algorithms can provide theoretical guarantees for
planning success and optimality. However, the centralized setting cannot simulate realistic
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interactive behaviors in the distributed setting, where single-agent behaviors are affected by
other agents’ online reactions.

In the distributed setting, each agent runs a separate algorithm to compute its own
trajectory. Depending on whether communication exists between the agents. Reactive algo-
rithms[9, 220, 85] like Optimal Reciprocal Collision Avoidance (ORCA) can effectively avoid
collisions but fail to avoid deadlocks in environments with dense obstacles[171]. Learning-
based reactive strategies[168, 160, 110, 8] are computationally more efficient but suffer from
distribution shifts and also experience deadlocks. Another series of works like dMPC[121]
and MADER[205] consider longer horizons and generate sequences instead of single actions;
however, they require communication of plans for collision avoidance. [225] turns multiple
agents into distributed groups and solves the in-group interactions, but the in-group agents
are modeled in the centralized setting. RLSS[171] uses a fully distributed setting and re-
quires only the current state sensing of other agents to plan piece-wise Bézier trajectories to
improve deadlock performance. However, these methods don’t explicitly model the coopera-
tion of agents and, therefore, have trouble simulating interactions when the initial condition
is not feasible for collision-free planning.

Interaction Generation

Simulating the behaviors of actors is an important task with a wide range of applications
in transportation and robotics research since simulators play essential roles in training and
evaluating intelligent agents like indoor robots and autonomous vehicles. Many autonomous-
driving research works focus on simulating distributed agents’ behaviors in the simulator to
generate realistic interactions and reactive agents[233, 196, 237, 17, 247] or analyzing and
predicting interactive behaviors of heterogeneous agents[252, 186, 190]. Previous works
on crowd simulation[148] focus more on the scalability of simulating agents[203, 204], and
grouping in the crowd[167, 125]. In this chapter, we focus on the interactions in scenarios
where cooperation is required to simulate multi-agent behaviors.

5.3 Preliminaries

Distributed multi-agent planning

Assume we have N agents in the scenario. For each agent i, 1 ≤ i ≤ N , let the vector
xi(t) ∈ Rni denote the state of agent i, let ui(t) ∈ Rmi denote the control input of agent i at
time t. Each agent follows its system dynamics

xi(k + 1) = fi(xi(k), ui(k))

Unless otherwise specified, throughout this chapter, for variable x, we use a subscript xi
to denote agent i and a superscript xk or x(k) to indicate the time horizon k. If i, k are
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not specified, it means x for all agents or across all time steps. x−i denotes x of all agents
excluding agent i.

Obstacles in the scenario are represented by {Oj}Mj=1. Each agent has its initial state x0i
and a target goal state in the scenario gi. All the agents in the scenario navigate to their target
goal while avoiding collision with the environment and other agents. Interactions happen
when their planned trajectories {xi(0), xi(1), ..., xi(T )}Ni=1 have conflicts and need to interact
to reach non-conflict new plans. Control inputs of multiple agents U = [u0:T1 , u0:T2 , ..., u0:TN ] are
the plans of all the agents. Under the distributed setting with no communication, we assume
each agent i is solving an optimal control optimization without knowing others’ plans.

min
ui(0:T ),xi(0:T )

Ji(x(0), ui, ũ−i)

s.t. xi(k + 1) = fi(xi(k), ui(k))

h(xi, x̃−i, O) ≤ 0

(5.1)

Ji = Si(x(T ), T ) +
∑T−1

k=0 Li(x(k), ũ−i) is the cost function for agent i. The stage cost
Li can include distance, time, and energy costs, and the terminal cost Si can include goal
conditions. The collision-free requirements are described using the constraints h ≤ 0. The
hard constraints in h can be added as weighted cost functions depending on the solver used.
ũ−i and x̃−i are the estimation of other agents’ plans and states to prevent collisions since
we assume no communication between agents. To consider other agents during planning, it
needs to use predictions. In most cases where environmental constraints are not strict, con-
stant velocity predictions are well enough to provide collision avoidance planning. However,
cooperative predictions are required to generate feasible interactions in cases like narrow-way
interaction in Figure 5.1. Therefore, we proposed to use an Imagined Potential Game (IPG)
framework to predict x̃−i during the planning of agent i.

Comparison with the centralized or distributed with sharing setting: In the
centralized setting, U is solved together in a single large problem given all agents’ initial
and goal states simultaneously. The weighted (αi) costs of all agents are optimized in one
problem.

min
U

N∑
i=1

αiJi(x(0), U)

s.t. x(k + 1) = f(x(k), u(k)), h(x,O) ≤ 0

(5.2)

The distributed setting with sharing is quite similar to the centralized setting; plans are solved
separately but are shared with other agents, enabling accurate predictions in a distributed
setting [121] for cooperation. Many game-theoretical interaction models operate in a similar
setting. The cost functions of all agents are shared to consider others’ behaviors and find
equilibrium plans for all agents.
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Differentiable Potential Game

We then introduce the definitions of dynamic games (N agents with horizon T ) from
previous works [90]. We describe a differential game by the compact notation of ΓTx0 =
(N, {Ui}Ni=1, {Ji}Ni=1, {fi}Ni=1), where x0 is the initial states of all agents, and each agent seeks
to optimize its cost Ji under the dynamic fi. The cost function Ji(x(0), U) = Si(x(T )) +∑T−1

k=0 Li(x(k), U(k)) consists of running cost Li and terminal cost Si. We look for the Nash
equilibrium solution of the dynamic game defined by:

Definition 1 Given a differential game ΓTx0 = (N, {Ui}Ni=1, {Ji}Ni=1, {fi}Ni=1), control signal
set U is an open-loop Nash equilibrium if, for i ∈ [1, ..., N ]:

Ji(x0, u
∗) ≤ Ji(x0, ui, u

∗
−i) (5.3)

At a Nash equilibrium, no agent has the incentive to change its current control input
u∗i as such a change would not yield any benefits, given that all other agents’ controls u∗−i
remain fixed. While this equilibrium solution can best represent the cooperative multi-agent
behavior in the interaction, finding the Nash equilibrium solution is challenging since there
are N coupled optimal control problems to solve simultaneously. Recent progress in solving
this problem, especially in robotics applications, find efficient solutions to the problems under
certain conditions. As proved in [90], problems in a potential differential game form can be
solved by formulating a single centralized optimal control problem. We summarize their
main result in the following theorem.

Theorem 1 For a given differential game ΓTx0 = (N, {Ui}Ni=1, {Ji}Ni=1, {fi}Ni=1), if for each
agent i, the running cost and terminal cost functions have the structure of

Li(x(k), u(k)) = p(x(k), u(k)) + ci(x−i(k), u−i(k)) (5.4)

Si (x(T )) = s̄(x(T )) + si(x−i(T )) (5.5)

then the open-loop Nash equilibria can be found by solving the following optimal control
problem

min
U

T−1∑
k=1

p(x(k), u(k)) + s̄(x(T ))

s.t. xi(k + 1) = fi(xi(k), ui(k))

(5.6)

The key takeaway from this theorem is that one can formulate a differentiable potential
game if all the cost function terms can be decomposed into potential functions (p(·), s̄(·)) that
depend on the full state and control vectors of all the agents, and other cost terms (ci(·), si(·))
that have no dependence on the state and control input of agent i. Then the optimal solution
for both agents can be solved by the centralized problem Eq.5.6 using only p, s̄. The following
section will show how this theorem is used for distributed no-communication settings. For
each agent in the interaction, it assumes all agents are in the potential game, but it doesn’t
know the interaction parameters for other agents. Therefore, each agent will solve a separate
Imagined Potential Game (IPG) using estimated parameters.
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System Notations and Assumptions

To simplify the problem, we make several assumptions on system dynamics. We assume
that all agents are modeled using the same unicycle dynamic model. The state vector
xi = [px,i, py,i, θi, vi], the control vector ui = [ai, wi]. The discrete-time dynamic equations of
the system are:

px,i(k + 1) = px,i(k) + Ts vi(k) cos(θi(k))

py,i(k + 1) = py,i(k) + Ts vi(k) sin(θi(k))

θi(k + 1) = θi(k) + Ts wi(k)

vi(k + 1) = vi(k) + Ts ai(k)

(5.7)

System notations are summarized in Table 5.1.

Table 5.1: Notation describing common variable.

Definition Definition (Default value)
px, py position in 2D Q state weight ([0.01, 0.01, 0, 0])
θ heading angle R input weight ([1, 1])
v velocity D safety weight (40)
a acceleration B back up weight (10)
w angular velocity r safety radius (1.2∼2.0)
O static obstacles Ts sampling time (0.1)

5.4 Distributed multi-agent interaction modeling

with imagined potential game

As described in section 5.3, for interactions under the distributed setting with no shared
plans, each agent is solving the problem in Eq. 5.1 but needs to estimate the future inputs and
states of other agents (x̃−i, ũ−i) to avoid collision. One common assumption in navigation
is the constant velocity prediction, which estimates other agents’ states with the current
velocity. However, this doesn’t work for cooperation-required cases, as shown in Figure 5.1.
The potential game formulation in section 5.3 gives optimal actions for cooperative agents but
assumes the cost parameters in Ji are pre-known. In this chapter, we use this formulation
to make cooperative predictions of other agents with an Imagined Potential Game (IPG)
setting but use estimated parameters of other agents to solve the game.

Parameters in agent i’s cost function are the goal position gi and the interaction pa-
rameters, including safety radius ri, and different weights Qi, Ri, Di, Bi, each will affect the
behavior in interaction. In this project, we assume other agents’ long-term goal positions
(intentions) are already predicted. Long-term goal prediction and short-horizon interaction
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are separate problems, and we focus on the latter. For interaction parameters; agents will
assume other agents using the same parameters they have, e.g., r̃j = ri for all j ̸= i. This
assumption is simple, but in practice, we found it strong enough to simulate diverse inter-
actions, especially when all participants are cooperative agents. For cases where inaccurate
estimation of others’ parameters causes failure, we can design online adaptation rules (be
more conservative) in the interaction (see section 5.5).

Solving Potential game with estimated parameters

Based on Theorem 1, Nash equilibrium solutions of all agents can be solved by Eq. 5.6
if the interaction can be formulated into a potential game. Here, we show the running cost
function Li(x) in the potential game, consisting of the stage cost term C0:T−1

tr,i (xi, ui), the
collision avoidance term Ca,ij(xi, xj) and the reverse avoidance term Cb,i(xi). The stage cost
includes the minimum goal distance and inputs penalty terms using the current state and
input:

C0:T−1
tr,i (xi, ui) = (xi − gi)⊺Qi(xi − gi) + u⊺iRiui (5.8)

The collision avoidance term is counted when the distance between two agents dij is smaller
than the safety distance:

Ca,ij(xi, xj) =

{
(dij − dsafe)2 ·Di, if dij < dsafe

0, others
(5.9)

and satisfy the symmetric property Ca,ij(xi, xj) = Ca,ji(xj, xi) for potential game described
in [90].

The reverse avoidance term discourages the agent for moving backward:

Cb,i(xi) =

{
|vi| ·Bi, if vi < 0

0, others
(5.10)

To prove this running cost function is a potential game, we can represent the p(x, u) and
ci(x−i, u−i) in Theorem 1:

p(x, u) =
N∑
i=1

C0:T−1
tr,i (xi, ui)

+
∑
1≤i<j

Ca,ij(xi, xj) +
N∑
i=1

Cb,i(xi)

(5.11)

ci(x−i, u−i) =−
∑
j ̸=i

C0:T−1
tr,j (xj, uj)

−
∑

1≤j<k
j,k ̸=i

Ca,jk(xj, xk)−
∑
j ̸=i

Cb,j(xj)
(5.12)
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With this representation, we show that the running cost Li(xi, ui) = p(x, u) + ci(x−i, u−i)
follows the Theorem 1,

Similarly, the terminal cost Si(x(T )) = CT
tr,i(xi, ui) = s̄(x(T ))+si(x−i(T )), with terminal

cost term:
CT
tr,i(xi, ui) = (xi(T )− gi)⊺Qi(xi(T )− gi) (5.13)

Set s̄(x(T )) and si(x−i(T )) to be :

s̄(x(T ) =
N∑
i=1

CT
tr,i(xi), si(x−i(T )) = −

N∑
j ̸=i

CT
tr,j(xj) (5.14)

We have the required terminal cost Si(x(T )) in Theorem 1.
To address the problem in scenarios involving obstacles, we introduce some extra con-

straints in addition to the existing dynamic constraints, including the state boundary con-
straint, input constraint, and obstacle avoidance constraint. These constraints can be added
as weighted costs into Ji and don’t affect the potential game assumptions.

One important difference between centralized planning and the IPG setting is the safety
distance dsafe. For centralized planning, the maximum safety distance between them is
used dsafe = max(ri, rj), for IPG, each agent assumes others have the same safety distance,
dsafe,i = ri, unless it changes its estimation.

The full IPG problem for each agent to solve is:

min
U

T−1∑
k=1

p(x(k), u(k)) + s̄(x(T ))

s.t. x(k + 1) = f(x(k), u(k))

x(0) = x0

xL ≤ x(k) ≤ xU

uL ≤ u(k) ≤ uU

robs − dis(x(k), Om) ≤ 0,m = 1...M

ri − dis(xi(k), xj(k)) ≤ 0, i, j = 1...N

(5.15)

where xU , xL, uU , uL are the state and input boundaries, and robs is the radius of the circle
obstacle.

5.5 Experiments

In this section, we present the simulating results under the distributed multi-agent inter-
action setting to address the following key questions of interest:

1. Is the proposed framework able to solve the complex (infeasible) cases in navigation
under the distributed setting? Does it prevent the failures that result from deadlock
and collision?
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Text

Distributed Planning without IPG

Distributed Planning with IPG

Figure 5.3: In the distributed setting, Vanilla agents without IPG are stuck at a deadlock
for a long time and take extremely long time to finish interaction. IPG agents cooperatively
interact with each other.

2. Is the proposed framework able to generate rich interactions with various parameters?
Is the behavior realistic and diverse for crowd simulation?

Environment settings: We first quantitatively evaluate and demonstrate the interaction
generation capability in the classic “narrow way” problem, the most common but challenging
indoor navigation scenario where only one agent can pass at one time. Then, we demonstrate
and analyze the interactions with more agents or in more complex scenarios.
Comparison baselines: We use two baselines to compare the effect of our proposed frame-
work. 1) Vanilla: This is the vanilla version of distributed multi-agent planning. Each agent
is running a collision avoidance planning algorithm. The agent will follow the previous plan if
the planner cannot generate a feasible collision-free solution. Note that an open-loop collision
solution might not cause an actual collision in the closed-loop simulation since distributed
agents use wrong predictions during open-loop planning. 2) Brake: To avoid collision under
infeasible solutions, the agent will brake and stop if the planner solution has collision. This
conservative implementation can avoid collisions in simulation but is more likely to cause
deadlocks.
Evaluation metrics: We generate 20 test cases with randomized starting and goal points.
To make sure interactions happen between agents, we enforce starting and goal points on
different sides of the hallway. The safety and navigation parameters are randomly sampled
from a pre-defined range for different agents. The metrics for evaluating the interaction
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generation are 1) Success rate : We test whether the two agents reach the target goals
without collision before the time limit. For failure cases, we separate the failure caused by
collision and failure by deadlocks. 2) Extra interacting time : We use the total time for
agents to finish interaction under a centralized setting as a baseline to test how much extra
time the agents spent in the distributed setting.
Observation range in distributed setting: In the distributed setting, the ego-agent will
consider other agents’ behaviors unless they are blinded (e.g., there are obstacles on the line
connecting the two agents) or other agents are behind the ego-agent and out of a pre-defined
sensing range.

Interaction in “narrow way” in distributed setting

Both agents aim to reach the target positions sampled on the opposite side while avoiding
collisions with other agents and the walls. The experiment results are shown in Table 5.2.

Table 5.2: Evaluation in Narrow-way Scenario

Success Rate Deadlock Collision AET(second)
Vanilla 13/20 2/20 5/20 +2.054
Brake 12/20 8/20 0/20 +2.308
IPG(Ours) 20/20 0/20 0/20 +0.395

AET: Average Extra Time compared to Centralized

The proposed method generated interactions successfully under all random settings. The
vanilla version has a higher success rate than the the brake version but caused more collision
during closed-loop simulating. For extra time cost for interaction, we use the closed-loop
interaction completion time for the same setting under the centralized potential game setting
as the baseline and only calculate the average extra time for success cases. All distributed
settings experience increased interaction completion time, but our IPG setting is the most
efficient in solving interaction.

An illustrative comparison of interaction using different distributed interaction settings
is shown in Figure 5.3 using different stages of interactions. The vanilla distributed agents
stuck at a deadlock for a long time during interaction. We didn’t show the brake agents since
they experienced deadlock and got stuck from the beginning. Using IPG, with an imagined
game in mind, agents assume the presence of cooperation and predict others’ cooperation
using the estimated parameters. This results in one agent yielding to the other or assuming
the other’s yielding in interaction.

We show how IPG recovers from open-loop deadlocks in Figure 5.4. In the distributed
setting, we don’t have a guarantee that agents don’t get contradicting open-loop plans caus-
ing deadlocks. At 3.2s for the IPG setting, the blue agent had wrong predictions on the
green agent, causing the deadlock. However, as the interaction progressed, we observed the
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Figure 5.4: Vanilla distributed agents can collide during simulation when facing deadlocks.
Agents with IPG also experienced deadlock when the imagined cooperation didn’t match.
However, IPG agents can converge to success plans in the closed-loop simulation.

predictions converging to correct ones. If agents are assigned non-identical safety parameters,
they have a low chance of always getting symmetric and contradicting plans.

Realistic and Diverse Behaviors with IPG

Realistic Behavior in a T-intersection case A typical case and extension for the narrow-
way case is the T-intersection case, where the obstacles obscure the agents until one arrives
at the intersection. In centralized planning, the optimal cooperative strategy is to wait
at the starting point and move until the other agent passes. However, in the distributed
setting, the agent cannot observe the other agent until it enters the intersection. Therefore,
as shown in Figure 5.2, the agent entered the intersection, realized it had to yield to the other
agent, and then retreated to wait. These realistic and human-like reactions happen only in
distributed settings. In general, evaluating realistic behavior in rich interactions is hard since
these interactions only happen with certain initial conditions, and there’s no quantitative
metric for realism. We found adding imagined cooperation into planning is an effective way
to generate realistic behavior, especially in indoor scenarios, where collision-free trajectories
are often not available for some agents.
Interactions of more than two agents Fig 5.5. illustrates the distinct behaviors exhibited
by three agents in a centralized and distributed IPG setting. To demonstrate the different
behaviors of agents with different safety radii, we chose an open area to interact. In the
distributed setting, agents lack the safety distance information of others, and they assume
that other agents possess equal safety distance. Therefore, the agent with a larger safety
distance (green) will react more conservatively.
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Centralized Planning Distributed Planning with IPG

Figure 5.5: Three agents interacting with different safety radii.

Effects of different interaction parameters The effect of safety and cost parameters on
agents’ behavior is shown in Figure 5.6. The state cost weight Q determines the flexibility
in planning, and the safety weight D affects its conservatism in interaction.

Q = 0.01 Q = 0.1

D = 100D = 1

Figure 5.6: Effects of different interaction parameters on behaviors.
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Interaction between Heterogeneous agents

In the previous two sections, we’ve demonstrated the proposed IPG framework for sim-
ulating interactions under the distributed setting by preventing collision and deadlocks. An
extension of this framework, as mentioned in the introduction, is to use the proposed frame-
work as evaluation agents to interact with tested agents. This requires the IPG agent to
interact with different types of agents.

In Figure 5.7, we demonstrate the cases where an IPG agent is asked to interact with a
vanilla agent using constant velocity prediction and a ignore agent ignoring other agents. The
IPG agent can react wisely to those non-cooperative agents; however, non-adaptive aggressive
parameters might collide or get stuck in interactions; in Figure5.7, the IPG agent increases
its safety distance online to resolve the issue. We claim various IPG agents can represent
different types of human agents in the simulator to test the robustness and generalizability
of social navigation algorithms.

5.6 Discussion

5.7 Chapter Summary

In this chapter, we propose an Imagined Potential Game framework under the distributed
without communication setting to model realistic interactions in complex scenarios. We
demonstrate the improvement of IPG agents in the distributed setting in success rate and
navigation efficiency in simulating interactions and the ability to generate realistic and di-
verse interactions in different scenarios.
Limitations and Future works The current framework is analyzed in selected scenarios
where cooperative interaction is required to solve the problem. In future works, we will
adapt the framework for general in-door scenarios where obstacles have random and complex
shapes. We also plan to develop a standard test environment, including IPG agents with
various interaction parameters to better learn and benchmark social navigation algorithms.
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Resolved by increasing safety radiusStuck due to aggressive estimation 

Blue: IPG  Green: Vanilla Blue: IPG  Green: Vanilla

Blue: Ignore  Green: IPG Blue: Ignore  Green: IPG

Figure 5.7: Interactions between of heterogeneous agents.
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Part III

Generalizable Skill Learning
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Chapter 6

Multi-task Learning and Transfer
Reinforcement Learning

6.1 Introduction

Deep reinforcement learning (RL) has made massive progress in solving complex tasks
in different domains. Despite the success of RL in various robotic tasks, most of the im-
provements are restricted to single tasks in locomotion or manipulation. Although many
similar tasks with different targets and interacting objects are accomplished by the same
robot, they are usually defined as individual tasks and solved separately. On the other hand,
as intelligent agents, humans usually spend less time learning similar tasks and can acquire
new skills using existing ones. This motivates us to think about the advantages of training
a set of multiple tasks with certain similarities together efficiently. Multi-task reinforcement
learning (MTRL) aims to train an effective policy that people can apply to the same robot to
solve different tasks. Compared to training each task separately, a multi-task policy should
be efficient in the number of parameters and roll-out environment steps. It should have the
potential to generalize to other unseen similar tasks.

The key challenge in multi-task RL methods is determining what should be shared among
tasks and how to share. It is reasonable to assume the existence of similarities among all the
tasks picked (usually on the same robot) since training completely different tasks together
is meaningless. However, the gaps between different tasks can be significant even within the
set. For tasks with the same robot but different goals, it’s natural to share all the parameters
and add the goal into state representation to turn the policy into a goal-conditioned policy.
For tasks with different skills, sharing policy parameters can be efficient for close tasks but
may bring additional difficulties for uncorrelated skills (e.g., push and peg-insert-side in
Meta-World [239]). Also, multiple components in the RL framework can be shared between
tasks, for example, the task and input encoder and the policy network. We need to determine
how we recognize and solve each task during evaluation.

Recent works on multi-task RL proposed different methods for this problem. We roughly
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divide them into three categories. Some researchers focus on modeling share-structures for
sub-policies of different tasks [13, 231], while some focus more on algorithms and aim to han-
dle conflicting gradients from different tasks losses during training[238]. In addition, many
works attempt to select or learn better representations as better task conditions for the poli-
cies. In this paper, we focus on the share-structure design for multiple tasks. We propose a
parameter-compositional MTRL method that learns a task-agnostic parameter set forming a
subspace in the policy parameter space for all tasks. We infer the task-specific policy in this
subspace using a compositional vector for each task. Instead of interpolating different poli-
cies’ output in the action space, we directly compose the policies in the parameter space. In
this way, two different tasks can have identical or independent policies. With different sub-
space dimensions(i.e., size of parameter set) and additional constraints, this compositional
formulation can unify many previous works on sharing structures of MTRL. Moreover, keep-
ing a task-agnostic parameter set brings advantages in extending trained policies to unseen
tasks.

The key contributions of this chapter are summarized below. (i) We present a general
Parameter Compositional (PaCo) MTRL training framework that can learn representative
parameter sets used to compose policies for different tasks. (ii) We show this formulation can
unify many previous MTRL works and introduce stabilization schemes useful for training
in our framework. (iii) We validate the state-of-the-art performance of PaCo on the Meta-
World benchmark without prior task information and verify the learned parameters can be
used for unseen tasks in a continual setting.

6.2 Preliminaries

Markov Decision Process(MDP)

A discrete-time Markov decision process is defined by a tuple (S,A, P, r, η, γ), where
S is the state space; A is the action space; P is the transition process between states;
r : S ×A → R is the reward function; η ∈ P(S) is distribution of the initial state, and
γ ∈ [0, 1] is the discount factor. At each time step t, the learning agent generates the
action with a policy π(at|st) as the decision. The goal is to learn a policy to maximize the
accumulated discounted return.

Soft Actor-Critic

In the scope of this work, we will use Soft Actor-Critic (SAC) [66] to train the universal
policy for the multi-task RL problem. SAC is an off-policy actor-critic method that uses
the maximum entropy framework. The parameters in the SAC framework include the policy
network π(at|st) used in the evaluation, and the critic network Q(st, at) as a soft Q-function.
A temperature parameter α is used to maintain the entropy level of policy. In multi-task
learning, the one-hot id of task skill and the goal is appended to the state space. Different
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Figure 6.1: Example tasks from Meta-World [239]

from single-task SAC, we assign a separate temperature ατ for each task with different skills.
The policy and critic function optimization procedure remains the same as the single-task
setting.

6.3 Revisiting and Analyzing Multi-Task

Reinforcement Learning and Beyond

In this section, we will revisit the standard MTRL task settings and highlight two inherent
challenges to MTRL algorithms on 1) parameter sharing and 2) parameter reusing.

Multi-Task Reinforcement Learning Setting

Each single task can be defined by a unique MDP, and changes in state space, action
space, transition, and reward function can result in completely different tasks. In MTRL,
instead of solving a single MDP, we solve a bunch of MDPs from a task family using a
universal policy πθ(a|s). The first assumption for MTRL is to have a universal shared state
space S, and each task has a disjoint state space Sτ ⊂S, where τ ∈T is any task from the
full task distribution. In this way, the policy would be able to recognize which task it is
currently solving. Adding the one-hot encoding for task ID is a naive implementation of
getting disjoint state space during experiments.

In the general MTRL setting, we don’t have strict restrictions on which tasks are in-
volved, but we assume that tasks in the full task distribution share some similarities. In real
applications, depending on how a task is defined, we can divide it into Multi-Goal MTRL
and Multi-Skill MTRL. For the previous one, the task set is defined by various “goals”
in the same environment. The reward function rτ is different for each goal, but the state
and transition remain the same. Typical examples of this Multi-goal settings are locomo-
tion tasks like Cheetah-Velocity/Direction 1 and all kinds of goal-conditioned manipulation

1By Cheetah/Ant-Velocity/Direction, we refer to the tasks that have the same dynamics as the standard
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tasks [149]. For the latter one, besides changes in goals in the same environment, the task
set also involves different environments that share similar dynamics (action space). This
happens more in manipulation tasks where different environments train different skills of a
robot, and one natural example is the Meta-World [239] benchmark, which includes multiple
goal-conditioned manipulation tasks using the same robot arm. In this setting, the state
space of different tasks changes across different skills since the robot is manipulating differ-
ent objects (c.f. Figure 6.1). In both Multi-goal and Multi-skill settings, we have to form
the set of MDPs into a universal Multi-task MDP and find a universal policy that works
for all tasks. For multi-goal tasks, we need to append “goal” information into the state;
for multi-skill tasks, we need to append “goal” (usually position) as well as “skill” (usually
one-hot encoding). After getting state Sτ , the corresponding transition and reward P τ , rτ

can be defined accordingly.

Challenges in MTRL and Beyond

Parameter-Sharing. Multi-task learning aims to learn a single model that can be
applied to a set of different tasks. Sharing parameters allows us to take advantage of the
similarities among tasks. However, the gaps between contents and difficulties of different
tasks bring us the challenges on both which tasks should share the parameters and what
parameters should be shared. Failure in the design may result in low success rate on certain
tasks that could have been solved if trained separately. This is a challenge in designing an
effective algorithm for solving the MTRL task itself.

Learning Beyond MTRL. Leveraging already acquired knowledge for learning new
tasks has the potential to improve training efficiency [93, 92]. In pursuit of this beyond
standard MTRL, we need to find what can be reused for the new tasks [176, 73, 7].

For example, in continual learning, where different tasks appear sequentially, the choice
of sharing scheme is crucial since we need to maintain the high performance of previous tasks
while training on the new ones. [93, 92]. This is a challenge in moving beyond the standard
MTRL setting towards a more practical scenario.

6.4 Parameter-Compositional Multi-Task RL

Motivated by the challenges in training universal policies for multiple tasks discussed in
Section 6.3, we will present a Parameter-Compositional approach to MTRL. The proposed
approach is conceptually simple yet offers crucial flexibility for extension.

Formulation

This section describes how we formulate the parameter-compositional framework for
MTRL.

locomotion tasks but with a goal of running at a specific velocity or in a specific direction.
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Figure 6.2: Parameter-Compositional method (PaCo) for multi-task reinforcement
learning. In this framework, the network parameter vector θτ for a task τ is instantiated
in a compositional form based on the shared base parameter set Φ and the task-specific
compositional vector wτ . Then, the networks are used in the standard way for generating
actions or computing the loss [66]. During training, Φ will be impacted by all the task losses,
while wτ is impacted by the corresponding task loss only.

Given a task τ ∼ T , where T denotes the set of tasks with |T | = T , we use θτ ∈ Rn

to denote the vector of all the trainable parameters of the model (i.e., policy and critic
networks) for task τ . We employ the following decomposition for the task parameter vector
θτ :

θτ = Φwτ , (6.1)

where Φ = [ϕ1,ϕ2, · · · ,ϕi, · · · ,ϕK ] ∈ Rn×K denotes a matrix formed by a set of K parame-
ter vectors {ϕi}Ki=1 (referred to as parameter set, which is also overloaded for referring to Φ),
each of which has the same dimensionality as θτ , i.e., ϕi ∈ Rn. wτ ∈RK is a compositional
vector, which is implemented as a trainable embedding vector for the task index τ . We refer
to a model with parameters in the form of Eqn. (6.1) as a parameter-compositional model.

In the presence of a single task, the decomposition in Eqn. (6.1) brings no additional
benefits, as it is essentially equivalent to the standard way of parameterizing the model.
However, when faced with multiple tasks, as in the MTRL setting considered in this work,
the decomposition in Eqn. (6.1) offers opportunities for tackling the challenges posed by the
MTRL setting. More concretely, since Eqn.(6.1) decomposes the parameters to two parts:
i) task-agnostic Φ and ii) task-aware wτ , we can share the task-agnostic Φ across all the
tasks while still ensure task awareness via wτ , leading to:

[θ1, · · · ,θτ , · · · ,θT ] = Φ[w1, · · · ,wτ , · · ·wT ]

Θ = ΦW.
(6.2)
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For MTRL, let Jτ (θ) denote the summation of both actor and critic losses implemented in
the same way as in SAC [66] for task τ , the multi-task loss is defined as the summation of
individual loss Jτ across tasks:

JΘ≜
∑

τ Jτ (θ)

where Θ denotes the collection of all the trainable parameters of both actor and critic
networks. Together with Eqn.(6.2), it can be observed that the multi-task loss JΘ contributes
to the learning of the model parameters in two ways:

• ∂JΘ/∂Φ=
∑

τ ∂Jτ/∂Φ: all the T tasks will contribute to the learning of the shared pa-
rameter set Φ;

• ∂JΘ/∂W=
∑

τ ∂Jτ/∂wτ : each task loss Jτ will only impact its own task specific composi-
tional vector wτ .

Furthermore, because of the clear separation between task-specific and task-agnostic
information, the compositional form of parameters as in Eqn. (6.2) offers opportunities
to naturally handle several cases (e.g. continual learning, transfer learning, etc.) beyond
standard MTRL. For example, in the case of transfer learning, we can transfer the task-
agnostic parameter set Φ to serve as the pre-trained policy basis for further learning. The
PaCo framework is illustrated in Figure 6.2.

Stable Multi-Task Reinforcement Learning

One inherent challenge in MTRL is the interference during training among tasks due to
parameter sharing. One consequence of this is that the failure of training on one task may
adversely impact the training of other tasks [201, 238]. For example, it has been empirically
observed that some task losses may explode during training on Meta-World [178], which
will contribute a significant portion in updating the shared parameters because of their
dominance. As a consequence, this will significantly impact the training of the other tasks
through the shared parameters. To mitigate this issue, [178] adopted an empirical trick to
stop and discard the whole training once this issue is spotted.2 Here, we show that in PaCo,
there is a natural way to mitigate this issue without resorting to more expensive [238] or
ad-hoc schemes [178].

More specifically, once a task loss Jη surpasses some threshold ϵ, because of the clear
separation of task-specific parameters wη from shared parameters Φ, we can straightfor-
wardly mask out Jη from the total loss J to avoid its adverse impacts on others, which will
essentially freeze wη and contribute no gradients to Φ. We refer to this as the Freeze.3 This

2https://github.com/facebookresearch/mtrl/blob/eea3c99cc116e0fadc41815d0e7823349fcc0bf4/mtrl/agent/sac.py#

L322
3Note that in this case, the compositional weight for task τ will not be updated due to the mask-out of

the loss. However, there are chances that the update on the parameter groups Φ from other tasks changes
the task parameter θτ and bring the task loss below the threshold, which could “turn on” the training on
task τ again.

https://github.com/facebookresearch/mtrl/blob/eea3c99cc116e0fadc41815d0e7823349fcc0bf4/mtrl/agent/sac.py#L322
https://github.com/facebookresearch/mtrl/blob/eea3c99cc116e0fadc41815d0e7823349fcc0bf4/mtrl/agent/sac.py#L322
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Algorithm 2 Parameter-Compositional MTRL (PaCo)

Input: param-set size K, loss threshold ϵ, learning rate λ
while termination condition is not satisfied do
θτ = Φwτ ▷ compose task parameter vector

Jτ ← Jτ (θ) ▷ loss (actor+critic as in SAC) across tasks

(Freeze / Reset Step 1 ) Jη ← 0 if Jη > ϵ
JΘ ←

∑
τ Jτ ▷ calculate multi-task loss

Φ← Φ− λ∇ΦJΘ ▷ parameter set update

for each task τ do
wτ←wτ−λ∇wτJτ (wτ ) ▷ composition param update

end for
(Reset Step 2 ) wη ← Eqn.(6.3) if Jη > ϵ

end while

is a conservative scheme that largely stabilizes the training but can compromise the overall
performance of the final policy (c.f. Table 6.2) as it has reduced the opportunity for learning
on the masked-out tasks.

Because of the compositional nature of the PaCo model, we can actually do better than
pure Freeze. This can be achieved by re-initializing wη without impacting parameters of all
others, in addition to loss mask out as in Reset, and then keep training as normal. One way
is to re-initialize wη as:

wη =
∑
j∈V

βjwj, β=[β1, β2, · · · ]∼∆|V|−1 (6.3)

where V ≜ {j|Jj ≤ ϵ}, and β is uniformly sampled from a unit |V|− 1-simplex ∆|V|−1.
We refer to this scheme as Reset. Compared with Freeze, which essentially stops training
on the problematic task, Reset offers an opportunity for further learning on that task. It
is worthwhile to point out that the ability to use Reset-like schemes is a unique feature
of PaCo due to its clear separation between task-agnostic and task-specific parameters.
Previous methods such as Soft Modularization [231] and CARE [178] cannot employ this
due to the lack of clear decomposition between the two parts. Empirical results show that
this can improve the training and lead to better model performance (c.f. Table 6.2). The
overall procedure of PaCo is presented in Algorithm 2.

Unified Perspective on Some Existing Methods

Apart from the interesting compositional form and the features of PaCo, it also provides
a unified perspective on viewing some existing methods. Using this formulation, we are able
to re-derive some existing methods with specific instantiations of Φ and w.

• Single-Task Model: if set Φ= [ϕ1,ϕ2 · · · ] and wτ as a one-hot task-id vector, this esse
ially instantiates a single-task model, i.e. each task has its dedicated parameters.
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• Multi-Task Model: if we set Φ=[ϕ]∈Rn×1, w1=w2=...=1, then all the tasks share the
same parameter vector θτ =ϕ. By taking the state and the task-id as input, we have the
multi-task model.

• Multi-Head Multi-Task Model: by setting Φ as follows:

Φ =

[
ϕ′ ϕ′ · · · ϕ′ · · · ϕ′

ψ1 ψ2 · · · ψτ · · · ψK

]
∈ Rn×K

where ψτ is the sub-parameter-vector of the output layer for task τ . Setting wτ as a one-
hot task-id vector, we recover the multi-head model for MTRL, where all the tasks share
the same trunk network parameterized by ϕ′ with independent head ψτ for each task τ .

• Soft-Modularization [231] is the case where Φ is in a specially structured form, with the
combination done at each level with a ”per-level” soft combination vector z(s, τ) condi-
tioned on current state s and task-id τ

θτ =

 [ϕ
1
1 ϕ1

2 · · · ϕ1
K ]z

1(s, τ)
...

[ϕm1 ϕm2 · · · ϕmK ]zm(s, τ)

 .
A difference is that Soft-Modularization [231] applies the combination on the activation
instead of parameters. Nevertheless, the dependency of the combination vector z(s, τ) on
state s makes it diffuse task relevant and task agnostic information together, therefore all
the parameters are entangled with state information and is less flexible in some cases, e.g.,
continuing training on new tasks. Also, an operation like Reset is inapplicable to Soft-
Modularization [231] because of the mixed role of z on state s and task τ .

6.5 Related Works

Multi-Task Learning. Multi-task learning is one of the classical paradigms for learning
in the presence of multiple potentially related tasks [15]. It holds the promise that the joint
learning of multiple tasks with a proper way of information sharing can make the learning
effective. It has been extensively investigated from different perspectives [89, 102, 172, 177,
249, 200, 2, 118] and been applied in many different fields, including computer vision [245,
91, 120, 183], natural language processing [229, 182] and robotics [88, 4].

Multi-Task Reinforcement Learning. The idea of multi-task learning has also been
explored in MTRL, with a similar objective of improving the performance of single-task
RL by exploiting the similarities between different tasks. Many different approaches have
been proposed in the literature [13, 19, 74, 35, 239, 147, 231, 178, 230, 166]. One of the

3To highlight the core algorithm, we have omitted the steps that are identical to standard SAC [66],
including environmental unroll, temperature tuning, and target critic update.
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most straight-forward approaches to MTRL is to formulate the multi-task model as a task-
conditional one [239], as commonly used in goal-conditional RL [149] and visual-language
grounding [147]. Although simple and has shown some success in certain cases, one inherent
limitation is that it is more vulnerable to negative interferences among tasks because of the
complete sharing of network parameters. [13] proposes an approach by assuming the func-
tional approximator for each task is a linear combination of a set of shared feature vectors
and then exploits the similarities among different tasks by employing a structured sparse
penalty over the combination matrix. [35] utilizes a mix-and-match design of the model to
facilitate transferring between tasks and robots. [31] leverages the shared knowledge between
multiple tasks by using a shared network followed by multiple task-specific heads. [231] fur-
ther extends these approaches by softly sharing features (activations) from a base network
among tasks by generating the combination weight with an additional modularization net-
work taking both state and task-id as input. Since the base and modularization networks
take state and task information as input, there is no clear separation between task-agnostic
and task-specific parts. This limits its potential on tasks such as continual learning of a novel
task. Differently, PaCo explores a compositional structure in the parameter space [150, 228]
instead of in feature/activation space [13, 231], and does so in a way such that the task-
agnostic and task-specific parts are decomposed. This not only enables natural schemes for
stabilizing and improving MTRL training (c.f. Sec.6.6), but also facilitates the expansion
on the applicability of the method beyond the standard MTRL setting (c.f. Sec.6.6).
Conflicting Gradients in Multi-Task Learning. Because of parameter sharing for mul-
tiple tasks (thus multiple task losses), the shared parameters are impacted by the gradients
from all the task losses. Whenever the gradients are not consistent with each other, there
will be conflicts in updating the shared parameter. This issue of conflicting gradients is a
general problem that is present in general multi-task learning [238, 223]. [201] bypassed the
conflicting gradient issue by discarding parameter sharing but instead distilling each task
policy into a centralized policy. [178] alleviates the negative effects of interference by de-
ciding which information should be shared across tasks, using context-based attention over
a mixture of state encoders. This demonstrates the benefits of a task-grouping mechanism
but requires additional context information. There are also approaches to mitigating the in-
terferences by balancing the multiple tasks from the perspective of loss [74] or gradient [24].
[238] proposes to address the conflicts by gradient projection, which could be less reliable in
the case where gradients are noisy, as is the case in RL.

6.6 Experiments

We now empirically test the performance of our Parameter-Compositional Multi-Task
RL framework on the Meta-World benchmark [239]. Meta-World benchmark is a robotic
environment consisting a number of distinct manipulation tasks (c.f. Figure 6.1). Each task
itself is a goal-conditioned environment, and the state space of all the tasks has the same
dimension. The action space of different tasks is exactly the same, but certain dimensions
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in the state space represent different semantic meanings in different tasks (e.g., goal position
or object position).

With experiments performed on Meta-World, we would like to answer: (i) Can PaCo
reach state-of-the-art performance in the multi-goal, multi-skill RL setting?(ii) What are
the benefits of using interpolation of parameter sets? What does the policy subspace learn?
(iii) Can the learned policy subspace benefit learning of new tasks beyond the standard
MTRL setting?

PaCo Quantitative Results

Benchmarks. In the original Meta-World benchmark [239], each manipulation task is
configured with a fixed goal. Therefore, the learned policies are not goal-conditioned ones
as it cannot generalize to a task of the same type with different goals. This setting is easier,
but more restrictive and less realistic in robotic learning [231]. Following [231], we extend
all the tasks in the benchmark to a random goal setting.

Baselines. We compare against (i) Multi-task SAC: extended SAC [66] for MTRL
with one-hot task encoding; (ii) Multi-Head SAC: SAC with shared a network apart
from the output heads, which are independent for each task; (iii) SAC+FiLM: the task-
conditional policy is implemented with the FiLM module [147] on top of SAC; (iv) PC-
Grad [238]: a representative method for handling conflicting gradients during multi-task
learning via gradient projection during optimization; (v) Soft-Module [231]: which learns
a routing network that guides the soft combination of modules (activations) for each task;
(vi) CARE [178]: a recent method that achieves the state-of-the-art performance on Meta-
World benchmark by leveraging additional task-relevant metadata for state representation.4

Training Settings. In experiments, the convergence performance is related to the
number of parallel environments for training and the number of tasks in the environments.
There is a balance between the number of iterations and the number of roll-out samples.
Referring to the settings introduced in [178], we use 10 parallel environments for the MT10-
rand setting and 20 million environment steps (2 million for each task) during training.

Evaluation Metrics. The evaluation metric for the learned universal policy for all tasks
is based on the success rate of the policy for all the tasks. For Meta-World benchmarks,
we evaluate each skill with 10 episodes of different sampled goals using the final policy.
The success rate is then averaged across all the skills. For each experiment, we train all
methods with 3 random seeds. The randomness in the MTRL training is unpredictable;
some methods may converge to a higher success rate right after 20M steps, and some may
drop if the training continues. Instead of picking the maximum evaluation success rate across
training, we use the policy at 20M environment steps for fair evaluation.

PaCo Variants. The most important hyper-parameter we need to determine for the
PaCo framework is the number of parameters set m. For a group of similar skills, we may be

4Note that the experiments reported in the works mentioned above are implemented and evaluated on
Meta-World-V1 and/or with the fixed-goal setting. We adapt these methods and experiment on Meta-World-
V2 for experiments.
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able to reach a high success rate with one parameter set K=1. For skills with high variance,
for example, “reach” and “pick-place” (the easiest and hardest skills), sharing parameters is
hard. Overall, the increasing in parameter group number K grows with the task number n
but essentially at a lower speed. For the benchmark MT10-rand, which contains 10 different
manipulation skills, we set K=3, 5, 8 as different variations of our method.

Table 6.1: Results on Meta-World [239] MT10 with random goals (MT10-rand).

Methods
Success Rate (%)
(mean ± std)

Multi-Task SAC [239] 66.7 ± 8.1
Multi-Head SAC [239] 59.3 ± 9.0
SAC + FiLM [147] 58.4 ± 1.2
PCGrad [238] 63.0 ± 6.0
Soft-Module [231] 64.3 ± 5.7
CARE [178] 79.7 ± 9.3
PaCo (Ours) 85.0 ± 5.0

From Table 6.1, we observe an improvement in the average success rate and the stability
of training on the MT10-rand benchmark compared to baseline methods. Compared to
the previous state-of-the-art method CARE [178], we achieve a better performance without
additional task information. For variations in the parameter set, we find K = 5 gives the
best performance. Results are shown in Table 6.2, more parameter groups don’t always help
in MTRL training.

Stable MTRL Training

In RL training, failure or gradient explosion may occur due to weight initialization,
bad exploration, and many other random factors. This is even worse for the MTRL setting,
especially on those parameter-sharing models, since the loss and gradient explosion on certain
tasks would influence tasks that share the same policy parameters. In PaCo, we use the
Freeze and Reset schemes introduced in Section 6.4 to avoid the influence of extreme losses
of certain tasks. We perform an ablation study on them to analyze their roles in stabilizing
the MTRL training. PaCo-Vanilla refers to the pure compositional structure setting. PaCo-
Freeze refers to the setting with the freezing scheme on tasks losses that exceed the loss
threshold, PaCo-Reset refers to the scheme that, in addition to Freeze, also re-initializes the
compositional vectors of tasks with extreme losses. In order to show the stability precisely,
we don’t early-stop the training process even if the loss of some task already explodes.

The final success rates are shown in Table 6.2. It is observed that although PaCo-Vanilla
has higher final performance, it has a larger variation and is less stable during training, which
can lead to exploding loss in some cases. PaCo-Freeze variant can prevent the training
from collapsing but can potentially compromise the performance because of the reduced
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(a) (b)

(c)

Figure 6.3: (a) Compositional vectors of skills reach, push, peg-inset-side learned on the
restricted unit circle in 2D policy subspace. (b) Trained policies (Reach, Push, Peg-insert-
side) and interpolated policies between skill Reach and Peg-insert-side. Visualization is done
on the peg-insert-side task. One interpolated policy close to Peg-insert-side-skill shows the
skill of picking up the peg. Another interpolated policy close to Reach-skill shows the insert-
like skill without picking up the peg, which also resembles a reaching-skill towards the hole.
(c) 2D PCA projection of the ten 5D compositional vectors {wτ} learned on MT10-rand
tasks.

opportunity of learning on the masked-out tasks. Another reason for its lower success rate
than PaCo-Vanilla is that the model for evaluation is obtained at 20M environment steps,
which accidentally coincides with a peak of the fluctuating performance for PaCo-Freeze.
The PaCo-Reset variant improves both the average success rate and the stability of MTRL
training.
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Table 6.2: Ablations with PaCo Variations on MT10-rand.

Variations Success Rate (%)

PaCo-Vanilla 80.0 ± 8.1
PaCo-Freeze 76.6 ± 12.1
PaCo-Reset (K=5) 85.0 ± 5.0
PaCo (K=3) 74.4 ± 5.1
PaCo (K=8) 81.0 ± 8.4

Qualitative Understanding of Parameter Groups

Skill Interpolation. To better understand the trained compositional vectors {wτ} for
each task, we first demonstrate the result of PaCo on a representative 3-task combinations
using 2 parameter groups. We include three tasks: reach, push, and peg-insert-side with 50
goals for each in the task set. Using the number of roll-out samples before convergence as a
metric for each single task, this combination actually covers simple, medium, and hard skills
in the Meta-World. It’s hard to learn this task combination using one model like MT-SAC
or Multi-Head SAC, usually the success rate for hardest task remains low. After training,
PaCo reaches an average success rate of 100% across all skills.

In Figure 6.3a, we show the position of the skill-specific policies in the compositional
vector 2D plane. In order to get better visualization on subspace, we added a normalize
activation after the weights, e.g., all the policies lie on the unit circle in W space. This actu-
ally shows: (i) We are not learning all the task with one policy, different tasks use different
parameters. (ii) We are able to find policies for three completely different manipulation
skills on this 1D low-dimensional manifold in the policy parameter space. This satisfies the
purpose of multi-task learning in saving parameters. The learned two parameter groups
are “eigen” policies although they don’t describe an independent skill. As a trial, We sam-
pled an interpolation point between the task reach and peg-insert-side policy. The resulting
policy performance is demonstrated in Figure 6.3b. In the peg-insert-side environment, it
tried to do the “insert” action to the correct position but is not particularly impacted by
the peg; therefore is an “insert” skill that is not particularly customized for the particular
peg-insert-side task.

Emerged Task Similarities. We visualize the learned compositional vectors in a 2D space
via Principal Component Analysis (PCA) in Figure 6.3c, for MT10-rand. The distance in
the compositional space actually indicates the similarity between skills. There are several
interesting observations:

• Very distinct skills could lie in different part of the skill space, e.g. reach v.s. others;

• Skills that are literally related appear to be close, e.g. window-open v.s door-open, window-
open v.s. window-close in Figure 6.3c. This is in fact the core idea explored by CARE [178]:
incorporating task relation extracted from sentence-based task descriptions into the model.
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Here we observed that meaningful task relations emerged purely from learning without
additional task-related meta-data as in CARE [178];

• Another interesting observation is that some skills that are not literally related also ap-
pear to be close in the skill space learned by PaCo, e.g. peg-insert-side v.s. window-
open/window-close/door-open/drawer-open. Although literally distinct, peg-insert-side and
the other skills mentioned above are related from the perspective of behavior, i.e., first in-
teracting with an object (e.g., peg/window/door), and then taking a trajectory of motions
to accomplish the subsequent operation, (e.g. insert/window/door). Therefore, these liter-
ally unrelated skills are inherently semantically related at the skill level. This is something
that could be useful but is not able to be leveraged by CARE [178], explaining one of the
possible reasons why PaCo is more effective.

Additional Factors in MTRL Training

Ratio of task samples. In the 10 manipulation tasks involved in MT10, there are
certain tasks that are harder than others and take more samples to train the optimal policy.
Comparing the roll-out samples required to train a successful policy, the peg-insert-side and
pick-place need significantly more samples than others and have worse stability. However, in
the MTRL setting, without the information on the difficulty of tasks provided in advance,
we can only uniformly roll out samples for each task. In experiments, by manually setting
the ratio (larger for hard tasks) of tasks based on difficulties, we can reach the similar
performance of PaCo reported in Table 6.1 using only 10-15M samples.

Table 6.3: Compositional structure variation results.

Compositional Variations Success Rate (%)

Output-Layer Actor-only 60.0 ± 0.0

Full-Net
Actor-only 73.3 ± 5.8
AC-shared (PaCo) 85.0 ± 5.0

Compositional structure variations. There are several possible variations in PaCo by
employing compositional structure to all (actor and critic) networks (AC-shared) or only to
the parameters of the actor-network (Actor-only). Also, we can choose to apply the structure
to all the layers in the network (Full-Net) or only to the output layer (Output-Layer), which
is architecturally similar to Multi-Head SAC. The results in Table 6.3 show that when applied
to the output layer only, the performance is comparable to Multi-Head SAC (c.f. Table 6.1),
although with fewer parameters (K =5) than Multi-Head SAC (K =10). This shows that
the compositional structure is also effective in the output layer up to the performance limit
imposed by the network architecture. Using the compositional structure for the full networks
of both actor and critic can further unleash its potential and give the best performance.
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Initial Attempts: PaCo-based Continual Learning

Going beyond MTRL, another question we may ask in the application is how we ben-
efit from the policy trained by PaCo when we meet new tasks. The unique property of a
well-separated task-agnostic parameter set and task-specific compositional vector gives us
the potential to use PaCo in a more challenging continual setting. The main reason for
catastrophic forgetting in continual learning is that the training on new tasks modifies the
policies of existing tasks. However, in our PaCo framework, if we can find the policies for
new task τ̃ in the existing policy subspace defined by Φ with a new compositional vector
wτ̃ , the forgetting problem can be avoided. With no change on Φ, we extend the existing
parameters to a new task with no additional cost. In reality, there is no guarantee for the
existence of such a policy; the relation between skills is quite important. However, in exper-
iments, we do find successful extensions from an existing skill set to a new skill when the
skills are similar. For instance, reach, door-open, drawer-open to drawer-close.

In practice, we can design a more general training scheme to learn the policy for a series
of tasks. Given a parameter set Φ with K parameter groups trained on N tasks, if we find
the policy for new tasks in the policy subspace, we save the compositional vector for the
new task. If we cannot find the policy in the subspace, we train the new tasks on a new
parameter set Φ̃ and merge them into a subspace with a higher dimension. Verifying this
property on larger skill sets is an interesting future direction and requires more complex
experiment designs.

6.7 Chapter Summary

Based on a revisit to MTRL and its challenges both within and beyond its typical settings,
we present PaCo, a simple parameter compositional approach, as a way to mitigate some of
these challenges. The proposed approach has the benefit of clear separation between task-
agnostic and task-specific components, which is not only useful for stabilizing and improving
MTRL but also opens the door to transfer and continual learning naturally. Without resort-
ing to more complicated design [231] or additional data [178], PaCo has demonstrated clear
improvement over current state-of-the-art methods on standard benchmarks. Furthermore,
we have also demonstrated its possibilities in continual learning.
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Chapter 7

Utilizing LLM for Partial Observable
Task Planning

7.1 Introduction

In the previous chapter, we introduced how we learn generalized skills from the novel
compositional learning structure. However, even with learned skills, doing long-horizon
tasks is still challenging for robots. In this chapter, we focus on solving the complexity of
task planning with the help of Large Language Models.

Designing robots with the physical intelligence to perform open vocabulary tasks requires
that robots be able to interpret tasks from an open set of instructions and execute them
robustly while performing the required reasoning. One can argue that this could be the
most challenging problem facing artificial intelligence (AI). However, designing such agents
can truly revolutionize how robots would be integrated into our future society. Recently,
large language models (LLMs) [143, 3, 206] are very impressive at solving tasks of different
complexities [213, 1, 240, 111, 115]. Large language models can help understand the tasks
and decompose them into a sequence of actions, reward functions, or goals for policy, given
appropriate prompts and training data. Motivated by these developments, we present a
problem of interactive planning in uncertain environments where a robot may not have
complete information to perform the task. In these tasks, the robot needs to interact with
its environment and collect additional information to complete the task.

Partial observability and uncertainty are the norm, rather than the exception, in the
real world. For example, consider task T2 shown in Figure 7.1, where a robot needs to
understand how it can gather information to identify the empty cup and then throw it in
the bin. Unlike the tasks with complete information, it would be challenging to design a
sequence of skills or a suitable reward function that can solve this task. This problem can
be formulated as a Partially Observable Markov Decision Process (POMDP)[87]. However,
solving POMDPs could be computationally intractable. It requires reasoning in the belief
state of the problem and does not scale well with the dimensionality of the problem. Prior
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Trash Bin

Cup 1 Cup 2

T1: Throw the cup on the
left into the trash bin.

 Large
 Language
 Model

    pick(cup_1), place(trash_bin)

    r=-d(bin, cup_1)

Action Sequence
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User input

T2: Throw the empty cup
into the trash bin.
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Planner
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Figure 7.1: An example task where the uncertainty is present in the content of the cups. For
task T1, the robot is asked to throw the cup on the left into the bin. An LLM agent can
generate feasible action sequences for the robot to perform the task. When asked to throw
the empty cup, the agent cannot reason which cup is empty based on current information.
It needs to interact with the cups and use feedback from observations (e.g., force sensor
reading) to identify the empty cup.

work on using LLMs for robotic tasks has demonstrated good reasoning capability of LLMs as
well as mapping of the reasoning to robot actions [1, 77, 42]. Inspired by these advancements,
we believe that we can leverage the reasoning and chain-of-thoughts(CoT) capability of LLMs
to solve partially observable tasks while interacting with the environment. What makes this
challenging for current LLMs is the requirement to understand real robot observations from
different modalities and use them for task planning.

Most of the prior works using LLMs in robotics focused on step-wise scene and task
understanding, making full use of the current available modalities to infer the optimal action
and/or reward [1, 77, 240, 42]. In this work, we focus on performing interactive planning
under cases of partial observability. This requires planning to aggregate information from
the environment, reasoning about the correct state of the system, and updating the state
estimates based on the sensor observations collected by the robot. Furthermore, we also try to
understand how well a fine-tuned smaller model like Llama2-7B [206] performs in comparison
with a pre-trained LLM like GPT-4. The smaller models are generally desirable for practical
reasons but it could be challenging to distill the reasoning capability of models like GPT-
4 for complex robotic tasks discussed in this paper. To understand this, we propose an
instruction data generation pipeline following the self-instruction [222] scheme to understand
the limitations of smaller models and potential ways to overcome them.

In summary, this chapter aims to:

• Introduce the Large Language Model for Partially Observable Task Planning(LLM-
POP) framework to interactively plan with uncertainties. We demonstrate the frame-
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work in simulation and real-world environments.

• Compare the performance of pre-trained LLM and fine-tuned smaller models in the
proposed framework for partially observable tasks.

7.2 Interactive LLM Planning with Uncertainties

The objective of the proposed framework is to perform long-horizon robotic tasks in the
presence of various kinds of uncertainties using LLMs. These tasks require a closed-loop,
interactive planning where the robot should be able to collect useful observations from the
environment and then make optimal decisions. An example of such a task is illustrated in
Figure 7.1, where the robot’s task is to throw the empty cup into the bin. However, there
exists uncertainty in the contents of the cups, and therefore, this information needs to be
obtained by sensorimotor operations and provided as the feedback to the LLM. For clarity
of presentation, this section delves into formulating the underlying problem using the notion
of POMDPs. We then elaborate on the pivotal role of LLMs in the interactive planning
framework.

Problem Formulation

Partial Observation setting

A POMDP is an extension of a traditional MDP that tackles decision-making scenar-
ios where the agent lacks complete state information. A POMDP is defined by a tuple
(S,A, P,R,Ω, O), with Ω as the observation set and O as the observation function. At each
time step, the environment is in state s ∈ S. The agent takes action a ∈ A and causes the
environment to transit to s′ accordingly to the transition function P (s′|s, a). At the same
time step, the agent gets an observation o ∈ Ω which depends on the current state of the
environment O(o|s′). Unlike the policy function in MDP π(a|s), which maps the underlying
states to the actions, POMDP’s policy π(a|b) is a mapping from the belief states b to the
actions. The belief state b is a probabilistic estimation of the full state s. The updated belief
state b′ after observing o is described by: b′(s′) = C · O(o|s′)

∑
s∈S P (s

′|s, a) where C is a
normalizing constant.

We also want the proposed framework to be generalizable to a variety of tasks. For
different tasks, τ , the information required to make decisions can differ. This adds additional
complexity since now the LLM has to reason about a generalizable state space S. In the
open-vocabulary robotics task scenarios, the robot observations are determined by on-board
sensors. Not all information about the environment is relevant to the task; some of them can
be directly extracted from observations, while some are unknown and require exploration.
Thus, we end up getting task-dependent belief state bτ , and the task-related states sτ for task
τ . Both finding the necessary state abstraction for different tasks and finding the optimal
policy π under the task-specific MDP are important in this task-dependent POMDP setting.
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Action space of robots

For long-horizon tasks, using a pre-trained set of parameterized skills as action space is
a common choice. In this paper, we use a set of parameterized skills like {pick, place,
reach, reset}. All these skills can be performed using robot observations, and thus, we
do not consider partial observability during robot skills execution. It is noted that we do
not consider continuous sensory feedback during skill execution– however, that could be
incorporated by training skills using RL.

Uncertainties in Tasks

The uncertainty in decision-making in the tasks we test mainly arises from two aspects:
Environmental Uncertainty: These uncertainties arise in the POMDP settings due to the
agent’s lack of complete environmental knowledge. For example, physical properties of the
objects that cannot be directly observed. The uncertainties in the belief bτ can be reduced
with certain observations. This is a major challenge we target to solve in this paper.
Skill Execution Uncertainty: Even with a well-defined plan, the actual execution of
actions on robots might not always lead to the expected outcome. This can be mainly
attributed to the difference between the transition functions P , Preal of the designed and real
system as well as unexpected disturbances during execution.

With the challenges explained above, we propose a framework where LLMs are used as
policy as well as for state abstraction for the underlying POMDP.

Language-based Planners

Based on the problems described in the previous section, we propose to use an LLM to
play a multifaceted role in the interactive planning process:
LLM for State Abstraction: Given the environment description and sensor observations,
LLM needs to analyze the available information and abstract sufficient statistics (or the
appropriate state) to solve the task. Furthermore, based on the current observations, it needs
to reason about what is uncertain. It needs to update its belief based on the observations
when prompted with historical information.
LLM as Policy: Given the observation and action space, LLM needs to plan actions that
gather environmental information to mitigate the uncertainty and update the agent’s belief
state. The LLM-based policy is also expected to generate the optimal plan to maximize
the reward based on the task description with minimal steps. Also, since we use open-loop
parameterized skills for the robot, the LLM is also used to provide feedback to the robot in
cases of failure in the execution of these skills. This feedback needs to be provided in a way
that is still executable by the robot.

We use LLM to reason about these problems during task execution. It is noted that
actions in the POMDP setting is conditioned on new observations and updated beliefs.
There are a few additional challenges when using LLM as a closed-loop policy for tasks
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 LLM
 Planner

 LLM
 Evaluator

Task
 Pick up the 
 heavier block

Robot

Block A is at 330, -327, 43;
Block B is at ....

330 -327 43 80 367 -526
25 110 419 -250 192 180
0 -90 -0.80 0.05 0.08 67

Observation

History

Actions
PICK blockB
PLACE [367 -526 100 180 0 -90]

We pick B to
test its weight...

Block B is heavier...
No execution error...

A 6dof robot
arm with a
gripper...

Explain

Evaluation

Description

Backgrounds

Figure 7.2: An example showing how the framework works during solving the task “Pick up
the heavier block”. The LLM planner outputs an executable action sequence to the robot.
The robot executes the action, and the observation description and action pair are added
into the history buffer. The LLM evaluator analyzes the historical information and outputs
the updated information to the planner to generate a new plan.

with uncertainties that we consider in the paper. To update the belief state of the task,
the LLM must understand the robot observations from different modalities (pose detections,
force sensors, etc.). These data formats might be new to the LLM model and, thus, must
be properly included in the prompt template for the LLM. Furthermore, the skills available
to the robot are parameterized by continuous position and orientation coordinates, which
might be challenging to reason about while performing robotic tasks. Similarly, the output
of the language model needs to be executable by the robot; the response should be written
in a template that the downstream controller can understand. In the next section, we will
discuss how we use the LLMs to solve the interactive planning task.

7.3 LLM-POP: Interactive Planning

The proposed framework (LLM-POP) for interactive planning is illustrated in Figure 7.2.
As introduced in the problem formulation, the language-based policy in our framework has
multiple tasks to do in the planning loop. At each step, the input to the language model
contains the task description from a user, the current observation from the robot, and
the historical action and observation sequence from previous steps. The model output
includes an executable sequence of actions and the corresponding text explanation.
The robot will execute the actions provided by the policy output and return the observations
for a next-round query of the LLM. The language model must finish the reasoning task and
output the policies in the designed format. The task description is the only user-provided
input during the planning process. In the following sections, we show how we use a pre-
trained LLM (GPT-4) as well as a fine-tuned smaller model to serve as the planner and
evaluator.
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Prompt structure for GPT-4

Using powerful LLMs like GPT-4 as interactive planners relies on its strong chain-of-
thought reasoning and in-context learning capability. Therefore, the prompt (input of a
single round LLM query) to the LLM requires careful design to ensure it can generalize to
robotics tasks and avoid hallucination (generating actions in wrong formats or not executable
for the robot) in responses.

As shown in Figure 7.3a, the prompt template for the planner consists of the following
parts:

• Environment description, action options, output rules : Background information that
help understand the task settings. This information is preset by the user and is constant
throughout planning for different tasks.

• Task description: texts describing tasks from users. We assume the first two parts
should provide enough information for the LLM to understand what’s the missing
information and what are actions that can collect the information.

• Example outputs : in-context examples for planning.

• Current observation and historical information: text-format descriptions of current
observation and historic information. If the observation is poses and force, use vectors
with explanations.

The explanation in output, together with the action sequence, will be included in his-
torical information. This helps the LLM to understand the past actions it has performed
and avoid reasoning about it again. Note that the LLM planner needs to specify the pa-
rameters in the actions based on its own understanding of the environment, task, and the
action space description. For manipulation tasks, this includes location and orientation for
the target pose.

As shown in Figure 7.2, along with the LLM planner, we also designed an LLM evaluator
using a similar prompt structure. The evaluator also takes in the background information,
task description, and history observations after executing past actions. It evaluates the task
execution status and appends it to next-round prompting. As described in Section 7.2, the
evaluator here will explicitly ask the LLM to finish the “state abstraction” (analyze what’s
the missing information), “belief update” in policy (analyze information from historical
observations), and “correct execution errors”(identify failures from the history). Although
it is possible to put all the requirements into the LLM planner, asking it to do all the
analysis and make planning decisions in the response, we find decomposing this into two
steps improves the reasoning results.

Fine-tuning a smaller model as planner

Fine-tuning a language model, rather than directly querying a GPT-4, not only enables
offline deployment but also holds distinct advantages in the context of interactive planning.
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[Environment*]
A Franka robot is placed in front of a table with cubes on
top...
[Task Description*]
Move the heavier blocks to the corner of the table.
[Action Options]
1) PICK <object> 
2) PLACE <location>
3) RESET
[Output Examples**]
EXPLAIN To check the weight of blocks, we need to first...
PICK blockA\n PLACE [0.1 0.2 0.05 0 0 0 1]
[History and Current Observation*]
Round 1: block A at... force reading... after action PICK...
Current: block A at ..., force reading...
[Output Instructions and Rules**]
Think step by step...
Remember to follow the format of output:...

* same for evaluator ** adjust for evaluator

(a) Prompt template for GPT planner and
evaluator. The task description is taken from
user input; the others are pre-defined accord-
ing to the environment and robot. Output
rules will be adjusted for the evaluator.

Environment Description  Task List
1. Move blocks to edge.
2. Put the heavier block
next the light one.
...

Self-instruct with in-
context examples to
generate {task,
instruction, explanation,
actions} pairs

Fine-tune LLaMA
2 to get Planner

GPT-4

GPT-4

LLaMA-
Adapter

Missing information
is the block weights

PICK(blockA)

CoT
Question
Candidates

(b) The training procedure of the fine-tuned
LLMs as an interactive planner as described in
Sec 7.3. During inference, questions come from
the pre-defined CoT question set; inputs come
from robot observation.

Figure 7.3

One prominent reason is the incorporation of multi-modality in the data. Our system doesn’t
solely rely on text descriptions but also utilizes the robot’s observations. While these obser-
vations can theoretically be converted into text form, they constitute a novel data type that
GPT-4 has not been trained on, thereby resulting in limited zero-shot generalizability. For
example, in experiments using GPT-4, if poses in robot observations and action parameters
are in different frames of reference, the LLM will have trouble transforming them. A second
reason is the requirement of large contexts in the input. A direct query to GPT would ne-
cessitate the inclusion of environment settings and generation constraints at each instance,
which is inefficient and cost-intensive. The difficulty of fine-tuning a smaller pre-trained LLM
model mainly comes from two sides: 1) Lack of data for complex tasks. Most robotics data
in the wild[216, 10, 48] has no partial observable tasks involved, and force-torque sensor data
is usually not included since they are noisy and vary across robots. 2) Smaller models are
worse at reasoning tasks, CoT is tied with larger models [224].

In order to get the required data to fine-tune a model as a planner in interactive plan-
ning under partial observation, we follow the procedure shown in Figure 7.3b, using self-
instruct[222] to generate an instruction dataset and fine-tune a LLaMA2-7B[207] model.
The full pipeline includes:
Task Generation: The description of the environment, robot, potential uncertainties, ac-
tion options, and example tasks are provided to GPT-4 to generate a number of tasks that
are feasible to solve. We encourage GPT-4 to make the task set diverse in difficulty.
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Instruction Generation: The generated tasks are used to generate pairs of instructions and
responses, following the self-instruct paradigm. The instruction includes task descriptions
and questions, the input encompasses the robot’s observations. The output generated by
the model includes the same verbal explanations and actions as GPT-4 planners. We add
format instructions to guarantee the “response” format.
CoT question designs: Finishing the state abstraction, belief update, and action planning
in one query is hard for smaller models. Therefore, we create CoT questions[75] to ask if
missing information exists, how to collect information, and how to solve the task with fill
information. The planner will choose questions to ask based on binary options in response.
Integrating collected robot observations: For the pre-trained actions, we collect success
trajectories of the robot finish the actions and use them as in-context reference examples in
the Instruction Generation process.
Fine-tuning: For the fine-tuning process, we adopted the LLaMA-adapter [57]. This ap-
proach allows us to enhance the model’s performance by leveraging a specifically curated
dataset and fine-tuning it to our unique task generation and interactive planning scenario.

7.4 Experiments

Step 1 Step 2Step 0

Task:
<mass> Stack the
lighter block on
the heavier one.

PICK blockA
PLACE {'target_pos': [ 330.72, -327.39, 100. ],'target_ori': [180., 0., -90.]},
PICK blockB
PLACE {'target_pos': [ 367.85, -526.12, 100. ],'target_ori': [180., 0., -90.]}

First, we need to determine which block is lighter.
To do this, we will pick up blockA and observe the force reading.
Then, we will pick up blockB and compare the force reading with that of blockA.

The force reading for blockA was -1.22 and for
blockB was -2.91.
This indicates that blockB is heavier than blockA.
We will pick up blockA and place it on blockB

PICK blockA
PLACE [ 388.27, -526.01,  100]  [180.,   0., -90.]
RESET

PICK PLACEPICK PLACEPICK PLACE

Explain

Actions

Pl
an

ne
r O

ut
pu

t

Figure 7.4: An example rollout of LLM-POP solving T4:Stack the lighter block on the heavier
one. In the first step, the LLM planner figured out the plan to determine which block is
lighter by picking and placing up and placing down both blocks. In the second step, the
LLM evaluator figured out blockB is heavier and plans to place blockA on blockB. In the
next round(now shown in the figure), the evaluator recognized the completion of the task.

The experiments aim to validate the proposed interactive planner and to answer the
following three questions:

1. Is the proposed framework able to solve complex tasks with uncertainties?
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2. Does the framework apply to sim and real robots with various observation/action
spaces?

3. Can the fine-tuned LLM solve partial observable tasks? What are the gaps between
GPT-4?

Experimental setup

Environment: LLM-POP is evaluated on a set of manipulation tasks in a tabletop block
rearrangement environment. A robot arm with a parallel gripper is equipped with a pre-
trained skill set of {Pick, Place, Reach, Reset}. Each scenario is initialized with identical-size
blocks with randomized positions and orientations on the table.
Uncertainties: We introduce two uncertainties in this environment 1) mass : Density(mass)
of the blocks is randomized. 2) fix : blocks are randomized to be fixed/movable on the table.
We design a task set containing tasks at different difficulty levels (horizon length to solve
the task) under uncertainty assumptions to evaluate the planner’s performance.
Observations: The robot observations include the pose of the robot end effector, the pose
of the blocks on the table, gripper opening positions, and force-torque (F/T) readings.
Pre-trained skills and parameters: pick(object): Pick up the specified object on the
table. place(pose): Move the end effector to desired pose and open the gripper. reach(pose):
Move the end effector to desired pose. reset(): Reset the arm and gripper to the initial pose.
where object is a text name string, pose is the position and orientation.
Evaluation metrics: How to evaluate the task success rate is non-trivial since the desired
outcome of the tasks in Table 7.1 (e.g., the lighter block is on top of the heavier block) could
also be achieved through an incomplete decision-making process (e.g., stack a block on top
of the other one that by chance respects the right weight relationship.) For this reason, even
the LLM evaluator proposed in Section 7.3 cannot confidently determine the success rate in
the tasks, and we eventually relied on a manual check of each experiment.

For each task in the evaluation task set, we evaluate the success rate of finishing the
task under ten random initializations on the positions and the uncertainties of blocks (5 for
real robot settings since it’s harder to randomize the uncertainties). Table 7.1 includes the
evaluation tasks we use. Default LLM-POP uses GPT-4 for the planner and evaluator.

Table 7.1: Uncertainty and Task Description Table

Type Task Descriptions
/ 1. Stack one block onto another.
/ 2. Move the blocks to the corners of the table.
mass 3. Pick up the heavier block.
mass 4. Stack the lighter block on the heavier.
fix 5. Pick up the movable block and put it at the table corner.
fix 6. Find the movable block and put it on the fixed block.
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Simulation: Block manipulation with Pre-trained LLM

We first evaluate our approach for solving the tasks in Table 7.1 in a simulated robotic
system in IsaacGym[128]. We use the FrankaCubeStack task as a template environment
but change the blocks to the same size with random densities for mass uncertainty and
randomly fix the block on the table for fix uncertainty. The action parameters for place
include 3D target position and quaternion of the end effector. This is different from the
block orientation quaternions in the observation, and explicitly including this (compared to
using observation-action examples) in the prompt is essential for the LLM planner to get the
correct action parameters and understand the observations.

We use two ablations: 1. GPT-3.5 as planner. 2. Remove the evaluator which explicitly
asks for state abstraction and belief updates1. Evaluation results are shown in Table 7.2.

Table 7.2: Planner Success Rate on Evaluation Task Set

Model Task 1 Task 2 Task 3 Task 4 Task 5 Task 6
GPT-3.5(w/o E) 5/10 7/10 0/10 0/10 0/10 0/10
GPT-3.5 6/10 6/10 0/10 0/10 0/10 0/10
LLM-POP(w/o E) 10/10 10/10 9/10 4/10 6/10 4/10
LLM-POP 10/10 10/10 10/10 8/10 7/10 8/10

LLM-POP* 5/5 5/5 5/5 4/5 5/5 4/5

FT-Vanilla 4/10 2/10 0/10 0/10 0/10 0/10
FT-CoT 10/10 10/10 4/10 3/10 8/10 6/10

(w/o E): No evaluator. * Real-world experiment. FT: Fine-tuned
Llama2

Compared to the GPT-4-based planner, GPT-3.5 is also able to reason correct action
sequences for stacking tasks but can not always reason about the geometric (position and
orientation) parameters. It can understand what’s the missing information for tasks with
uncertainty, but fails to generate multi-step plans to collect and update the information.

For the GPT-4 based planner, we observe an improvement in performance, especially
on longer-horizon tasks with uncertainty when the evaluator is added to the pipeline. An
example is shown in Figure 7.4. The LLM is asked to explicitly explain what is missing
and how such information can be analyzed from historical observations. This enforces the
LLM to perform “state abstraction” and “belief update” before planning. In experiments,
the GPT-4 planner without the evaluator sometimes makes the wrong plan by repeating
the same collecting actions even if it already collected sufficient information. As the history
of observations grows longer, the chance that LLM makes wrong reasoning also increases.
This is partially due to the long-text handling challenge for the current GPT-4 version, and
decomposing the reasoning tasks into an evaluator helps improve the stability.

1To avoid the uncertainty from GPT versions, we use gpt-4-0314 for all GPT-4 and gpt-3.5-turbo-16k-
0613 for GPT-3.5 usage.
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Hardware: Real robot Block Manipulation with GPT

We implement the same version of our method on a MELFA Assista robot arm with a
WSG 32 two-finger gripper. We put AprilTags [141] on the sides of the blocks to get the pose
estimate of blocks. We use blocks with different materials and added weight for uncertainty
in mass. We use the force-torque (F/T) sensor mounted on the robot’s wrist to get force
readings. The action parameters for position controls on the real robot are in Euler angles
and the angle for the gripper and blocks are in different frames. For safety, we set the task
to fail if action parameters get out of safety bounds or a collision happens. Results are in
Table 7.2.

The LLM-POP framework (GPT-4) achieves better performance in the real robot com-
pared to the simulation domain. This is mostly because of the very accurate position con-
troller implemented on the real robot leading to fewer execution errors. The stiffness con-
troller and F/T sensor used on the real robot allow us to recover accurate force readings with
no noise compared to the “sensor” in the simulator, which is affected by robot movement and
gravity. These experiments show that the proposed framework can solve tasks with varying
levels of difficulties and uncertainties reliably in simulated as well as real systems.

Simulation: Block manipulation with fine-tuned model

Using the self-instruction method introduced in 7.3, we generate an Alpaca [199]-like
dataset and use it to finetune a Llama2-7B [206] model for reasoning. We test it on the
same IsaacGym environment. Results are also shown in Table 7.2. FT-Vanilla uses directly
generated instruction pairs, while FT-CoT uses CoT decomposition instruction pairs. The
biggest challenge during data generation for both is the correspondence between imagined
observation generated by GPT-4 and the ground truth. For example, after picking up the
block, the gripper position in the generated data is sometimes not close to the block position
(and thus incorrect). This increases the difficulty for fine-tuned models to do correct reason-
ing based on observations. In the experiments, the fine-tuned model is able to reason about
the missing information based on the task description and generate plans to collect the in-
formation. The results show that the fine-tuned model benefits from the CoT decomposition
of instructions, and failures mostly come from wrong reasoning (wrong “heavy” block based
on history). The current gap between the fine-tuned model and GPT-4 lies in the ability
to analyze the historical information for updating the information and the ability to avoid
and adjust wrong action parameters since it’s not included in the current CoT design. A
potential improvement is to add an auxiliary task of “observation understanding” in training
and use diverse environment settings to improve the reasoning capability. We leave this to
our future research.



CHAPTER 7. UTILIZING LLM FOR PARTIAL OBSERVABLE TASK PLANNING 99

Common Failures in Sim and Real Experiments

Execution failures

This appears more in the simulation environment when the place action sets a target
pose with less tolerance between objects and the robot moves at high speed (The control
gains in the simulator are not fine-tuned for various block weights). LLM planners can also
generate actions that cause collisions since there’s no online collision avoidance in skills.

To explicitly test if the evaluator can help in correcting execution errors, we did an ab-
lation on stacking(T1 ) by adding offsets (1cm) on the grasping position of the block. The
initial target placing position will fail because of this offset. With the evaluator included,
which asks the LLM to analyze failure action based on history and propose correcting sug-
gestions, the planner outputs a better target position (higher) in the next round. This shows
that having an evaluator can actually help to correct execution errors. However, the execu-
tion success rate in this test also depends on the lower-level grasping skill; a better grasp of
proposal [254] and planning [219] modules can improve the performance. Detailed analysis
is deferred to a longer draft of the paper.

Belief update failures

Incorrect plan for collecting information (e.g., trying to reach above the block to measure
its weight); wrong analysis results from the observations (e.g., not comparing weight using
the force sensor z-axis value but using noise in other axes). In the LLM-POP with GPT-4
case, most failures come from the wrong analysis.

7.5 Chapter Summary

In this chapter, we propose an interactive planning framework LLM-POP that uses LLM
to solve tasks under partial observation. The framework is verified in simulated and real
robot systems on various partially observable tasks. Task distribution that the current
framework can solve strongly depends on the diversity and robustness of the pre-trained
skills. Current skills are open-loop actions based on initial observation. If the pre-trained
skills are closed-loop policies with collision avoidance and online adjustment, the framework
would be able to solve more challenging tasks.

Overall, the gap between fine-tuned model and GPT-4 is clear, especially in reasoning
for complex tasks. Our goal is not to replace the GPT-4 but to propose a method for
generating self-instruct data for robotic tasks with limited demonstration data. We verify
its usage as an interactive planner in manipulation and leave the task of learning more
generalizable [191] and transferrable sub-task policies [248, 187], involving more modalities
in the observation like image representations in robotics[253, 119, 80] to our future research.
Similar settings can generalize to navigation settings and solving complex environments like
HomerRobot [234] and social interactive scenarios [185].
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Chapter 8

Energy Regularization for Natural
Behavior Learning

8.1 Introduction

Humans and animals exhibit various locomotion behaviors at different speeds, optimizing
for their energy efficiency. For instance, humans typically walk at low speeds and run at
higher speeds, rarely opting for jumping. Prior research demonstrated through optimal
control on planar models the correlation between speed and optimal gait choices concerning
the cost of transport (CoT). For quadrupeds, the optimal gaits were four-beat walking1 at
low speeds, trotting at intermediate speeds, and trotting/galloping at high speeds [227].

Due to the rich information in the gaits, using a gait as guidance for locomotion policies
is popular among lots of reinforcement learning (RL) based methods [175, 130]. However,
crafting a versatile and robust locomotion policy that can adapt to and transition between
multiple speeds while generalizing across different platforms poses substantial challenges.
One of the main challenges here is the reward design. Gait reference can be used as extended
state or extra regularization terms in reward functions to provide more supervision. Previous
works [130, 163, 50] trained on different quadruped robots within simulation environments
like IsaacGym [116, 128] and successfully transferred these policies to physical hardware.
However, they often necessitate intricate reward designs and weight tuning. Apart from gait
information, reward terms like feet-air time and contact force penalizing [163] were also used
to encourage specific behaviors and help stabilize the training. While these additional reward
components are aimed at inducing or preventing specific behavioral traits, they inadvertently
align with the broader objective of reducing energy costs. This convergence prompts a
reconsideration of our reward strategy: could a more straightforward, energy-centric reward
term be used to replace the specifically designed terms used in prior policy training? Such
a term would encapsulate the core objective of reducing energy consumption and fostering

1Four-beat walking, two-beat walking, trotting and galloping are typical gaits for quadruped robots
defined in [227] based on feet contact schedule.
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Legged Gym @ 0.6 m/s
Trotting

High leg-swing

Ours @ 0.6 m/s
Four-Beat Walking
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Trotting
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Figure 8.1: Compared to legged-gym baseline [163], our single policy (from one-time RL
training) autonomously adopted different energy-efficient gaits (four-beat walking and trot-
ting). It achieved lower energy consumption (low leg-swing) at varying speeds (0.1m/s
interval; mean and variance from 50 independent runs).

stable and efficient locomotion.
Building on the concept that energy-efficient gaits correlate with speed [227] and aligning

with prior work emphasizing that energy minimization at pre-selected speed results in the
emergence of specific gaits [54], this study investigates a more streamlined reward formula-
tion for energy-efficient locomotion. By focusing on energy minimization without intricately
designed reward components, we aim to verify if such a simplified approach can yield stable
and effective velocity-tracking in quadruped robots across various speeds. Instead of gen-
erating multiple velocity-specific energy optimal policies [54], we focus on getting a single
energy-optimal policy across all target velocities via RL training.

In our research, we examine the influence of energy regularization weights on policy
performance, identifying that both excessively low and high weights can lead to unnatural
movements or immobility. Recognizing that energy terms have different scales across veloci-
ties and require adaptive velocity-conditioned weights, we first design a non-negative energy
reward function and then find an adaptive reward form by interpolating the maximum energy
weights at selected speeds to facilitate effective velocity tracking.

Employing this adaptive reward structure within IsaacGym enables the training of robust
policies for the ANYmal-C [81] and Unitree Go1 [211] quadruped robots. Our methodology,
illustrated in Figure 8.1, identifies appropriate gaits, such as four-beat walking at lower
speeds and trotting at higher speeds, without predefined gait knowledge—outperforming
baseline approaches [163] in energy efficiency. Our policy also significantly improves velocity
tracking and energy consumption performance compared to a policy trained with fixed-
weight energy rewards. The trained single policy is deployed on a real Go1 robot to verify



CHAPTER 8. ENERGY REGULARIZATION FOR NATURAL BEHAVIOR
LEARNING 102

its stable moving and transition locomotion skills in the real world.
The main contribution of this chapter includes:

• Introduction of a streamlined reward formula integrating basic velocity-tracking and
adaptive energy minimization to foster stable, velocity-sensitive locomotion policies.

• Demonstration that the derived policies autonomously adopt different energy-efficient
gaits at varying speeds without preset gait knowledge.

• Evaluation of the velocity-tracking and energy efficiency across reward structures and
weight tunings for ANYmal-C and Unitree Go1, culminating in the real-world applica-
tion of these policies on a Go1 robot, affirming their efficacy in stable locomotion and
gait transition.

8.2 Related Works

Reinforcement Learning for Locomotion Skills

After deep RL demonstrated its capability to fit general policies in an unsupervised man-
ner, researchers actively sought its potential to be deployed on legged locomotion. Hwangbo
et al. [82] achieved RL-generated walking policies on a plane ground using a pre-trained actu-
ator net to reduce the sim-to-real gap. Further research also achieved training the policy with
adaptive actuator net [84] or motor control parameters [112, 20]. In Hwangbo’s follow-up
works, locomotion on complicated terrains using a similar approach was also accomplished
[133, 105, 27]. With modern GPU-accelerated simulators [116, 128], more time-efficient
training frameworks were proposed [163, 131]. Due to the intensive reward engineering in
these approaches, the model-free RL tends to converge to a single gait, usually trotting gait,
which may not be the most efficient for all terrains and target velocities [151].

Many efforts were made to overcome this limitation by promoting the behavioral diversity
of legged robots. Researchers in [32] proposed a hierarchical framework that pre-specifies
a set of gait primitives and allows an RL model to choose from them. In [232, 43], gait
primitives were parameterized using the contact schedule and RL policy was trained to
select these parameters. These works used model predictive control (MPC) as the lower-
level controller, which demands preliminary knowledge of locomotion and contact modeling
[104]. In [130], behavioral-related arguments such as body height, step frequency, and phase
are directly added to the RL model input for end-to-end training. Although various two-beat
gaits (where legs touch the ground in pairs) were realized, they cannot generate four-beat
gaits (where legs touch the ground in orders) and require manual gait specification in different
scenarios. It is more desirable if the quadruped robot can select the most suitable behavior
by itself. In [54], a pipeline was proposed to output different gaits under different velocities
via minimizing energy consumption. However, this pipeline relies on training and distillation
of several velocity-specific RL policies.
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Energy Studies on Locomotion

The energetic economy of legged robots has always been an important concern for re-
searchers. The cost of transport, namely the amount of energy used per distance traveled,
was introduced in [55, 209], where the minimization of CoT was connected to the choice
of speeds [152] and step lengths [210] in human locomotion behaviors. The optimal veloc-
ity varies for different gaits, allowing animals to transit between different gaits to move at
various speeds.

Conceptual legged models of bipedal [26, 157], and quadruped [94, 137, 227] robots
are later designed by researchers to search for energetically optimal motions on various
gaits. For quadruped robots, genetic algorithms were used in [94] to study potential gaits at
different speeds. Our research is mainly inspired by [227], where optimal control problems
are formulated on realistic robot models considering the effects of leg mass, plastic collisions,
and damping losses. This chapter uses an unbiased search on energy-efficient locomotion
patterns at various velocities and demonstrates the energy vs. velocity curve for different
gaits. Inspired by the results, we believe there exists a policy that can transit between gaits
at different velocities with an energy-optimization reward. Among previous works, [54] is
close to ours in utilizing relations between energy and gaits. It generated multiple policies,
with each policy velocity-specific and energy-optimal. In contrast, our work focuses on
generating a single energy-optimal policy across various speeds, and it aims to replace the
complex-designed reward terms in RL.

8.3 Locomotion Reward Design

A general form of energy regularized locomotion reward takes the following form:

R = Rmotion +Renergy +Rothers (8.1)

where Rmotion encourages accurate velocity tracking, Renergy discourages energy consump-
tion and Rothers includes other necessary rewards to stabilize training. In previous work
[54], motion rewards include penalty on linear and angular velocity tracking errors; energy
rewards include penalty on motor power with a fixed weight; survival bonus is also added. In
experiments, we found the training process unstable potentially due to the negative nature of
tracking and energy rewards. Besides, each energy reward weight usually only works within
a very narrow range of reference speeds. It is hard to find a single energy reward weight value
that works for all reference velocities without knowing more simulation settings and training
details. As a result, we proposed the following reward function to promote the automatic
generation of energy-efficient behavior of legged robots under various reference velocities.

R =
1

Z(v̂x)

[
Rlin + αangRang + α(v̂x)Ren

]
(8.2)

where αang = 0.5, v̂x is the user-specified reference velocity, α(v̂x) is the adaptive energy
reward weight, Z(v̂x) is the normalizing index for total reward, Rlin, Rang are velocity tracking
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Figure 8.2: Top row: Gait plot generated from the ANYmal-C simulation where the legged
robot is first commanded to move at 0.5 m/s from 0 to 2 seconds and demonstrated four-beat
walking (four legs touch the ground one by one in order, refer to [227] for details), then at 1.0
m/s from 2 to 4 seconds and demonstrated a transition gait between walking and trotting,
finally at 2.0 m/s for 4 to 6 seconds and demonstrated trotting (legs touch the ground in
pairs). Middle row: Snapshots from the ANYmal-C simulation taken approximately at
the vertical purple lines in the gait plot. Bottom row: Snapshots of Go1 moving on a
playground. Its feet contact state approximately corresponds to the vertical purple line in
the gait plot.



CHAPTER 8. ENERGY REGULARIZATION FOR NATURAL BEHAVIOR
LEARNING 105

rewards, and Ren is the energy reward. The remaining section elaborates on each component
in (8.2).

Motion Rewards

Rlin and Rang respectively encourage the legged robot to track the linear reference veloc-
ities in two directions v̂x, v̂y and angular reference velocities ω̂z.

Rlin = exp
(
− |vx − v̂x|

2 + |vy − v̂y|2

σv

)
Rang = exp

(
− |ωz − ω̂z|

2

σω

) (8.3)

v̂y and ω̂z are not user-specified commands, but randomly sampled during training as ex-
plained in section 8.4. σv and σω are scaling factors depending on the training velocity range.
The structure of motion rewards, the coefficient αang = 0.5 for angular velocity tracking, and
the scaling coefficients follow the default setting in legged-gym [163].

Energy Rewards

Ren rewards the system for consuming less energy while moving.

Ren = exp
(
−
∑

i |τi||q̇i|
σen

)
(8.4)

The exponential form guarantees a positive reward. τ are each joint’s actuated torques, and
q̇ are joint velocities. We multiply the absolute values of each entry of τ with each entry of
q̇ and sum them up in (8.4) to follow the fact that a motor does not get charged back even
when the applied torque is opposite to the motion [256]. σen is an energy scaling constant.

Adaptive Energy Weight

α(v̂x) is the weight of the energy reward terms. Previous works take this value as a
constant [54, 256], but we argue that it should be adaptive to the reference velocity v̂x to
achieve suitable behaviors directly from RL. To verify this, we first run RL under fixed
sampled v̂x using pre-selected σen and try various values of α(v̂x). When α(v̂x) is too large,
the robot tends to stay unmoved to save energy, neglecting the velocity tracking task. When
α(v̂x) is too small, the robot tends to use a highly inefficient and unnatural way to walk.

To find an adaptive weight, we first collect the largest α(v̂x) when the velocity tracking
error is smaller than a pre-defined small threshold δ for a set of speeds v̂x. After collecting
velocity-weight sample pairs (v̂x,j, α(v̂x,j))

M
j=1 for a range of velocities, we see a clear trend

(see Figure 8.3): with velocity increasing, the maximum allowed α decreases. This trend
corresponds to the fact that the kinetic energy increases quadratically with the velocity.
While the motion rewards are expected to converge close to zero, the energy reward has
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variant optimal values across velocities. Therefore, we can set a larger weight for lower-
speed training but need to decrease it as the velocity increases. When training velocity-
conditioned locomotion policies, we linearly interpolate between selected pairs to acquire the
velocity-conditioned energy weight α(v̂x) for the current sampled velocity. We will show in
experiments that this is a simple but effective way of training energy-effective policies across
different velocities.

Normalization Index

Z(v̂x) is an adaptive normalization index. Due to the adaptive α(v̂x), the reward scale
under different command velocities varies. This often leads to instability in RL training. As
such, for each velocity-weight sample pair (v̂x,j, α(v̂x,j)), we also record the final achieved
reward Z(v̂x,j) and analogously use linear interpolation to get the normalization index curve
Z(v̂x) to stabilize training.

8.4 Locomotion Skill Training Details

Section 8.3 focused on the reward design of the proposed method, which constitutes the
most essential part of RL training. However, the energy reward is not a stand-alone one
that can be used directly for RL training, and we have to use it together with the basic
locomotion rewards. Across quadruped locomotion baselines, the default training settings
and locomotion rewards slightly differ. This section explains the basic RL training and
simulation settings other than energy regularization. These basic settings can also generate
a naive locomotion policy without energy regularization, but these policies usually have low
energy efficiency and might have undeployable abnormal behavior. The two baselines we use
in this research are legged-gym [163] for ANYmal-C and walk-these-ways [130] for Unitree
Go1.

ANYmal-C Settings

We utilized the robot model and PPO training package in [163]. The system outputs the
position command of the 12 joints in the next time step. The system inputs include the linear
and angular velocities of the trunk, projected gravity in the robot frame, the commanded
x-y velocities, the commanded yaw rate, each joint’s position and velocity, as well as the
action at previous time step. The commanded y-velocity and yaw rate are fixed at zero here;
only the commanded x-velocity will be set. The training episode will reset after 1000 time
steps or if any part of the robot except its feet touches the floor.

The policy was trained on a flat ground with the coefficient of friction randomized between
[0.0, 1.5]. We also disturbed the mass of the robot with a uniform random value in [−5.0, 5.0]
kg. A uniformly distributed noise was added to the observation. A random push with x-y
velocity uniformly sampled between [−1, 1] m/s lasting 15 seconds was exerted on the robot.
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Figure 8.3: α(v̂x) and Z(v̂x) corresponding to each reference velocities. These two values are
defined in (8.2). For each reference velocity, fixed-velocity trainings were conducted across
various α(v̂x), then we select the largest α(v̂x) whose velocity tracking error is smaller than
a threshold.

All these randomized domain parameters are renewed every time the training episode resets,
except observation noise is resampled after every time step.

In motion rewards (8.3), during fixed velocity training (to get results in Figure 8.3) and
when the v̂x is large, the policy may fail to converge to a desirable tracking accuracy. Hence,
we use σv(v̂x) = |v̂x|2/3 to overcome this difficulty and σω is fixed at 0.25. In energy rewards
(8.4), the energy scaling constant σen is fixed at 800. To obtain the energy weight curve
α(v̂x) and the normalization index Z(v̂x), we trained fixed-velocity policies by setting v̂x at
0.5 to 2.0 m/s, with 0.1 common difference. For each fixed reference velocity, we trained
11 policies using different α(v̂x) values ranging from 0.5 to 4.5. Figure 8.3 summarizes the
corresponding α(v̂x) and Z(v̂x) for each reference velocity. These dense parameter pairs are
exhibited to visualize the α-v̂x relation; in real experiments, only a few pairs of parameters
at representative speeds are required.

Go1 Settings

We mainly inherited the training methods released by [130]. Similar to [163], the system
also outputs the position command of the 12 joints, but its input excludes the linear and
angular velocities of the trunk. In addition, the inputs of the previous 30 time steps are also
given to the RL system. Compared to ANYmal-C, we found that the energy reward Ren

alone is insufficient to regularize Go1’s behavior, which is likely due to the lighter weight
compared to its motor power. Thus, following the settings in [130], we further add a fixed
auxiliary reward Raux to (8.2) as an amendment to the normalization index Z(v̂x). This
auxiliary reward is derived mainly from safety concerns, such as penalizing limb-ground
collision, out-of-range joint position, and high frequency joint action. The details of Raux

can be found on the project website. The training episode will reset after 1000 time steps or
if the trunk touches the floor. Similar domain randomization in section 8.4 is applied here.

https://sites.google.com/berkeley.edu/efficient-locomotion
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(a) Comparison of energy consumption (b) Comparison of velocity tracking error

Figure 8.4: Ablation study in ANYmal-C simulation. Reference velocities are chosen from
0.5 to 2.0 m/s with 0.1 common gap. Results of each velocity are obtained from 50 inde-
pendent runs. The solid line indicates the average and the shadow indicates the variance.
Left: Energy consumption per unit moving distance under different reference velocities. We
can see that adaptive energy regularization generates the most energy-efficient policy com-
pared to fixed energy regularization. The α = 0 policy is neglected because it consumes an
uncontrollable amount of energy. Right: Velocity tracking error under different reference
velocities. Among all fixed energy regularization policies, only α = 0.9 has a comparable
tracking error. However, the left figure shows that α = 0.9 policy is considerably less energy
efficient.

Compared to [130], we did not include any gait-related rewards.
We also discovered that curriculum technique is essential even for fixed velocity training.

Given a reference velocity v̂x, the sampling range of x-velocity starts with [−min{v̂x, 1},min{v̂x, 1}]
m/s. the sampling range increases when the total reward achieves a certain threshold, and
the maximal sampling range is set at [−v̂x− 0.1, v̂x+0.1] m/s. The fixed velocity training is
considered a success if the x-velocity sampling range expanded to [−v̂x − 0.1, v̂x + 0.1] m/s
in the end and the tracking error for speed v̂x is smaller than a threshold δ.

In motion rewards (8.3), both σv(v̂x) and σω were fixed at 0.25. In energy rewards (8.4),
the energy scaling constant σen is fixed at 300. We trained fixed-velocity policies by setting
v̂x from 0.5 to 2.5 m/s, with a 0.5 common difference. For each reference velocity, we trained
eight policies using different α values ranging from 0.7 to 2.1, then fit the α(v̂x) curve with
the method in section 8.3.
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MPC @ 0.5 m/s
High CoM High Swing

WTW @ 0.5 m/s
Low CoM High Swing

Ours @ 0.5 m/s
Low CoM Low Swing

Figure 8.5: Three policies walking at 0.5 m/s. Built-in MPC and walk-these-ways (WTW)
[130] swing the legs to a redundant height, while our policy only makes necessary lifting of
the leg. This demonstrates the energy-efficiency of our policy.

8.5 Experiments

The experiments were designed to show the following after the legged robot was trained
using the adaptive energy-regularized reward shown in Equation (8.2).

• With adaptive α(v̂x) and Z(v̂x), the legged robot automatically selects suitable behav-
iors to move with the reference velocity. We also demonstrate that the trained policy
is deployable to a real quadruped robot.

• If α(v̂x) and Z(v̂x) are constants, the legged robot may not be able to find an energy-
efficient walking policy for all target velocities.

• Our method can generate a more energy-efficient walking policy compared to estab-
lished baselines.

One Policy with Different Gaits at Different Velocities

To demonstrate natural emergence of efficient locomotion gaits, we evaluate the trained
walking policy under different reference velocities. Fig. 8.2 demonstrates a trial run where
the legged robot was commanded to move at v̂x = 0.5, 1.0 and then 2.0 m/s. Each com-
manded velocity lasts for two seconds. We plot the gait recorded from the ANYmal-C
simulation and show the snapshots for simulated ANYmal-C and real world Go1. We can
see that our trained policy exhibits four-beat walking at low speed (0.5 m/s) by moving one
leg each time in the order of right hind, right front, left hind and left front. At medium
speed (1.0 m/s), the policy exhibits an intermediate gait between walking and trotting. At
this gait, the right hind and left front legs move at the same time, while the right front and
left hind legs have a displacement in their motions. At high speed (1.0 m/s), the trained
policy exhibits a standard trotting gaits, where the right hind and left front legs move to-
gether, and the right front and left hind legs move together. This gait transition is endorsed
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by previous works [227, 232] that four-beat walking and trotting are respectively the most
energy-efficient gaits under low and high speeds.

A closer look at the snapshots in Figure (8.2) uncovers that the swing ratio was also
regularized. The legged robot only lifts up its leg to a height necessary to reach the reference
velocity v̂x to avoid wasting energy. At low speed, it only mildly lifts up its feet. As
the reference velocity increases, the robot also lifts its feet higher, but only to a necessary
height. Without considering energy-efficiency, the trained policy usually tends to lift the
feet redundantly high. This will be argued in more detail in section 8.5.

Finally, Figure 8.5 also showcases a successful hardware deployment of our policy. Videos
can be found in our project website stated in the abstract.

Ablation Studies with Fixed Energy Rewards

In ANYmal-C simulation, when the reference velocity is fixed at 1.0 and 2.0 m/s, we
found that velocity tracking error was reasonably small when α was set as 3.0 and 0.9.
Therefore, we run ablation experiments by fixing α at these values and 0.0 to compare with
varying α(v̂x).

Figure 8.4a shows the energy consumption for adaptive α, α = 0.9 and α = 3.0. The
policy with α = 0.0 is dropped because it consumes multiple orders more energy. We
observe that adaptive α reaches the lowest energy consumption. Figure 8.4b shows the
velocity tracking error. Only the α = 0.9 policy has comparable tracking accuracy with
adaptive α, but Figure 8.4a shows that α = 0.9 policy consumes considerable more energy.
These observations conclude the non-triviality of finding a constant energy reward scale α
and elaborates the usefulness of α(v̂x) varying with reference velocity.

Comparison to Other Methods on Go1

We also compare our method with built-in MPC and walk-these-ways on real world Go1
robot. All policies are commanded to move at 0.5 m/s. Such low velocity requires only mild
movement of each leg for Go1. Figure 8.5 shows snapshots of each policy. It can be seen
that both built-in MPC and walk-these-ways over-swing the legs, which squanders energy.
Our policy swings the leg only to a necessary height, which can be visually recognized as the
most energy-efficient.

8.6 Discussions

This chapter focuses on developing energy-efficient locomotion strategies for quadruped
robots, employing a simple yet effective reinforcement learning approach. However, there
are some inherent limitations which provide avenues for future research.

https://sites.google.com/berkeley.edu/efficient-locomotion
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Limitations

The core limitation of the presented approach lies in the requirement for pre-running
experiments to determine appropriate energy regularization weights. This necessity stems
from our method’s reliance on empirical observations to calibrate the weights, which, while
effective, does not afford the flexibility in a fully adaptive reinforcement learning system.
Although the policy developed is applicable across different speeds post-training, it cannot
be obtained with only one training for a new quadruped platform. Moreover, we only tested
its generalizability across speeds. We did not verify the adaptive capability of energy rewards
in different environments, which would be crucial for deploying these robots in real-world
scenarios where they might encounter multiple operational challenges.

Future extensions

Future research could address these limitations to develop methodologies for automati-
cally tuning energy regularization weights within one single reinforcement learning training.
This would enable the system to dynamically adjust its strategy in response to multi-task
RL [192] or cross-embodiment settings [242, 188, 236].

Moreover, while this study concentrated on locomotion tasks, the underlying principle
of leveraging energy efficiency to drive behavior selection holds broader potential. Future
work could explore applying this energy-centric approach across different robotic tasks. For
instance, manipulation and interaction tasks could also benefit from strategies prioritizing
energy efficiency, potentially finding natural, efficient behaviors analogous to those observed
in biological systems [25, 214]. Such a framework would align robotic systems more closely
with sustainability principles and environmental consciousness.

8.7 Chapter Summary

This chapter presented a novel approach to energy-efficient locomotion in quadruped
robots through the implementation of a simplified, energy-centric reward strategy within
a reinforcement learning framework. Our method demonstrated that quadruped robots,
specifically ANYmal-C and Unitree Go1, could autonomously develop and transition be-
tween various gaits across different velocities without relying on predefined gait patterns or
intricate reward designs. The adaptive energy reward function, adjusted based on velocity,
enabled these robots to select the most energy-efficient locomotion strategies naturally. Our
policy showed energy-efficient behaviors and gait transitions in both simulation experiments
(ANYmal-C) and hardware experiments (Go1). We also demonstrated the usefulness of
adaptive energy regularization via ablation studies.
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Chapter 9

Representation Learning for Grasping
Skills

9.1 Introduction

Robotic grasping in unstructured environments can benefit applications in manufactur-
ing, retail, service, and warehousing. Grasping unseen objects is, however, highly challenging
due to the limitations in perceptions. When objects are cluttered in a bin, exact geometry
and position of objects are obscured. Sensing imprecision and deficiency then leads to poor
grasp planning execution.

Model-based and learning-based methods could be used to plan grasps across a wide
variety of objects. Existing physical grasp analysis techniques, such as grasp quality met-
rics [161], template matching [173], and wrench space analysis [139], can be used to search
for the optimal grasp. These approaches, however, can be less robust in practice due to the
perception limitation. Incompletion of the object surface can lead to flawed analysis. An
alternative approach is to plan grasps with supervised deep learning. Current methods show
that it is preferable to learn grasp quality functions and optimize them at the runtime [127,
126, 135, 136, 146, 45, 47, 46, 114]. Learning intermediary information, such as grasp quali-
ties and success rate, can improve the training efficiency and prediction accuracy. However,
the requirement of the sampling or optimization makes the algorithm time-consuming. To
tackle this, other methods use end-to-end learning to infer grasp poses from the sensor in-
puts directly [140, 174]. Nevertheless, these algorithms require larger datasets and elaborate
hyper-parameters tunning to reduce the training variance.

Ideally, the grasp planning algorithm generates 6 degrees of freedom (DoF) grasps. Pre-
vious works have proposed models that can detect top-down grasps using depth images [127,
86, 144]. However, the top-down nature of such grasps does not allow robots to pick up
objects from different orientations, which limits its application in cluttered environments. In
this work, we propose to use six variables (x, y, θ, γ, z, β) to represent a 6-dimensional grasp
in a depth image, as shown in Fig. 9.2. Three planar 3D grasp poses (x, y, θ) in Fig. 9.2(a) are
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Figure 9.1: CGPN Architecture. The 6-DoF contrastive grasp proposal network (CGPN)
is trained offline to infer grasps from depth images using a dataset of synthetic images and
grasps. When an object is presented to the robot, a stereo camera captures a depth image;
CGPN could rapidly generate 6-DoF robust collision-free grasps, which is executed with the
Fanuc robot.

the center position and orientation of the bounding box in the image plane. The bounding
box’s width w and height h are used in training but not in representing grasps. Three spatial
grasp parameters shown in Fig. 9.2(b) are: the tilt angle γ among axis ω, the rotation angle
β among the grasp axis φ, and the depth of the grasp z.

In previous works [127, 126, 135, 136], the strategy to train on synthetic datasets and
apply to reality has been heavily used. It has been shown that rendered images with numeri-
cally computed grasp qualities can ease the data preparation process. The simulation-to-real
(sim-to-real) gap, however, is still an open problem for grasp planning. Synthetic data have
better resolution and less noise than real images. To tackle this problem, we introduce con-
trastive learning with sim-to-real depth image processing in this paper. Contrastive learning
aims to extract invariant features from augmented images, which improves the overall per-
formance of modeling under vision noise.

In this paper, we propose an end-to-end 6-DoF contrastive grasp proposal network
(CGPN). The general framework is shown in Fig 9.1. When an object is presented in
the scene, a stereo camera captures a depth image; CGPN rapidly generates 6-DoF robust
grasps, which are executed with the Fanuc robot. CGPN is trained with synthetic grasp
images with variant augmentation techniques to bridge the sim-to-real gap.

The contributions of this paper are as follows.

1. An end-to-end grasp planning model is proposed to detect grasps efficiently. The model
consists of a feature encoder, a rotated region proposal network, a grasp refinement
network, and a collision detection module. The model uses single-view depth images
as input and infers 6-DoF grasps for parallel-jaw grippers.

2. A contrastive learning module and a depth image processing technique are introduced
in the grasp planning to resolve the sim-to-real gap.
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Figure 9.2: Grasp Representation (x, y, θ, γ, z, β). The planar 3D grasp pose (x, y, θ) in
(a) represents the center position and orientation of the projected bounding box on camera
plane. The bounding box’s width w and height h are used in training but not in representing
grasps. The other 3 grasp parameters are shown in (b): tilt angle γ is the rotation among
axis ω, z is the depth of grasp, and gripper angle β is the rotation among the grasp axis φ.

The remainder of this paper is organized as follows. Related works are introduced in Sec-
tion 9.2. Section 9.3 presents the proposed grasp planning algorithms in detail. Experiments
are presented in Section 9.4. Section 9.5 concludes the paper and introduces the future work.

9.2 Related Works

Grasping

Recent learning-based approaches have demonstrated promising efficiency and robustness
in the grasp planning task. Some works propose to optimize learned grasp quality metrics at
runtime [127, 135, 136, 146, 114, 46]. Sampling grasp candidates among the object’s surface,
however, can be time-consuming and requires pre-defined heuristics. Other approaches [140,
174, 246, 86, 29, 144, 122] propose to directly infer grasp poses from the raw input with an
end-to-end model. These approaches design a deep model to perform grasp pose regression
and grasp quality assessment at the same time.

To represent grasps in the input image, rotated rectangle representation, or rotated
bounding box, has been utilized by previous work [241]. [241] demonstrates that by us-
ing a two-step search strategy, 3-DoF grasps could be located within the image plane. This
algorithm, however, uses comprehensive searching in the whole input image, thus is time-
consuming.

Region Proposal Network

The success of the region proposal network (RPN) [60, 158] brings focus to the bounding
box grasp representation. The objective of RPN is to classify and regress object’s bounding
boxes in images. Instead of sampling candidates in the original image plane, RPN utilizes



CHAPTER 9. REPRESENTATION LEARNING FOR GRASPING SKILLS 115

shared feature maps. Classification and regression are performed in the latent feature spaces,
which has been shown to have promising accuracy and time complexity. [29, 246, 86, 144,
122] introduce the RPN network to the grasp planning. These approaches, however, focus on
3-DoF top-down grasps and require an additional grasp detector to predict the rotation angle.
In this work, we propose to infer rotated grasps directly from the image plane. Besides, we
use a downstream grasp refinement network to regress the full 6-DoF grasps.

Contrastive learning

Contrastive learning[67], and many of its recent applications [72, 21] in visual represen-
tation learning, can be thought of as training an encoder to extract invariant features for
similar images. This encoding mechanism helps maintain the understanding of the same
object under correlated views. Contrastive losses measure the similarities of sample pairs
in representation space. [41] uses the latent parametric feature to represent instance as a
class.[255, 202] introduce memory-bank based methods and momentum to store and update
the class representation. For grasping, this helps to reduce the instability of the model
resulting from the sim-to-real gap and various input noise in a cluttered environment. In
our framework, we generate stable grasp proposals by leveraging recent advances in data
augmentation and contrastive loss.

9.3 6-DoF Contrastive Grasp Proposal Network

General Framework

This section introduces the framework of the 6-DoF contrastive grasp proposal network,
as shown in Fig. 9.3. The input to the whole pipeline is a single-view depth image of the
scene. Segmentation is first applied to the image to separate objects. The CGPN model
generates grasps for the object using its segmented depth image.

Training Phase

During training, the CGPN algorithm works as follows. First, two separate data aug-
mentation operators t, t′ are sampled from the augmentation family T . Augmentations are
applied to the segmented depth image to obtain two correlated views xq, xk regarded as a
positive pair in the contrastive learning module. Similar to [72], the other inputs in the
same batch are viewed as negative samples. Second, the positive and negative samples are
fed into the contrastive encoder. We get query q from xq with query encoder and keys {ki}N1
from xk and other negative samples with key encoder. The key encoder is a slowly updated
query encoder with no gradient update. Contrastive loss is calculated using these queries
and keys, with more information introduced in the loss section. The purpose of this module
is to maximize the agreement of encoded feature maps q, k. We assume the encoder can
learn invariant representations of the depth images under different augmentation operations,
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Figure 9.3: CGPN Network Architecture. During the training, a synthetic depth image of
the object is feeding into the network. First, two separate data augmentation operators
t, t′ are applied to the segmented depth image to obtain xq, xk, which are then input to
the contrastive encoders. Second, extracted feature maps q, k are parsed to the rotated
region proposal network (RRPN) to generate grasp regions. Third, a rotated region pooling
(RRPooling) module extracts feature vectors from the feature map q using the generated
grasp regions. Finally, a grasp refinement network (GRN) infers the tilt angle γ and the
depth z using the local feature vectors. A collision refinement is further added to search the
rotation angle β.

and the query q is the feature we use for downstream tasks. Third, a rotated region proposal
network (RRPN) is introduced to propose 3-DoF grasp regions base on the feature map q.
The output of RRPN determines 3-DoF grasp (x, y, θ) and a box shape (w, h). We still
need local features to determine other grasp parameters. Fourth, a rotated region pooling
(RRPooling) module extracts feature vectors from the feature map q using the predicted ro-
tated bounding box from RRPN. These local feature maps contain depth and other features
around the proposed grasp position. Finally, a grasp refinement network (GRN) is designed
to infer the tilt angle γ and the depth z using the local feature vectors. This completes a
5-DoF grasp pose together with (x, y, θ). The last DoF β is searched with a collision re-
finement (CR) module, thus is neglected in the training process. The training loss is the
weighted combination of the contrastive loss, region proposal loss, and the grasp refinement
loss. After training, we get a query encoder, a RRPN module, and a GRN module used for
online testing.

Testing Phase

During the testing phase, we do not need to create positive pairs for the contrastive
modules. Instead, we directly put the input depth image into the query encoder. The
following process is the same as training. The output of the CGPN model is valid grasp
poses for each object. After that, the 5-DoF grasps for each object are projected back to the
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original cluttered scene. The last DoF β is determined according to the collision constraints.

Data Augmentation and Contrastive Learning

The instability in real-world grasping is usually brought by occlusion in cluttered scenes,
background noise in the environment, and the sim-to-real gap. To overcome this, we design
multiple data augmentation operations T for the input depth image.

Original Rotation Flip Dropout Sim-to-Real

Figure 9.4: Illustrations of the available data augmentation operators in T . Each augmen-
tation can transform the original input with some internal parameters (e.g. rotation degree,
flip axis). We use combination of the first four operations and the sim-to-real process as a
complete augmentation for a single image.

Spatial/geometric transformation

Spatial operations include rotation, flip, and dropout on the original synthetic depth
image. Each augmentation can transform the input image stochastically with some internal
parameters. We use composition of these operations to create different observations for
the same grasp object. Note that unlike classification labels in vision, the ground-truth
high-quality grasp poses would change along with these augmentation operations.

Sim-to-Real Processing

Similar to [195], we design a sim-to-real transfer operation by leveraging several image
processing techniques. We randomly paint the pixels black in areas of high Laplacian gradient
and edges of the object detected by Canny edge detector[5]. Then we inject realistic noise into
the image. The operation is parameterized by a threshold of black paining areas. Compared
to spatial transforms, the sim-to-real process does not change the ground-truth pose in the
image.

Illustrations of the data augmentation operators are shown in Figure 9.4. Using the
introduced operations, we extend the training dataset and create positive pairs from the
same input depth image for the contrastive training process. The transformation family T
is created by a random combination of the spatial operations and the sim-to-real transfer as
the last operation. All of the operations have an execution probability. In this way, we can
train on synthetic data generated in the simulator and use the model to predict valid grasp
in real-world scenarios.
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Regarding the contrastive learning module in the pipeline, as described in previous sec-
tions, we use separate encoders for query input xq and other positive or negative samples as
suggested in [72]. Note that some operations in the data augmentation change the ground-
truth in the downstream grasping tasks (e.g. spatial operations), directly maximizing the
similarity between q and k+ might not be suitable for grasping regression. As suggested
in [21], we add a multi-layer perceptron (MLP) after the query and key encoders as a pro-
jecting head and get q̂, k̂i. This is neglected in the network architecture but implemented
in experiments. The query and key vector q, ki can keep the differences in grasping, but
the projecting head would catch the invariant properties among positive pairs. We use q for
downstream grasping tasks, but use q̂ and k̂i for calculating contrastive loss.

Rotated Region Proposal

Another core part of our architecture is the rotated region proposal network. Similar to
the architecture in [124], which output detected bounding box for scene text, our network
receives feature maps from the learned contrastive encoder and output candidate region
proposals with class labels and parameters of the positions. The class label determines if the
proposal fits any robust grasp, and the parameters (x, y, w, h, θ) gives a rotated bounding
box.

Unlike text detection, we do not have a fixed number of non-overlapping labelled bounding
boxes for each input image. For each object and its depth image, the high-quality grasp poses
may overlap with others. When matching the ground-truth grasps with proposed regions,
overlapped grasps may have similar skew intersection over union (IoU) results. Directly
choosing the one with the highest IoU may cause all proposals matching the “largest” grasp
(i.e., large w, h). To avoid such mode collapse, we introduce to random select among top-k
grasps based on IoU during matching.

For parameters of the proposed region, although only (x, y, θ) is used in a grasp pose, the
box’s width w and height h indicate the range of local features used in the following GRN.
The GRN model first aligns and extracts rotated regions of interest by projecting proposals
from the RRPN onto the feature map and then use the local features to predict the tilt angle
and relative depth of the grasp, which finalizes the 5-DoF grasp (x, y, θ, γ, z).

Collision Refinement

The grasp proposal models mentioned above are used for 5-DoF grasps for a single object.
To use the proposed grasps in a cluttered scene, we use collision constraints to infer all 6 DoFs.
The proposed 5-DoF grasp g = (x, y, θ, γ, z) ∈ G are frozen and a posterior optimization
process is used to search for the last rotation angle β:

min
β

N∑
i

C(g, β, xi) (9.1)
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where C is the collision check score for a 6-DoF grasp (g, β) and surrounding objects. {xi}Ni=1

is the segmented depth image for the N object in the scene.
Sign-distance field is introduced in this paper to model the collision score:

C(g, β, xi) = −SD(FK(g, β), xi) (9.2)

where FK(·) denotes the forward kinematics function of the robot. SD(·) denotes the
signed-distance function of the robot and the object xi. Given a 5-DoF grasp, there are
infinitely many grasp candidates since the rotation among the grasp axis φ is free-floating.
By minimizing the negative signed distance between the robot and the object, a unique
6-DoF grasp can be determined.

Loss Design

Region Proposal Loss

Despite the randomness we introduced in positive region matching, most of the model
we use in RRPN is similar to [124]. The loss function for the proposal takes the form of:

Lp = − log spos +
∑

v∈{x,y,θ,h,w}

λismoothL1(v
∗ − v) (9.3)

where spos is the matching IoU for positive pairs, v∗ is the ground-truth value for correspond-
ing variable. The smoothed L1 loss is:

smoothL1(x) =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise
(9.4)

The output (x, y, θ) is grasp parameter and (w, h) are parameters for local feature ranges in
original feature map. Therefore we assign more weight on λx, λy and λθ and less on λw, λh.

Grasp Refinement Loss

To find the best grasp pose, we need not only the rotated planar grasp position proposed
by RRPN but also the tilt angle γ and depth z of grasp. While RRPN gives us a rough
estimation of grasp positions, GRN uses the proposed region of interests (ROIs) to generate
accurate grasp poses with local features. We formulate a weighted refinement loss in Eq.
(9.5) to minimize the L1 error of tilt and depth.

Lr = λγ∥γ̂ − γ∥1 + λz∥ẑ − z∥1 (9.5)
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Contrastive Loss

Unlike regression loss, the contrastive loss does not have supervised signals. For simplic-
ity, we use q, ki to represent q̂, k̂i after the projecting head. Consider a query q encoded from
sample x and a dictionary of N keys {k1, k2, ..., kN} encoded from different samples. Among
all keys, there is one positive key k+ encoded from xk similar to xq and N − 1 negative
keys from other samples in the batch. Using dot product as the similarity metric, the loss
function is defined as Eq. (9.6), where τ is a temperature hyper-parameter.

Lq = − log
exp(q · k+)∑N
i=1 exp(q · ki)

(9.6)

This is the log loss of a N -way softmax-based classifier that tries to classify q as k+, intro-
duced as InfoNCE in [142].

The overall loss function used to train the contrastive grasp proposal model is:

Loverall = λpLp + λrLr + λqLq (9.7)

We adjust the relative weight of the three losses at different stages of training. In the
beginning, we set the loss of RRPN and GRN low to reduce the contrastive loss. After we
get a stable encoder, we increase the weight of RRPN loss but keep the GRN loss weight
low to train the 3-DoF grasp position and local feature bounding box. We then gradually
increase the weight of GRN to train the overall pipeline for the final 5-DoF grasp. The high
weight of GRN loss at an early stage would affect RRPN’s training since the models work
in series.

9.4 Experiment

Dataset Generation

To generate the grasp sets, we need to sample a large number of grasps for single objects
and label the top-ranked robust grasps as ground truths. This is unrealistic for real robots
but not hard in simulation environments. We train our CGPN model on the generated single
object grasp dataset and use it on real robots. Similar to [127], 1,366 objects are selected
from the 3DNet [226] as the object set. 100 antipodal grasps are evenly sampled among the
surface for each object. Each grasp is labeled with the robust force closure metric and is
represented by its contact points (c1, c2) in 3D. Since the CGPN algorithm requires depth
images as input, objects and grasps are projected to the image plane. For each selected
object, 20 synthetic depths images are rendered from different angles. The object is placed
at the center of a regular icosahedron; cameras are placed at each face’s center and point to
the origin. The distance between the camera and the object is sampled from U(

√
3robj, 2robj),

where U denotes the uniform distribution and robj is the object bounding ball’s radiance.
Such selection makes sure that the full object is visible in the camera.
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Figure 9.5: Dataset Samples. This figure shows 12 samples from the generated grasp dataset.
3D grasps are projected to the image plane (red rectangles). The tilt angle γ and the distance
z are neglected in the plot for simplicity.

Each grasp (c1, c2) is then projected to the depth image using projective transformations:[
ui vi f

]T
= K ·

[
R t

]
·
[
Xi Yi Zi 1

]T
(9.8)

where Xi, Yi, Zi are positions of the contact point {ci}2i=1 in the camera frame, K,
[
R t

]
are

the camera’s intrinsic and extrinsic matrices, respectively. ui, vi are pixel’s locations at the
image for point ci. The bounding box’s other parameters are then computed. The width w
and the height h of the box is set to ∥[u2 − u1, v2 − v1]∥2 and 20 respectively. Grasp depth
z, rotation angle θ, and tilt angle γ are computed as z = 1

2
(Z1 + Z2), θ = tan−1 u2−u1

v2−v1 and

γ = tan−1 Z2−Z1

w
respectively.

Ground truth grasps for each image are selected as the top 20% from 100 samples. In
this paper, we limit the tilt angle’s range to [−3030. To give rotation angle θ and tilt angle
γ unique definition, we set constrains on the grasp points in the image plane, such that
v2 > v1. In other words, the point [u2, v2]

T is always on the right of the point [u1, v1]
T .

Then, we bound θ in the range of [−9090, and γ is relabeled with the corresponding sign.
The generated training dataset has 24,723 depth images with labeled ground truth grasps.
Fig. 9.5 shows some samples from the dataset.

Experiment Results

The proposed CGPN is run on a desktop with GTX2080Ti GPU, 32GB RAM, and
4.0GHz CPU. For the experiment, we use a FANUC LRMate 200iD/7L industrial manip-
ulator with a SMC LEHF20K2-48-R36N3D parallel-jaw gripper for grasping. A Kinect v2
camera is used to capture depth image of the scene. The point cloud library [164] imple-
mentation of region growing method is utilized to pre-process and segment the object.

We leverage state-of-the-art model architectures for each submodel. ResNet-50 [71] and
rotated region proposal networks [124] are utilized as the encoder and downstream models.
The hyper-parameter for RRPN and contrastive learning are mostly the same as introduced
in [124, 72] and λx = λy = λθ = 5 and λw = λh = 1. We design the anchor aspect ratio
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(7) (8) (9) (10) (11) (12)

(1) (2) (3) (4) (5) (6)

Figure 9.6: (1-12) The grasp planning and execution results on 12 objects with a single depth
image. For each column, (Top Two Rows) show perceived RGB and depth images with
planned grasps, (Third Row) shows physical grasps reaching the target grasp, and (Bottom
Row) shows the execution results. The tilt angle γ, and the distance z are neglected in the
plot for simplicity.

as [0.5, 2] to fit to grasp poses better. During the first 20 epochs, λp, λr, λq take values of
(1, 1, 5) respectively. After that, they are modified to (5, 5, 2) to stabilize the training.

As introduced in 9.4, the distance between the object and the camera is drawn from
U(
√
3robj, 2robj). In reality, such condition is hard to achieve since the camera is usually

fixed at a particular point. To tackle this, we propose to re-project the depth image into a
virtual camera. Object’s point cloud is first generated base on the depth image. robj is then
computed as the radiance of the point cloud’s bounding ball. Next, the virtual camera’s
position is determined by the sampled camera-object distance. Finally, the generated point
cloud is projected to the virtual camera to obtain the normalized depth image.
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Table 9.1: Performance analysis of the CGPN and baselines on single object grasping tasks.

Success Rate Time (sec/grasp)

GPD 72.2% 1.84
CGPN w/o Contrastive 69.4% 0.46
CGPN w/o Data Augmentation 66.7% 0.46
CGPN 75.0% 0.46

Fig. 9.6 shows the grasp planning and grasp execution results on 12 different objects
with a single stereo camera. The top two rows of the figure show the captured RGB-Depth
images. Located grasps are labeled in the depth image with red rectangles. The tilt angle
γ, and the distance z are neglected in the plot. The physical grasp pose and the execution
result of the planned grasp are shown in the bottom two rows. The algorithm is able to
find robust grasps for a) small objects close to the ground, b) large objects with graspable
regions, and c) objects with complex surfaces.

Table 9.1 compares CGPN with the grasp pose detection (GPD) [146] algorithm, which
also focuses on 6-DoF grasp planning with a single camera. To adopt GPD, we train a
point-cloud-based grasp evaluation network with the same dataset as CGPN. Each object is
grasped three times, results in 36 trials for each algorithm. From experiments, we observe
CGPN outperforms GPD in both the grasp success rate and the computation time. One
reason behind this might be the robustness of our model under the various camera angles
we set during the experiment. Regarding time cost, CGPN generates valid grasps in an
end-to-end manner, it does not require the sampling and evaluation procedure and therefore
takes less time to plan a grasp.

For ablation study on the data augmentation and contrastive learning module, Table 9.1
also compares the effectiveness of adding augmentation operations on training data and using
contrastive loss in the sense of object grasp success rate. As can be seen, the sim-to-real gap
significantly affects the performance of the grasp proposal network. Ignoring vision noises
and training on the synthetic dataset may yield poor results in practice.

(1) (2) (3)

(4) (5) (6)

Figure 9.7: (1-6) show a sequence of proposed grasps in a cluttered scene.
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Cluttered scene grasp

Fig. 9.7 shows a sequence of proposed grasps in a cluttered environment. The grasp
sequence is selected according to the graspability, or whether a collision-free grasp exists for
a particular object.

Failure cases

Fig. 9.8 displays two typical failures for CGPN, in which no grasp is proposed. The
first failure mode occurs because of the unmodeled sim-to-real gap. The object surface’s
resolution and distance noise are not appropriately handled. The second type of failure
occurs when no robust grasp exists with γ ∈ [−3030. Compared to 3D representations,
the image includes less geometric information, making the end-to-end model hard to infer
6-DoF grasp. It appears that the performance could be improved with comprehensive data
augmentations and other grasp representations.

(a) (b)

Figure 9.8: Two failure modes of CGPN. (a) shows the unmodeled sim-to-real gap on the
object’s surface, and (b) shows the limitation of the depth image in representing 6-DoF
grasps.

9.5 Chapter Summary

This chapter presents a 6-DoF contrastive grasp proposal network (CGPN) to generate
robust grasps on single-view depth images. CGPN is composed of a grasp planning module
for 6-DoF grasp detection and a contrastive learning module for sim-to-real gap reduction.
The grasp planning module infers 6-DoF grasps based on detected robust grasp regions. An
image encoder is used to extract the feature map, followed by a rotated region proposal
network to propose planar grasps. Feature vectors are then extracted and refined to 6-
DoF grasps. To transfer grasp skills trained in simulation, a contrastive learning module
and variant depth image processing techniques are introduced during the training. CGPN
can locate 6-DoF collision-free grasps using a single-view depth image within 0.5 seconds.
Experiment results show that CGPN outperforms previous grasping algorithms.
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Chapter 10

Conclusions and Further Works

This dissertation aims to demonstrate a suite of innovative methods for predicting, gener-
ating, and learning behaviors in autonomous systems. Our focus was distributed across three
key aspects: Interpretable predictions of different types of road participants in autonomous
driving (Chapter 2 and 3), diverse interaction generation (Chapter 4 and 5). and generalized
skill learning (Chapter 6, 7, 8, and 9).

In Chapter 2, a Multi-agent Hybrid Dynamic Bayesian Network (MHDBN) method was
proposed to model the state changes of multiple, heterogeneous agents in various scenarios.
Motion data with pedestrian-vehicle interactions from a four-way-stop intersection in the real
world was used to design the model and verify the effectiveness of the proposed framework’s
estimation and interactive prediction capability.

In Chapter 3, the joint trajectory prediction problem using the goal-conditioned frame-
work was studied. We introduced a conditional-variational-autoencoder-based (CVAE)
model to explicitly encode different interaction modes into the latent space. We proposed
a novel approach to address the KL vanishing during training and induce an interpretable
interactive latent space with pseudo labels. The proposed pseudo-labels allowed us to flexi-
bly incorporate domain knowledge on interaction and provide diverse predictions with finite
candidates.

In Chapter 4, a styled generative model RouteGAN was proposed to generate diverse
interactions by controlling the vehicles separately with desired styles. By altering its style
coefficients, the model can generate trajectories with different safety levels and serve as an
online planner. We evaluated different planners with our model by testing their collision
rate in interaction with RouteGAN planners of multiple critical levels. It’s one of the first
few works to utilize controllable trajectory generation for planning and planning evaluation.

In Chapter 5, the interaction generation problem was extended to indoor scenarios.
Human-like interactions in this realistic setting were modeled, with each agent acting based
on its observation and not communicating with others. We proposed a framework based
on distributed potential games, where each agent imagines a cooperative game with other
agents and solves the game using its estimation of their behavior. We demonstrated the ben-
efits of utilizing distributed imagined games in our framework through various simulation
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experiments. The work is one of the first to discuss interaction generation in extreme cases
requiring collaboration.

In Chapter 6, a policy subspace represented by a set of parameters was learned. Policies
for all the single tasks lie in this subspace and can be composed by interpolating with the
learned set. We demonstrated the state-of-the-art performance on Multi-task reinforcement
learning benchmarks in Meta-World, which contains various robotic manipulation tasks. In
addition, we showed our initial attempt at extending the Parameter-Compositional structure
to unseen tasks in a continual setting.

In Chapter 7, we presented an interactive planning technique for partially observable
tasks using LLMs. In the proposed method, an LLM was used to collect missing information
from the environment using a robot and infer the state of the underlying problem from
collected observations while guiding the robot to perform the required actions. We also used
a fine-tuned Llama 2 model via self-instruct and compared its performance against a pre-
trained LLM like GPT-4. Results were demonstrated on several tasks in simulation as well
as real-world environments.

In Chapter 8, we implemented an adaptive energy reward function. We adjusted the
weights based on velocity for locomotion tasks on ANYmal-C and Unitree Go1 robots to
autonomously select appropriate gaits with improved energy efficiency and stable velocity
tracking compared to previous methods, which used complex reward designs and prior gait
knowledge. The effectiveness of our policy was validated through simulations in the Isaac-
Gym simulation environment and on real robots, demonstrating its potential to facilitate
stable and adaptive locomotion.

In Chapter 9, we introduced the contrastive grasp proposal network (CGPN), a novel
approach for generating robust 6-DoF grasps. By leveraging contrastive learning and variant
depth image processing, CGPN effectively bridges the sim-to-real gap, achieving superior
performance over existing grasping algorithms in real-world scenarios.

There are a lot of directions we plan to extend based on the research presented in this
dissertation. A direct extension to the distributed interaction generation framework intro-
duced in 5 is to build a simulation environment where a distributed potential game solver
controls each of the agents in the simulation. On the one hand, this environment can simu-
late diverse interactions in arbitrary new environments by setting different initial conditions
and interaction parameters of the agents. On the other hand, such a simulation environ-
ment can be used as a testing benchmark to train an interactive policy using reinforcement
learning and evaluate whether an existing policy can interact with the reactive agents well.
Another extension we are conducting is to extend Chapter 7 to a more practical and general
manipulation task setting, where the robot will face failures in deployment due to multiple
reasons. Interactive planning using LLMs and online text retrieval can potentially recover
the robot from failure using online feedback. With the help of more advanced foundation
models, we also hope to solve more generalized and complex manipulation tasks.
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[52] Alejandra Fonseca-Morales and Onésimo Hernández-Lerma. “Potential Differential
Games”. In: Dynamic Games and Applications 8.2 (2018), pp. 254–279.

[53] Hao Fu et al. “Cyclical Annealing Schedule: A Simple Approach to Mitigating KL
Vanishing”. In: Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers). 2019, pp. 240–250.

[54] Zipeng Fu et al. “Minimizing Energy Consumption Leads to the Emergence of Gaits
in Legged Robots”. In: Conference on Robot Learning. 2021.

[55] G Gabrielli. “What price speed? Specific power required for propulsion of vehicles”.
In: Mechanical Engineering-CIME 133.10 (2011), pp. 4–5.

https://arxiv.org/abs/2303.03378
https://arxiv.org/abs/2307.00595


BIBLIOGRAPHY 131

[56] Jiyang Gao et al. “Vectornet: Encoding hd maps and agent dynamics from vectorized
representation”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2020, pp. 11525–11533.

[57] Peng Gao et al. LLaMA-Adapter V2: Parameter-Efficient Visual Instruction Model.
2023. arXiv: 2304.15010 [cs.CV].

[58] Andreas Geiger et al. “Vision meets Robotics: The KITTI Dataset”. In: International
Journal of Robotics Research (IJRR) (2013).

[59] Suhyeon Gim et al. “Clothoids composition method for smooth path generation of
car-like vehicle navigation”. In: Journal of Intelligent & Robotic Systems 88.1 (2017),
pp. 129–146.

[60] Ross B. Girshick. “Fast R-CNN”. In: 2015 IEEE International Conference on Com-
puter Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015. 2015.

[61] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT Press,
2016. isbn: 0262035618.

[62] Ian J. Goodfellow et al. “Generative adversarial networks”. In: Commun. ACM 63.11
(2020), pp. 139–144.

[63] Junru Gu, Chen Sun, and Hang Zhao. “Densetnt: End-to-end trajectory prediction
from dense goal sets”. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. 2021, pp. 15303–15312.

[64] Junru Gu, Qiao Sun, and Hang Zhao. “DenseTNT: Waymo Open Dataset Motion Pre-
diction Challenge 1st Place Solution”. In: arXiv preprint, arXiv:2106.14160 (2021).

[65] Agrim Gupta et al. “Social GAN: Socially Acceptable Trajectories With Genera-
tive Adversarial Networks”. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018, pp. 2255–2264.

[66] Tuomas Haarnoja et al. “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Re-
inforcement Learning with a Stochastic Actor”. In: International Conference on Ma-
chine Learning. 2018.

[67] R. Hadsell, S. Chopra, and Y. LeCun. “Dimensionality Reduction by Learning an In-
variant Mapping”. In: 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06). 2006.

[68] P. E. Hart, N. J. Nilsson, and B. Raphael. “A Formal Basis for the Heuristic Deter-
mination of Minimum Cost Paths”. In: IEEE Transactions on Systems Science and
Cybernetics 4.2 (1968), pp. 100–107.

[69] Jouni Hartikainen, Arno Solin, and Simo Särkkä. Optimal Filtering with Kalman
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