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This dissertation systematically addresses the modeling, quantifying, and protection of 

highway bridges against earthquake hazards. Firstly, the research substantially improves the 

p-y spring based simulation method to predict the seismic responses of highway bridges that 

accounts for various soil-structure interaction effects. Closed-form formulae are provided for 

the p-y spring input parameters to capture the bridge-embankment interaction effects, based 

on which an integrated step-by-step modeling procedure is developed. The procedure is 

applied to simulate the seismic responses of a well instrumented highway overcrossing and 

validated against the recorded responses during the 1992 Petrolia earthquake.  

Secondly, the study derives a response modification factor to quantify the relative impact 
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of liquefaction induced lateral spreading with respect to seismic shaking on column drifts for 

highway bridges. The column drift response under lateral spreading is correlated to the crust 

layer energy imposed on the pile foundation at bridge piers. Under seismic shaking, the column 

drift ratio is directly related to the peak ground acceleration. By normalizing the column drift 

under the lateral spreading to that of under the seismic shaking, the proposed modification 

factor captures key features of how columns respond under both lateral spreading and seismic 

shaking, and offers reliable column drift demand predictions. 

Thirdly, this study investigates the effectiveness and optimal design of seismic protective 

devices for highway bridges. Component-level fragility functions are developed by using the 

probabilistic seismic demand analysis. To transparently quantify the bridge performance at the 

system level, seismic repair cost ratios are derived to combine damage probabilities, damage 

ratios and replacement costs of critical bridge components. Thereafter, a multi-objective 

genetic optimization method with the Pareto optimal concept is employed to identify the 

optimal design parameters of protective devices.  

Subsequently, the research derives a consistent performance index to facilitate the 

performance-based design and optimization of seismic protective devices. By converting the 

system-level repair cost ratio to be a function of median-level engineering demand parameters, 

a uniform design surface is generated for various protection designs. The derived surface can 

be easily implemented in the performance-based seismic protection design and optimization 

without iteratively updating the design goal when a new group of design parameters are 

considered. The robustness of the proposed method is examined in a case study to identify the 
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optimal protection designs by using a genetic optimization scheme. 

Lastly, the study derives the seismic demand models for bridge rocking columns with 

foundation on rigid supports when subject to horizontal near-fault strong motions. The system 

equations of motion are derived and solved to incorporate the column flexibility and the 

rocking impact mechanism. By representing the near-fault ground motions with corresponding 

pulses, dimensional analyses are carried out to regress the closed-form expressions of system’s 

drift and uplift demands. A rigorous validation process is implemented to demonstrate that the 

proposed models can be used with confidence to predict the seismic demands of the rocking 

system directly from structural and ground motion characteristics.  
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1. INTRODUCTION 

1.1 BACKGROUND 

As one of the most critical links in the transportation networks, highway overcrossings 

commonly consist of reinforced concrete box-girder bridges with end-abutments supported on 

approaching embankments and center bents supported by pile foundations. Such layout 

together with short-to-medium span length render that the natural frequencies of highway 

bridges are usually close to the dominant frequencies of earthquake loadings, which makes 

them vulnerable to earthquake hazards. 

Over the past forty years highway bridges have experienced severe damages under major 

earthquake events causing significant direct and indirect economic loss (Figure 1.1). During 

the 1971 San Fernando earthquake, 42 bridge structures experienced significant damage while 

5 elevated overcrossings collapsed due to the loss of support at end spans (Jennings and Wood 

1971). After the 1989 Loma Prieta earthquake, 144 highway bridges from 9 counties were 

observed damaged (Gordon, 2002). A major disaster of this earthquake was the collapse of the 

two-level Cypress Street Viaduct of Interstate 880 in West Oakland, which killed 42 people and 

injured many more (Tarakji 1992). Several years later, the 1994 Northridge earthquake 

damaged 286 highway bridges and 7 of them lost their functionality due to severe damage 

(Caltrans 1994). A rough estimation of the cost for repairing about 230 bridges damaged in the 

1994 Northridge earthquake was 150 million dollars, while around 120 million dollars were 

spent on the 6 collapsed bridges (Kiremidjian and Basöz, 1997). Later the 1995 Kobe 

earthquake resulted in collapses of 9 highway bridges and destructive damages of 16 bridges 
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(Ministry of Construction of Japan, 1995). The most extensive damage occurred at an 18-span 

viaduct of Hanshin Expressway, which collapsed due to the failure of RC columns resulted 

from the premature shear failure. In 1999, the Chi-Chi earthquake of Taiwan, more than 10 

bridges, including a cable-stayed bridge, were severely damaged (Chang et al. 2000). Most 

recently, during the 2008 Wenchuan earthquake in Sichuan Province, China, among the 320 

major bridges and other transportation facilities investigated, 46 bridges were severely 

damaged, 128 bridges were moderately damaged. The total losses of the transportation system 

due to the Wenchuan earthquake were over 10 billion dollars, most of which consisted of 

damage to bridges (Han et al. 2009). 

In view of these extensive bridge damages, many research programs have been launched 

since the 1971 San Fernando earthquake event. Improvements have been achieved in 

following areas: (1) analysis tools and approaches have been developed for better 

understanding the seismic responses of highway bridges; (2) modern codes have been 

formulated with detailed seismic designs for critical bridge components; (3) seismic retrofit 

programs have been implemented in practice to improve the safety of aged bridges; (4) 

performance-based earthquake engineering (PBEE) has been developed to link bridges’ 

performance to the associated socio-economic impacts; (5) innovative materials, devices, 

systems and technologies have been investigated to protect highway bridges against 

earthquake hazards.  
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(a) Expansion Joint Damage during the 

2008 Wenchuan earthquake 
(b) Unseating failure during the 1999 Chi-Chi 

earthquake 

  

(c) Retaining block damage during the 2008 
Wenchuan earthquake 

(d) Column shear failure in Hanshin 
Expressway during the 1995 Kobe earthquake. 

 
(e) Column flexural failure during the 1995 

Kobe earthquake. 
(f) Bearing failure during the 1995 Kobe 

earthquake. 

 
(g) Span collapse of the Nishinomiya 

Bridge following the 1995 Kobe earthquake
(h) Span collapse and pier failure of the Showa 

Bridge in the 1964 Niigata earthquake 
Figure 1.1. Highway bridge failures observed in case histories 
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Although considerable progresses have been made towards seismically resilient and 

sustainable highway bridges, some inherent challenges still remain unsolved in research 

community, among which three important subjects are: (1) to assess the seismic performance 

of the soil-foundation-bridge system under complex loading scenarios; (2) to evaluate, design, 

and optimize seismic protective devices in a performance-based manner; and (3) to quantify 

the effectiveness of innovative designs, systems, and technologies for highway bridges. 

Detailed discussions for each subject are presented in following sections. 

1.2 SEISMIC ASSESSMENT OF BRIDGE-FOUNDATION-SOIL SYSTEMS 

The above-mentioned case histories have shown a variety of damage mechanisms such as 

brittle shear failure of short columns, pullout of column reinforcing bars, rotation of skewed 

superstructures, overturning of piers, abutments and wingwalls, failure at expansion joints, 

etc. However, the observed various damage cases can be mainly attributed to two damage 

scenarios, namely seismic shaking and geotechnical failure. Seismic shaking causes bridge 

damage by imposing excessive inertial loads and displacements onto the structure, while 

geotechnical failure will accumulate a large amount of soil that push on bridge foundations. 

A typical damaging scenario of geotechnical failure is the soil liquefaction induced lateral 

spreading.  

1.2.1 Soil-structure Interaction (SSI) Effects under Seismic Shaking  

The field observations after major earthquakes and plenty numerical studies have shown 

that seismic responses of bridges are influenced by structural characterization, nonlinear 
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behavior, ground motion characteristics and SSI effects (Crouse et al. 1987; Werner et al. 1987; 

MaCallen and Romstad 1994; Kappos et al. 2002; Zhang et al. 2008). The SSI effects are more 

prominent in highway bridges due to several factors: (1) the flexibility and nonlinearity 

introduced at end embankments and pile foundations that support the superstructure; (2) the 

energy dissipation due to large volume of soil involved through approach embankment; (3) the 

significant kinematic responses at end embankments that result in amplified foundation input 

motion.  

Despite the significance of SSI effects on bridges, there exists large gap between greatly 

simplified design approaches and realistic yet computationally efficient modeling procedures 

to capture their potential detrimental role. Existing methods to incorporate SSI effects in 

bridges include system identification, the substructure method, full 3D bridge-foundation-soil 

finite element method and the p-y models.  

The system identification method relies on the available response data from instrumented 

bridges to back configure the stiffness and energy dissipation of bridge foundations (Werner et 

al. 1987; Goel and Chopra 1997; Chaudhary et al. 2001; Rahimi et al. 2012; Kampas and 

Makris 2013). The identification results confirmed the significance of SSI effects, especially 

the dynamic characteristics of the embankment, which would dominate the output of the 

bridge-embankment system. However, the applicability of identification results is limited on 

the vast majority of non-instrumented bridges due to variability of earthquake motions and 

structural characterization of bridges.  

One commonly adopted approach to address SSI problems is the substructure method, 
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where dynamic characteristics of a soil-pile-foundation system or an approach embankment 

are usually solved separately by simplified soil-substructure models with lumped parameters. 

Frequency dependent or independent springs and dashpots are usually derived based on 

frequency domain analysis (Makris et al. 1994; Dobry and Gazetas 1988; Zhang and Makris 

2002a, 2002b; Price and Eberhard 2005; Dezi et al. 2009; Carbonari et al. 2011; Lesgidis et al. 

2015). Zhang and Makris (2002a) developed kinematic response functions and dynamic 

stiffness of the approach embankment based on a 2-D shear wedge model. Along with the 

closed-form expression of the critical length, Lc, the dynamic stiffness of the 3D embankment 

can be derived. They further demonstrated the substructure method in predicting the seismic 

responses of two instrumented bridges and noted the importance of capturing the amplified 

embankment crest motions in the analysis (Zhang and Makris 2002b). In general, substructure 

method offers an attractive manner to investigate SSI effects of bridge structures since it clearly 

reveals the interaction behaviors between soil foundations and bridge superstructures in a very 

efficient way; however, assumption of viscous elastic soil material is usually required to solve 

the dynamic stiffness of the foundation. Hence pursuing a solution of the SSI problem based on 

substructure method can lead to an incorrect response of the bridge structure as foundation 

components may display nonlinear behavior, especially when subjected to strong motions. 

One direct yet ‘expensive’ approach on the SSI problem is the numerical solution of the 

coupled semi-infinite soil-structure system with the use of the finite element method (FEM) 

(Elgamal et al. 2008; Kwon and Elnashai 2008; Jeremic et al. 2009; Lu et al. 2011; Rahmani et 

al. 2014). Although the entire coupled bridge-soil system can be analyzed simultaneously by 
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using the FEM method, the huge size of the semi-infinite soil domain approximation sharply 

increased the modeling burden so that extensive computational efforts have to be made to 

perform such analysis. By using advanced computing techniques, such as parallel computing 

(Lu et al. 2011) and hybrid simulation (Kwon and Elnashai 2008), the execution time of the 3D 

FEM analysis can be reduced, nevertheless, this approach still remains unattractive to the 

common design process of bridge structures. 

An attractive method is the dynamic beam on nonlinear Winkler foundation (p-y) method, 

which balances between the acceptable accuracy and computational efficiency. The p-y model 

originates from the study on pile foundation under earthquake loadings (Matlock et al. 1978; 

Novak and Sheta 1980). It utilizes distributed springs along the length of the pile to simulate 

the pile-soil interaction force as nonlinear function of the pile displacement at given depth. 

Various forms of p-y elements have been proposed with the help of the laboratory and 

centrifuge tests (Nogami et al. 1992; Badoni and Makris 1996; Wang et al. 1998; Allotey and 

Naggar 2008; Choi et al. 2015). The p-y model typically includes an interface (gap) element 

between the pile and soil, a near field nonlinear spring element to account for the strong 

nonlinear interaction behavior and the associated hysteretic damping; and a far field element to 

simulate the elastic soil medium as well as the radiation damping. Boulanger et al. (1999) 

developed a dynamic p-y element and implemented it into the finite element program of 

OpenSees (Mazzoni et al. 2006). This element is later modified by Brandenberg et al. (2012) to 

simulate dynamic SSI behavior of piles in liquefiable soil. The p-y model is effective in 

accounting for the realistic soil profile, nonlinear interaction and the depth varying foundation 
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input motions. It has been applied in a few cases to simulate the whole soil-foundation-bridge 

systems (Aygun et al. 2011; Wang et al. 2013). However, the important bridge-embankment 

interaction is normally not simulated with the standard p-y model. 

1.2.2 Bridge Response under Liquefaction Induced Lateral Spreading 

Besides SSI effects under shaking, seismic responses of highway bridges are strongly 

influenced by the supporting soil-foundation system in a different way, i.e. local soils impose 

permanent lateral displacements onto bridge foundations when soil liquefaction is triggered. 

Soil liquefaction is a phenomenon whereby a saturated or partially saturated soil substantially 

loses strength and stiffness because of the pore pressure build-up in response to an applied 

stress, usually earthquake shaking or other sudden change in stress condition, causing it to 

behave like a liquid. The liquefaction of a shallow underlying deposit during earthquake can 

then cause considerable lateral displacement for a gently sloping ground. Although 

fundamental aspects of the liquefaction induced lateral spreading mechanism have been 

studied by case histories, physical models and numerical simulations in recent years, an 

efficient yet reliable analysis approach to evaluate the soil liquefaction hazard on highway 

bridges is still lacking. As a consequence, there exist both difficulty and inconsistency to 

interpret bridge damages observed using the existing studies. For example, many bridge 

damage cases under soil liquefaction induced lateral spreading cannot be fully interpreted 

(Chu et al. 2008); inconsistency occurs between observed damages and analytical conclusions 

that are based on existing guidelines (Kiremidjian et al. 2006).  

When bridges are susceptible to liquefaction induced lateral spreading, an appropriate 
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numerical framework to accurately predict their seismic responses requires following issues 

being addressed: (1) a nonlinear site response analysis to capture the mechanical features of 

liquefaction and predict ground lateral spreading, (2) an advanced approach to simulate the SSI 

effects for liquefiable soils, (3) a performance-based procedure to cover the inherent 

variabilities and uncertainties in association with the large bridge-soil inventory. These issues 

have not been fully resolved by current design recommendations (Caltrans 2013), which rely 

on component-based static analysis methods, but can be tackled by using global dynamic 

analysis procedure under the PBEE framework. 

Benefited from the advanced soil models that can effectively simulate the liquefaction 

process (Yang et al. 2003; Boulanger and Ziotopoulou 2012) and the development of dynamic 

p-y spring approach that can capture the liquefiable SSI effects (Brandenberg et al. 2012), 

global dynamic analyses of highway bridges under soil liquefaction have been conducted in a 

handful of recent studies. Kramer et al. (2008) used a detailed nonlinear finite element analysis 

to predict the physical damage and economic loss of highway bridges on liquefiable soil. 

Aygun et al. (2011) developed a coupled bridge-soil-foundation model that consists of a 

three-dimensional bridge system with two-dimensional soil column models and 

one-dimensional p-y springs to investigate the influence of soil liquefaction on the seismic 

fragility of a multi-span continuous steel bridge. Subsequently, Wang et al. (2014) employed 

the same modeling approach to explore the influence of liquefaction on the effectiveness of 

base isolation for the similar bridge. Although these studies have provided a deep insight of 

how bridge-soil system would perform under soil liquefaction and demonstrated the feasibility 
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of global dynamic analysis procedure as a robust simulation tool to address the effects of 

liquefaction on highway bridges, the global dynamic analysis cannot be easily embraced or 

incorporated with bridge design practice, due to its still significant computational and 

modeling efforts involved. 

1.2.3 Motivation of This Study 

For bridge responses under seismic shaking, existing analysis tools fail to correctly and 

efficiently capture the bridge-embankment interaction effects, despite ample field evidences. 

Moreover, there lacks an integral modeling approach that can simultaneously account for 

various SSI effects associated with the bridge-foundation-soil system such as 

bridge-embankment interaction, soil-pile interaction, soil-pile-cap interaction, and amplified 

motion inputs at end abutments. Partial work of this dissertation is motivated by the need of a 

complete and accurate assessment of the multiple SSI effects on bridges. An integral p-y 

spring modeling approach is developed and validated for this purpose. 

On the other hand, to deal with bridges that are susceptible to liquefaction induced lateral 

spreading, current practices often rely on component-based static analysis methods. It is 

because that the dynamic three-dimensional simulation method using advanced soil 

constitutive models that can capture liquefaction and lateral spreading features is too 

computationally demanding to be considered in routine practices. The failure mechanisms of 

bridges exhibited by seismic shaking or liquefaction induced lateral spreading inevitably 

show different patterns due to distinct load transferring mechanisms, resulting in differences 

in damaging potential under these two situations. Zhang et al. (2008) have studied the failure 
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potential of bridges with different structural configurations. Their study concludes that bridge 

fragility functions due to either ground shaking or lateral spreading show significant 

correlation with the structural characterizations despite the differences in responses. This 

study casts light on the derivation of a simple yet dependable tool to quantify the relative 

influence of soil liquefaction in this dissertation. 

1.3  PROTECTION SCHEMES OF HIGHWAY BRIDGES 

Considerable efforts have been made to better protect highway bridges against earthquake 

hazards, where traditional methods focus on designing well-confined pier columns with 

sufficient capacity and ductility, or using steel jackets or composite materials to retrofit existing 

bridges (FHWA 2006). In recent years, seismic protective devices have demonstrated great 

promise for seismic hazard mitigation of highway bridges. In the prospective of structural 

control theories, protective devices can be classified into passive devices, semi-active devices 

and active control systems (Housner et al. 1997; Spencer and Nagarajaiah 2003). A literature 

review is provided in the following two sections for the passive devices and the active control 

techniques, respectively. 

1.3.1 Passive Devices for Seismic Protection of Highway Bridges 

Passive protection devices in the forms of isolation bearings and energy dissipation devices are 

attractive techniques for seismic hazard mitigation of highway bridges (Buckle and Mayes 1990; 

Skinner et al. 1993; Priestley et al. 1996; Wang et al. 1998; Kunde and Jangid 2003; Makris and 

Zhang 2004; among others). As shown in Figure 1.2, several bridges worldwide are equipped 
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with such devices. The rapid success of seismic protection in buildings has accelerated the 

implementation of large-capacity damping devices in bridges (Delis et al. 1996). The newly 

constructed 91/5 bridge in Orange County, California, appears to be the first overcrossing 

equipped with fluid dampers in United States (Figure 1.2 (c)). At each end abutment of this 

bridge, four fluid dampers have been installed in together with the elastomeric bearing pads. 

 

  

(a) Lead rubber bearings used on Fukae 
Viaduct after 1995 Kobe earthquake 

(b) Friction pendulum system used in George 
Washington Memorial Bridge 

    
(c) Viscous fluid damper used on 91/5 Overcrossing 

Figure 1.2. Seismic protective devices used for highway bridges 

 

By lengthening the natural periods of bridges as well as limiting the forces that being 

transferred to substructures, isolation devices can significantly reduce the damaging potential 

of pier columns. Also the high initial elastic stiffness of isolators can provide the required 

rigidity under frequently occurring loads, such as wind and braking (Mayes et al. 1992). 
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Moreover, supplemental energy dissipation devices such as fluid dampers can provide a 

distinct form of energy dissipation to effectively control the displacement demand of isolation 

devices. The incorporation of passive protection devices increases the complexity of seismic 

evaluation and design for highway bridges, where two major challenges are: (1) a 

comprehensive evaluation is required to assess the seismic performance of highway bridges 

that are equipped with passive protection devices, including the incorporation of the 

uncertainties inherent with ground motions and the damage states of multiple critical 

components (e.g. columns and isolation bearings); (2) an effective design procedure, which is 

able to consider nonlinearities in structures and protective devices, a wide choice of 

mechanical parameters for isolation devices, as well as conflicting responses of isolation 

bearings and piers, is required to achieve the optimal design parameters of protective devices. 

This dissertation is motivated by addressing the origin of these two major challenges, 

namely evaluation and optimal design of isolation bearings and fluid dampers for seismic 

protections of highway bridges. Although some studies have been conducted in this area, there 

remains a potential need to fully solve the problem.  

The effectiveness of protective devices for bridges has been extensively studied during the 

past three decades by using deterministic methods (Wang et.al 1998; Makris and Zhang 2004; 

Jangid 2005, 2007; Soneji and Jangid 2007; Ozbulut and Hurlebaus 2011; among others). In 

these studies, seismic responses of bridges that are equipped with protective devices were 

investigated by conducting nonlinear time history analyses under seismic spectra or a small 

number of strong ground motions. The results from deterministic methods may not be applied 
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to other cases due to the variation of ground motions. To account for the uncertainties of 

earthquake motions, recent studies utilized performance-based evaluation methods to 

investigate the influences of isolation devices and other retrofit measures on seismic 

performance of bridges (Karim and Yamazaki 2007; Padgett and DesRoches 2008; Agrawal et 

al. 2012; Siqueira et al. 2014). Karim and Yamazaki (2007) utilized a simplified model to 

investigate the isolation efficiency by comparing seismic fragilities of isolated bridges with 

non-isolated cases for a total of 30 bridge models under 250 motion records. However, their 

study did not consider the damage stages of isolation devices. By assessing seismic fragilities 

of multiple key components in a bridge system with various retrofit measures, Padgett and 

DesRoches (2008) necessitated the derivation of bridge system fragilities since “a given 

retrofit measure may have a positive impact on some components, yet no impact or a negative 

impact on other critical components”. The effectiveness and optimal design of isolation 

devices for highway bridges were studied in detail by Zhang and Huo (2009), where a 

composite damage index was developed to derive the bridge system fragility, also the optimal 

isolation parameters have been identified as a function of column properties through an 

extensive parametric study. The studies that consider the bridge performance at the system 

level have offered an appealing way to evaluate the effectiveness of protective devices for 

seismic protection of highway bridges. 

In addition, recent studies have employed structural control technologies to design smart 

devices (Housner et al. 1997; Spencer and Nagarajaiah 2003; Narasimhan et al. 2006; Agrawal 

et al. 2009), such as active or semi-active control devices, and equivalent passive systems 
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(Gluck et al. 1996; Reinhorn et al. 2009). The essential idea embedded in these studies is 

originated by a general optimization problem - that is, the best protective devices should 

provide minimized bridge responses. In this dissertation, an innovative genetic optimization 

algorithm is utilized to find the optimal design parameters of protective devices. By forming a 

stochastic evolutionary process where an initial randomly selected population evolves to a 

superior final solution, applications of genetic algorithm in structure engineering were 

pioneered in the early 1990s (Adeli and Cheng 1994) and followed by more recent studies for 

seismic protections of bridges and structures (Jiang and Adeli 2008; Kim and Roschke 2006; 

Cha et al. 2012; among others). The genetic optimization algorithm is directly used in this 

study to identify optimal design parameters for passive protective devices. 

1.3.2 Active Control for Seismic Protection of Highway Bridges 

Passive devices have been widely implemented in buildings since they are relatively easy 

to install and are reliable during natural hazards. However, restricted by their mechanical 

characteristics, passive devices are not sufficiently adaptive to structure changes and varying 

loading conditions (Spencer and Nagarajaiah 2003). On the other hand, semi-active and active 

control systems are designed to capture structural responses in real time and generate 

appropriate external forces accordingly, which will allow these devices to be adapted to a 

wide range of loading conditions and structures (Soong 1990; Housner et al. 1997; Spencer and 

Nagarajaiah 2003; among others).  

Recently, a highway benchmark structural control problem was defined for the 

above-mentioned 91/5 highway overcrossing (Agrawal et al. 2009). The dynamics of the 
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bridge was represented by a reduced-order model that was exclusively built in the program of 

Matlab/Simulink. Various control strategies and devices have been implemented and compared 

under this benchmark framework (Agrawal and Nagarajaiah, 2009), which provided 

pioneering means for the seismic protection of highway bridges (e.g. the one as shown in 

Figure 1.3). However, the dependability of these proposed control methods is restricted by the 

fact that the adopted simplified model cannot fully capture the bridge’s actual dynamic 

behavior, which is indeed influenced by multiple effects such as nonlinear behaviors of 

protective devices, SSI effects, structure nonlinearities and complex geometry, etc. In light of 

that finite element models can realistically simulate the seismic responses of highway bridges, 

a convincing way to investigate the control efficiency on highway bridges lies in developing a 

platform that can combine structural control methods with finite element models. 

 

 
Figure 1.3. Scheme of active control for the 91/5 Overcrossing (after Narasimhan 2009) 

 

Originally developed as an economic tool to combine physical testing and numerical 

modeling, hybrid simulation can be used as an innovative approach to couple structural control 
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algorithm and finite element models. By maintaining the compatibility and equilibrium at the 

interface between experimental and numerical substructures, large coupled structure systems 

can be analyzed separately on different platforms through hybrid simulation. The hybrid 

simulation scheme for an actively controlled highway bridge is proposed in Figure 1.4, where 

the bridge structure and SSI effects are modeled using the finite element program of OpenSees 

(Mazzoni et al. 2006), while supplemental protective devices and control algorithms are 

implemented in Matlab. The bridge model and the structural control are coupled by sharing 

forces and displacements at common nodes through a platform designed for hybrid simulation: 

UI-SIMCOR (Kwon et al. 2007, 2008), which enables various substructures being analyzed in 

separate modules. The main body of UI-SIMCOR utilizes α-OS integration scheme to control 

each module and perform integration (Kwon et al. 2007). As a good candidate for 

pseudo-dynamic testing, the α-OS integration scheme provides the unconditional stability 

while preserving the implementation simplicity of explicit schemes (Combescure and Pegon 

1997). To improve computational efficiency, UI-SIMCOR adopts static condensation to 

remove the degree-of-freedoms (DOFs) that do not correspond to applied loadings or points of 

interest. Reyleigh damping is assumed to generate the system damping matrix. 
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Figure 1.4. Hybrid simulation scheme for actively controlled highway bridges  
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1.4 ROCKING COLUMNS FOR HIGHWAY BRIDGES 

Other than the seismic protective devices, this dissertation also investigates the 

effectiveness of using rocking column-foundation systems to protect highway bridges against 

earthquake hazards. The conventionally designed bridges expect columns to exhibit inelastic 

responses under strong earthquakes, which will inevitably cause considerable damages and 

permanent deformations. During the past several decades, column damages under seismic 

shaking have occurred in numerous case histories that require expensive and time-consuming 

retrofit efforts (Jennings and Wood 1971; Gordon, 2002; Chang et al. 2000; among others). 

To improve column’s seismic performance, recent studies have investigated the effectiveness 

of an innovative design that involves the use of rocking foundations (Ugalde et al. 2010; 

Deng et al. 2012, 2014; Liu et al. 2013; Espinoza and Mahin 2012; Antoellis and Panagiotou 

2014; Antonellis et al. 2015; Kutter et al. 2016; Hakhamaneshi and Kutter 2016). The rocking 

foundation considered in these studies features a narrower shallow footing directly sitting 

atop the supporting soils, in which way the bridge-foundation system will uplift and impact 

the soil when subject to earthquake excitations. As such, the seismic energy can be absorbed 

by the soils, and the ductility demand of the column can be reduced. However, a dominant 

concern to challenge the merit of the rocking foundation concept lies in the competence of 

the supporting soils. Because of the strong momentum induced by the rocking impact, 

excessive permanent deformations may occur at the pivot locations of the supporting soil, 

which will significantly increase the vertical and lateral displacement of the bridge. Therefore, 

this study examines the seismic performance of an alternative rocking foundation system by 
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replacing the supporting soils with a rigid support, which can be easily realized with the pier 

foundation or an embedded concrete block designed underneath. 

The pioneering study of the rocking behavior under seismic excitation can be traced back 

several decades ago by Housner (1963). Following Housner’s study, a large number of 

studies have been conducted to further elucidate the complex dynamics of the free-standing 

rigid blocks (Psycharis and Jennings 1983; Hogan 1990; Zhang and Makris 2001; Makris and 

Konstantinidis 2003; Makris and Vassiliou 2013; among others). Zhang and Makris (2001) 

investigated in depth the overturning potential of free-standing rigid blocks under cycloidal 

pulses, where they discovered two modes of overturning: (1) by exhibiting one or more 

impacts; and (2) without exhibiting any impact. Subsequently, several studies are conducted to 

investigate the practical applications of rigid structures designed for rocking, such as the 

development of the rocking spectrum (Makris and Konstantinidis 2003), and rocking 

responses of vertically restrained blocks (Makris and Zhang 2001; Dimitrakopoulos and 

Dejong 2012; Vassiliou and Makris 2015), rigid blocks with isolated bases (Vassiliou and 

Makris 2012), and multiple aligned free-standing rigid columns (Makris and Vassiliou 2013), 

etc. 

However, compared with free-standing rigid blocks, additional research efforts have to 

be made to address the complexity associated with rocking columns on rigid supports, such 

as the influences of column flexibility. Relative studies have been conducted to investigate 

the transient drift and rocking responses of rocking columns on rigid supports by deriving and 

solving the system EOMs (Chopra and Yim 1985; Oliveto et al. 2003; Acikgoz and DeJong 
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2012, 2016; Vassiliou et al. 2015). It has been found through these studies that in contrast to 

the fixed-base condition, fundamental discrepancies exist if the foundation is designed for 

rocking. Particularly, geometric nonlinearity and the rocking impact have to be taken into 

account to accurately predict the dynamic performance of the system. Because it remains 

difficult to simulate both the large deformation effect and the non-continuous energy loss 

during instantaneous rocking impacts, relatively few studies have been conducted to develop 

finite element models for the deformable rocking column systems (Barthes 2012; Vassiliou et 

al. 2014; 2016). 

In light of the facts that (1) previous studies mainly focused on the seismic behavior of 

the rocking foundation supported by soils; (2) the associated complex dynamics cannot be 

easily simulated by using the finite element methods; (3) the analytical methods developed 

are vigorous yet too complicated to be used in practice, this research aims to develop 

simplified demand models to efficiently quantify the seismic performance of the rocking 

column system with rigid supports. 

1.5 PBEE OF HIGHWAY BRIDGES 

Rather than conventionally investigate the seismic performance of highway bridges using 

force-based or displacement-based methods, the Performance Based Earthquake Engineering 

(PBEE) attempts to investigate highway bridge performance through linking component 

actions and deformations (e.g. drifts, curvatures) first to damage states and then to the likely 

post-earthquake functionality. Along with the probabilistic form, PBEE can be broken into four 

steps: (1) seismic hazard analysis that quantifies the seismic input at the site in terms of 
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intensity measures (IM); (2) structural analysis that relates the seismic input to structural 

responses that is revealed by engineering demand parameters (EDPs); (3) damage analysis that 

relates the structural response to damage measures (DMs); (4) loss analysis that relates damage 

to decision variables (DV). By using this four-step procedure, the PBEE is able to assist 

decision makers with transparent information to allocate resources for new construction and 

retrofitting targeting the desired performance of highway bridges when facing earthquakes. 

Devoted studies have been conducted to analyze and design highway bridges using PBEE 

in recent years. New documents have been published, such as the HAZUS manual (FEMA 

2003) for post-earthquake loss estimation of highway bridges, and the NCHRP SYNTHESIS 

440 - Performance-Based Seismic Bridge Design (2013) for performance-based seismic design 

of highway bridges. 

In research community, the PBEE methodology has been utilized as a powerful tool to 

evaluate the seismic performance of different highway bridge systems, including skewed 

bridges (Huo and Zhang 2013; Deepu et al. 2014; Yang et al. 2015), isolated bridges (Karim 

and Yamazaki 2007; Zhang and Huo 2009; Siqueira et al. 2014), retrofitted bridges with 

various measures (Padgett and DesRoches 2008; Agrawal et al. 2012), bridges installed with 

smart materials and devices (Choi et al. 2010; Bhuiyan and Alam 2012; Billah et al. 2013), 

bridge-foundation-soil systems (Bradley et al. 2010; Aygun et al. 2011), deteriorating bridges 

(Alipour et al. 2011; Dong et al. 2013; Zanini et al. 2013), etc. All these studies have 

demonstrated the attractive promise of implementing the PBEE method; namely it provides a 

probabilistic framework to account for the uncertainties from the ground motion hazard, the 
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corresponding structural responses, and the damage and economic losses sustained. 

An important step for PBEE is developing the seismic fragility functions, which define the 

conditional probability of attaining or exceeding a specified damage state for a given set of 

input intensity measures. Depending on the data resources, fragility functions can be generated 

as empirical ones that are based on bridge damage data from major earthquakes (Basoz et al. 

1999; Shinozuka et al. 2000), or analytical ones derived from numerical analysis results (Karim 

and Yamazaki 2007; Padgett and DesRoche 2008; Agrawal et al. 2012; Siqueira et al. 2014; 

Zhang and Huo 2009; among others). Due to the absence of adequate empirical data, analytical 

fragility functions have been increasingly used in both research and practical communities, 

where seismic response are obtained from nonlinear time history analysis, elastic spectra 

analysis or nonlinear static analysis (Choi et al. 2004). In this dissertation the analytical 

fragility function method and the PBEE framework are utilized as effective tools to investigate 

the bridge performance probabilistically. 

1.6 ORGANIZATION 

Chapter 2 develops a systematic, step-by-step p-y-spring-based simulation procedure for 

predicting the seismic response of highway bridges that accounts for various SSI effects. The 

modeling-based simulation procedure is applied to assess the seismic responses of a well 

instrumented highway overcrossing and validated through comparisons with the recorded 

responses during the 1992 Petrolia earthquake. 

Chapter 3 derives a response modification factor for column drift ratio under seismic 

shaking to quantify the comparative influence of liquefaction induced lateral spreading on 
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highway bridges. The proposed method captures key features of how bridges perform under 

liquefaction induced lateral spreading, and offers reliable column drift predictions. 

The effectiveness and optimal design of seismic protective device are investigated in 

Chapter 4. Component-level fragility functions are first derived by probabilistic seismic 

demand analysis using nonlinear time history analyses that include SSI effects and ground 

motion uncertainties. The bridge repair cost ratios (RCRs) are then derived using a 

performance-based methodology and the associated component failure probability. The 

multi-objective genetic optimization method that utilizes Pareto optimal concept is employed 

to identify the optimum design parameters of protective devices. 

Chapter 5 develops an integral performance-based design and optimization framework for 

seismic protections of highway bridges. By converting the seismic RCR to be a function of the 

median EDPs, a uniform design surface is derived for a variety of protected bridge systems. 

The soundness of using the derived RCR surface is examined in a case study where the optimal 

protection designs are identified without iteratively updating the fragility functions at every 

time when a new design is considered. It therefore validates that the proposed framework can 

significantly facilitate the design and optimization of protective devices in a probabilistic 

manner.  

Chapter 6 quantifies the seismic responses of the rocking column-foundation systems on 

rigid supports. The system equations of motion are derived analytically and solved 

numerically to simultaneously account for the superstructure mass inertia, the column 

flexibility, the uplift condition, and the rocking impact mechanism. Dimensional analyses are 



24 
 

developed to derive the closed-form expressions of peak column drifts and uplift angles as 

functions of ground motion characteristics and geometric and dynamic parameters of the 

column. The proposed models are validated against the numerical simulations for five 

as-built bridge column cases under twelve recorded near-fault motions. 

Finally, a summary and discussion of future work are presented in Chapter 7. 



25 
 

2. SEISMIC RESPONSE PREDICTIONS OF HIGHWAY BRIDGES UNDER 

SEISMIC SHAKING 

Figure 2.1 shows a schematic sketch of a typical highway bridge. Pile foundations are 

often used to support bridge columns at center bent and end abutments. They transfer the 

axial load, shear force and bending moments of the superstructure to the surrounding soil 

through the combinations of axial soil-pile friction, lateral soil resistance, and end bearing 

forces, in addition to the resistance provided by the pile cap. Furthermore, typical highway 

bridges are supported at ends by abutment and embankment soils, whose dynamic 

characteristics affect appreciably the earthquake responses of highway bridges. This chapter 

aims to develop an integral modeling approach that can efficiently capture the soil-pile 

interaction, the bridge-embankment interaction, the soil-pile-cap interaction, and the 

embankment motion amplification effect. In view of its robustness, the p-y modeling 

approaches are considered herein. 

 

Bridge Embankment 
Interaction

Soil Pile Interaction
Soil Pile Cap 
Interaction

Ground motion 
Depth Variation

Embankment 
Amplification

Soil Pile Interaction

Figure 2.1. Schematic sketch and SSI effects of typical California highway bridges 
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2.1 THE p-y MODELING FOR PILE FOUNDATIONS 

As shown in Figure 2.2, pile foundation consists of a pile cap supported by multiple pile 

columns, where the former is modeled by rigid beam elements and the latter can be modeled 

by linear or nonlinear beam elements that possess appropriate tributary masses and pile 

stiffness. The p-y method is an efficient way to model the interactions between soil and pile 

(such as axial soil-pile friction, lateral soil resistance, and end bearing forces) and pile cap 

resistance using empirically derived nonlinear soil springs (Wang et al. 1998; Boulanger et al. 

1999; Curras et al. 2001). The fundamental assumption is that the pile-soil interaction force at 

a given depth only depends on the relative soil displacement at that location. At each depth 

below ground, foundation nodes are connected with horizontal p-y springs. In addition, t-z 

and q-z springs are incorporated to account for soil resistances in the vertical direction, where 

the former simulates pile skin frictions and the latter considers bearing capacity of the soil at 

pile tips. Horizontal foundation input motions are applied to the free ends of all p-y elements, 

while for t-z and q-z elements, their free ends are fixed to exclude vertical motion inputs, 

whose magnitudes are typically smaller compared with horizontal motions. In addition, the 

energy dissipation and group effects due to interaction between the piles need to be 

considered in p-y method. 
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Figure 2.2. Schematic of dynamic p-y spring modeling at pile foundation 

2.1.1 Nonlinear p-y Elements 

Consistent with previous studies (Nogami et al. 1992; Boulanger et al. 1999), the 

nonlinear p-y elements chosen in this study consists of a gap closure element, a plastic 

element and an elastic element in series (Figure 2.2), representing the gap formation at the 

pile-soil interface, the nonlinear interaction behavior in the near field and the elastic soil 

medium (radiation damping) in the far field, respectively. The constitutive behavior of the p-y 

springs for soft clay is based on Matlock’s recommendations (1978), while the American 

Petroleum Institute (API) sand model is used for sand (API 1993). Two key input parameters 

in association with each p-y spring are pult, the ultimate resistance force that the soil can exert 

under lateral loading, and y50, the displacement when 50% of the ultimate resistance is 

mobilized, both of which can be calculated by the PySimple1 command in OpenSees based 

on soil properties (Mazzoni et al. 2006). The p-y springs are also used to model the 
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soil-pile-cap interaction effects with additional adjustments that are considered by Curras et 

al. (2001), i.e. soil lateral resistance is summed by passive pressure on the front and skin 

frictions on two sides (bottom frictions are ignored). In this study pile cap is considered as a 

retaining structure backed with infinite long soil layers, such that the passive pressure can be 

calculated by a static pushover analysis of a two-dimensional finite element model that 

consists of pile cap and back-soils. The modeling procedure is very similar as that considered 

for the abutment SSI effects in the longitudinal direction, which will be explained in detail 

later.  

2.1.2 Pile Group Effects and Input Motions 

Pile group effect is considered using the p-y element of a single pile in conjunction with 

the concept of superposition criterion; i.e. the ultimate capacity of each pile is adjusted with a 

proper reduction factor due to the dynamic interactions of one pile with other piles in a group 

(Figure 2.2). The superposition method was originally developed for static loads by Poulos 

(1968) and later justified for dynamic loads by other researchers (Curras et al. 2001; Kaynia 

and Kausel 1982; Sanchez-Salinero 1983; Roesset 1984). An average reduction factor mp 

(also named as the ‘p-multiplier’) is usually derived for dynamic loads since the ‘front’ and 

‘rear’ rows alternate between being the leading and following row during cyclic loading 

(Curras et al. 2001). In this study, the method used by Zhang and Makris (2001) is adopted to 

calculate the value of the mp factor. 

Furthermore, depth varying horizontal motions that are applied to the free ends of all p-y 

spring can be generated by one-dimensional site response analysis using either equivalent 
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linear program or nonlinear program. In this study the equivalent linear program SHAKE91 

(Idriss and Sun 1992) is adopted, which calculates the seismic site response based on the 

vertical propagation of shear waves and approximates nonlinear soil behavior with strain 

dependent shear modulus and damping curves.  

2.1.3 Equivalent Pile Foundation with Reduced Piles 

Given that a typical pile foundation consists of large number of single piles, the 

modeling of each individual pile with associated p-y, t-z and q-z springs increase significantly 

the computational effort required. In the interest of a practice-oriented modeling approach, 

this study develops an approximation method to simplify the pile group that has M rows and 

N columns of piles with an equivalent 2×2 pile group (Huo 2011), such that both translational 

and rotational behaviors of the pile group can be captured. Based on matching the static force 

displacement relations of the original pile group, the equivalent 2×2 pile group is developed 

by the following assumptions: (1) The size of the pile cap is unchanged; (2) The 

center-to-center spacing between the piles in the equivalent 2×2 pile group is approximately 

two thirds of the center-to-center distance between the corner piles in the original pile group; 

(3) The axial and bending stiffness (as well as the capacities if using nonlinear elements) of 

the equivalent 2×2 pile group is amplified by a factor of 1/4 of the total pile number M×N; 

and (4) The ultimate capacities of p-y, t-z and q-z springs are modified by a factor of 1/4 of 

the total pile number M×N.  

Following the approach described above, a 4×5 pile group is converted into the 

equivalent 2×2 pile group and the accuracy of the proposed procedure is evaluated. Figure 2.3 
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plots the force-displacement relations of the original case (4×5 piles) together with the 

simplified case (2×2 piles) under three translational and three rotational loadings, respectively. 

As shown in the figure, consistent results between these two models can be identified in Z, 

RX and RY directions, while about 30% difference exists in two translational directions 

regarding values of both stiffness and ultimate capacity. Discrepancies can also be observed 

in terms of the initial stiffness in RZ direction. Nevertheless, given the significant saving in 

computational effort (roughly 20% of the original problem size), the simplified model is 

adopted despite the slight loss in accuracy. More importantly, later case study indicates that 

such simplification will result in almost negligible errors for bridge level responses. 
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Figure 2.3. Static response comparison of the 4 × 5 pile group and 2 × 2 equivalent pile 
group.  
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2.2 DEVELOPMENT OF p-y MODELS FOR EMBANKMENTS 

2.2.1 Bridge-embankment Interaction in Longitudinal Direction 

Typical highway bridges are supported at ends by abutments and embankment soils. 

Along the longitudinal direction, the behavior of abutment-embankment system can be 

assumed as abutment wall backed with embankment fill in plane strain condition (Richards 

and Elms 1979; Al-Homoud and Whitman 1999; Shamsabadi et al. 2010). A 2D finite 

element model of abutment-backfill system is built in the commercial finite element software 

ABAQUS to derive the input parameters of p-y springs for embankment along the 

longitudinal direction.  

As shown in Figure 2.4, the abutment wall is modeled as a rigid beam element with a 

height of H; embankment fill is modeled as the Drucker-Prager (D-P) material, which offers a 

smooth approximation of the Mohr-Coulomb (M-C) hexagonal shape yield surface so that 

convergence issues can be avoided. Vertical boundaries of the backfill are placed at a distance 

of 5H to the right and 1H to the left. The total height of the embankment is 2H. The 

computation domain needs to be big enough to cover the finite deformation zone behind the 

abutment. Horizontal constraints are applied at vertical boundaries, whereas both horizontal 

and vertical degrees are fixed at the bottom. Contact Coulomb friction elements are used 

between abutment wall and backfill to simulate the frictional behavior, where the wall-soil 

friction angle, δ, is considered to change from 0 to soil friction angle, φ, depending on the 

wall roughness and drainage condition. With the 2D FEM model, the p-y spring inputs are 

obtained using a two-step analysis procedure: (1) embankment response under passive 
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loading condition is derived by a static pushover analysis, i.e. the backfill is pushed by the 

abutment wall with prescribed horizontal displacements until passive failure occurs; (2) p-y 

spring inputs of pult and y50 are obtained by regressing the force-displacement curve of the 

embankment with multiple vertically distributed p-y springs. 

5 H1 H
6 H

1 
H

2 
H

friction element 

Drucker-Prager (D-P) model

abutment wall

pushover

 
Figure 2.4. 2D finite element model of the abutment-backfill system in the longitudinal 

direction 

 

The soundness of the numerical model is firstly examined against the full-scale test 

results of a seat-type abutment backed with granular backfill (Lemnitzer et al. 2009), which 

consists a wall height of H = 1.67m, effective wall width of W = 4.87m, silty sand with 

friction angle of φ = 40° and cohesion of c = 14.0kPa, soil unit weight of γ = 20.0kN/m3, and 

mobilized wall-soil friction angle of δ = 14°. Figure 2.5 shows the deformation contour of the 

numerical model as well as the comparison of force-displacement curves between numerical 

model and the full-scale test. As shown in Figure 2.5(a), the deformed shape of the backfill at 

failure stage is consistent with a logarithmic spiral curve that has been observed in the test 

(Lemnitzer et al. 2009). Also as can be seen from Figure 2.5(b), the pushover curve of the 

finite element model agrees well with the test results, especially in capturing small strain 
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stiffness and ultimate capacity. It is noted that the numerical curve cannot capture peak 

resistance and strength degradation, which can be expected since the adopted D-P soil model 

does not possess strain-softening features. 
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Figure 2.5. 2D FEM calibration of the longitudinal abutment wall - backfill system 

 

The force-displacement curve of the embankment is regressed by a group of vertically 

distributed p-y springs through the least square method. Given that passive pressure of the 

backfill linearly increases along wall depth, all regressed p-y springs are designed to have 

linearly increasing ultimate capacities while maintaining a constant y50. As shown in Figure 

2.6, the regression process is conducted for two cases, i.e. the one using 10 p-y springs and 

the other using 3 p-y springs vertically distributed. It is found that for the 10-spring case, the 

total capacity is 2030kN, while for the 3-spring case, the best result yields a total capacity of 

1990kN. The y50 value is 0.0093m for both cases. Figure 2.6 also plots the backbone curve of 

each spring for the 3-spring case. As can be seen in the Figure 2.6, regressed p-y curves for 

these two cases are on top of each other and can both capture the small strain stiffness, large 

strain stiffness and ultimate capacity of the backfill. 
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Figure 2.6. Force-displacement curves using p-y spring regression 

 

It’s worth mentioning that ideally backfill will exert static pressure K0 and active pressure 

Ka when the abutment starts moving away from the embankment fill. These two kinds of 

pressures are much smaller and for simplicity they are ignored. Instead a serially connected 

gap element is modeled along each p-y element to capture gap openings. The original 

gap-closing effect in association of the p-y elements for pile foundations is excluded, which 

can be easily achieved by setting the closing coefficient equals to 0 (or a very small value to 

avoid convergence issues). 

Extensive theoretical studies have been conducted to derive earthquake-induced earth 

pressures on retaining walls that are backed with cohesionless soils (Caquot and Kerisel 1948; 

Sokolovski 1965; Mylonakis et al. 2007; among others). In this study, the regressed p-y input 

values of pult are verified through comparing numerical passive pressure coefficients Kp, 

which can be calculated by Σpult divided by 1/2γH2, with theoretical solutions. Table 2.1 lists 
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Kp values from numerical modeling in this study as well as those obtained from leading 

analytical studies. It can be seen that numerical Kp values are very close to the solutions from 

log-spiral theory, Sokolovski’s method and Mylonakis’s model. Also it is expected that 

Rankine theory underestimates the passive pressure since it neglects soil frictions at soil-wall 

interface and soil base, while Coulomb theory overesitmates the passive pressure, resulting 

from the fact that the actual sliding surface is curved, rather than being a plane as assumed in 

the Coulomb theory. 

 

Table 2.1. Comparison of Kp values between FEA results and theoretical solutions 

  Finite element analysis results 
Theoretical solutions 

φ δ 
H (m) 

1.5 2.5 3.5 4.5 KP
*1 KP

*2 KP
*3 KP

*4 KP
*5 

20º 0º 2.02 2.01 2.01 1.98 2.04 2.04 2.03 2.04 2.04 
10º 2.53 2.42 2.38 2.33 2.04 2.64 2.59 2.55 2.52 
20º 2.75 2.61 2.52 2.44 2.04 3.53 3.00 3.04 2.87 

30º 0º 3.51 3.22 3.15 3.07 3.00 3.00 3.04 3.00 3.00 
15º 5.12 4.74 4.63 4.61 3.00 4.98 4.85 4.62 4.44 
30º 6.67 6.27 6.11 5.89 3.00 10.10 6.50 6.55 5.80 

40º 0º 5.86 5.36 5.16 4.98 4.60 4.60 4.72 4.60 4.60 
20º 10.83 9.99 9.89 9.61 4.60 11.80 10.66 9.69 8.92 
40º 16.81 15.65 14.71 14.23 4.60 92.60 18.00 18.20 14.40 

Note: *1 Rankine theory; *2 Coulomb theory; *3 Log-spiral theory (Caquot and Kerisel 
1948); *4 Sokolovski 1965; *5 Mylonakis et.al 2007. 

2.2.2 Bridge-embankment Interaction in Transverse Direction 

In the transverse direction, 3D finite element model is built to capture the wedge-shaped 

cross section of the embankment fill as well as the interaction zone between abutment and 

embankment fill. As shown in Figure 2.7(a), the abutment wall is modeled as rigid elements 

with a width of Bc and a height of H, the embankment fill is modeled by the D-P soil model 
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with a top width of Bc, a base width of Bb, a length of LE, and a height of HE. The 

embankment slope is S. The bottom surface of the embankment is constrained with all three 

translational degrees. A static pushover analysis is conducted to derive the force-displacement 

relation of the embankment in transverse direction, from which input parameters of 

transversely distributed p-y springs are calculated by regressing p-y curves to the pushover 

curve. It is noted that other than the pushover analysis assuming abutment wall and backfill 

are strictly connected, the friction effect at the interface of abutment wall and backfill may 

induce a sliding mechanism in between. To capture this sliding mechanism, a gap-friction 

element that is used to model the gap opening in longitudinal direction is also connected in 

serial with the p-y spring in transverse direction. In other words, the gap-friction element is 

assigned with zero tension capacity along longitudinal direction to model the gap opening 

and a normal pressure dependent friction capacity in transverse direction to model the sliding 

mechanism. Therefore, as shown in Figure 2.7(b), abutment-embankment interaction effects 

are simulated by the gap-friction element and the p-y spring elements connected in series for 

both longitudinal and transverse directions. 
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(a) 3D finite element model (b) p-y modeling scheme 
Figure 2.7. The p-y modeling scheme of embankment in transverse direction 
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A case study is carried out to illustrate the numerical modeling procedure. The 3D 

numerical model consists of a top width of Bc = 20.0m, a bottom width of Bb = 70.0m, an 

embankment height of HE = 9.6m, a wall height to embankment height ratio of H/HE = 0.3, 

and a slope inclination of S = 1:2.6. Soil properties are chosen to be the same as those in the 

longitudinal case study. Figure 2.8(a) shows the plastic strain contour at one displacement 

step for the pushover analysis, where it can be seen that embankment fill deforms within a 

limited range. Only a small part that is very close to the abutment wall is mobilized at large 

strains. The force-displacement curve and the p-y regression curve are shown in Figure 2.8(b), 

where identical force-displacement relationships can be observed between numerical data and 

p-y regression curve. In addition, Figure 2.8(b) presents the friction limits at wall-soil 

interface with three different cases: the one with static pressure and a friction angle of 0.5φ, 

the one with passive pressure and a friction angle of 0.5φ, and the last one with passive 

pressure and a friction angle of φ. It can be seen that friction limits vary in a big range with 

different combinations of normal pressures and friction angles. For the case of passive 

pressure with a friction angle of 0.5φ, which is very likely to happen during earthquakes, 

abutment transverse mobilization will be determined by both passive loading mechanism and 

sliding mechanism, while the ultimate capacity of the backfill will be dominated by the 

sliding friction limit. Therefore, the coupled modeling procedure that is composed of a 

gap-friction element connected in serial with the p-y springs can accurately capture the 

interaction behavior of abutment-embankment system in the transverse direction.  
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Figure 2.8. Force-displacement of jointed mechanism and estimated sliding mechanism 

2.2.3 Closed-form p-y Model Parameters 

Given that the proposed p-y modeling scheme requires considerable efforts to set up both 

2D and 3D finite element models for each bridge-embankment case, this study seeks to 

provide closed-form expressions of p-y spring model parameters by building an extensive 

group of numerical models that can cover most highway bridge cases. The total ultimate 

capacity of Σpult and y50 values are developed as functions of backfill properties and 

geometric parameters of abutment wall and embankment fill. 

In the longitudinal direction, four modeling parameters are varied to cover a 

comprehensive range of abutment-embankment systems. The abutment wall height H is 

varied from 1.0m to 4.5m with an increment of 0.5m. The soil friction angle φ is varied from 

20° to 40° with an increment of 5°. The soil cohesion c starts from 0kPa and is varied from 

5kPa to 125kPa with an increment of 20kPa. The wall-soil friction angle δ is varied from 0 to 

φ with an increment of 5°. Hence, a total of 2520 models are built by changing these four 

input parameters. Based on the passive pressure coefficient developed by Mylonakis et.al 
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(2007) for the cohesionless case, least square numerical regressions are carried out to develop 

the formulae of p-y model parameters Σpult and y50, as follows: 

 

 pult,L 
1 sin cos( ) e   tan

1 sin cos
 0.5H 2  cos cH  cos cos     cH (kN/m)  (2.1)

y50,L 
0.5 pult,L

Ks,L

 (m)     (2.2)

 

where Σpult,L and y50,L are the total ultimate capacity and y50 value of the 2D embankment fill 

in longitudinal direction respectively, the former has a unit of kN/m and the latter is in meters, 

γ is the soil unit weight of 20 kN/m3, soil friction angel φ and wall-soil friction angle δ are in 

radians, θ is an internal variable defined as sin1 sin / sin  . Ks,L is the longitudinal secant 

stiffness that corresponds to 50% total ultimate capacity, which has a unit of kN/m2 and can 

be calculated as: 

 

  3
, 05 43 12s LK W e     (kN/m2)  (2.3)

 

where W0 is the unit length in meter. It is noted that Eq. (2.1) will yield the same results as the 

Rankine and Coulomb theories if wall-soil friction and soil cohesion are neglected. 

Essentially, Eq. (2.1) provides the identical horizontal force as the one theoretically derived 

by Mylonakis et.al (2007) for the cohesionless soil case. 

The soundness of derived closed-form expressions of Σpult,L and y50,L are examined by 

comparing them with numerical data. As shown in Figure 2.9(a), comparisons between 



40 
 

numerical data and closed-form solutions are firstly provided with respect to soil friction 

angle and cohesion by keeping abutment wall height as 3m and wall-soil friction angle as 10º. 

It is evident that the closed-form expressions provide good agreement with the numerical data 

when soil friction angle and cohesion are the chosen variables. Similarly, Figure 2.9(b) 

checks the consistency between numerical data and closed-form results with respect to wall 

height and wall-soil friction angle by keeping soil friction angle as 40º and soil cohesion as 

5kPa. It also can be seen that closed-form expressions are capable of providing almost 

identical p-y spring inputs as numerical data when the other two parameters, i.e. wall height 

and wall-soil friction angle, are changing. 
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Figure 2.9. Comparisons of Σpult,L and y50,L between numerical data and closed-form 

solutions in the longitudinal direction 

 

The pushover analysis in the transverse direction assumes a strict connection at wall-soil 
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interface, i.e. no friction angle is considered in this step. Therefore, five modeling parameters 

in total are varied to cover typical 3D bridge-embankment systems. The embankment height 

HE is varied from 4.0m to 12.0m with an increment of 2.0m. The wall height to embankment 

height ratio H/HE is varied from 0.3 to 0.9 with an increment of 0.2. The wall width Bc is 

varied from 8.0m to 24.0m with an increment of 4.0m. The soil friction angle φ is varied 

from 20° to 40° with an increment of 5°. Soil cohesion c is varied from 0kPa and then from 

5kPa to 125kPa with an increment of 30kPa. The embankment length LE is set to be large 

enough such that the mobilized region can be fully included in each model. Meanwhile, as 

concluded by Zhang and Makris (2001), the cross section shape of the embankment fill has 

insignificant influence to abutment transverse response, the slope inclination S is kept as 

1:2.0 for all numerical models. Note that although the modeling scale is reduced by making 

this simplification, a total of 2500 models have been built by changing above five parameters. 

The same numerical regression process is taken to derive closed-form expressions of the two 

input parameters, Σpult and y50, for transverse p-y curves: 
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where Σpult,T and y50,T are total ultimate capacity per unit width at top and y50 value of the 3D 

embankment fill in transverse direction respectively, the former has a unit of kN/m and the 
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latter is in meters, Leff is a constant length value, which is given as 1.143m, all other 

parameters are consistent with those used in Eqs. (2.1) to (2.3). Ks,T is the transverse secant 

stiffness that corresponds to 50% total ultimate capacity, which has a unit of kN/m2 and can 

be calculated as: 
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where W0 and γ are the same constants used in Eq. (2.3).  

Figure 2.10 shows the comparisons between closed-form solutions and the numerical 

data. The consistency between numerical data and closed-form solutions is investigated with 

respect to two parameters at a time by fixing the rest three as constants. As shown in Figure 

2.10(a), although small discrepancies can be observed, closed-form equations of Σpult,T and 

y50,T are capable of providing appropriate values and identical trends when abutment wall 

height ratio and embankment height are the changing parameters. Similar conclusions can be 

obtained from Figure 2.10(b) and Figure 2.10(c), i.e. general trends and close values can be 

captured by the closed-form expressions when soil friction angle, soil cohesion, and abutment 

wall width are the changing variables. 
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(b) Σpult,T and y50,T comparisons when HE=10m, H/HE=0.5 and Bc=16m 
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Figure 2.10. Comparisons of Σpult,T and y50,T between numerical data and closed-form 
solutions in the transverse direction 

2.2.4 Kinematic Response of Embankment 

The last part to finalize the p-y spring approach for seismic assessment of highway 

bridges is determining input motions at abutment ends. Due to topographic effects on seismic 

waves, the amplitude of ground motion varies significantly when it passes through the 

embankment fill. As a result, the crest motion of the approach embankment has much larger 

intensities comparing to the free field ground level motion, e.g. as reported by Maroney et al. 
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(1990), the embank crest motion is more than two times the motion recorded near the pile cap 

of center bent. In this study, the method developed by Zhang and Makris (2002a) is used to 

estimate motion amplification of embankment fill, where they utilized a frequency domain 

approach to solve a 2D shear wage model based on equivalent linear soil properties. For a 

harmonic ground level (embankment base) input motion with frequency ω, the transfer 

function of the shear wage I(ω) is solved as: 

 

 I   
u

g 0
u z 
u

g0


c

1
J

0
kz   c

2
Y

0
kz 

u
g 0

 (2.7)

 

where ug0 and u(z) are the displacement magnitude at embankment bottom and height z that is 

measured from the top vertex of the triangle extended from embankment slope to the 

embankment depth of interest; k=ω/Vs and Vs is the shear velocity; J0 and Y0 are the 

zero-order first and second kind Bessel functions respectively; two parameters c1 and c2 are: 
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where z0 is the height from top vertex to embankment top; J1 and Y1 are the first-order first 

and second kind Bessel functions, respectively. It should be noted that the kinematic transfer 

function I(ω) requires the values of shear modulus and damping to calculate the shear 

velocity Vs in the complex domain (Zhang and Makris 2002a), while since these two 
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parameters are strain dependent and the strain level is unknown beforehand, iterations are 

needed to find the converged shear strain and its correspondent soil properties, i.e. shear 

modulus G and damping coefficient η. In their study, the strain dependent shear modulus and 

damping curves of the embankment fill are selected by taking the average of the ones that 

developed by Seed and Idriss (1970), Iwasaki et al. (1978), Tatsuoka et al. (1978), Vucetic 

and Dobry (1991), among others. 

2.3 NUMERICAL VALIDATION 

2.3.1 Painter Street Overcrossing (PSO) and Its Finite Element Model 

The Painter Street Overcrossing (PSO) located in Rio Dell, California, is selected to 

validate the p-y modeling approach developed here. It is a two-span prestressed concrete 

box-girder bridge that is supported on monolithic end abutments and a two-column central 

bent, both with a skew angle of 39°. Each pier column is supported by a pile group consisting 

of 4×5 concrete driven friction piles. At west end, the abutment foundation consists of a 1×16 

pile group underneath the abutment wall, while east end abutment wall has the same size but 

supported by a 1×14 pile group instead.  

Figure 2.11 shows the side view (top) and plan view (bottom) along with the locations of 

recording channels. Based on standard penetration test (SPT) measurements, the soil profile 

was identified with some simplifications and shown in Figure 2.11(a). The 8m thick 

embankment fill consists of a compacted sand with a friction angle of 38°. Beneath it, there 

are three different soil layers, a 3m thick silty clay layer, a deep 10.9m medium dense sand 

layer and a dense gravel sand layer. In 1992, the PSO was severely shaken by the Petrolia 
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earthquake, and the motions were recorded at all channels, including the ones at the free field 

(C12-C14), atop one pile cap (C1-C3), atop west embankment (C18-C20) and east 

embankment (C15-C17), along the bridge deck for transverse responses (C4, C7, C9), 

vertical responses (C5, C6, C8, C10) and longitudinal response (C11). 
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(b) Plan view and recording channels 
Figure 2.11. PSO bridge sketch plots and recording channels 

 

Following the aforementioned SSI modeling scheme, finite element model of the PSO is 

built in OpenSees as shown in Figure 2.12 for both the full scale pile group case (Figure 2.12 

(a)) and the equivalent pile group case (Figure 2.12(b)). The bridge superstructure consists of 

beam elements with rigid components at each end and center bent, the former preserve the 

skewed geometry and serve as the connecting elements between the deck and the end 
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abutments while the latter connect the deck with two center pier columns. The bridge deck is 

modeled with equivalent elastic beam elements while nonlinear beam column elements with 

bilinear sectional moment-curvature relations are used for the pier columns. Linear elastic 

beam elements are adopted for modeling pile columns under the pile caps and abutment walls, 

both of which are modeled with rigid frames. As previously discussed, the equivalent 2×2 

pile group is used to represent the 4×5 pile group under each column, and the equivalent 1×2 

pile group is modeled to substitute the original 1×16 and 1×14 pile groups at west abutment 

and east abutment, respectively. Distributed p-y, t-z and q-z springs are used to simulate soil 

lateral resistance, axial friction, and pile tip ending bearing resistance for each pile. Bridge 

embankment interaction effects are modeled with longitudinal and transverse p-y springs 

connected with the 3D contact-friction elements, which are used to capture the tension gap 

effects in the longitudinal direction and transfer the friction forces in both transverse and 

longitudinal directions as long as the contact between backfill and abutment wall is 

established. Equivalent p-y and q-z springs are also attached to model the SSI effects at pile 

caps.  
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(b) Model with equivalent pile groups 
Figure 2.12. 3D finite element model of the PSO 

2.3.2 Foundation Input Ground Motions 

As previously mentioned, the underground motion inputs at center bents are obtained 

using the equivalent linear site response analysis program of SHAKE91 in this study. Strain 

dependent shear modulus and damping curves are specified for each soil layer. Since the 

ground motion of the 1992 Petrolia earthquake is well recorded at ground level, a 

de-convolution analysis is conducted to find the depth varying ground motions under the 

ground level. Figure 2.13 presents the input ground motions along the transverse direction at 

the center bent. As shown in the Figure 2.13, the transverse motions under the ground 

generally increase from the pile bottom to the top of the pile cap. The longitudinal ground 

motions are not plotted herein while similar results can be achieved as from the transverse 

motions.  
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(a) Computed motions (b) Magnitude 
Figure 2.13. Site response de-convolution results under pier foundation in transverse 

direction 

 

The input ground motions at end abutments can be separated into two groups: (1) 

underground motions that can be determined by using site response analyses, and (2) 

embankment-fill motions resulted from the embankment amplification effect. The 

underground motions are calculated by using SHAKE91 in this study, while the transfer 

function method developed by Zhang and Makris (2002a) is used to obtain the 

embankment-fill motions. Since the PSO has well recorded motions at both embankment tops 

and free-field ground levels, this study firstly computed the embankment-fill motions using 

the crest motion as the input and compared the calculated motions at the embankment bottom 

with the ground level motion records. Good agreements between the calculated and the 

recorded motions validate the transfer function method. Subsequently, the underground 

motions are calculated using the ground level motion records as the input. In this way, both 
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the motion records at embankment top and free field have been utilized. Figure 2.14 shows 

the computed transverse motions in the west embankment fill (Channel 17) at different 

depths. It is seen that the motion magnitude also varies along the embankment height with 

crest motion much larger than the motion at base of embankment. Such depth varying 

motions are required to yield accurate bridge response. 
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Figure 2.14. Embankment motion amplification of Channel 17 

2.3.3 Numerical Simulation Results 

This section compares the numerical responses of the proposed modeling scheme with 

their recorded counterparts. For comparison purposes, three other modeling schemes that are 

widely used in academic and engineering practices are also presented in this study. Table 2.2 

summarizes the modeling details of each scheme. Case 1 is the proposed method which 

combines detailed p-y springs for SSI effects with depth varying input motions at both pile 
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foundations and end abutments. Case 2 keeps the p-y springs but ignores ground motion 

depth variations. A uniform free field motions at the ground level is used as foundation input 

motions at all depth. In other words, neither the depth varying mechanism along the piles nor 

the motion amplification effects of embankments is included in this case. Case 3 keeps the 

detailed p-y modeling scheme at pile foundations while uses equivalent macro springs and 

dashpots to model the SSI effects at abutment foundations. Recorded embankment crest 

motions are applied to the free end of macro springs and dashpots. Case 4 is a full 

substructure modeling scheme, which uses equivalent macro springs and dashpots at all 

foundations with recorded free field motion input at pier foundations and recorded 

embankment crest motions at abutment foundations. The macro spring and dashpot values 

used in Case 3 and Case 4 are from the substructure approach developed by Zhang and 

Makris (2002b). 

 

Table 2.2. Numerical comparisons of different modeling schemes 

Modeling 
schemes 

SSI modeling Input ground motions 

Pile foundation 
Abutment 
foundations 

Pile foundations 
Abutment 
foundations 

Case 1 
(Proposed) 

p-y springs p-y springs 
Depth varying 
motions 

Depth varying 
motions 

Case 2 p-y springs p-y springs 
Free field 
motions 

Free field 
motions 

Case 3 p-y springs 
Macro springs 
and dashpots 

Depth varying 
motions 

Embankment 
crest motions 

Case 4 
Macro springs 
and dashpots 

Macro springs 
and dashpots 

Free field 
motions 

Embankment 
crest motions 

 

Figures 2.15 to 2.18 compare numerical results and recorded responses for the transverse 
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response at west, middle, and east of the bridge (C4, C7, C9) and the bridge longitudinal 

response (C11), respectively. As can be seen from the first column of these four figures, 

numerical results by the proposed modeling scheme are in very good agreement with their 

recorded counterparts in terms of absolute accelerations, relative velocities and relative 

displacements. The errors between the peak values are also provided in the plots, where 

except the relative velocity at C9, all other computed responses from the proposed modeling 

scheme have errors smaller than 10%.  

When uniform ground level input motion is imposed (2nd column in Figures 2.15 to 2.18), 

large discrepancies can be observed and the errors between peak values of numerical results 

and actual records can be easily larger than 60%, which demonstrates the particular 

importance of incorporating depth varying motions along the piles and amplified motions up 

through the embankment fill depth when the p-y spring method is utilized. More importantly, 

most response components are dramatically underestimated in this case. To further explore 

the main source of the large error in bridge responses, a slightly different Case 2b is 

constructed by modifying Case 2 with the embankment crest motion imposed uniformly at 

abutment foundations. Case 2b, therefore, includes the effect of embankment amplified 

motion but neglect the depth varying motion at pile foundation. Comparing to the recorded 

data, the results of Case 2b have errors about 20%, which is reduced from that of Case 2. This 

comparison indicates that neglecting the significant embankment motion amplification is 

essentially the main attribute for the poor performance of Case 2. 

The importance of using p-y springs to model the SSI effects at abutment foundations is 
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examined by the third column of the figures, where the abutment SSI modeling is replaced 

with macro springs and dashpots and embankment crest motion is used as the input at bridge 

ends. It can be seen that errors of the peak values are universally larger than the proposed 

model (Case 1). Nevertheless, it captures the general trend of the actual records and the errors 

are much smaller comparing to Case 2. Therefore, if the abutment responses are not of 

interest, this method can be adopted to save some modeling efforts.  

The fourth column of these figures check the numerical responses of the fully 

substructure modeling method (Case 4), in which case substructures are no longer modeled 

and the SSI effects are substituted with equivalent linear springs and dashpots at both pile 

foundations and abutment foundations. Comparable results can be seen between computed 

responses and actual records for this case, while the computational effort is less. However, 

the proposed method (Case 1) in this study becomes more appealing than the macro spring 

method when following factors are considered. It incorporates both superstructure and 

substructure into the modeling of the bridge-foundation-soil system, where advanced analysis 

can be further carried out, such as sensitivity study of various SSI effects, soil liquefaction 

effect, pile foundation response, etc. The proposed method is relatively easy to apply to 

different highway bridges as long as structure and soil information are available. On the other 

hand the macro spring method requires the knowledge of input ground motions beforehand, 

since spring stiffnesses and dashpot constants are strain dependent and will change under 

different ground motions (Zhang and Makris 2002b).  
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Figure 2.15. Comparison of recorded and computed motions at Channel 4 for different modeling cases 
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Figure 2.16. Comparison of recorded and computed motions at Channel 7 for different modeling cases 
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Figure 2.17. Comparison of recorded and computed motions at Channel 9 for different modeling cases 
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Figure 2.18. Comparison of recorded and computed motions at Channel 11 for different modeling cases 
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Figure 2.19 also compares the Fourier spectrums of the absolute acceleration responses 

at four different channels (C4, C7, C9, and C11). The thick line stands for the spectrum for 

recorded motions and the thin lines are spectrum of the computed results from the proposed 

method. Consistent with the time domain comparison, computed spectrums are very close to 

recorded ones at most frequencies and the peaks happen at same frequencies with similar 

peak magnitudes observed for all the channels. This further confirms that the proposed 

modeling method captures the SSI effects very well and can provide accurate seismic 

response predictions of highway bridges. 
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Figure 2.19. Comparison of the recorded and computed absolute acceleration response 
Fourier spectrums 
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2.4 SUMMARY OF PROPOSED PROCEDURE 

The numerical study of the PSO presented in this paper develops and validates a 

step-by-step procedure to estimate the seismic response of highway bridges using p-y 

modeling approach. The detailed steps are summarized below: 

(1) Construct a three-dimensional stick model of the bridge that consists of both 

superstructures and substructures. To save modeling efforts, large pile groups can be 

substituted with the equivalent 2×2 pile groups (or 1×2 pile groups if only one row of 

piles are designed) using the proposed method in Section 2.1.2. 

(2) Use standard p-y spring elements (e.g. the one developed by Boulanger et al. 1999) in 

conjunction with the p-multiplier to simulate the SSI effects along piles. Scale the 

spring input parameter of ultimate capacity if the equivalent 2×2 pile group is used in 

Step 1. Simulate the SSI effects at pile caps by adding side friction resistances to the 

p-y spring elements developed in Step 3 and 4. 

(3) Use regressed p-y spring elements and a serially connected compression gap element 

to simulate the SSI effects of the embankment fill in longitudinal direction. The input 

p-y model parameters can be calculated by Eqs. (2.1) to (2.3). 

(4) Use regressed p-y spring elements and a serially connected contact-friction elements 

to simulate the SSI effects of the embankment fill in transverse direction. The input 

parameters can be calculated by Eqs. (2.4) to (2.6). 

(5) Compute depth varying ground motions for pile foundations using either equivalent 

linear or nonlinear site response programs. Compute the ground motions along the 
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embankment fill depth by amplifying the free-field motion with the kinematic 

transfer function developed by Zhang and Makris (2002b). 

(6) Conduct the nonlinear time history response of the highway bridge by combining the 

model constructed in Step 1 with p-y spring elements developed in Step 2 to Step 4 as 

well as the input motions calculated from Step 5. 

2.5 CONCLUDING REMARKS 

This chapter aims to realistically simulate the seismic responses of typical highway 

bridges in California with considerations of SSI effects. The p-y modeling approaches are 

developed and validated for embankments and pile foundations of bridges. The p-y approach 

models the lateral and vertical foundation flexibility with distributed p-y springs and 

associated t-z and q-z springs. Building upon the existing p-y models for pile foundations, the 

study develops the nonlinear p-y springs for embankments based on nonlinear 2D and 3D 

continuum finite element analysis under passive loading condition along both longitudinal 

and transverse directions. Closed-form expressions are developed for two key parameters, pult 

and y50, of embankment p-y models as functions of abutment geometry (wall width and 

height, embankment fill height, etc.), and soil material properties (wall-soil friction angle, 

soil friction angle and cohesion). In order to account for the kinematic and site responses, 

depth varying ground motions are derived and applied at the free-end of p-y springs, which 

reflects the amplified embank crest motion. The modeling approach is applied to simulate the 

seismic responses of the PSO and validated through comparisons with the recorded responses 

during the 1992 Petrolia earthquake. By comparing actual recorded responses of the PSO 
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with numerical results from the proposed modeling method and three other commonly 

adopted modeling schemes, the dependability of the proposed approach is validated. This 

chapter concludes: 

(1) The developed and validated closed-form expressions for p-y modeling parameters of 

embankment, namely pult and y50 along both transverse and longitudinal directions, 

can effectively take into account of abutment geometry and soil properties. 

(2) The proposed modeling approach yields comparable response quantities in both time 

domain and frequency domain to the actual recorded responses of the PSO. It is 

capable to accurately predict the seismic responses of typical highway bridges 

considering SSI effects. 

(3) The modeling efforts of the proposed model are modest, yet the proposed modeling 

approach possesses its own advantages of not only revealing the response of both 

superstructures and superstructures but also being convenient to be implemented into 

different highway bridges as long as structural and soil information are provided. 

(4) It is demonstrated that SSI effects at end embankments and depth varying ground 

motions are very important modeling aspects for accurately predicting the bridge 

responses. The significance of the abutment contribution is particularly true for 

typical highway bridges with short periods. The proposed p-y modeling approach, 

including the closed-form p-y parameters, can realistically incorporate these two 

important aspects easily.  

It should be noted that the p-y modeling approach has its own limitations. For example, 
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the p-y springs in two orthogonal directions are not coupled. Furthermore, the depth varying 

motions have to be generated separately. Nevertheless, the proposed p-y spring based integral 

modeling approach can serve as a robust tool in predicting the seismic response of typical 

highway bridges in California. The important effects of SSI and depth varying ground 

motions can be captured reliably by the p-y modeling approach proposed here.  
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3. SIMPLIFIED DRIFT DEMAND PREDICTION OF BRIDGES UNDER 

LIQUEFACTION INDUCED LATERAL SPREADING  

As discussed in Chapter 1, compared with seismic shaking, relative few reliable 

approaches are available to efficiently quantify the seismic responses of highway bridges 

when subjected to liquefaction induced lateral spreading. This chapter develops an innovative 

way to predict the column drift of typical highway bridges on liquefiable soil on the basis of 

the column responses under seismic shaking. The p-y-spring-based global dynamic analysis 

procedure developed in Chapter 2 is implemented and modified to analyze the responses of a 

benchmark bridge-foundation-soil system under seismic shaking and liquefaction induced 

lateral spreading, respectively. 

3.1 GLOBAL DYNAMIC ANALYSIS OF THE BENCHMARK HIGHWAY BRIDGE 

3.1.1 Benchmark Highway Bridge 

A benchmark highway bridge is constructed in this chapter to represent typical highway 

bridges in California that are seismically designed after 1971. It is a three-span continuous 

concrete bridge supported by two single-column bents and monolithic abutments. Figure 3.1 

shows the geometry of the bridge, the designs of pier columns and pile foundations, as well 

as the soil profile. The 1.83m-diameter RC pier consists of 26 #11 longitudinal bars with #4 

transverse reinforcement at 0.30m spacing. The pile foundation consists of a 4.0m×5.5m pile 

cap and a 3×4 pile group of 0.61m-diameter cast-in-drilled-hole (CIDH) piles. The abutment 

wall is 3.0m deep, 12.0m wide and 0.8m thick, with a row of 6 CIDH piles supporting it. The 
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soil profile used in this chapter is representative of sites with a non-liquefiable clay crust over 

liquefiable loose sand with non-liquefied dense sand below. Such configuration is a major 

cause of bridge damages during past earthquakes under soil liquefaction (Brandenberg et al. 

2005; Hamada and O’Rourke 1992). Variations in the soil parameters were based on the 

USGS database of cone penetration test (CPT) soundings in the San Francisco bay area, 

where the median values of the parameters are used in this chapter. The embankment fill 

consists of cohesionless sand with a friction angle of 38° sitting on top of the crust layer of 

clay, which has an undrained shear strength of 70kpa. The liquefiable loose sand layer 

underneath has a friction angel of 32°, whereas the dense sand layer below has a friction 

angel of 38°. The inclination angle of the ground is selected as 4° towards bridge center. 
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Figure 3.1. Bridge structure and foundation sketch 
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3.1.2 Numerical Modeling of Bridge Structure 

Three-dimensional numerical models were built in software platform OpenSees 

(Mazzoni et al. 2006). Elastic beam elements are used for the bridge deck, and nonlinear 

beam elements are used to model pier columns and pile groups. Abutment walls and pile caps 

are modeled as real size rigid beam elements to capture their rotational resistances. As shown 

in Figure 3.2, to save considerable modeling efforts, the 3×4 pile groups at pier foundations 

and the 1×6 pile groups at abutment foundations are simplified with equivalent 2×2 pile 

groups and 1×2 pile groups respectively using the approach discussed in Chapter 2. Two 

parallel massless rigid beams are built at each intersection (deck ends, pier column tops, and 

bridge center) to reflect the deck width and to incorporate different bridge characteristics later 

in this chapter. 

soil column site response

bridge model

input rock motions

stress history

pinning 

embankment 
amplification

effect

stress history

input rock motions

soil column site response
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Figure 3.2. 3D numerical model of the bridge benchmark 
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3.1.3 Numerical Modeling of Soil Liquefaction Effects 

Different modeling schemes have to be considered to capture distinct loading 

mechanisms associated with soil liquefaction and seismic shaking. In particular, liquefaction 

affects load resistance of soil layers, the SSI effects, and depth varying ground motion inputs. 

The first two aspects are modeled by using the dynamic p-y spring approach, which is 

effective in accounting for the layered soil profile, nonlinear interaction and the depth varying 

ground motions. The last aspect is considered through nonlinear site response analyses 

incorporating liquefiable soil. 

In this chapter a new class of p-y elements, the ‘PyLiq1’ element, which was developed 

by Brandenberg et al. (2012), is used to model the SSI effects with and without soil 

liquefaction. Consistent with previous studies (Nogami et al. 1992; Boulanger et al. 1999), 

the ‘PyLiq1’ element consists of a gap closure element, a plastic element and an elastic 

element in series, representing the gap formation at the pile-soil interface, the nonlinear 

interaction behavior in the near field and the elastic soil medium (radiation damping) in the 

far field, respectively. Two key input parameters of the ‘PyLiq1’ spring are pult_liq, the ultimate 

capacity that liquefiable soil can exert under lateral loading, and y50, the displacement when 

50% of ultimate resistance is mobilized. A fundamental feature of the ‘PyLiq1’ element lies in 

that the ultimate capacity of the liquefiable soil is defined as a function of the mean effective 

stress rather than a material constant, such that the pore pressure fluctuation associated with 

the liquefaction process can be effectively incorporated. The closed-form expression of the 

ultimate capacity pult_liq is given as: 
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where pult is the ultimate capacity without soil liquefaction, pres is the residual capacity when 

the mean effective stress reaches 0,    is the mean effective stress, and 0   is the initial 

free-field effective stress. The ‘PyLiq1’ element can also be used for non-liquefied soil layers 

if the effective stress    is kept the same as the initial stress 0   so that the ultimate 

capacity pult_liq equals pult.  

The ‘PyLiq1’ element can be directly utilized to model the soil resistances and the SSI 

effects for the liquefied sand layer and the bottom dense sand layer if the input parameters in 

Eq. (3.1) are known. However, due to the soil liquefaction underneath, the ultimate capacity 

of the crust layer needs to be calculated separately by considering two possible failure 

mechanisms: (1) the individual mechanism, i.e. the crust layer laterally spreads and flows 

around each pile; (2) the block mechanism, i.e. the crust layers are trapped between the piles 

and the whole group acts as an equivalent block (Brandenberg et al. 2007). The total ultimate 

capacity associated with each failure mechanism is calculated and compared, and the smaller 

value is the dominant one. It is worth mentioning that since the p-y springs are attached to 

pile caps and piles individually (as shown in Figure 3.2), which is consistent with the 

individual mechanism, a multiplier mp is implemented to consider the influences of these two 

possible failure mechanisms:  
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where Fbl is the total ultimate capacity calculated by the blocking mechanism, and Fin is the 

total ultimate capacity calculated by adding the capacities of all the piles and the pile cap. 

Besides the ultimate capacity, the clay displacement at the ultimate capacity is computed 

based on the empirical formula developed by Caltrans (2013) in this chapter, and y50 value for 

the crust layer is adjusted to match this ‘ultimate’ displacement value. 

3.1.4 Nonlinear Site Response Analysis under Soil Liquefaction 

As shown in Figure 3.2, nonlinear site response analysis is conducted to generate depth 

varying ground motions and mean stress histories (used as ‘PyLiq1’ springs inputs) under soil 

liquefaction. First, a free field soil column response analysis is carried out by using the 

pressure sensitive and insensitive soil materials that were developed by Yang et al. (2003) to 

model sand and clay, respectively. The inclined angle of 4° is modeled in the longitudinal 

direction (towards bridge center), such that a horizontal force component of soil self-weight 

can generate lateral spreading towards bridge center. A dashpot is attached at the bottom to 

model the interaction effect between the dense sand layer and the rock layer (Zhao 2011). A 

group of 40 unscaled ground motions that were selected by Baker et al. (2011) are used as the 

input rock motions, where fault normal components are applied along the longitudinal 

direction and fault parallel components are exerted along the transverse direction. Table 3.1 

lists the selected motions used in this chapter. A preliminary computational attempt shows 
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that more than a half of site cases have limited ground shaking and almost no noticeable 

lateral spreading occurs if these 40 motions are used directly. A scale factor of 2.0 is therefore 

applied to the selected motions, such that different levels of lateral spreading can be expected.  

Free field motions can be directly used as pile foundation inputs. However, the site 

responses at end abutments need to be further modified by considering two additional effects, 

i.e. the embankment amplification and the pinning due to restricted abutment movement 

when lateral spreading push toward bridge center on both ends (as shown in Figure 3.2). The 

kinematic responses of the approach embankment amplify ground motion input at end 

abutments. This motion amplification effect is estimated based on the method developed by 

Zhang and Makris (2002a). On the other hand, the pinning effect on abutments over liquefied 

ground considers the restraining force provided by the bridge structure, which in turn 

significantly reduces the magnitude of soil lateral spreading. The procedure proposed by 

Boulanger et al. (2006) is adopted to address the pinning effect. 

Figure 3.3 plots the longitudinal displacement profile at several time instants when 

subject to the TCU138 station record of the 1999 Chi-Chi earthquake (i.e. the motion No. 10 

in Table 3.1). It can be seen that ground lateral spreading reaches up to about 1.5m at pier 

foundations, while the pinning effect sharply reduces the amplitudes of ground motions at 

end abutments, where the maximum lateral displacements are smaller than 0.25m.
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Table 3.1. Selected 40 rock motion inputs (Baker et al. 2011) 

No. Earthquake, Year Station Mag- 
nitude 

No. Earthquake, Year Station Mag- 
nitude 

1 San Fernado,1971 Lake Hughes #4 6.6 21 Helena Montana-01,1935 Carroll College 6 
2 Loma Prieta,1989 Gilroy Array #6 6.9 22 Northridge-01,1994 Vasquez Rocks Park 6.7 
3 Kocaeli Turkey,1999 Izmit 7.5 23 Chi-Chi Taiwan,1999 WNT 7.6 
4 Northridge-01 ,1994 LA Wonderland Ave 6.7 24 Loma Prieta,1989 Golden Gate Bridge 6.9 
5 Imperial Valley-06,1979 Cerro Prieto 6.5 25 Loma Prieta,1989 UCSC 6.9 
6 Hector Mine,1999 Hector 7.1 26 Victoria Mexico,1980 Cerro Prieto 6.3 
7 San Fernando,1971 Pasadena Seismo Lab 6.6 27 Northridge-01,1994 Santa Susana  6.7 
8 Duzce Turkey,1999 Lamont 531 7.1 28 Loma Prieta,1989 Gilroy - Gavilan 6.9 
9 Hector Mine,1999 Heart Bar State Park 7.1 29 Duzce Turkey,1999 Mudurnu 7.1 
10 Chi-Chi Taiwan,1999 TCU138 7.6 30 Northridge-01,1994 Burbank Howard 6.7 
11 Chi-Chi Taiwan-06,1999 TCU129 6.3 31 Chi-Chi Taiwan-03,1999 TCU138 6.2 
12 Coyote Lake,1979 Gilroy Array #6 5.7 32 Chi-Chi Taiwan-06,1999 TCU138 6.3 
13 Taiwan 

SMART1(45),1986 
SMART1 E02 7.3 33 Loma Prieta,1989 UCSC Lick 

Observatory 
6.9 

14 Irpinia, Italy-01,1980 Bagnoli Irpinio 6.9 34 Loma Prieta,1989 Gilroy Array #1 6.9 
15 Loma Prieta,1989 Santa Teresa Hills 6.9 35 Northridge-01,1994 LA Dam 6.7 
16 Irpinia, Italy-01,1980 Bisaccia 6.9 36 Northridge-01,1994 LA 00 6.7 
17 Chi-Chi Taiwan,1999 TCU045 7.6 37 Sitka Alaska,1972 Sitka Observatory 7.7 
18 Kocaeli Turkey,1999 Gebze 7.5 38 Northridge-01,1994 LA Chalon Rd 6.7 
19 Northridge-01,1994 Pacoima Dam 6.7 39 Loma Prieta,1989 Belmont 6.9 
20 Denali Alaska,2002 Carlo (temp) 7.9 40 Chi-Chi Taiwan,1999 TCU129 7.6 
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(a) Left abut (b) Left pier (c) Right pier (d) Right abut 

Figure 3.3. Longitudinal displacement profiles under soil liquefaction (motion No. 10) 

3.1.5 Numerical Modeling under Seismic Shaking 

Likewise, the dynamic p-y modeling approach developed in Chapter 2 has been utilized 

to assess the seismic responses of the benchmark bridge under seismic shaking. Nonlinear 

site response analysis is also conducted to obtain the 40 groups of depth varying motions for 

the non-liquefaction case. Since soil liquefaction process is excluded under seismic shaking 

only case, no pinning effect needs to be considered for the input motions at end abutments. 

3.2 NONLINEAR TIME HISTORY ANALYSES 

Nonlinear time history analysis offers an efficient way to distinguish the damaging 

mechanisms of highway bridges under seismic shaking and liquefaction induced lateral 

spreading. In this section, the damage mechanism of the benchmark bridge under soil 

liquefaction is first examined by checking its permanent deformations. Figure 3.4 illustrates 

the permanent displacements of the bridge when subject to the motion No. 10. As shown in 

Figure 3.4(a), liquefaction induced lateral spreading strongly push pier columns and pile 
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foundations toward the center of the bridge, which results in significant permanent 

deformations. Due to the pinning effect, abutment foundations only experience limited 

residual displacements in the longitudinal direction. Nevertheless, as can be observed from 

Figure 3.4(b), noticeable residual displacements exist in the transverse direction at end 

abutments, which comes from the torsional responses of the bridge. It is clear that the 

responses of pier columns and pile foundations are the dominant EDPs when liquefaction 

induced lateral spreading is the damaging mechanism. 

 

  
(a) 2D transverse side view (b) 3D view 

Figure 3.4. Bridge residual deformation under soil liquefaction when subject to motion No. 
10 (deformation scaling magnitude: 10) 

 

Considering the response characteristics of the bridge under soil liquefaction and seismic 

shaking, three EDPs of the bridge, namely the pile cap displacement, the abutment 

displacement and the column drift ratio, are selected to compare their respective responses. 

Figure 3.5 compares the time history responses of these three EDPs, when the motion No. 10 

is used as the input motion. In addition, the response modification factor CEDP is proposed to 

quantify the effects of liquefaction induced lateral spreading on bridge responses and is 

defined as: 
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where EDPLiq and EDPNonLiq are the peak response values of each EDP for the lateral 

spreading and the seismic shaking cases, respectively. As shown in Figure 3.5(a), peak 

displacements of the pile cap under seismic shaking and soil liquefaction agree well with 

each other in both transverse and longitudinal directions, where CEDP values are close to 1. 

However, liquefaction induced lateral spreading results in much larger residual displacement 

for the pile cap in the longitudinal direction, which is consistent with the findings shown in 

Figure 3.4. The response comparisons of the left abutment are shown in Figure 3.5(b). It can 

be seen that noticeable transverse residual displacement occurs under the liquefaction case. 

Meanwhile, due to the pinning effect, the longitudinal displacements of the end abutment are 

reduced significantly under the liquefaction case in comparison to the seismic shaking case. 

Figure 3.5(c) compares the column drift ratio under seismic shaking and soil liquefaction 

cases. In order to reflect the true damaging potential of the pier, the column drift ratio 

DRcolumn adopted herein excludes rigid rotations at column top and bottom and is defined as: 

 

 1 2 1 2
( ) ( )

2
columnDR

h

   
   (3.4)

 

where Δ1 and Δ2 are the translational displacements and θ1 and θ2 are the rotational 

displacements at top and bottom ends of column, respectively, and h is the column height. 
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Figure 3.5(c) indicates that the column response under the liquefaction induced lateral 

spreading case demonstrate near static loading characteristic as observed by the relatively 

small vibration and dominant low frequency content in the response. More importantly, the 

lateral spreading case results in much larger column responses in both transverse and 

longitudinal directions. The square root of sum of squares (SRSS) value is therefore 

calculated to combine the longitudinal and transverse responses. Figure 3.5(d) also presents 

the combined column drift histories of the right and left piers under the motion No.10. The 

peak SRSS column drift ratios at the left pier are 3.7% and 0.21% for lateral spreading and 

seismic shaking cases, respectively. Similarly, the right column exhibits the peak column drift 

ratios of 4.9% (liquefaction) and 0.15% (non-liquefaction) respectively. The associated CEDP 

values are 17.57 for the left pier and 33.03 for the right pier respectively. Given the 

distinctive differences that have been observed for the column responses under the 

liquefaction and seismic shaking scenarios, the column drift ratio DRcolumn is therefore 

selected as the target EDP to quantify the effects of liquefaction induced lateral spreading on 

bridge responses. 
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(a) Pile cap displacement (b) Abutment displacement 
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(c) Pier column drift ratio (d) SRSS value of column drift ratio 
Figure 3.5. Bridge response comparisons with various EDPs under the motion No. 10 

3.3 QUANTIFYING THE EFFECTS OF LIQUEFACTION THROUGH CEDP 

Nonlinear time history results indicate that the bridge responses and their characteristics 

can differ significantly between the lateral spreading and seismic shaking cases. A general 

parameter screening procedure has been carried out to identify the parameters that will 

substantially influence the column drift ratio, the dominant EDP for quantifying the effects of 

liquefaction induced lateral spreading. For lateral spreading case, parameters such as soil 

profiles, SSI effects and ground motions all have significant influences on column drift ratio 

responses. For seismic shaking case, the column responses correlate well with the intensity of 

the earthquake hazard, in addition to the structural configurations. To derive the response 

modification factor CEDP, the column drift ratio under lateral spreading case, EDPLiq, is 

regressed with soil profiles, load resistances of soils, and ground motion IMs first while the 

response under seismic shaking, EDPNonLiq, is regressed with IMs of ground motions. 

3.3.1 Crust Layer Energy Ecrust 

The static loading nature under liquefaction induced lateral spreading motivates the use 
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of soil layer energy content to quantify column responses. As shown in Figure 3.3, due to the 

pinning effect at end abutments, soil energy imposed on the bridge is likely concentrated at 

pier foundations. To derive the energy content associated with liquefaction induced lateral 

spreading, Figure 3.6 presents the simplified sketch of the lateral force displacement profile 

at pier foundations with the following assumptions: (1) Soil displacements are very small in 

the bottom dense sand layer hence neglected; (2) The maximum lateral displacement umax 

increases linearly from the bottom to the top of the loose sand layer, and remains as a 

constant in the crust clay layer; (3) The deformations of the pile cap and piles are neglected; 

(4) Lateral forces are separated into two parts: a resultant force at the pile cap and a 

distributed force along each pile. 

With above assumptions, soil energy of the crust layer and the liquefied loose sand layer 

can be expressed as: 

 

 max max( )
crust

cap

h

crust cap clayh
E P u N p x u dx      (3.5)

 
 

( ) ( ) 
crust liq

crust

h h

liq sandh
E N p x u x dx


    (3.6)

 

where Ecrust is the crust layer energy, Eliq is the loose sand layer energy, umax is the maximum 

lateral displacement of the crust clay layer, N is the total number of piles, Pcap is the resultant 

force at the pile cap, pclay(x) is the lateral force along a single pile in the crust clay layer; 

psand(x) is the lateral force along a single pile in the loose sand layer, hcap is the thickness of 

pile cap, hcrust is the thickness of the crust clay layer, hliq is the thickness of the loose sand 
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layer and u(x) is the lateral displacement of the loose sand layer as calculated by: 

 

 
max

max( ) ( )   crust crust crust liq
liq

u
u x u x h h x h h

h
       (3.7)

 

Eqs. (3.5) and (3.6) provide the static equivalent energy contents of the crust clay layer 

and loose sand layer that is imposed on the pier foundations when liquefaction induced lateral 

spreading is triggered.  

 u

Pcap

pCrust Clay Layer

Loose Sand Layer

Dense Sand Layer

clay

psand

y

x

hcap

hcrust

hliq

max

 
Figure 3.6. Lateral force and displacement sketch at the pier foundation 

 

Preferably, the accurate calculation of energy contents of Ecrust and Eliq requires compete 

dynamic analyses with liquefaction induced lateral spreading to obtain umax and the lateral 

forces used in Eqs. (3.5) and (3.6). However, this is too computationally demanding for 

routine practices. Instead, the energy contents are estimated by regressing the lateral 

displacement umax and the lateral forces with non-liquefied ground motions and empirical 

formulas. Furthermore, it is noted that the lateral forces provided by the liquefied loose sand 
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layer are considerably reduced (to roughly 5% of the force provided by the non-liquefied 

sand layer), which in turn substantially decrease the energy content of Eliq, to less than 4% of 

the crust clay layer energy Ecrust for the benchmark bridge with different soil profiles. 

Therefore, only energy content Ecrust in the crust layer is considered herein. 

3.3.2 umax - IM Search 

Maximum lateral displacement umax of lateral spreading is strongly influenced by both 

IMs of the input motion and soil parameters. Rather than theoretically explore the physical 

relations between the input motion, soil parameters and the response umax, this section 

correlates umax to non-liquefied motion at ground surface numerically. The logarithmic linear 

assumption used for the probabilistic seismic demand analysis (PSDA) is adopted herein: 

 

  max

b
u a IM  i.e.  maxln ln( ) ln( )u a b IM   (3.8)

 

where IM is the intensity measure of the non-liquefied motion at ground surface, a and b are 

the regression parameters that need to be determined. Table 3.2 lists the broad searching 

results for the best IM of the 40 non-liquefied ground motions to correlate umax. The surface 

motions at the left pier foundation are selected and the umax is the bigger value of peak lateral 

displacements at two pier foundations under each motion. The errors shown in Table 3.2 are 

defined as:  
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   (3.9)

 

where max,
p

iu  is the value predicted by Eq. (3.8) and umax,i is the maximum lateral 

displacement that obtained from global dynamic analyses; n is total number of input motions 

(i.e. n = 40 here). As shown in Table 3.2, the optimal IM to regress the umax is the SRSS value 

of the cumulative absolute velocity (CAV in the unit of m/s), where the error is only 13.4%. 

Figure 3.7 shows the ln(umax) - ln(CAV) data and the regression line for the 40 numerical 

cases. It can be seen that the regression line fits neatly with the data, which indicates that by 

adopting SRSS CAV as the IM, it is able to obtain a sound correlation between the maximum 

lateral displacement of umax and the non-liquefied ground motions. 

 

Table 3.2. Linear regression and errors between umax and IMs 

IMs Direction Error IMs Direction Error 

Peak acceleration Transverse 0.529  
0

dT
CAV a t dt  * Longitudinal 0.145 

Longitudinal 0.477 SRSS 0.134 
Peak velocity Transverse 0.524  

0

dT
CAD v t dt  * Longitudinal 0.364 

Longitudinal 0.522 SRSS 0.355 
Peak displacement Transverse 0.499    

Longitudinal 0.458    

* Td is the duration of each earthquake motion, a(t) is the acceleration time history, and v(t) is 
the 
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Figure 3.7. The correlation of maximum ground lateral displacement umax (m) and 

cumulative absolute velocity (CAV, m/s): numerical data versus regression line 

3.3.3 umax - hliq Correlation 

Because the maximum lateral displacement increases dramatically from 0 to umax within 

the liquefied loose sand layer and almost remains as a constant in the crust clay layer (as 

shown in Figures 3.3 and 3.6), the liquefied loose sand layer thickness hliq could also affect 

umax, in addition to the CAV of the non-liquefied motion at ground surface. In this chapter, the 

influence of CAV and hliq is assumed to be uncoupled with each other. Therefore, umax can be 

calculated as: 

 

 max ( ) ( )liqu f CAV g h   (3.10)

 

As can be seen from Figure 3.7 and Table 3.2, ln(umax) can be closely regressed as a linear 

function of ln(CAV) if hliq is a constant, e.g. hliq is 2.0m for the benchmark bridge. To 

incorporate the impact of hliq, the general formula of umax can be rewritten as: 
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 '
max ( ) b

liqu g h CAV   (3.11)

 maxln( ) ln[ ( )] ' ln( )liqu g h b CAV    (3.12)

 

The unknown function g(hliq) and parameter b  in Eq. (3.12) can be determined by 

building additional numerical models, each with a different liquefied loose sand layer 

thickness. Two extra simulation cases have been considered with hliq adjusting to 1.0m and 

3.0m, respectively. Figure 3.8(a) plots out the ln(umax) - ln(CAV) data and the regression lines 

for all three cases. It can be seen that almost identical slopes can be achieved for the 

regressed lines when the liquefied layer thickness hliq is changing. Hence, the parameter b  

in Eq. (3.12) can be assumed as a constant. Meanwhile, the ln(umax) axis intercepts of the 

regressed lines are positively related to hliq, which means ln[g(hliq)] can be considered as a 

function of hliq. In this study, g(hliq) and b  are suggested as following: 

 

 ( ) 0.005 0.005liq liqg h h  ; ' 1.25b   (3.13)

 

By substituting g(hliq) and b  into Eq. (3.12), the closed-form formula of umax can be 

expressed as shown in Eq. (3.14). Figure 3.8(b) also shows the ln(umax) - ln(CAV) data and the 

values from Eq. (3.14) for the above-mentioned three cases. It can be seen that the proposed 

formula of umax correlates very well with the numerical data. 

 

 1.25
max (0.005 0.005 )liqu h CAV    (m) (3.14)
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(a) Data and regression lines 
(b) Data and regression lines with same 

slopes 
Figure 3.8. The umax (m)- CAV (m/s) relation for different liquefied layer thickness hliq (m) 

cases 

3.3.4 p-y Forces under Soil Liquefaction 

The closed-form expression of the crust layer energy Ecrust in Eq. (3.5) consists of both 

displacement parameter of umax and force parameters of Pcap and pclay. In this section, the 

lateral force parameters are assumed to be consistent with the p-y forces that are used to 

model the soil lateral resistances under liquefaction. The derivation of the force parameters is 

based on Matlock’s (1970) backbone curve for soft clay. In the crust clay layer, the p-y force 

is given as: 

 

 
0.333

,
50

0.5( )clay clay ult

y
p p

y
   (3.15)

 

where y is the lateral displacement, i.e. the umax in this study, pclay,ult is the ultimate capacity of 

the p-y material for clay, y50 is the displacement at which 50% of pclay,ult is mobilized. 

According to Matlock (1970), the ultimate capacity of clay pclay,ult can be determined as: 
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where su is the undrained shear strength of the crust clay layer, x is the soil depth, γ is the 

buoyant unit weight, d is the diameter of the pile, and mp is the multiplier defined in Eq. (3.2), 

which accounts for the two possible controlling mechanisms in association of soil 

liquefaction. The parameter hR is the critical depth, which can be determined by: 

 

 
6

0.5R
u

d
h

d s



 (3.17)

 

Furthermore, it is assumed that the resultant p-y force at pile cap Pcap holds the same 

constitutive law as is given by Eq. (3.15). However, its ultimate capacity Pcap,ult of the soil 

acting on the pile cap needs to take into account of the passive loading forces and the friction 

forces along the two sides: 

 

 , ( )cap ult p s pP F F m    (3.18)

 

where Fp is the total passive force, Fs is the total friction force at two sides, and mp is the same 

multiplier defined by Eq. (3.2). The other input parameter y50 for the crust clay layer is 

adopted empirically as one eighth of the maximum displacement corresponding to the 
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ultimate capacity pclay,ult (Caltrans 2013). Table 3.3 provides mp, Pcap,ult, pclay,ult and y50 values 

of the pile cap and piles in the crust layer for different crust thicknesses. 

 

Table 3.3. Input parameters for ‘p-y’ forces in the crust clay layer 

Crust layer thickness mp Pile cap Pcap,ult (kN) Piles pclay,ult (kN/m) y50 (m) 

1m 1.000 1105 -- 0.031 
2m 0.706 916 123.7-157.0 0.032 
3m 0.634 823 111.1-171.0 0.036 
4m 0.583 756 102.2-184.7 0.042 
5m 0.544 706 95.3-198.0 0.049 

 

3.3.5 EDPLiq Derivation 

The crust layer energy content Ecrust can be obtained by substituting the lateral 

displacement umax and the p-y forces pclay and Pcap into Eq. (3.5) and is given by: 

 

 
1.333
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, ,0.333
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( )

crust
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h

crust cap ult clay ult xh

u
E P N p x d

y
       (3.19)

 

As can be seen from Eq. (3.19), the derived crust layer energy Ecrust effectively incorporates 

lateral displacements, liquefied layer thickness, as well as the load resistances of the crust 

layer. Especially, it successfully reflects the static loading nature associated with the 

liquefaction induced lateral spreading on bridges. Therefore, it is rational to seek a possible 

correlation between the column drift ratio under lateral spreading EDPLiq and the crust layer 

energy Ecrust. The same logarithmic linear assumption is adopted: 
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  ln ln( ) ln( )Liq crustEDP Ec d   (3.20)

 

where c and d are the regression coefficients that can be obtained through a linear regression 

between ln(EDPLiq) and ln(Ecrust).  

Figure 3.9 presents the numerical data and the regression results of ln(EDPLiq) for a total 

of five bridge systems, with each case considers a different soil profile. The selected 40 

groups of rock motions are imposed on each of the five bridge cases, from which a total of 

200 sets of bridge responses are obtained. It can be seen from Figure 3.9 that the regressed 

line provides a reasonable estimation of column drift ratio under liquefaction induced lateral 

spreading. The suggested closed-form formula is given as follows with Ecrust in the unit of 

kN·m: 

 

 ln( ) 0.7 ln( ) 10.26Liq crustEDP E    (3.21)

 5 0.73.5 10Liq crustEDP E    (3.22)

3.3.6 CEDP Derivation 

As defined in Eq. (3.3), EDPNonLiq is the remaining parameter to finalize the derivation of 

CEDP. A broad parameter screening process indicates that the column drift ratio under 

non-liquefied seismic shaking scenario EDPNonLiq is mainly influenced by the peak 

acceleration (PGA) of non-liquefied ground motion at the ground surface. As shown in Figure 

3.10, the same logarithmic linear assumption is used to derive the closed-form expression of 

ln(EDPNonLiq) for the aforementioned five bridge cases with PGA in the unit of m/s2: 
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Figure 3.9. Column drift ratio EDPLiq – crust layer energy Ecrust (kN·m) correlation for 

different soil profile configurations 
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Figure 3.10. Column drift ratio under seismic shaking EDPNonLiq- PGA (m/s2) correlation 

for different soil profile configurations 

 

 ln( ) ln( ) 7.6NonLiqEDP PGA   (3.23)

 45 10NonLiqEDP PGA    (3.24)

 

where PGA is the peak ground acceleration of the non-liquefied surface motion in 

longitudinal direction at the two pier foundations. Therefore, the closed-form expression of 
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CEDP can be finalized as:  
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3.3.7 Additional Parameters for CEDP 

The proposed formula of CEDP quantifies the damaging potential of liquefaction induced 

lateral spreading for the benchmark bridge. To derive CEDP for different highway bridges, the 

proposed formula of CEDP is modified by multiplying additional parameters that can 

incorporate other structural and foundation considerations. For typical highway bridges in 

California, their designs are often differed in these aspects, such as superstructure 

characteristics, pile designs, and pier column designs etc. In this section, four additional 

multipliers are incorporated in the formula of CEDP to capture a wide scope of highway bridge 

systems as follows: 

 

 
0.7

0.07 crust
EDP t p c i

E
C

PGA
        (3.26)

 

where δt is the multiplier for superstructure characteristic type, δp is the multiplier for pile 

strength, δc is the multiplier for pier strength, and δi is the multiplier for soil inclination angle. 

The multiplier δt is used to account for highway bridges with different superstructure 

characteristics, i.e. bridges with seat type abutments, bridges with simply supporting piers, 

bridges with the combination of seat type abutments and simply supporting piers, and bridges 

with expansion joints built at the bridge center. Global dynamic analyses have been carried 
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out for each bridge category assuming soil profiles and input ground motions are the same as 

the benchmark bridge. A general searching procedure has been conducted to find the optimal 

δt value for each bridge system, where the suggested values are listed in Table 3.4. The error 

associated with the optimal δt for each bridge case is calculated as: 

 

 
, ,

,

1 p
EDP i EDP i

n EDP i

C C
e

n C


   (3.27)

 

where ,
p
EDP iC  is the value calculated by Eq. (3.26), ,EDP iC  is the value obtained from the 

global dynamic analysis under ith ground motion, n is the total number of ground motions, i.e. 

n = 40 in this study. It can be seen from Table 3.4 that with the proposed multiplier δt, the 

CEDP formula for highway bridges with different superstructure characteristics yields errors 

ranging from 30% to 50%. 

 

Table 3.4. Superstructure characteristic multiplier δt 

Bridge 
Types 

Monolithic 
Abutment & 

Continuous Deck 

Seat Type 
Abutment 

Simply 
Supporting 

Pier 

Seat Type Abutment 
& Simply 

Supporting Pier 

Expansion 
Joint 

δt 1 0.35 0.65 0.4 0.4 
Error (%) 34.7 40.4 43.1 50.9 52.8 

 

Other than the 0.61m diameter CIDH pile (yield moment My = 400 kN·m) used for the 

benchmark bridge, two additional pile designs, i.e. the 0.38m diameter CIDH pile with a 

yield moment of 180 kN·m and the 0.61m diameter cast-in-steel-shell (CISS) pile with a 

yield moment of 1800 kN·m, are considered for typical highway bridges in California. A 

similar dynamic analysis and searching procedure has been conducted to identify the optimal 

δp value for these three pile designs. Table 3.5 lists the values of δp as well as the errors that 
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are calculated by Eq. (3.27), which are around 35% for all three pile cases. It is noted that the 

proposed δp value doesn’t vary linearly with the yield moment of the pile, resulting from the 

fact once the pile strength reaches up to a certain level; i.e. when the pile foundation is much 

stronger than the pier column, the pile foundation will move as a rigid body, and the column 

drift responses will be dominated by the strength of the pier column. A simple power function 

that is shown in Eq. (3.28) is suggested to quantify the pile strength factor δp for different 

types of piles with My
 in the unit of kN·m. 

 

 0.23

4
 p

yM
   (3.28)

 

Table 3.5. Pile strength multiplier δp 

 

The post-1971 pier that is used in the benchmark bridge owns a yield moment of 7011 

kN·m. In this section two extra pier designs, one is the typical pre-1971 pier that has a yield 

moment of 4900 kN·m, while the other is the post-1971 strengthened pier with the yield 

moment up to 10510 kN·m, are considered for the pier strength multiplier δc. Table 3.6 lists 

all three pier types and their corresponding δc values. It is worth mentioning that the 

suggested δc values equal to 1 for all three cases, which indicates that pier strength does not 

affect the CEDP too much, namely the column drift varies in the similar pace under 

liquefaction induced lateral spreading and seismic shaking when different pier strengths are 

Pile Type d = 0.61m CIDH d = 0.38m CIDH d = 0.61m CISS 
Yield Strength (kN∙m) 400 180 1800 

δp  1 1.2 0.7 
Error (%) 34.7 34.2 35.3 
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considered. The associated errors for the proposed δc values range from 30% to 40%. 

 

Table 3.6. Pier column strength multiplier δc 

 

Instead of keeping the soil inclination angle as 4° towards bridge center for the 

benchmark bridge, the multiplier δi is identified by considering two additional soil profiles, 

i.e. the one with local soil inclining 2° towards bridge center and the other with no soil 

inclination. To be simple, lateral spreading are assumed to occur symmetrically on both sides 

of the bridge. Other possible cases, e.g. only left half of the bridge experiencing lateral 

spreading, are not considered herein. Table 3.7 lists the proposed δi values. The 

corresponding errors are from 30% to 45% for these three cases. It can be found that the 

suggested δi values vary linearly with the soil inclination angle, which can be quantified 

using Eq. (3.29).  

 

 0.15 0.4i    (3.29)

where the parameter θ is the soil inclination angle in the unit of degree. 

 

Table 3.7. Soil incline angle multiplier δi 

Ground Incline Angle (  ) 4 2 0 
δi 1 0.7 0.4 

Error (%) 34.7 32.7 45.6 

Pier Column Type Post-1971  Pre-1971 Post-1971, strengthened 
Yield Strength (kN∙m) 7011 4900 10510 

δc 1 1 1 
Error (%) 34.7 30.5 39.3 
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3.4 NUMERICAL VALIDATION 

The soundness of using the derived expression of CEDP to predict the column drift ratio 

due to liquefaction induced lateral spreading is further validated for a range of different 

highway bridge systems. Eight distinctive bridges, each with randomly varied structural and 

soil properties, are modeled and analyzed under lateral spreading and seismic shaking when 

subject to the selected 40 groups of ground motions. For each case, the derived CEDP value is 

compared with the numerical data with errors calculated using Eq. (3.27). Table 3.8 lists the 

eight bridge cases and the associated prediction errors, which ranges from 29% to 56%. 

Possible sources of errors in predictions include: (1) a few assumptions have been made to 

derive the crust layer energy under soil liquefaction; (2) inherent errors occur when using the 

logarithmic linear assumption to derive both EDPLiq and EDPNonLiq; (3) additional structural 

and soil multipliers propagate the errors of the final formula. However, given that global 

dynamic analysis to capture the damaging potential of bridge column under liquefaction 

induced lateral spreading is laborious and demanding, the 29-56% of error can be deemed as 

acceptable for routine practices. The proposed formula is simple yet dependable in predicting 

the soil liquefaction effect on column drift ratios on the basis of the responses under seismic 

shaking. 
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Table 3.8. Validation cases and computed errors of the proposed formula  

Items 
Base 

Model
Validation Case No. 

1 2 3 4 5 6 7 8 

Abut Monolithic √ √ √ √    √ √ 
Seat type     √ √ √   

Deck Continuous √ √ √ √  √    
Simply-supported     √  √ √ √ 

Pier My (kN·m) 7011 ×1.0 ×1.0 ×1.5 ×0.6 ×0.6 ×1.0 ×1.5 ×0.6
Pile My (kN·m) 400 ×1.0 ×1.5 ×0.6 ×1.5 ×1.5 ×1.5 ×0.6 ×1.5
Soil Incline angle (°) 4 4 4 4 4 3 3 3 3 

Crust layer thickness (m) 3.0 2.0 4.0 2.0 4.0 2.0 4.0 2.0 4.0 
Loose sand thickness (m) 2.0 1.0 3.0 1.0 3.0 1.0 3.0 1.0 3.0 

Error (%) 34.7 47.7 29.0 46.7 47.6 47.1 40.8 32.9 56.3

3.5 Concluding Remarks 

This chapter develops an effective method to quantify the effects of liquefaction induced 

lateral spreading on column drift responses of typical highway bridges in California. Global 

dynamic analyses are conducted under lateral spreading and seismic shaking scenarios 

respectively to predict column drift responses. Having observed the near static loading 

mechanism under lateral spreading, the soil energy content imposed by the non-liquefied 

crust layer is considered as the dominant factor for responses of bridges on liquefiable soil. 

The crust layer energy is derived as a function of the cumulative absolute velocity (CAV) of 

non-liquefied ground motion at surface, geometric parameters of the soil profile, and p-y 

forces representing lateral resistance of soils. The column drift ratio under liquefaction 

induced lateral spreading, EDPLiq, is subsequently derived as a function of the crust layer 

energy by using the linear logarithmic assumption. Under seismic shaking, the column drift 

ratio without liquefaction, EDPNonLiq, is directly correlated with the peak ground acceleration 

of the non-liquefied motion at the ground surface. Subsequently, the effects of lateral 
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spreading on column drifts are quantified by using a response modification factor CEDP (= 

EDPLiq/EDPNonLiq). Four additional multipliers are identified for CEDP to take into account of 

various highway bridges with different superstructure characteristics, pile strengths, pier 

designs, and soil inclination angles. The proposed closed-form expression of CEDP has been 

validated through comparisons against the simulation results for eight bridge models that 

have varying structural and soil properties. Normalized errors of 29-56% have been found 

between the simplified formula and the numerical predictions. This relatively small error 

confirms that the proposed formula can be used with confidence in practice.  

In summary, this chapter offers a simple yet dependable method to quantify the 

influences of liquefaction induced lateral spreading on column drift ratios with respect to the 

correspondent responses under the seismic shaking for typical highway bridges. The 

proposed method captures key response features of bridges and offers reliable column drift 

predictions. 
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4. OPTIMAL SEISMIC PROTECTION DESIGN OF HIGHWAY BRIDGES 

Modern seismic protective devices in the forms of isolation bearings and energy 

dissipation devices provide attractive means to mitigate earthquake hazards for both new and 

retrofitted highway bridges. However, as discussed in Chapter 1, the wide choices of design 

parameters as well as the highly nonlinear behaviors of protective devices make the 

establishment of simple design rules difficult. In addition, a robust methodology is entailed to 

evaluate the effectiveness of seismic protective devices in the bridge-system level. This chapter 

bridges such gap by providing a performance-based framework to evaluate and optimize 

seismic protective devices for highway bridges. The Painter Street Overcrossing (PSO) that has 

been studied in Chapter 2 is selected as the base model in this chapter and is seismically 

redesigned with protective devices. Numerical modeling, component-level fragility analyses, 

system-level performance index, and multi-objective optimization of protective devices for the 

PSO are discussed in following sections. 

4.1 NUMERICAL MODELING OF THE PSO WITH PROTECTIVE DEVICES 

4.1.1 3D Numerical Modeling of the As-built PSO 

As shown in Chapter 2, the three-dimensional stick model with macro springs and 

dashpots (i.e., modeling scheme ‘Case 4’ in Chapter 2) capturing the SSI effects and distinct 

motions inputs at the center bent and end abutments is capable of yielding comparable results 

against recorded responses. Moreover, compared with the proposed p-y modeling approach in 

Chapter 2, this modeling scheme is more computationally efficient to be implemented in the 
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probabilistic analysis framework. Therefore, this chapter adopts the three-dimensional stick 

model to analyze the seismic responses of the PSO. Recall that the PSO is a two-span 

prestressed concrete box-girder bridge with continuous spans of 44.5 m and 36.3 m 

respectively (Figure 4.1(a)). The superstructure is supported on monolithic end abutments and 

a two-column central bent, both with a skew angle of 39°. The 7.3 m high pier columns are 

designed with non-uniform cross sections, where the bottom half of each pier consists of a 1.5 

m diameter circular section with 36#11 longitudinal bars (Figure 4.1(d)) and the top half is 

composed of variable sections with 36#11 longitudinal bars confined the inner layer and 18#5 

longitudinal bars confined the outer layer (Figure 4.1(e)).  
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Figure 4.1. Sketch of the Painter Street Overcrossing (PSO) 

 



96 
 

The three-dimensional numerical model of the PSO is built in the software platform 

OpenSees (Mazzoni et al. 2006). The bridge deck and end abutments are modelled with linear 

beam elements, while the nonlinear behavior of the column is captured by using a bilinear 

moment-curvature relation that is obtained from the pushover analysis of the column with fiber 

section nonlinear beam elements. Figure 4.2 presents the moment-curvature relations of 1-1 

and 2-2 sections that are shown in Figure 4.1 as well as the force-displacement relationship of a 

single column from the pushover analysis. The sectional moment-curvature relations and the 

force-displacement relationship of the column are both regressed with bilinear curves. The 

former provides input parameters for the moment-curvature hardening relation in OpenSees, 

and the latter offers three parameters, namely the elastic stiffness, K1,C, characteristic strength, 

QC and post-yielding stiffness, K2,C, all of which can be used to normalize the bearing 

parameters such that its optimal design parameters can be expressed in dimensionless forms. 
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(a) Section moment curvature relation (b) Force-displacement pushover curve 
Figure 4.2. Section properties and force-displacement curve of pier column 

 

The SSI effects of the bridge are considered at embankments that support the end 
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abutments and the pile foundations at bridge center. The kinematic response function and 

dynamic stiffness that were derived by Zhang and Makris (2002a) are adopted to generate the 

amplified motion of the embankment and frequency independent springs and dashpots for SSI 

effects at abutment foundations, respectively. An equivalent flexural-shear beam element that 

is derived by Zhang et.al (2004) is used to incorporate the SSI effects at pier foundations. 

4.1.2 Modeling of Seismic Protective Devices 

The seismic protection of highway bridges can be improved with the use of various 

protective devices, which in general can be divided into two categories, i.e. isolation bearings 

and supplemental energy dissipation devices (Agrawal and Amjadian 2016). For isolation 

bearings, three most common types are elastomeric bearings (ERB), lead-rubber bearings 

(LRB), and friction pendulum systems (FPS). Although their mechanical behaviors are 

different from each other, a bilinear model can be used to represent their behavior (Naeim and 

Kelly 1999). As shown in Figure 4.3(a), the bilinear model can be characterized by three 

parameters: elastic stiffness K1, post-yielding stiffness K2, and characteristic strength Q. The 

mechanical characteristics of the three isolation devices have been summarized by Zhang and 

Huo (2009) and are listed in Table 4.1. Identifying these mechanical characteristics forms the 

basis of the seismic design of isolation devices for bridges (AASHTO 2014; Agrawal and 

Amjadian 2016). It can be seen that these three bearing types have different stiffness ratio N, 

which is defined as the ratio between elastic stiffness and post-yielding stiffness (N = K1/K2). 

The stiffness ratio N typically ranges from 5 to 15 for ERB, 15 to 30 for LRB, and 50 to 100 for 

FPS. In this study, the stiffness ratio N is varied to represent different bearing types.  
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Supplemental energy dissipation devices can be classified into passive, active and 

semi-active devices (Housner et al. 1997). Although not sufficiently adaptive to ever changing 

ground excitations, passive devices have been widely implemented in buildings for seismic 

protection since they are easy to install and stay reliable during earthquakes (Soong and 

Dargush 1997). As one type of passive devices, fluid viscous dampers have gained extensive 

attention in both research and the practice community because of their large capacity and 

simplicity for numerical modelling. The nonlinear damper force (fd) can be analytically 

expressed as a fractional velocity power law as 

 

  ( ) ( ) sgn ( )df t C v t v t


  (4.1)

 

where v(t) is the damper velocity, Cα is the experimentally determined damping coefficient 

with units of force per velocity raised to the α power; α is a real positive exponent with typical 

values in the range of 0.35-1 for seismic applications, and sgn(·) is the signum function. The 

linear damper force can be easily defined by Eq. (4.1) with α = 1. Figure 4.3(b) plots out the 

force displacement loop of the fluid viscous damper for both nonlinear (α < 1) and linear (α = 1) 

cases.  
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(a) Bilinear model for isolation bearings (b) Nonlinear and linear viscous model 

for fluid dampers 
Figure 4.3. Numerical modeling of isolation bearing and fluid damper 

 

Table 4.1. Mechanical Characteristics for the Three Types of Isolation Bearings 

Bearing 
Type 

Post-yielding ration N  
(N = K1/K2) 

Characteristic strength Q Post-yielding stiffness K2 

ERB 5-15 From hysteresis loop  K2 = GA/Σtr  
LRB 15-30 Fy = fyALead K2 = (1.15-1.20) GA/Σtr 
FPS 50-100 Q = μW K2 = W/R 

 

Figure 4.4 illustrates the three-dimensional modeling scheme for the PSO with protective 

devices installed atop pier columns and end abutments. Note that the modeling scheme 

excludes the substructures by using frequency-independent springs, dashpots and equivalent 

linear beam elements to account for the presence of approach embankments and piles 

foundations, as well as the associated SSI effects. In addition, amplified motion inputs are used 

to account for the embankment amplification effect at end abutments. 
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Figure 4.4. Three-dimensional numerical model of the PSO with seismic protective device
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4.2 COMPONENT-LEVEL FRAGILITY ANALYSIS 

By defining the conditional probability of the EPDs attaining or exceeding a specified DS 

for a given level of ground motion intensity, fragility curves offer useful tools to assess the 

vulnerability of highway bridges to earthquake hazards. Depending on the data resources, 

fragility functions can be generated as empirical functions that are based on bridge damage 

data from major earthquakes (Basöz et al. 1999; Shinozuka et al. 2000) or analytical functions 

with numerical analysis results (Karim and Yamazaki 2007; Padgett and DesRoches 2008; 

Agrawal et al. 2012; Siqueira et al. 2014; Zhang and Huo 2009). Because of the absence of 

adequate empirical data, analytical methods have often been used to derive bridge fragility 

functions. In this chapter, the component-level fragility curves of highway bridges are 

developed by the cloud method, which is also termed as Probabilistic Seismic Demand 

Analysis (PSDA). The PSDA correlates EDPs with ground motion IMs based on three 

assumptions: logarithmic linear assumption between median EDP and IM, constant variance 

assumption for all IM ranges, and log-normal distribution of EDP at a given IM level (Cornell 

et al. 2002). Therefore, the conditional probability for an EDP to reach a certain DS under a 

given IM can be written as: 

 

 
ln( ) ln( )

 [ ] 1
b

EDP IM

LS aIM
P EDP LS IM



    
 
 

(4.2)

 

where LS is the limit state that corresponds to each DS, parameters a and b are regression 



102 
 

coefficients based on the logarithmic linear assumption, EDP IM  is the constant standard 

deviation of the logarithmic distribution, and Φ(•) is the standard normal distribution function.  

To address the uncertainties that inherent with ground motions, PSDA relies on a 

significant number of nonlinear time history analyses, which requires selection a large group of 

earthquake records. In this chapter, earthquake records selection is guided by determining the 

optimal IM of ground motions. Intuitively, a good choice for IM should roughly constitute a 

linear relation with the EDP of interest in the logarithmic domain, such that the linear 

assumption between median EDP and IM can be satisfied. As suggested by Padgett et al. 

(2008), PGA turns out to be the optimal choice of IM for highway bridges when a composite 

measure that consists of efficiency, practicality, sufficiency and hazard computability is 

considered. Therefore, as long as the selected ground motions are capable of covering various 

PGA levels, the PSDA can offer a conceptually and statistically better prediction of the 

damaging potential of bridge components. This study selects 140 ground motion records from 

the PEER Strong Motion Database (http://ngawest2.berkeley.edu/) to conduct the PSDA. 

Figure 4.5 shows the distribution of PGA of the selected ground motion records. It can be 

observed that there is a smaller number of earthquake records with PGA ranges from 0.7g-0.8g 

and 0.9g-1.0g, while for ranges other than these two, at least 10 motion records have been 

selected for every PGA internal of 0.1g.  
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Figure 4.5. PGA distribution of selected ground motions 

 

The last step in finalizing the derivation of component-level fragility curves for highway 

bridges is to pinpoint bridge components that are vulnerable to seismic damages and their 

corresponding LS values at various damage states. Previous studies and case histories have 

suggested that pier columns are the most critical component for a conventional multi-span 

highway bridge with continuous deck (Seible and Priestley 1999; Choi et al. 2004; Yi et al. 

2007). The HAZUS (FEMA 2003) definition of four damage states (i.e. slight, moderate, 

extensive and collapse) is now being widely adopted as a guideline for determination of 

limiting values to reach various damage stages for different damage index (DI) measures, 

which are defined as functions of EDPs. By conducting column tests, studies have determined 

various DI measures for bridge piers, including curvature ductility, displacement ductility, and 

energy dissipation ratio etc. (Choi et al. 2004; Yi et al. 2007; FEMA 2003; Hwang et al. 2001; 

Karim and Yamazaki 2001). A detailed summary of the definitions for various DIs and 
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corresponding DI criteria was noted by Zhang and Huo (2009). This study compares the limit 

states of column curvature ductility μ suggested by Choi et al. (2004) with those of column 

drift ratio θ recommended by Yi et al. (2007) and found that corresponding limit states for these 

two DI measures provide very close component fragility curves for highway bridges. The 

column drift ratio θ is adopted as the DI in this study, given the simplicity of extracting its peak 

demand values during fragility analysis and the optimization process. Meanwhile, for highway 

bridges that are equipped with protective devices, the vulnerability of protective devices needs 

to be incorporated as well. In light of the fact that supplemental energy dissipation devices (e.g. 

the viscous fluid dampers considered in this study) are usually installed adjunctively on bridges, 

the consequence of their damages or failures cannot be compared with that of isolation devices, 

whose roles consist not only providing flexibility to the system but also supporting bridge 

superstructures. Therefore, several studies investigated the damage states of isolation bearings 

based on experimental observation and the consideration of resulting pounding and unseating 

(Siqueira et al. 2014; Zhang and Huo 2009; Naeim and Kelly 1999; Choi et al. 2004; Mori et al. 

1999; Kelly and Quiroz 1992), and general agreement was achieved that the DI of isolation 

bearings can be expressed in terms of shear strains. At shear strains of about 100%, tests have 

revealed a potential visible indicator of damage, which is considered as the slight damage in 

this study. While at a 200% shear strain, bearings will experience uplifting and rocking under 

dynamic loadings, resulting in the bending of the steel shims as well as a substantial damping 

degradation (Naeim and Kelly 1999; Mori et al. 1999); therefore, extensive damage is assumed 

at this level such that a high probability of bearing failure would exist. The complete damage 
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state is associated with ultimate failure of the bearings, severe pounding of bridge 

superstructures, and a potential span unseating. A shear failure test that has been conducted by 

Kelly and Quiroz (1992) identified that the maximum shear strain of the a elastomeric bearing 

could reach up to 388%, so a strain level of 350% is considered as the complete damage for 

bearings herein. Table 4.2 lists the EDPs, DIs, DSs and LSs for pier columns and isolation 

bearings. 

 

Table 4.2. EDPs, DIs and LSs for Concrete Column and Bearing 

Component DI 
Slight 
damage 
(DS=1) 

Moderate 
damage 
(DS=2) 

Extensive 
damage 
(DS=3) 

Collapse 
damage 
(DS=4) 

Column  
(Yi et al. 2007) 

Drift ratio θ θ > 0.7% θ > 1.5% θ > 2.5% θ > 5% 

Bearing  Shear strain γ γ > 100% γ > 150% γ > 200% γ > 350% 

 

The effectiveness of seismic protective devices is first investigated through comparing 

fragility functions in the bridge component level. The PSDA is conducted on the as-built bridge 

and two additional cases with protective devices installed. One is designed as a fully isolated 

bridge, and the other is equipped with both isolation bearings and viscous fluid dampers. The 

3D numerical model of the PSO is analyzed under the selected 140 motion records in the 

transverse direction, where dominant responses are expected. For brevity, locational variation 

is not considered for the protection design (i.e., all protective devices at different locations are 

assumed to have the same mechanical parameters). The fully isolated case is designed with 

ERB based on the design guideline provided by Naeim and Kelly (1999), where the mechanical 
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parameters of the ERB are selected as K1,B/K1,C = 1.00, QB/QC = 0.80, and N = 10. The bridge 

case installed with both bearings and dampers is designed by attaching linear viscous fluid 

dampers with damping coefficient Cα = 3000 kN(s/m) in parallel with FPS, whose parameters 

are chosen as K1,B/K1,C = 0.5, QB/QC = 0.5, and N = 50. A typical bearing thickness of 0.15m is 

assumed for both cases. The soundness of using PSDA to compose the component level 

fragility curves is first examined on the as-built case. Figure 4.6(a) plots the EDP (column drift 

ratio) and IM (PGA) pairs of 140 simulations in the log-log domain, and a linear regression is 

achieved to relate EDP and IM. With a constant variance ( EDP IM ) of 0.41 across all IM levels, 

the fragility curves of the pier columns are generated as shown in Figure 4.6(b). 
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Figure 4.6. Fragility analyses of the as-built bridge with PSDA 

 

Figure 4.7 presents the component-level fragility curves for three cases: the as-built bridge, 

the isolated bridge, and the bridge case designed with both bearings and fluid dampers. The 

fragility curves of the isolated case are plotted with thick lines; and it is shown that compared 

with the as-built bridge, the isolation design yields lower damage probabilities for pier columns 
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at all damage states. In other words, the damage probability of the as-built bridge can be 

reduced at all four damage states if the bridge is isolated. The fragility curves of the bridge case 

installed with both FPS and fluid dampers are shown as thin lines without markers in Figure 4.7. 

As can be seen from the figure, the design strategy of installing both bearings and fluid 

dampers can further reduce the damage probabilities of pier columns. However, this design 

case slightly increases the damage probabilities of isolation bearings when compared with the 

isolation only case. Such observations imply that: (1) the damaging potentials of isolation 

bearings and pier columns conflict with each other; and (2) a system-level performance index 

and an optimal design methodology are required to reflect and minimize the damage 

probabilities of the bridge in the system level, respectively.  

4.3 BRIDGE SYSTEM LEVEL PERFORMANCE 

The damage probability of pier columns and bearings can be calculated based on the 

aforementioned component-level fragility analysis, but the bridge’s overall damaging potential 

will still remain unclear because piers and bearings can experience different damage states, and 

their contributions to bridge system performance cannot be easily quantified. Previous studies 

suggested that the bridge system-level fragility functions can serve as an effective tool to 

reflect the overall damaging potential of the bridge. These studies include: (1) estimating the 

load-carrying capacity of the bridge (Mackie and Stojadinovic 2005); (2) limiting bridge 

system fragility with two first-order bounds (i.e., a lower bound when assuming bridge 

components are fully correlated with each other and a upper bound representing that all 

components are statistically independent) (Choi et al. 2004); (3) using a joint probabilistic 
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seismic demand model to generate the system damage probability as a union of the 

component-level damage probabilities (Nielson and DesRoches 2007); and (4) developing a 

composite DS for the bridge system such that the components’ relative importance for load 

carrying and the repairing cost are considered (Zhang and Huo 2009). It is important to 

mention that a key consideration for these methods lies in the proper way to quantify the level 

of correlations between critical components, because bridge components are neither totally 

correlated nor absolutely independent during earthquakes. Alternatively, this study derives the 

repair cost ratio of the bridge system and uses it as a performance index to quantify the 

damaging potential of a given bridge design in the system level. 
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Figure 4.7. Fragility analyses of the initial isolated cases 
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4.3.1 Repair Cost Ratio of Highway Bridges 

Defined by the ratio of bridge repair cost under different levels of earthquake hazards with 

respect to the total replacement cost of the bridge, the repair cost ratio offers an attractive 

quantitative measure for bridge system-level damage. Similar to the building system (FEMA 

2003), at each damage state, the repair cost of a highway bridge component can be estimated 

using the performance-based methodology as: 

 

 , , ,i j i j i j jrc p d c  (4.3)

 

where subscripts i and j denote the ith damage state and the jth component, respectively, rci,j is 

the repair cost, pi,j is the damage probability within each damage state, di,j is the damage ratio 

that defines the percentage damaged for each damage state, and cj is the replacement cost of 

critical bridge component. Therefore, the closed-form expressions of the repair cost ratios for 

different bridge systems can be given as: 
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where RCRcon is the repair cost ratio of conventionally designed bridge cases with no protective 

devices installed, RCRiso is the repair cost ratio of the isolated bridge, RCRcomb is the repair cost 

ratio of the bridge cases with both isolation devices and energy dissipation devices installed, i = 

1 to 4 stands for the four damage states, pi, col and pi, iso are the damage probabilities of pier 

columns and isolation bearings within the ith damage state, respectively, di, col and di, iso are the 

damage ratios of pier columns and isolation bearings within the ith damage state, respectively, 

ccol and ciso are the replacement costs for pier columns and isolation bearings, respectively, and 

cdamp is the installation cost of the damper. As shown in Figure 4.8, damage probability p can be 

calculated as the difference between the conditional probabilities P of the bounding fragility 

curves. The damage ratios d for the two critical components are listed in Table 4.3, where the 

damage ratios for columns are suggested by HAZUS (FEMA 2003) and the damage ratios for 

bearings are determined based on their limit states as defined in Table 4.2 and the physical 

damages observed from experiments. Note that Eqs. (4.5) and (4.6) can be simplified if the 

replacement costs of protective devices ciso and cdamp are normalized by the replacement costs 

of pier columns ccol as: 
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where α is ciso/ccol, and β is cdamp/ccol. In this study, the replacement costs of pier columns and 

isolation bearings are considered based on the direct and indirect economical losses that are 

caused by changing these two components. The complete damages of pier column is usually 

associated with severe damages of bridge superstructures and foundations, and hence a 

majority of cost should be considered, including redesigning and reconstructing most bridge 

components, and a long duration of traffic load loss for the transportation network. For 

reference, HAZUS (FEMA 2003) estimates that for a similar highway bridge as the PSO 

considered in this chapter, it will cost about $5 million and take 300–500 days to achieve full 

restoration. Conversely, replacement costs of isolation bearings may come from reinstallation 

of bearing devices, restoration of bridge superstructure that might be damaged through 

pounding or unseating, and a short time of traffic closure. Therefore, this study recommends 

that the replacement cost of the isolation bearings ciso is 15% of the replacement cost for pier 

columns ccol (i.e. α is chosen as 15%). In addition, the installation cost of fluid dampers is lower 

than that of isolation bearings. Hence, 5% is assigned for the coefficient of β herein. 
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Figure 4.8. Damage probabilities of four damage states 

 

Table 4.3. Damage Ratios for Columns and Bearings 

Item Component 
Slight 

damage 
Moderate 
damage 

Extensive 
damage 

Collapse 
damage 

Damage 
ratio d 

Columns (FEMA 2003) 0.03 0.08 0.25 1.00 
Bearings 0.04 0.10 0.50 1.00 

4.3.2 Repair Cost Ratio of the PSO with Various Protective Devices 

The aforementioned three cases are utilized herein to calculate the repair cost ratios of the 

PSO when different protection designs are considered. Namely, repair cost ratios are calculated 

for the as-built case, the isolated case with the ERB installed (K1,B/K1,C = 1.00, QB/QC = 0.80, 

and N = 10), and the bridge case with the FPS (K1,B/K1,C = 0.5, QB/QC = 0.5, and N = 50) and the 

linear fluid dampers (Cα = 3000 kN(s/m) equipped. Figure 4.9 presents the repair cost ratios of 

these three bridge cases. As can be seen from the figure, although the PSO features a detailed 
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design of pier columns intended to resist earthquake hazards, the repair cost ratio of the as-built 

bridge is reduced if the bridge is fully isolated. Further reductions can be expected if the bridge 

is equipped with both isolation bearings and fluid dampers. It is important to mention that 

although the initial costs of the highway bridges are increased by implementing protective 

devices (e.g., 15% higher cost is considered in this study for the isolated bridges and 20% 

higher cost is considered for the bridges installed with both isolation bearings and fluid 

dampers), the expenses to repair the bridges that are designed with protective devices will be 

decreased. For example, under a strong earthquake that has the PGA of 1.5g, the repair cost 

ratio of the as-built bridge is 28.3%, whereas the repair cost ratio for the isolated bridge with 

initial designed ERB is reduced to 19.7%, and the initial design of combining fluid dampers 

with FPS yields a repair cost ratio of 9.8%. Seismic repair of highway bridges can be much 

more cost-effective should they are installed with optimally designed protective devices, as 

discussed later in this chapter.  
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Figure 4.9. Repair cost ratios of the initial designs 
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4.4 MULTI-OBJECTIVE GENETIC OPTIMIZATION OF PROTECTIVE DEVICES 

An appropriate optimization procedure is required to achieve the optimal mechanical 

parameters of protective devices such that the repair cost ratio of the bridge after major 

earthquake hazards can be substantially reduced. Because a bridge structure equipped with 

nonlinear bearings and dampers forms a highly nonlinear system, traditional optimization 

methods, such as the least-square method, cannot be easily implemented. Also, the seismic 

responses of the two critical components (i.e., isolation bearings and pier columns) usually 

conflict with each other, that is, a reduction of column drift is usually associated with an 

increase of bearing displacement, and vice versa. Therefore, a multi-objective optimization 

method that can efficiently address nonlinear systems is needed. An ideal approach to fulfill 

this task is the multi-objective genetic optimization procedure (Deb et al. 2002; Konak et al. 

2006; Cha et al. 2013), whose methodology and capabilities are briefly explained herein.   

4.4.1 Multi-objective Genetic Optimization Methodology 

In general, two approaches can be considered for multi-objective optimization problems. 

The first is combining individual objective functions into a single weighted function, where 

proper selection of the weights is required, and a small disturbance may sometimes lead to 

quite distinct solutions. The other approach is to determine one set of solutions that is called 

Pareto optimal set (Deb et al. 2002; Konak et al. 2006), which gives multiple solutions that are 

not dominated by other solutions in the solution space. The concept of ‘dominate’ can be 

explained as follows: in a minimization problem, a possible solution dominates another 

solution if all its components are smaller or equal to the components in the other solution and at 
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least one of the components is absolutely smaller. The Pareto optimal concept is considered 

herein because it provides a front edge for all possible solutions, and the final solution can be 

selected based on decision-marker’s choice of tradeoff. To find multiple Pareto-optimal 

solutions in one single simulation run, genetic algorithms that can work with a population of 

solutions are required. An advanced version of nondominated sorting genetic algorithm 

(NSGA-II) that is capable of converging a nearly Pareto optimal set and maintaining diversity 

at the same time is adopted in this study (Deb et al. 2002).   

Figure 4.10 presents the flowchart of NSGA-II implementation to design the protective 

devices for highway bridges. The genetic algorithm starts by forming an initial population of 

design parameters for protective devices (bearings and dampers); then a parent population of 

optimization objectives is generated by extracting multiple EDPs from nonlinear time history 

analyses. A non-dominated sorting procedure is carried out for the parent population such that 

those solutions with lower ranks (i.e., non-dominated solutions) are selected. Meanwhile, the 

distances between two nearest data points are calculated and ranked to sort out solutions that 

are located in less crowded areas, since more crowded solutions usually have a smaller value of 

distance between neighbors (Deb et al. 2002). The nondomination sorting procedure 

guarantees convergence to Pareto optimal solutions, while the distance ranking maintains 

diversity among population members. Classic genetic operators of crossover and mutation are 

also used to generate offspring populations such that better genes of the parent population and 

population diversity can be kept (Konak et al. 2006). The nonlinear time history analyses are 

carried out in OpenSees while the genetic optimization is realized in Matlab. 
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New Population of Protective Devices

Matlab

YES

NO

Input Ground Motion

Figure 4.10. Multi-objective genetic optimization 

4.4.2 Optimal Design Parameters of Protective Devices 

The aforementioned multi-objective genetic optimization procedure is applied to the 

optimal design of protective devices for the PSO. The pushover analysis reveals that the 

bilinear parameters of the pier column are Qc = 3630 kN, K1,C = 300 MN/m and K2,C = 1536 

kN/m, respectively. Considering that isolation devices can be used solely or in combination 

with dampers to improve seismic performance of highway bridges, two design strategies are 

taken into account for the optimization procedure: one strategy of installing only isolation 

bearings on bridges and the other with both isolation bearings and fluid dampers. To be simple, 

protective devices at pier tops and abutment ends are assumed to possess identical mechanical 
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parameters for each design case. Since isolation bearings mainly differ in terms of stiffness 

ratios N = K1,B/K2,B, in this study N is chosen to be 10, 30 and 50 to represent the ERB, LRB, 

and FPS, respectively. All the bearings are assumed to have a thickness of 0.15m, which is a 

typical value that being used in practice. Linear viscous fluid dampers are selected to avoid 

convergence issues given that equivalent nonlinear dampers can be transformed by linear 

dampers based on equaling energy dissipation per circle (Symans and Constantinou 1998). 

Therefore, this study considers a total of six design cases: the first three adopt three different 

isolation bearings, and the last three cases use a combination of isolation bearings and linear 

fluid dampers. For the bearing only cases, two design parameters, i.e. the post yielding stiffness 

K2,B and the characteristic strength QB, need to be optimized, while for the bearing and damper 

cases, damper coefficient Cα is the additional parameter. The bearing post yielding stiffness 

K2,B is varied from 0.01 to 0.1 times K1,C, and the bearing characteristic strength QB is varied 

from 0.1 to 1.0 times QC. The damping coefficient of the damper Cα is varied from 500 to 6000 

kN(s/m). The EDPs of column drift ratio and bearing shear strain are chosen as two 

optimization objectives. The limit states at extensive damage states are used to normalize the 

EDPs of column drift and bearing shear strain (i.e., 2.5% for pier column drift ratio and 200% 

for bearing shear strain). Seven strong ground motions that were recorded in California 

relatively close to the fault of major earthquakes are used as the inputs. Table 4.4 lists the 

records of interest in historic order together with the magnitude of the earthquake and distance 

of the accelerograph from the causative fault. The fault normal components are selected to 

exert in the transverse direction. 
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Table 4.4. Earthquake Records Selected for Optimization 

Record station Earthquake 
Magnitude 

(Mw) 
Distance 

(km) 
PGA 
(g) 

PGV 
(m/s) 

Pacoima Dam 1971 San Fernando 6.6 8.5 1.17 1.14 
El Centro Array No. 5 1979 Imperial Valley 6.4 30.4 0.38 0.99 
El Centro Array No. 6 1979 Imperial Valley 6.4 29.8 0.44 1.13 
Parachute test site 1987 Superstition Hills 6.6 7.2 0.45 1.12 
Los Gatos 1989 Loma Prieta 7.0 6.1 0.56 0.95 
Cape Mendocino 1992 Petrolia 7.0 3.8 1.50 1.25 
Newhall 1994 Northridge 6.7 20.2 0.59 0.96 

 

Figure 4.11 to Figure 4.16 plots the optimization results as well as the selected solutions 

for the six design cases when subject to the above seven strong motions, respectively. As 

shown in each figure, multi-objective genetic optimization provides multiple Pareto optimal 

solutions that form a boundary line of Pareto front. The solid line of the Pareto curve is 

generated by connecting the Pareto optimal set and assuming a linear interpolation between 

two adjacent solutions. For comparison purposes, the circle points that are shown in each figure 

are the peak responses of column drift and bearing shear strain from the nonlinear time history 

analyses with randomly selected design parameters. It can be seen that all the circle points are 

located in the upper-right area with respect to the Pareto front, indicating that the Pareto 

optimal set is able to provide dominant solutions when comparing with random solutions; 

essentially, if a solution can be found close to the Pareto front, the design parameters 

correspond to this solution can be deemed as close-to-optimal parameters. On the other hand, 

since each point on the Pareto front comes from a distinct combination of design parameters, it 

is challenging to select the final design that can provide close-to-optimal responses of bearings 
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and piers for all seven motions. The decision maker’s choice of tradeoff play a critical role in 

this stage, and in this study, a simple two-step procedure is carried out to seek out the final 

optimal design. First, one group of design parameters is selected for each ground motion such 

that the value of Optimization Objective 1 (i.e., the normalized bearing shear strain ΔUBI/0.3) is 

approximately 2 times the value of Optimization Objective 2 (i.e., the normalized column drift 

ratio θcol/0.025). The ratio of 2 is chosen by considering that the repair of pier columns costs 

much more than that of isolation bearings if both of them experience the same damage states. 

Second, the final design parameters are obtained by taking the average of each parameter for 

different motions. The square points in Figures 4.11 to 4.16 represent the peak responses of 

column drift and bearing shear strain from the nonlinear time history analyses with the final 

selected design parameters. It is clear that the square points locate very close to the Pareto front 

edge for all input motions, and for some cases, the square points are exactly on the Pareto front. 

Therefore, it can be concluded that this selection process is capable of offering close-to-optimal 

performances for both bearings and columns. 
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Figure 4.11. Pareto optimal and selected solution for the PSO installed with ERB only 
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Figure 4.12. Pareto optimal and selected solution for the PSO installed with LRB only 
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Figure 4.13. Pareto optimal and selected solution for the PSO installed with FPS only 
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Figure 4.14. Pareto optimal and selected solution for the PSO installed with ERB and 
dampers  
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Figure 4.15. Pareto optimal and selected solution for the PSO installed with LRB and 
dampers 
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Figure 4.16. Pareto optimal and selected solution for the PSO installed with FPS and 
dampers 

 

Table 4.5 lists the final optimal design parameters of protective devices for all six bridge 

cases. Although a slightly different combination of final design parameters is found under each 

case, it can be seen that for isolation only cases, the bearings with QB ≈ 0.35QC would be a good 
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choice to isolate the PSO. If combined with fluid dampers, bearings’ characteristic strength can 

be chosen as QB ≈ 0.15QC. These values suggest that the optimal bearing characteristic strength 

QB is not sensitive to stiffness ratio N. A similar conclusion can be obtained for the 

post-yielding stiffness K2,B, which should be kept at approximately 0.027-0.032K1,C for both 

isolation only cases and cases combined with fluid dampers. This essentially implies that the 

elastic stiffness K1,B plays a non-crucial role for optimal design of isolation bearings; optimized 

responses of bearings and columns can be achieved regardless if ERB, LRB or FPS are 

installed as long as they possess the same range of characteristic strength Q and post-yielding 

stiffness K2. The insignificant influences of bearing elastic stiffness on bridge’s seismic 

performances have also been identified by previous studies (Zhang and Huo 2009; Makris and 

Black 2004). On the other hand, if linear fluid dampers are implemented at the same time, 

keeping damping coefficient Cα at approximately 2000 kN(s/m) is able to yield optimal 

performances of bearings and columns. A more meaningful interpretation of the damping 

coefficient value lies in calculating the additional system damping ratio provided by the fluid 

damper. As shown in the last column of Table 4.5, the system damping ratio can be calculated 

by simplifying the bridge system as a bridge deck supported by isolation bearings, such that 

bearing effective stiffness Keff (Figure 4.3) and system equivalent natural frequency ωeff can be 

obtained when peak displacement of bearing is known. It can be seen that an additional system 

damping of 33%-44% can provide enough controlling mechanism for the bearing without 

appreciably increasing column responses. 
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Table 4.5. Final Optimal Design of Protective Devices 

Bridge case K1,B/K2,B QB/QC K2,B/ K1,C Cα (kN s/m) 
2 eff

C

m



  

ERB 10 0.33 0.032 - - 
LRB 30 0.36 0.032 - - 
FPS 50 0.37 0.027 - - 
ERB & fluid damper 10 0.16 0.030 2020 33.6% - 41.5% 
LRB & fluid damper 30 0.15 0.031 2050 33.0% - 41.6% 
FPS & fluid damper 50 0.16 0.027 2100 33.2% - 43.6% 

 

The effectiveness of the optimally designed bearings and dampers is further evaluated 

using the aforementioned performance index of repair cost ratio. Figure 4.17 presents the 

comprehensive comparisons of repair cost ratios when subject to different levels of earthquake 

hazards for all six optimally designed cases. The repair cost ratios of isolation only cases are 

illustrated as thick lines, and thin lines are used to represent the repair cost ratios of bridge 

cases that are installed with both isolation bearings and fluid dampers. For comparison purpose, 

the repair cost ratios of the as-built bridge and two initial design cases are also illustrated as 

thin lines with markers. As is shown from the figure, three general trends can be discovered. 

First, the optimal design of protective devices can significantly reduce bridge repair cost ratios 

under all levels of earthquake hazards. Second, because of the proper energy dissipation 

mechanism provided by viscous fluid dampers, bridge cases that are installed with both 

optimally designed isolation bearings and fluid dampers yield the best seismic performances, 

which are reflected as the lowest repair cost ratios in the figure. Third, the optimal design 

parameters of the isolation bearings are generally insensitive to bearing types, and thereof their 
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levels of effectiveness are close to one another for each design strategy. To better quantify the 

effectiveness of the optimal protection design, the repair cost ratios for the above-mentioned 

nine cases under different levels of earthquakes are given in Table 4.6, where five PGA 

values (i.e., 0.5g, 0.8g, 1.2g, 1.6g, and 2.0g) are selected to represent different earthquake 

hazard levels. As shown in the table, significant reductions of the repair cost ratios can be 

expected for the bridge cases that are equipped with optimally designed protective devices. 

For instance, when subject to extreme large earthquake events with a PGA of 2.0g, the repair 

cost ratio of the as-built bridge is up to 46%. While if initial designs of protective devices are 

used, 34% of repair cost ratio will occur for the fully isolated bridge under the same level of 

earthquake hazards, and 18% of the replacement cost will be needed if the bridge is installed 

with both isolation bearings and fluid dampers. The repair cost ratio of the fully isolated 

bridge with optimally designed isolation bearings can be significantly reduced to around 8%, 

and it will only cost approximately 5% of the total replacement cost if both the optimally 

designed isolation bearings and fluid dampers are installed on the bridge. The effectiveness of 

the optimal design procedure for protective devices is therefore verified and the proposed 

procedure can serve as an efficient tool to select protective devices in practice. 
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Figure 4.17. Comparisons of repair cost ratios for various bridge cases 

 

Table 4.6. Repair Cost Ratios (%) of Different Bridge Cases 

Bridge case 
PGA 

0.5g 0.8g 1.2g 1.6g 2.0g 

As-built 3.66 8.76 18.77 31.72 46.13 

Initial 
Designs 

Base isolated 1.86 5.23 12.40 22.48 34.32 
Bearing & damper 0.70 2.46 6.01 11.35 18.44 

Optimal 
Designs 

ERB only 0.21 0.94 2.70 5.05 7.69 
LRB only 0.18 0.83 2.28 4.28 6.66 
FPS only 0.13 0.72 2.15 4.13 6.49 
ERB & fluid damper 0.05 0.42 1.54 3.13 5.09 
LRB & fluid damper 0.03 0.31 1.22 2.55 4.16 
FPS & fluid damper 0.03 0.32 1.25 2.60 4.23 

4.5 CONCLUDING REMARKS 

This study investigates the effectiveness and optimal design of protective devices for the 

seismic protection of highway bridges. The PSO is seismically redesigned with protective 

devices. Component-level fragility functions are first derived by PSDA using nonlinear time 

history analyses that include SSI effects and ground motion uncertainties. Through derivation 



127 
 

of the repair cost ratios of highway bridges under the performance-based evaluation framework, 

a dependable way to evaluate the overall seismic performance of bridges is developed. 

Moreover, optimal design parameters of protective devices are identified through a 

multi-objective genetic optimization algorithm. The following conclusions can be drawn from 

this study: 

(1) This study utilized component-level fragility functions to derive the system-level repair 

cost ratios of highway bridges under earthquake hazards. Based on failure probability 

and the importance of critical components, it effectively reflected the overall damage 

potential of highway bridges that are equipped with protective devices. The repair cost 

ratios of bridges quantify the efficiency of various protective devices. It is demonstrated 

that implementing protective devices can effectively reduce the repair cost ratios of 

highway bridges. 

(2) Optimal design parameters of protective devices are identified through a multi-objective 

genetic optimization approach. For bridges using isolation devices only, bearings with 

characteristic strength QB of approximately 0.35QC and post-yielding stiffness K2,B of 

approximately 0.027-0.032K1,C are found to yield close-to-optimal responses. If fluid 

dampers are used in conjunction with bearings, bearings’ characteristic strength QB can 

be chosen as 0.15 QC, and post-yielding stiffness K2,B should be approximately 

0.027-0.031K1,C. A 33-44% additional damping ratio needs to be provided by the fluid 

dampers to reach optimal performance. 

(3) The optimal design is found to be insensitive to bearing type. With optimally designed 
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protective devices, significant reductions of bridge repair cost ratios can be observed. 

Pairing isolation bearings and fluid dampers will yield better seismic protection for 

highway bridges than cases using only isolation. 

In summary, this chapter provides a systematic way to assess and design protective devices 

for the seismic protection of highway bridges. The proposed seismic performance index of 

repair cost ratio and the multi-objective genetic optimization algorithm can serve as efficient 

tools in evaluating and optimally designing the protective devices. The soundness of using the 

multi-objective optimization approach to determine the optimal protection design can be 

enhanced if it is also considered directly under the performance-based design framework. An 

integrated performance-based approach that starts from the hazards at the source to eventually 

select the design parameters using optimization is developed in Chapter 5. 
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5.  PROBABILISTIC SEISMIC PROTECTION DESIGN AND OPTIMIZATION 

OF HIGHWAY BRIDGES 

Chapter 4 addresses the evaluation and design of seismic protective devices in a separate 

way: the evaluation part is considered under the performance-based evaluation framework; 

whereas the design portion is realized by using the multi-objective generic optimization when 

subject to a small group of recorded motions. This chapter develops an integrated 

performance-based framework to readdress the design and optimization of seismic protective 

devices for highway bridges. The derived probabilistic methodology enables designers to 

avoid a highly iterative design process. In addition, it simultaneously incorporates structural 

nonlinearity, SSI effects, nonlinear behaviors of protective devices, and ground motion 

uncertainties. In this chapter, theoretical derivations to realize the proposed 

performance-based framework is presented in Section 5.1. A case study is carried out for the 

PSO in Section 5.2. 

5.1 PERFORMANCE-BASED SEISMIC DESIGN METHODOLOGY 

As expressed in Eq. (5.1), the PEER Center framework provides a mathematical 

formulation for performance-based seismic evaluation (PBSE) under various hazard levels by 

utilizing four interim variables: IM, EDP, DI and DV. Probabilistic seismic hazard analysis 

quantifies ground motion IMs. Structural analysis using numerical simulations or recorded 

responses is conducted to relate EDPs to the IMs. Damage quantifications of structural 

components and systems are considered to link EDPs to DIs. Finally, loss analysis is 

conducted to predict DVs that reflect the socio-economic impacts in terms of specific DIs: 
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 (DV) DV DI  DI EDP  EDP IM  (IM)P dP dP d      (5.1)

 

where λ(DV) is a desired realization of the DV, such as its mean annual frequency of 

exceedance, and the Ps represent complementary cumulative distribution functions.  

A flowchart to implement the PEER framework into the effectiveness evaluation of 

seismic protection designs is shown in the left half of Figure 5.1, where an “evaluation 

module” and a “common module” are utilized. As shown in the figure, for a given protection 

design, the evaluation framework derives component-level fragility functions to assess the 

damage probabilities of bridge components under various levels of earthquake hazards. It 

also establishes damage model or loss model to quantify the seismic vulnerability of the 

bridge in the system level. In this study, the performance-based seismic design (PBSD) 

framework is constructed by redesigning the critical steps associated with the evaluation 

framework: that is, as shown in the right half of Figure 5.1, the design framework is realized 

by substituting the “evaluation module” with the “design module”. Assumptions, methods, 

and mathematical forms within the design framework are discussed herein. 
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Figure 5.1. PBSE and PBSD for protective devices 

5.1.1 Component-level Uniform Fragility Curve 
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general protection design scope. This can be realized by considering the design limits of 

protective devices for highway bridges. For instance, if bearing’s two dominating parameters, 

Q, the characteristic strength and K2, the post-yielding stiffness are deemed to vary in the 

ranges of 0.1QC ≤ Q ≤ QC, and 0.01K1,C ≤ K2 ≤ 0.1K1,C, where QC and K1,C are the 

characteristic strength and elastic stiffness of the pier column, respectively, at least two 

designs (i.e., the one with Q close to QC, K2 close to 0.1 K1,C, and the other with Q close to 

0.1QC, K2 close to 0.01 K1,C) need to be considered. The first design gives the weakest 

isolation effect while the second provides the strongest isolation.  

For each protection design selected, the component-level fragility functions can be 

derived by using three methods, namely the incremental dynamic analysis (IDA) 

(Vamvatsikos and Cornell 2002), the ‘cloud’ approach, and the ‘stripe’ approach (Baker and 

Cornell 2006). The IDA is conducted by repeatedly scaling a suite of ground motions to find 

the IM level at which each ground motion reaches the given damage state. The IDA is 

computational expensive because it requires extensive structural analyses to be performed 

with increasing IM levels in order to reach each damage state, especially for the complete 

damage (collapse) state. The ‘cloud’ approach uses three rigorous assumptions to correlate 

the EDPs with the ground motion IMs: logarithmic linear assumption between median EDP 

and IM, constant variance assumption for all IM ranges, and log-normal distribution of EDP at 

a given IM level (Cornell et al. 2002). This method requires the least computation efforts, but 

may induce considerable errors since the assumptions may not hold over the entire IM range. 

The ‘stripe’ approach (also known as the multiple stripes analysis approach) requires scaling 
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a group of ground motions to a discrete set of IM levels, at each of which same or different 

motions can be used. Because it does not require the numerical analyses to be performed up 

to IM amplitudes where all ground motions reach the given damage states, the ‘stripe’ 

approach is less computational demanding when compared with the IDA. In addition, since 

no a priori assumption is made for the ‘stripe’ approach, it is much more persuasive to reflect 

the true damaging potential of bridge components than the ‘cloud’ approach. Therefore, the 

‘stripe’ approach is utilized herein to compose the component-level fragility functions for a 

given protection design. At every predefined IM level, nonlinear time history analyses are 

conducted, and the occurrence ratio of a specified damage state is computed as the damage 

probability at the given IM level: 

 

 ( ) i
i

n
P EDP LS IM

N
   (5.2)

 

where LSi is the limit state (LS) value corresponding the ith damage state, ni is the number of 

damaged cases for ith damage state, and N is the total number of simulation cases at each IM 

level.  

Figure 5.2(a) illustrates the multiple stripes analysis results for two protection designs at 

IM (PGA) levels of 0.6g and 0.8g, respectively. Distributions of EDPs at each IM level can 

be characterized by a median value, and a variance content. As given in Eq. (5.2), by 

counting the number of EDPs that exceed each damage state and normalize it with the total 

number of simulation cases, the component-level fragility functions can be easily constructed 
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with respect to IMs. It is noted that different protection designs will inevitably generate 

distinct fragility curves (as shown in Figure 5.2(b)), which will sharply impede the realization 

of PBSD for protective devices, because PSDA has to be carried out every time when a new 

protection design is proposed. However, by assuming that the variance of EDP distribution is 

mainly contingent on the corresponding median value for different protection designs, the 

component-level fragility functions can be conditioned on θ instead by substituting each IM 

shown in Figure 5.2(b) with its matching θ value. One notable advantage of conditioning the 

fragility function on the median EDP lies in that uniform curve-like data points can be 

generated for various protection design scenarios. The data in Figure 5.2(c) presents the 

uniform fragility function that conditioned on θ for the two distinct protection designs. 

 

 

(a) Multiple stripes analysis 

0 

1 

2 

3 

4 

5 

0.5 0.6 0.7 0.8 0.9 

E
D

P
 

IM (e.g. PGA(g)) 

Design Case 2 

Design Case 1 



135 
 

 

(b) Component fragility function conditioned on IM 

  
(c) Component fragility function conditioned on median EDP 

Figure 5.2. Component level fragility analysis framework 
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with θ = θj can be calculated by the binomial distribution: 
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where Pj,i is the probability that a ground motion will cause the ith damage state of the bridge 

component. Because of the above-mentioned assumption, Pj,i can be further written as: 
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ln( ) ln( )
1 i j

j i
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
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 

 (5.4)

 

Eqs. 5.3 and 5.4 form a general nonlinear optimization problem to identify the standard 

deviation of ξi for the ith damage state, such that the observed nj,i damage cases have its 

highest probability, which can be measured using the concept of maximum likelihood. For 

the analysis data that are obtained at multiple θ levels with different protection designs, the 

likelihood of the binomial probabilities can be calculated by substituting Pj,i into Eq. (5.3) 

and taking the product for the entire data set: 
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where m is the number of stripes for the multiple stripes analysis, and l is the number of 

protection designs. Estimates of the parameter ξi can be obtained by maximize the likelihood 

function of Eq. (5.5), or equivalently maximize the logarithm of the likelihood function (Eq. 

(5.6)). The solid line in Figure 5.2(c) illustrates the continuous fragility curve obtained by 
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using a standard nonlinear optimization procedure to identify the best estimates of ξi in Eq. 

(5.6). 
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5.1.2 System-level Performance Index - RCR 

The derived uniform fragility curve in Figure 5.2(c) can be easily implemented into the 

calculation of the repair cost ratio (RCR) using the method proposed in Chapter 4, such that 

the seismic vulnerability of the bridge can be quantified in the system level. It is noted that 

the RCR turns out to be a function of multiple median EDPs, which can directly serve as the 

performance index for the PBSD of protective devices. 

5.1.3 Performance-based Seismic Protection Design and Optimization 

The derived system-level performance index of RCR can be easily incorporated in the 

PBSD framework for the design of protective devices. As shown in Figure 5.3(a), RCR can 

be deemed as a performance index to select protective devices when subject to specific 

earthquake hazards. For instance, designers can specify that under the hazard level with 10% 

in 50 years of return periods, the RCR of the bridge needs to be controlled within 5%. The 

design task becomes a trial and error process to identify the protective devices that can yield a 

5% or lower RCR. 
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(b) Optimization framework 
Figure 5.3. Performance-based seismic design and optimization framework for protective 

devices 
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A more practically attractive endeavor lies in finding the optimal design parameters of 

protective devices so that bridges’ RCR can be minimized. A genetic optimization framework 

is proposed in this chapter for this purpose. The genetic algorithm is characterized by 

establishing a stochastic evolutionary process to yield a superior final solution. Applications 

of genetic algorithm in structure engineering have gained significant development since the 

early 1990s (Adeli and Cheng 1994; Jiang and Adeli 2008; Kim and Roschke 2006; Cha et al. 

2012; among others). As shown in Figure 5.3(b), a hybrid framework is constructed where 

nonlinear time history analyses are conducted in the software platform of OpenSees (Mazzoni 

et al. 2006), and the genetic optimization is accomplished in Matlab. The former provides 

multiple median EDPs of interest, and the latter calculates the associated RCR and generates 

the offspring population with better designs until converging to the final optimal design. 

5.2 NUMERICAL EXAMPLE – THE PSO 

The soundness of utilizing the proposed PBSD methodology to identify the optimal 

protective devices is examined in this section. The PSO that has been considered in Chapter 4 

is once again adopted herein to form a case study. Details to comprise the component-level 

fragility functions, such as the numerical modeling scheme, the ground motion selection, and 

the DI measures of pier columns and isolation bearings, are in general consistent with those 

defined in Chapter 4. However, following changes have been made intentionally in this 

chapter to distinguish the methodology considered herein: (1) the selected 140 ground 

motions are scaled to 14 peak ground acceleration (PGA) levels to conduct the multiple 

stripes analysis (i.e., 12 levels that range from 0.1g to 1.2g with 0.1g interval, and two strong 
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levels with PGA equals 1.6g and 2.0g, respectively); (2) the complete damage of isolation 

bearing happens when its shear strain is larger than 250% per the study of Zhang and Huo 

(2009); (3) the bearing thickness is selected as 0.1m instead of 0.15m considered in Chapter 4. 

The second and third changes made in this chapter expect higher levels of bearing damage 

should their displacements are the same as those considered in Chapter 4; hence, their 

displacements need to be further reduced.  

5.2.1 Uniform Fragility Functions of PSO 

In this chapter, the design range of isolation bearings is considered to be 0.1QC-0.9QC for 

the characteristic strength Q, and 0.01K2,C-0.09K2,C for the post-yielding stiffness K2, where 

QC and K2,C are the characteristic strength and the post-yielding stiffness of the pier columns, 

respectively. Therefore, the multiple stripes analysis is conducted on the PSO with three 

isolation designs that can cover its general range of design parameters, namely Case 1 with 

weak isolation effect of Q/QC = 0.9, K2/K2,C = 0.09, Case 2 with medium isolation effect of 

Q/QC = 0.3, K2/K2,C = 0.05, and Case 3 with strong isolation effect of Q/QC = 0.1, K2/K2,C = 

0.01. As discussed in Chapter 4, because the elastic stiffness of bearings has minor influence 

on bridge’s seismic performance (Makris and Black 2004, Zhang and Huo 2009, Xie and 

Zhang 2016), the stiffness ratio NK = K1/K2 is kept as 20 for all these three cases.  

Figure 5.4 illustrates the data results of the multiple stripes analysis for the 

above-mentioned three bearing design cases. As shown in the figure, a general trend of 

positive correlation between IM and EDPs can be observed; i.e. when the PGA increases, 

bearings and columns will have more cases to experience larger damage states. In addition, 
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different design cases will inevitably shift the damaging potential of isolation bearings and 

pier columns. For instance, compared with the design Case 1, Case 3 will cause more 

damages for isolation bearings; whereas it will reduce the damage probability of pier columns 

in the meantime. 
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Figure 5.4. Multiple stripes analysis for three bearing design cases 

 

Figures 5.5 and 5.6 presents the component-level fragility functions from the multiple 

stripes analysis results for isolation bearings and pier columns, respectively. As can be seen 

from both figures, the bearing designs have substantial influences on the damaging potentials 

of isolation bearings and pier columns under each level of earthquake hazard for all damage 

states. Because bearings’ isolation effect will redistribute the responses of bearings and pier 

columns (e.g., a strong isolation may significantly reduce the response of the column, but will 



143 
 

substantially increase the bearing displacement), under the same level of earthquake hazard, a 

different protection design will yield divergent responses of isolation bearings and pier 

columns. The differences are captured by distinct fragility functions in both Figures 5.5 and 

5.6. 
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Figure 5.5. Damage probabilities of isolation bearings conditioned on IMs 
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Figure 5.6. Damage probabilities of pier columns conditioned on IMs 

 

As previously discussed, if ground motion IMs are substituted with median EDPs (i.e., 

the median bearing shear strain, and the median column drift ratio in this study), the damage 

probabilities of pier columns and isolation bearings will be insensitive to protection designs. 

As can be seen from the data in Figures 5.7 and 5.8, the three design cases form similar 

trends in terms of fragility functions of pier columns and isolation bearings when they are 

conditioned on median EDPs. The insensitivity of fragility functions essentially attributes to 

the fact that when a large number of ground motions is considered to greatly reflect their 

uncertainty and randomness, the respective probability distribution functions of component 

EDPs will yield similar variance and skewness; and this feature will hold across different 

seismic protection designs. On the other hand, the earthquake hazard intensity mainly affects 
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the median values of the EDPs. Furthermore, if assuming a lognormal distribution of EDPs 

and a constant standard deviation for all the IM range, the discrete damage probabilities can 

be regressed as continuous curves using Eq. (5.6), indicating by the solid curves in Figures 

5.7 and 5.8.  
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Figure 5.7. Damage probabilities of isolation bearings conditioned on median EDPs 
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Figure 5.8. Damage probabilities of pier columns conditioned on median EDPs 

5.2.2 RCR of PSO 

The system-level RCR can be calculated using Eqs. (4.7) and (4.8) if the damage ratios 

and replacement costs of pier columns and isolation bearings are determined. In this chapter, 

the damage ratios of pier columns and isolation bearings are considered the same as those 

listed in Table 4.2. However, instead of being assigned as a fixed value, the replacement cost 

of isolation bearings is deemed to vary in the range of 15%-25% of the bridge’s total cost 

herein. Two sets of replacement cost ratios are considered for pier columns and isolation 

bearings, namely Set A of cstru: ciso = 0.85:0.15 and Set B of cstru: ciso = 0.75:0.25, where cstru 

and ciso are the replacement costs that induced by the collapse of pier columns and isolation 

bearings, respectively. It is noted that in Eq. (4.8), the denominator has one additional term of 

cdamp, which is the cost of fluid dampers for the cases where both bearings and dampers are 
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installed. It is suggested that cdamp is about 5% of the summation of cstru and ciso in this 

chapter. 

Figures 5.9 and 5.10 present the calculated RCR for Set A and B cases, respectively. As 

can be seen from Figures 5.9(a) and 5.10(a), the performance index RCR form a 

monotonically increasing surface that ranges from 0 to about 60% when the median EDPs 

reach their corresponding complete damage values. To facilitate the design practice, Figures 

5.9(b) and 5.10(b) provide the design contours of the RCR with respect to the median bearing 

shear strain γBS and the median column drift ratio δCD. By comparing these two figures, it can 

be observed that the replacement costs of bearings and columns have substantial influences 

on the performance index of RCR. For instance, the design contour of RCR with cstru: ciso = 

0.85:0.15 (Figure 5.9(b)) features smaller slopes in the horizontal direction, along which the 

bearing shear strain is changing, which reflects that RCR would remain less sensitive to 

bearing’s response if its replacement costs were low.  

In view that the essential components for composing the performance index of RCR lies 

in calculating the damage probabilities of bearings and columns, whose responses are 

assumed to yield lognormal distributions, this study suggests that the RCR can be regressed 

as a closed-form formula by using the following equation: 
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where a, b, c, d, e, f are the coefficients that can be determined by minimizing the summation 
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of squared error between the regressed formula and the numerical data: 
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A simple nonlinear optimization procedure is carried out to obtain the coefficients defined 

in Eq. (5.12), which render that the closed-form expressions of RCR estimates can be written 

as: 
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 (5.13)

,

ln(2.23) ln( ) ln(3.58) ln( )
0.26 1 0.68 1

0.72 1.10
BS CD

est BRCR
                        

 (5.14)

 

where RCRest,A and RCRest,B are the RCR estimates with Set A and B replacement cost ratios, 

respectively. Figures 5.9(c) and 5.10(c) show the fitting surfaces of RCR that calculated from 

Eqs. (5.13) and (5.14), respectively. It is evident that the fitting surfaces capture both the 

trends and the values of the numerical data shown in Figures 5.9(a) and 5.10(a). The errors 

associated with the fitting surfaces are presented in Figures 5.9(d) and 5.10(d), where it can 

be found that for most EDP ranges, the RCR estimates yield errors less than 2%; and only 

near the origin, the errors will reach up to about 5%. Moreover, it is concluded by comparing 
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Eq. (5.13) to Eq. (5.14) that for the selected two sets of replacement cost ratios, the 

numerically regressed RCR formulae feature the same surface shape, which are reflected by 

the same ‘median’ and ‘variance’ coefficients that are embedded in the lognormal distribution 

functions. The only differences are the multipliers in front of these two lognormal functions, 

denoting that RCR will be re-distributed between bearings and columns should their 

replacement costs are different.  
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Figure 5.9. Performance index of RCR with cstru: ciso = 0.85:0.15 
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Figure 5.10. Performance index of RCR with cstru: ciso = 0.75:0.25 

5.2.3 Optimal Protection Designs of PSO 

The derived RCR is utilized in this section to identify the optimal protection designs for 

the PSO using the framework illustrated in Figure 5.3(b). The Set B case of cstru: ciso = 

0.75:0.25 is considered herein. The seven strong ground motions that have been listed in 

Table 4.4 are adopted as the ground motion inputs. Site-specific hazard levels are considered 

for the PSO using the ground motion interpolator developed by California Geological Survey 

(CGS) (http://www.quake.ca.gov/gmaps/PSHA/psha_interpolator.html). It is found that for 

the PSO site, the hazard levels with 10% in 50 years and 2% in 50 years of return periods 

have PGAs of 0.51g and 0.95g, respectively. Hence, the PGAs of the aforementioned seven 
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ground motions are scaled to four different hazard levels, i.e. from 0.4g to 1.0g with an 

interval of 0.2g. At each PGA level, the optimization process is conducted to yield one 

optimal protection design based on the median bearing shear strain and median column drift 

calculated from the seven ground motions. 

Given that isolation bearings can be used solely or in combination with dampers to 

improve seismic performance of highway bridges, two design strategies are taken into 

account for the optimization procedure, i.e. the one only installs isolation bearings and the 

other with both isolation bearings and fluid dampers equipped. Protective devices are 

installed atop pier columns and end abutments, and are assumed to possess identical 

mechanical parameters at each location for each design strategy. For isolation bearings, 

stiffness ratio is assumed to be NK = 20, and bearing thickness is 0.1m. As discussed in 

Chapter 4, linear viscous fluid dampers are selected for the case when dampers are installed. 

Using the bilinear model, bearings’ two key design parameters are the post-yielding stiffness 

K2 and the characteristic strength Q, whereas damping coefficient Cα is the critical design 

parameter for dampers. The bearing post-yielding stiffness K2 is varied as 0.01-0.09K1,C, and 

bearing characteristic strength Q is varied as 0.1-0.9QC. The damping coefficient Cα is varied 

from 500 to 6000 kN(s/m). 

The genetic optimization process is illustrated in Figure 5.11 for the two aforementioned 

design strategies under each hazard level. In each figure, both the best and mean fitness 

values are given at each generation. For instance, it can be seen from Figure 5.11(d) that at 

PGA level of 1.0g, the genetic optimization for the isolation only case starts at a RCR of 40% 
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and converges to the minimum RCR of 22% after 26 generations. An approximately 50% 

reduction can be expected by utilizing the proposed optimization framework. While for the 

case where fluid dampers are installed, Figure 5.11(d) shows that the genetic optimization is 

capable of reducing the RCR from 27% to 20%.  
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Figure 5.11. Genetic optimization for the PSO at PGA levels of 0.4g, 0.6g, 0.8g and 1.0g 

 

With one optimal design obtained for each hazard level, there exist four groups of design 

parameters in total. To account design variance associated with different hazard levels, the 

mean value of each design parameter is taken to generate the suggested protection design at 

each hazard level. Table 5.1 lists the optimal protection designs for the PSO under hazard 

levels of 0.4g, 0.6g, 0.8g and 1.0g. Although different combination of final design parameters 

have been found under each hazard level, it can be seen that for isolation only cases, the 

bearings with Q ≈ 0.41QC would be a good choice to isolate the PSO. If combined with fluid 

dampers, bearings’ characteristic strength can be chosen as Q ≈ 0.19QC. A similar conclusion 
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can be obtained for the post-yielding stiffness K2, which should be kept about 0.023K1,C for 

isolation only cases and 0.036K1,C when combined with fluid dampers. The optimal damping 

coefficient ranges from 4835 kN(s/m) to 2264 kN(s/m) for different hazard levels. This study 

picks an average value of 3878 kN(s/m) as the final design. 

 
Table 5.1. Optimal protection designs for the PSO 

Hazard level 
(g) 

Isolation bearings only Isolation bearings and fluid dampers 

Q/QC K2/K1,C Q/QC K2/K1,C Cα kN(s/m) 

0.4 0.32 0.028 0.20 0.048 2264 
0.6 0.52 0.025 0.33  0.012 3932 
0.8 0.39 0.027 0.11 0.049 4482 
1.0 0.42 0.012 0.11 0.035 4835 
Selected 0.41 0.023 0.19 0.036 3878 

5.2.4 Effectiveness Evaluation of the Selected Optimal Designs 

To further investigate the effectiveness of the selected protection designs, the PBSE 

methodology shown in Figure 5.1 is utilized herein to compare the RCRs with different 

design scenarios; namely rather than being converted as functions of median EDPs, the RCRs 

are conditioned on IMs instead. The multiple stripes analysis is also adopted to derive the 

component-level fragility functions for the two selected optimal designs. Subsequently, the 

same maximum likelihood concept is utilized to regress the continuous fragility curves for 

each case. Figures 5.12 and 5.13 illustrates both the multiple stripes analysis results and the 

regressed fragility curves of isolation bearings and pier columns for the two selected optimal 

designs, respectively, where ‘Optimal 1’ stands for the case where only isolation bearings are 

equipped, and ‘Optimal 2’ is the case when both isolation bearings and fluid dampers are 

installed. It can be seen from the figures that the regressed curves fit very well with the data 
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at each IM level.  
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Figure 5.12. Component-level fragility functions of isolation bearings for the two selected 
optimal designs  
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Figure 5.13. Component-level fragility functions of pier columns for the two selected 
optimal designs  

 

Figure 5.14 shows the seismic RCR values of the PSO that are installed with the two 

selected optimal designs under PGA levels up to 1.0g, which is the upper bound used for 

optimization in this study. For consistency purpose, replacement costs of pier column and 

isolation bearings are still assumed as cstru:ciso = 0.75:0.25 respectively. The RCR values 

associated with the as-built bridge and the two initial isolation designs are provided in the 

same figure for comparison purpose, where ‘Initial 1’ refers to the case with weak isolation 

effect of Q/QC = 0.9, K2/K2,C = 0.09 and ‘Initial 2’ is the case that owns the strong isolation 

effect of Q/QC = 0.1, K2/K2,C = 0.01. As can be seen from the figure, the ‘Initial 2’ case 
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increases the RCR for the PSO when compared with the as-built bridge, which indicates that 

the repair cost of the PSO will be dominated by the bearings should their mechanical 

parameters are selected the same as the ‘Initial 2’ case. In other words, PBSD of protective 

devices is strongly suggested in practice since an improper isolation design may cause higher 

seismic loss of the bridge. On the other hand, both the ‘Optimal 1’ isolation case and the 

‘Optimal 2’ case that utilizes isolation bearings and fluid dampers will reduce the repair costs 

of the PSO, which not only validates the effectiveness of the proposed performance-based 

design and optimization procedure, but also pinpoints the optimal design parameters of the 

PSO. Moreover, significant reductions are achieved for the ‘Optimal 2’ case, which promotes 

the design strategy of combining the optimally designed isolation bearings and fluid dampers. 

This phenomenon underlines that if designed properly, the inclusion of energy dissipation 

devices, like the fluid dampers in this study, can efficiently diminish bearing displacement 

without increasing the column drift too much. Therefore, superior seismic performance can 

be obtained when both isolation bearings and energy dissipation devices are installed. 
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Figure 5.14. RCR comparisons of various design cases for the PSO 
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5.3 CONCLUDING REMARKS 

The performance-based framework is developed in this chapter to design and optimize 

seismic protective devices for highway bridges. First, the proposed framework takes account 

of ground motion uncertainty by setting up the multiple stripes analysis at important IM 

levels. Discrete component-level fragility functions are then derived and regressed as 

continuous ones by adopting the maximum likelihood concept. Because different protection 

designs will yield divergent fragility curves at the same IM level, a conventional PBSD of 

protective devices requires iteratively updating the fragility function at every time when a 

new design is considered. To avoid this tedious and inefficient process, the derived 

component-level fragility functions are conditioned on median EDPs instead, in which way a 

uniform curve can be obtained for various protection designs. Furthermore, bridge 

system-level RCR is calculated by considering the replacement costs, damage ratios and 

damage probabilities of critical components. The proposed framework directly links the 

system-level RCR to median EDPs of critical components for various isolated bridge systems, 

which significantly facilitates the design and optimization of protective devices in a 

probabilistic manner. 

A case study is carried out on the PSO to examine the robustness of the proposed 

framework. Steps of deriving the uniform component-level fragility functions and calculating 

the system-level performance index of RCR are explained in detail. In addition, closed-form 

expressions of the RCR are regressed for two replacement ratios of pier columns and 

isolation bearings (i.e., the one with cstru: ciso = 0.85:0.15 and the other with cstru: ciso = 
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0.75:0.25). Using the derived performance index of RCR, genetic optimization is carried out 

to identify the optimal protection designs. The effectiveness of the proposed methodology is 

assessed through the PBSE that compares the optimal designs with the as-built case and two 

initial designs. The comparison entails the implementation of the performance-based seismic 

design and optimization of protective devices, because more repair costs would occur should 

inappropriate designs are selected. Moreover, the results indicate that by combining with 

optimally designed energy dissipation devices, significant reductions of system RCR can be 

achieved for the PSO. 

Improvements can be made in two aspects in terms of the proposed design and 

optimization framework. First, an integral procedure to incorporate design parameters for 

both the bridge structure and protective devices may enable designers to further minimize the 

repair costs of highway bridges. Second, by taking account of all sources of uncertainty, the 

variance of the designed RCR surface can be determined. Nevertheless, compared with 

previous studies on the similar topic, the proposed framework is robust yet simple to be 

implemented in practices. It can serve as an efficient tool in evaluating, designing and 

optimizing the protective devices.  
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6. ROCKING COLUMNS WITH FOUNDATION FOR SEISMIC PROTECTIONS 

OF HIGHWAY BRIDGES 

The rocking column-foundation systems with rigid supports are promising design concept 

for bridges because of their lower cost and good seismic performance. Nevertheless, the 

practical application of the rocking system is challenged due to the fact that an efficient tool to 

effectively analyze its seismic behavior is still lacking. To bridge this gap, this chapter develops 

simple yet reliable seismic demand models for rocking columns with foundation on rigid 

supports when subjected to horizontal near-fault motions. Analytical and numerical modeling, 

dimensional analysis methodology, and numerical validation for the proposed rocking system 

are presented in each section, respectively.  

6.1 ANALYTICAL MODELING OF THE ROCKING COLUMNS WITH 

FOUNDATION 

6.1.1 Equation of Motion 

Figure 6.1 illustrates the scheme of the rocking column-foundation that is designed for 

bridges. The system features a detached rocking interface at the bottom of the foundation while 

supported on a rigid surface. Such design will allow the foundation to uplift and re-center when 

subject to horizontal ground excitations. Given that the self-weights of the column and the 

narrowed foundation are much less than the participating weight from the deck, the system can 

be idealized as a two degree-of-freedom system at the uplift phase; i.e. when foundation rotates 

along the pivot point of the base, the system variables are the uplift angle that defined as θ and 
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the column drift that defined as u. The deck mass inertia is represented by a concentrated mass 

m, and the column is considered to have a height of H, a base width of 2b, an elastic stiffness of 

EcIc, and a damping coefficient of C.  

 

 

 

 

 

Figure 6.1. Schematic of the rocking column-foundation for bridges 

 

The kinematics of the mass point in Figure 6.1 when rotates clockwise along the right 

pivot (i.e. when θ > 0) are: 
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where ux and uy are the relative displacements of the mass point to the right pivot in the 

horizontal and vertical directions, respectively. Therefore, the kinematic energy of the mass 

point can be calculated as: 
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The potential energy of the mass point that comes from gravity and the D’Alembert force, 

and the column strain energy can be calculated and summarized as: 
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(6.3)

 

where gu is the acceleration magnitude of the input ground motion.  

The Lagrange’s equation shall be satisfied during the rocking motion: 
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The substitution of Eqs. (6.2) to (6.3) in Lagrange’s Eqn (6.4) results in the EOMs of the 

rocking system for θ > 0. Also, similar derivations for θ < 0 lead to following equations that 

represent the system EOMs: 
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where ωn is the vibrational natural frequency of the column that equals to 33 / ( )c cE I H m , 

and ξ is the associated damping ratio, which can be calculated as 
3

2 3 c c

C H

E I m
.  

It is noted that when the ground motion is not strong enough to uplift the column (i.e. 

when 0      ), Eq. (6.6) will lead to the force equilibrium for the full contact condition; 

and Eq. (6.5) turns out to be the moment equilibrium around the pivot point. At full contact, Eq. 

(6.6) can be simplified as: 

 

 22 n n gu u u u        (6.7)

6.1.2 Uplift Condition 

The rocking system begins to uplift when the overturning moment due to external loads 

exceeds the resisting moment that provided by gravity and the initial tendon force. The 

overturning and resisting moments can be calculated by using Eqs. (6.8) and (6.9), 

respectively: 

 

 0 ( )gM m u u H    (6.8)

 ( )rM mg b u   (6.9)

 

where M0 and Mr are the overturning and the resisting moments, respectively. Therefore, the 

column uplifts when: 
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 ( ) ( )gm u u H mg b u     (6.10)

 

By substituting gu u   in Eq. (6.7) to Eq. (6.10), the uplift condition can be determined 

as: 

 

 2(2 ) ( )n nu u H g b u      (6.11)

 

For undamped systems and assume u << b, the above equation can be further simplified to 

(Acikgoz and DeJong 2012; Vassiliou et al. 2015): 
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6.1.3 Impact Mechanism 

Energy loss during the rocking impact was originally addressed by Housner (1963) for the 

rigid block. It was assumed that inelastic instantaneous impact happens when the base pivot 

changes from one corner to the other, where the conservation of angular moment of momentum 

about the new impact point yields (Figure 6.2(a)): 

 

 1 2 2( ) ( )m R R m R R    (6.13)

 

where R is defined as 2 2H b , α is defined as 1tan ( / )b H , 1 and 2  are the pre-impact 
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and post-impact angular velocities, respectively, R2 is the distance from the new pivot point 'o  

to the pre-impact velocity tensor 1R . Eq. (6.13) further leads to the calculation of the 

coefficient of restitution for the rigid column case: 
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1

cos 2e
 


 


  (6.14)

 

Because of the additional vibrational mode that comes from column elasticity, the 

deformable rocking column and foundation shall experience a distinct impact mechanism 

when compared with the rigid case. Previous studies assumed that after each impact, the 

system will either stay full contact on the ground, or to immediately uplift about the new pivot 

and continue to rock, and the state with less total energy will govern (Oliveto et al. 2003; 

Acikgoz and DeJong 2012). Methods used in these studies to calculate column’s post-impact 

angular and horizontal velocities include (1) the conservation of angular moment of 

momentum about the new impact point; (2) the preservation of the horizontal momentum. 

However, the experiment study conducted by Truniger et al. (2015) disclosed that the ‘double 

impact’ mode, i.e. the mode when the system immediately continues to rock after impact, does 

not exist during the impact. Instead, they calculated the post-impact velocity by assuming the 

column remains full contact after each impact and system’s kinematic energy associated with 

vertical velocity components is lost during the impact. 

The energy loss models considered by Acikgoz and DeJong (2012) and Vassiliou et al. 

(2015) has been investigated in the study of Truniger et al. (2015), where they compared the 
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impact-induced amplitude decay from theoretical results with those from experimental 

measurements. Table 6.1 lists the median and median absolute deviation (MAD) values of the 

rocking amplitude decay ratio, which is defined as the ratio of theoretical amplitude decay 

normalized by the corresponding experimental value (Truniger et al. 2015). It can been seen 

from the table that the median ratios for the study of Acikgoz and DeJong (2012) are all larger 

than 1, which means their method overestimated the impact energy dissipation. In contrast, the 

method used by Vassiliou et al. (2015) underestimated the impact energy loss, which can be 

reflected by the smaller-than-one median values. 

 

  

 

 

 

 

 

(a) Rigid column case (b) Deformable column case 
Figure 6.2. Rocking impact when the base pivot changes from right corner (point o ) to left 

corner (point 'o ) 
 

Table 6.1. Median and MAD of the amplitude decay ratio (Truniger et al. (2015)) 

Analytical model 
All tests Long base tests only Short base tests only

Median MAD Median MAD Median MAD 

Acikgoz and DeJong [2012] 1.487 0.890 2.040 1.706 1.380 0.465 

Vassiliou et al. [2015] 0.630 0.435 1.059 0.562 0.507 0.194 
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In light of the experimental observation as well as the amplitude decay ratio comparisons 

from Truniger et al. (2015), this study considers that the full contact condition will follow each 

rocking impact, which means the post-impact horizontal velocity is the only variable that needs 

to be determined. As shown in Figure 6.2(b), the conservation of angular moment of 

momentum around point 'o  leads to: 

 

 2 1 1 2 1( )mu H m R R mu H    (6.15)

 

where R1 and R2 are the distances from the pre-impact rotational velocity tensor to the pivot 

points of o and 'o  respectively, which can be calculated as: 2 2
1 ( )R H b u    and 

2 2 2

2 2 2( )

H u b
R

H b u

 


 
, and 1u and 2u  are the pre-impact and post-impact horizontal velocities 

respectively. By substituting R1 and R2 into Eq. (6.15), it can be solved as: 

 

 
2 2 2

2 1 1

H u b
u u

H
 

    (6.16)

 

The associated pre-impact and post-impact kinematic energies can be calculated based on 

Figure 6.2(b) and Eq. (6.16). It is noted that by forcing the equilibrium of angular momentum 

for deformable rocking columns, it is possible that the post-impact kinematic energy is larger 

than the pre-impact one (Vassiliou et al. 2015), which is not physically meaningful. Under such 

conditions, this study abandoned the conservation of the angular momentum; instead the 

vertical pre-impact kinematic is considered to be lost (Chopra and Yim 1985), which gives: 
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 2 2
1 1 2

1 1
( )

2 2
m u H mu    (6.17)

 

Therefore, the post-impact elastic velocity becomes: 

 

 2 1 1u u H     (6.18)

 

The effectiveness of the proposed energy dissipation model is examined by comparing the 

system responses with those from previous studies (Acikgoz and DeJong 2012; Vassiliou et al. 

2015). The system EOMs (Eqs. (6.5) and (6.6)), the uplift condition (Eq. (6.11)), and the 

rocking impact energy loss (Eqs. (6.16) and (6.18)) are combined and solved by using the ODE 

solver in MATLAB. Figure 6.3 shows the response comparisons for the rocking system in 

Figure 6.1. In Figure 6.3, ucr equals to 2/ ( )ngb H , which is the uplift displacement for the 

undamped system (Eqn (6.12)), E is the total energy of the system, and Eref is a reference 

energy content that equals to (1 cos )mgR  . As can be seen in the figure, the model proposed 

in this study successfully captures the coupling of elasticity and rocking, which is reflected by 

the combination of both high and low frequency oscillations in the column drift responses (top 

right). In addition, as shown in the bottom left figure, the impact mechanism considered in this 

study will yield an intermediate total energy dissipation when compared with previous studies 

(Acikgoz and DeJong 2012; Vassiliou et al. 2015), which is more consistent with the 

experimental results that presented by Truniger et al. (2015). 
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Figure 6.3. Comparisons of the rocking rotation (top left), column drift (top right), and 
energy loss (bottom left) subjected to one-cycle sinusoidal pulse excitation (bottom right) for 
ap/(gtanα) = 1.30, ωn/p = 11.9, ω/p = 5.1, α = 0.2 and ζ = 0.005 (ap refers to the peak ground 

acceleration) 

6.2 DIMENSIONAL ANALYSIS OF THE ROCKING SYSTEM 

As previously discussed, the analytical modeling scheme turns out to be a robust way to 

capture both the rocking and elastic responses of the rocking column and foundation system. 

To facilitate its practical application, dimensional analysis is developed herein to further 

regress the closed-from expressions of the peak responses that calculated from the analytical 

model.  

6.2.1 Characteristics of Near-fault Ground Motions 

Although near-fault ground excitations are in general unpredictable, their dynamic 

features can be characterized by several intensity measures such as the prevailing frequency, 

the peak acceleration, the number of dominant cycles, etc. For the purpose of accurately 
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representing the dynamic features of near-fault ground motions, various mathematical models 

have been proposed during the last three decades, which include rectangular displacement 

pulses (Hall et al. 1995), piece-wise linear triangular velocity pulses (Alavi and Krawinkler 

2001), sinusoidal acceleration pulses (Kalkan and Kunnath 2006), sinusoidal velocity pulses 

(Bray and Rodriguez 2004), general cycloidal pulses (Makris 1997; Makris and Chang 2000), 

and multi-parameter decaying velocity pulses (Mavroeidis and Papageorgiou 2003; He and 

Agrawal 2008). In addition, wavelet analysis (Baker 2007) and the Hilbert-Huang transform 

(Zhang et al. 2003) have been developed to extract velocity pulses from the recorded ground 

motions. 

This study selects the velocity pulse model proposed by Mavroeidis and Papageorgiou 

(2003) (referred as M&P model herein) to represent near-fault ground motion inputs, because 

their model has been calibrated by using a large number of actual ground motion records. The 

M&P model can be expressed as the product of a harmonic oscillation and a bell-shaped 

function: 

  

0 0 0 0

21
1 cos ( ) cos 2 ( )   when  

( ) 2 2 2

0                                                                                 otherwise

p
p p

g p p

f
A t t f t t t t t

u t f f

   


   
                 






 

(6.19) 

 

where ( )gu t  is the velocity history of the pulse-type ground motion, and the five unknown 

parameters Ap, fp, ν, γ, and t0 controls the motion amplitude, frequency, phase, oscillatory 
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character, and envelope, respectively. As shown in Eq. (6.19), the M&P model allows the user 

to resemble a variety of near-fault ground motions by changing five parameters, all of which 

have unambiguous physical interpretations and scales. 

6.2.2 Dimensional Analysis 

By taking the derivative of Eq. (6.19) and substituting acceleration history ( )gu t  into Eqs. 

(6.5) and (6.6), the peak responses of the system can be obtained as: 

 

 max 1max( ( ) ) ( , , , , , , , , )n p pu u t F m R a        (6.20)

 max 2max( ( ) ) ( , , , , , , , , )n p pt F m R a          (6.21)

 

where umax and θmax are the peak column drift and uplift angle, respectively, ωp is the cyclic 

frequency of the M&P model that equals to 2πfp, ap is the peak ground acceleration of the M&P 

model, and all other parameters are the same as those defined before. The 10 terms appearing in 

Eq. (6.20) or (6.21) involve three reference dimensions that are force, length and time. 

According to Buckingham’s Π-theorem (Barenblatt 1996), the number of independent 

dimensionless parameters is determined as: (10 variables)–(3 reference dimensions) = 7 

Π-parameters for each equation. Hence, Eqs. (6.20) and (6.21) can be transferred into 

following dimensionless forms: 

 

 1( , , , , , )
n pu               (6.22)
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 2 ( , , , , , )
n p               (6.23)

 

where the normalized natural frequency is 
n

  that equals to ωn/p, and p is the rocking mode 

frequency parameter, which can be calculated as /g R , the normalized motion prevailing 

frequency is 
p , which can be calculated as ωp/p. The other four dimensionless parameters 

are: column damping ratio (Πξ = ξ), column slenderness ratio (Πα = α), the oscillatory character 

of the M&P model (Πγ = γ), and the phase angle of the M&P model (Πν = ν).  

Previous studies have shown that if the column is designed with a fixed-base condition, its 

inelastic deformation can be normalized by the characteristic length scale of the ground motion 

(i.e. 2/p pa  ) to yield a self-similar dimensional response quantity (Makris and Black 2004a, b; 

Karavasilis et al. 2011). It is conjectured in this study that the Π-parameters of Πu in Eq. (6.22) 

and Πθ in Eq. (6.23) can be formed based on the characteristic length scale of the ground 

motion; while additional physical quantities need to be incorporated to capture the specific 

features associated with the deformable rocking system. The normalized Πu and Πθ are 

proposed as: 
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   
 (6.24)

 

22
max

, , 1
2

p p
o r

p

R

a p  

  


  
       

   
 (6.25)

 

As can be seen from Eqs. (6.24) and (6.25), the Π-parameters of Πu and Πθ are proposed as 
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the products of the normalized responses that correspond to motion’s characteristic length scale 

(i.e. 
2

max
,

p
u o

p

u

a


   and 

2
max

, 2
p

o
p

R

a

 


  ), and the additional high-order ‘rocking’ terms of 

, 1
10 tan

p p
u r

a

p g




 
    

 
 and 

2

, 1 p
r p

 
    

 
, respectively. The soundness of including the 

high-order terms in Eqs. (6.24) and (6.25) are illustrated in Figure 6.4. As can be seen from the 

top row of the figure, if Πu,o is plotted against 1 /
p (top left), although a general trend can be 

seen from the data in the middle figure, observable scattering still exists. While if the proposed 

dimensionless parameter of Πu is considered (top right), a distinct curve can be formed. 

Furthermore, later study shows that a simple power-law function can be chosen to correlate Πu 

with 1 /
p . The effectiveness of using Πθ to quantify the rotational responses of the system is 

examined by comparing the bottom three figures of Figure 6.4. The bottom middle figure 

shows the data when Πθ,o is calculated, where significant scattering occurs and no clear trend 

can be observed. However, by multiplying an addition dimensionless term, the data of Πθ turn 

out to be a distinguishable curve with clear trend, which significantly facilitates its closed-form 

regression. 

Sensitivity studies are conducted herein to investigate the influences of various parameters 

to the dimensionless response quantities of Πu and Πθ. A large number of time history analyses 

need to be performed to cover the general range for each parameter. As can be seen in Table 6.2, 

the scope of rocking column’s geometric, mass and dynamic parameters are determined by 

considering typical highway bridges designed in U.S. Given that the rocking mode will 

substantially alleviate the drift responses of the column, which will in turn reduce vibrational 
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damage and hysteretic damping, the vibrational damping parameter is considered to be smaller 

than 5%. The ranges for M&P model parameters are considered based on the study by 

Mavroeidis and Papageorgiou (2003). Table 6.2 also lists the ranges of the corresponding 

dimensionless Π-parameters. 
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Figure 6.4. Illustration of the effectiveness of the proposed Π-parameters of Πu and Πθ (for 

the case when 10
n

  , 0.005  , 15   , 2  , 0  ) 

 
Table 6.2. General range considered for each parameter for time history analyses 

Physical 

parameters 

ωn 

(rad/s) 

R 

(m) 

m 

(kN/g) 

α 

(°) 

ξ 

(%) 

ωp 

(rad/s) 

ap 

(g) 

γ ν 

(°) 

2-30 3-9 100-2000 5-30 0.5-5 1-12 0.3-1 1-3 0-180 

Π parameters 
n  

p  
        -- -- -- 

1-30 0.5-12 1/36π-1/6π 0.005-0.05 1-3 0-0.5π -- -- -- 
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6.2.3 Proposed Column Drift Demand Model 

The sensitivity study is constructed based on the benchmark design with R = 6m, α = 15°, 

ωn = 10p, ξ = 0.5%, γ = 2, and ν = 0. One of these parameters is varied once at each time to 

examine its influence to the dimensionless response parameter of Πu. The two additional M&P 

model parameters (i.e., the peak ground acceleration ap and the cyclic frequency ωp) are varied 

within their ranges for each case to form a large group of ground motion inputs. The sensitivity 

of Πu is firstly examined for four parameters, namely the dimensionless parameters of Πγ, Πν, 

and Πξ, and the column size R. As shown in the left figure of Figure 6.5, the system response of 

Πu is not sensitive to the phase of the M&P motion; i.e., when Πν is changing from 0 to 0.5π, no 

distinct difference can be observed for the response of Πu. Similar trends can be found for the 

vibrational damping of the column (Πξ in middle figure). On the other hand, as shown in Eq. 

(6.24), since the proposed dimensionless parameter of Πu already incorporates the M&P 

parameter of γ and the column size R, which is embedded in the parameter of /p g R , the 

influences of γ and R to the response of Πu is very marginal (as shown in the left and right 

figures, respectively). Therefore, the proposed closed-form expression of Πu can exclude the 

above-mentioned four parameters. 
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Figure 6.5. Sensitivity study of u  with respect to  ,  ,   and R 

 

Further sensitivity study indicates that unlike above-mentioned four parameters, the 

variations of normalized parameters 
n

  and Πα will affect the magnitudes of Πu. In addition, 

as shown in Figure 6.5, a distinct functional curve can be observed between Πu and 
p . 

Therefore, in this study Πu is considered as a function of 
n

 , Πα, and 
p . By assuming the 

influences of these three affecting Π-parameters uncoupled with each other, the closed-form 

expression of Πu is proposed as: 

 

 , 1 2 3( ) ( ) ( )
p nu e f f f        (6.26)

 

where Πu,e is the closed-form estimation of Πu, and f1, f2, and f3 are unknown functions that 

need to be determined for 
p , 

n
 , and Πα, respectively. To be simple, the unknown 

functions are selected from basic functions types such as the linear function, the power-law 

function, the exponential function, and the natural logarithm function. A two-step procedure is 

carried out to obtain the detailed expression of Πu,e by identifying both the function type and 

the unknown coefficients for each function. First, by assigning a specific function type to each 
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function, a group of possible cases for Πu,e is formed with each case composed by a different 

function combination. Second, a nonlinear optimization procedure is carried out for each case 

to determine the unknown coefficients for each function such that the following mean error 

quantity is minimized: 

 

 
,

1

1
u

n
u e u

u

E
n

 


  (6.27)

 

where n is the total case number for the sensitivity study of Πu with respect to 
p , 

n
 , and 

Πα. By selecting the case with the smallest error among all scenarios, both the function types 

and their coefficients can be determined. The two-step procedure in this study yields the 

following closed-form expression for Πu,e: 

 

 
2.36 1.36 0.45

, 0.39   
p nu e   

      (6.28)

 

As can be seen from Eq. (6.28), it turns out that the power-law function can be adopted to 

quantify the impacts of the normalized cyclic frequency of the M&P motion, the normalized 

natural frequency of the column, and the system slenderness. The soundness of using Πu,e to 

estimate Πu is examined in both Figures 6.5 and 6.6, where the solid lines are calculated from 

the closed-form formula. It can be seen from both figures that the solid lines are on top of the 

dotted data, which demonstrates that the proposed formula of Πu,e accurately captures both the 

trends and the values of Πu under a variety of conditions. By combining Eq. (6.28) and Eq. 
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(6.24), the maximum column drift can then be estimated as: 
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(6.29)

 

The derived Eq. (6.29) for the drift response of the rocking system is physically 

convincing, which can be reflected by following observations: (1) when the column is 

considered to be fully rigid, i.e. when 
n

  approaches infinity, umax,e is close to 0; (2) umax,e 

increases when the slenderness of the system decreases, namely when Πα becomes larger; it is 

because of the fact that when the rocking bridge with a given column height has a wider 

foundation base, its rocking-mode response will be diminished and its vibrational-mode 

response will be increased; (3) a simple parameter manipulation shows that umax,e is positively 

correlated with the column height R, which reveals that the increased column size will stabilize 

the rocking-mode response and thereby increase the column drifts; (4) umax,e is positively 

related to the peak ground acceleration of the M&P motion, ap.  
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Figure 6.6. Sensitivity study of u  with respect to 
n

  and   

6.2.4 Proposed Rocking Rotation Demand Model 

The same sensitivity study is used to first identify the nonessential parameters to the 

normalized response of Πθ. As can be seen from Figure 6.7, it turns out that the normalized 

rotational response of Πθ is insensitive to column’s vibrational dynamic properties, namely the 

normalized natural frequency of 
n

  (the left figure), and the normalized damping ratio of Πξ 

(the middle figure). Such insensitivity can be attributed to the fact that the vibrational mode of 

the rocking column has in general inconsiderable influences on its rocking mode; while as 

previously discussed, the same conclusion cannot be held for the reverse condition; that is, the 

rocking mode response indeed has substantial impacts on column drifts. On the other hand, as 

compared to Πu, similar conclusions can be found for Πθ in terms of the influences from 

column size R (the right figure): because the proposed Πθ formula of Eq. (6.25) already 

incorporates column height R, no further significant influence can be observed from this 

parameter.  
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Figure 6.7. Sensitivity study of   with respect to 
n

 ,   and R 

 

The remaining three influential Π-parameters, namely 
p , Πγ, and Πα, form the basis of 

the derivation for the closed-form estimation of Πθ. The similar two-step procedure is utilized 

to identify both the function type and the associated coefficients for each parameter. The 

closed-form formula of Πθ is proposed as: 

 

 , 1 2 3( ) ( ) ( )
pe g g g         (6.30)

 

where the unknown functions g1, g2, and g3 are determined by a permutation and combination 

of the above-mentioned simple function types and the coefficients for each case are obtained 

through a general nonlinear optimization procedure that minimize the mean value of the error 

between the formula-based results and the numerical data (i.e., using Eq. (6.27) with Πu 

substituted by Πθ and Πu,e substituted by Πθ,e). The closed-form formula of Πθ,e is obtained as: 

 

 
4.89 0.25

, 0.06 ( 5.42) ln( +1)   
pe   

       (6.31)
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As can be seen from Eq. (6.31), it turns out that a linear function can be used to quantify 

the influence of the number of zero crossings of the M&P motion, a natural logarithm function 

can be selected to determine the effects of the prevailing frequency of the motion, and a 

power-law function can quantify the system slenderness influence. The soundness of using Πθ,e 

to estimate Πθ is examined in both Figure 6.7 and Figure 6.8, where the solid lines are 

calculated from the closed-form formula. It can be seen from both figures that the solid lines 

agree well with the dotted data, which demonstrates that the proposed formula of Πθ,e can be 

used in confidence to estimate Πθ for various circumstances. By combining Eq. (6.30) and Eq. 

(6.25), the column rocking rotation angle can then be estimated as: 

 

  
4.89 0.25

max, 2 2

0.12  ( 5.42) ln( +1)   

1

p

p

p

e

p

a

R

  








   



 (6.32)

 

The physical solidity of using Eq. (6.32) to estimate the rotation angle of the rocking 

column can be interpreted in following aspects: (1) θmax,e decreases when the system 

slenderness decreases, namely when the foundation base is wider and Πα becomes larger; (2) a 

negative correlation exists between θmax,e and column size R, which reveals that the increased 

column size at given slenderness will reduce the peak uplift angle; (3) θmax,e is a positive linear 

function of M&P motion’s peak ground acceleration ap, and oscillatory character Πγ, 

respectively, which denotes that a near-fault motion with bigger peak ground acceleration and 

more number of major pulses will surely increase the peak uplift angle of the rocking column. 
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Figure 6.8. Sensitivity study of   with respect to   and   

6.3 VALIDATION 

In order to examine the accuracy of the proposed demand models for column drifts and 

uplift angles given in Eqs. (6.29) and (6.32), five as-built single-bent bridge cases in U.S. and 

twelve recorded near-fault motions are used to compute the seismic responses of the analytical 

model shown in Figure 6.1. The details of the selected five as-built bridges are shown in Table 

6.3, where ‘Ln’ refers to the selected span length, ‘W’ refers to the participating weight of the 

column, ‘Kn’ refers to the elastic stiffness of the column, ‘Tn’ is the elastic natural period of the 

column, and all other terms are the same as those defined before. It is noted that the ‘2b’ term in 

Table 6.3 refers to the base width of the rocking foundation that is redesigned for each bridge, 

such that the uplift condition can be met under the selected input motions. As can be seen from 

the table, the selected bridge designs exhibit large variances in terms of the column height, the 

slenderness ratio, and the vibrational natural frequency. Due to rocking, column’s vibrational 

damage potential is reduced and the associated hysteretic damping ratio is assumed to be 0.5% 

for all bridge cases. 
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Table 6.3. Five as-built bridge cases used in validation 

Cases Bridges 
H 

(m)

2b 

(m)

Ln 

(m) 

W 

(kN) 

α 

(°) 

R 

(m)

Kn 

(kN/m) 

ωn 

(rad/s) 

Tn 

(s) 

1 Meloland Road Overcrossing (MRO) 5.2 1.6 31.7 3175.6 8.9 5.2 165153.9 22.6 0.28 

2 Manning Avenue Overcrossing (MAO)1 7.2 3.2 25.8 1919.9 12.8 7.3 129690.8 25.7 0.24 

3 Manning Avenue Overcrossing (MAO)2 7.5 3.2 39.6 2949.4 12.3 7.7 112229.6 19.3 0.33 

4 South Paso Robles Overhead (SPRO)3 11.3 5.7 34.3 3025.0 14.2 11.6 47351.3 12.4 0.51 

5 Mondocino Avenue Bridge (MAB) 6.5 3.2 27.1 3856.6 13.9 6.7 170801.5 20.8 0.30 

Note: 1: the 1st bent; 2: the 2nd bent; 3: the 4th bent 

 

The twelve pulse-like near-fault ground motions and their respective pulse representations 

are obtained based on the study of Tang and Zhang (2011), where they developed a 

mathematical tool to identify both velocity and acceleration pulses, and their M&P model 

parameters by using the geometric similarity and dislocations of the dimensionless response 

spectrum for a given M&P waveform with the dimensional response spectrum in the 

bi-logarithmic plotting. Table 6.4 lists the details of the selected twelve near-fault ground 

motions and their M&P pulse representations. As can be seen in the table, both velocity and 

acceleration pulse motions have been picked. The M&P parameters for each motion are also 

listed in the table, where the negative sign of Ap denotes the shaking direction, and the peak 

ground acceleration ap ranges from 0.38g to 0.79g. Figure 6.9 shows the acceleration and 

velocity time histories, and the acceleration response spectra for 5% damping of these twelve 

selected motions and their M&P pulses. It can be observed from the figure that the selected 

M&P pulses agree well with the recorded motions in acceleration and velocity histories. In 

addition, the response spectra from the M&P pulses capture the dominant responses when 

compared to that from the recorded motions.  

For each bridge, the seismic responses of the rocking system are analyzed under the twelve 
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recorded ground motions by using the derived system EOMs of Eqs. (6.5) and (6.6), the uplift 

condition of Eq. (6.11), and the impact mechanism of Eqs. (6.16) and (6.18). The peak 

responses of the column drift and the uplift angle are extracted and compared with the 

closed-form solutions from Eqs. (6.29) and (6.32), respectively, where pulse representations of 

the input ground motions are utilized. Therefore, for each bridge, 12 response data are available 

for comparisons. In this study, the effectiveness of the proposed closed-from demand models 

are evaluated by checking the mean and standard deviation for the distributions of umax,e/umax,g 

and θmax,e/θmax,g, where umax,e and θmax,e are calculated by using Eqs. (6.29) and (6.32), 

respectively, and umax,g and θmax,g are the peak column drifts and uplift angles that analyzed 

under recorded motions. In addition, the mean error quantity is defined the same as Eq. (6.27) 

to quantify the errors of the demand models; namely in Eq. (6.27) Πu is substituted by umax,g and 

θmax,g respectively, Πu,e is substituted by umax,e and θmax,e respectively, and n equals to 12 for 

each bridge. Table 6.5 provides the comparison results using the above-mentioned three 

measures. As can be found from the table, the mean of umax,e/umax,g is about 0.9 for all cases, and 

the associated standard deviation stays within the bound of 0.10 to 0.18. On the other hand, the 

mean of θmax,e/θmax,g varies between 0.97 and 1.24, and the corresponding standard deviation 

ranges from 0.21 to 0.35 for all cases. The overall mean error for column drifts is between 12% 

and 17%, and the error for uplift angles is about 15%-33% for all cases. Given the complex 

dynamics in association of the rocking system, both these three measures validates that the 

proposed formulae are able to offer reliable predictions for the seismic demands of the system. 
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Table 6.4. Selected twelve near-fault ground motions and their pulse representations 

GM No. Earthquake event Year Station Pulse Type Ap 

(m/s)

ap 

(g) 
γ ν 

fp 

(Hz)

t0 

(sec)

1 Kobe, Japan 1995 KJMA Both 1.28 0.79 2.0 60 1.03 8.3 

2 Loma Prieta 1989 Los Gatos - Lexington Dam Both -1.19 0.54 1.5 120 0.74 4.3 

3 Cape Mendocino 1992 Petrolia Both 1.07 0.57 1.2 0 0.96 3.1 

4 Northridge 1994 Simi Valley—Katherine Rd Velocity 0.77 0.60 1.8 0 1.37 5.3 

5 Yountville 2000 Napa FireStation#3 Velocity -0.41 0.39 2.0 150 1.53 13.1

6 San Salvador 1986 Geotech InvestigCenter Velocity -0.85 0.63 1.6 0 1.31 1.3 

7 Aigion, Greece 1995 AEG Velocity -0.40 0.42 2.6 0 1.75 3.4 

8 San Salvador 1986 National GeograficalInst Velocity 0.55 0.47 1.5 90 1.35 1.9 

9 Chi-Chi 1999 CHY080 Acceleration 0.69 0.38 3.0 60 0.90 11.5

10 Sierra Madre 1991 Altadena—Eaton Canyon Acceleration 0.33 0.42 1.5 60 2.17 2.8 

11 Coalinga 1984 Coalinga-14th &Elm(OldCHP) Acceleration 0.48 0.76 1.5 150 2.55 3.0 

12 Northridge 1994 Pacoima Dam(downstr) Acceleration -0.49 0.51 1.6 0 1.83 3.4 
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(a) Motion No.1 to No.6 
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(b) Motion No.7 to No.12 

Figure 6.9. Acceleration and velocity time histories, and acceleration response sepctra of the 
selected twelve near-fault ground motions and their pulse representations 

 
Table 6.5. Validation of the proposed closed-form expressions of column drifts and uplift 

angles 

Cases Bridges 
umax,e θmax,e 

Mean Std Error (%) Mean Std Error (%)

1 Meloland Road Overcrossing (MRO) 0.90 0.14 14% 0.97 0.21 15% 

2 Manning Avenue Overcrossing (MAO) 0.86 0.10 16% 1.24 0.33 32% 

3 Manning Avenue Overcrossing (MAO) 0.91 0.13 12% 1.16 0.29 25% 

4 South Paso Robles Overhead (SPRO) 0.88 0.18 17% 1.09 0.24 18% 

5 Mondocino Avenue Bridge (MAB) 0.88 0.15 15% 1.20 0.35 33% 

 

In addition, Figure 6.10 compares the peak column drifts and uplift angles predicted by the 

proposed formulae with the numerical data, where umax,e is plotted against umax,g in the left two 

figures, and θmax,e is plotted against θmax,g in the right two figures. The top two figures show the 

comparisons that categorized by the bridge cases, while the data in the bottom two figures are 
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grouped by the pulse types of the input motions. It is evident from the top left figure that for the 

column drift estimation, the worst scenario happens for the bridge case 4, resulting from the 

fact that the column height in case 4 exceeds the range considered for formula derivation. 

Meanwhile, the bottom right figure shows that the input ground motions with both velocity and 

acceleration pulse characteristics will yield more deviated rotational demands than those 

predicted by the formula. 
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Figure 6.10. Comparisons of peak column drifts and uplift angles with the predictions by 

the proposed closed-form expressions and the numerical data 

 

A time history comparison is provided in Figure 6.11 for bridge case 4 when subjected to 

the motion No. 2. As can be seen from the figure, because the pulse representation only 

captures the prevailing frequency of motion No. 2, a pace difference can be observed for the 
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drift and rotation time history responses when the recorded motion is substituted with the 

corresponding pulse. However, the M&P pulse used in this study is able to yield comparable 

responses when comparing with the seed motion results, which can be reflected by both the 

close peak responses and the matching trends in the time domain. Moreover, it can be found in 

the figure that the closed-form formulae are capable of providing almost identical peak 

response predictions for this case. 
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Figure 6.11. Time history comparisons of bridge case 4 when subjected to motion No. 2 

 

An equally important question for the proposed rocking system in this study lies in 

whether it indeed yields superior seismic performance when compared with the conventional 

design, namely the design with the fixed-base condition. To address this question, the bridge 

case 1 in Table 6.3 is selected and analyzed with the foundation base being fixed. The 

fiber-section element is built in OpenSees to incorporate the material nonlinearity and the 

column details, which include 18#18 longitudinal reinforcement bars and the 3 in. concrete 

cover. A 5% Rayleigh damping is considered for the fixed-base condition, given that 

considerable material nonlinearity is expected. Figure 6.12 illustrates the column drift history 
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comparisons for the rocking foundation case and the fixed-base case when subjected to motion 

No.3. As can be seen from the figure, a significant drift reduction can be achieved when the 

foundation is narrowed and designed for rocking. Moreover, by allowing the foundation to 

uplift, the permanent displacement of the column can be eliminated after earthquake excitation. 
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Figure 6.12. Effectiveness of the rocking foundation for bridge case 1 when subjected to 

motion No. 3 
 

6.4 CONCLUDING REMARKS 

This chapter develops robust seismic demand models for the rocking columns with 

foundation on rigid supports subjected to horizontal near-fault motions. First, an analytical 

model is developed to establish the system EOMs that account for the superstructure mass 

inertia, the geometric nonlinearity, the column flexibility, the uplift condition, and the rocking 

impact. The transient drift and rocking responses of the system are solved through ordinary 

differential equations (ODE) method numerically. By representing the near-fault ground 

motions with M&P pulses, dimensional analyses are carried out to identify the corresponding 

functional dimensionless parameters for column drifts and uplift angles. Subsequently, a 
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sensitivity study and a two-step optimization procedure are carried out to regress the 

closed-form expressions for the drift and uplift demands as functions of ground motion 

characteristics, and column geometric and dynamic parameters. The derived demand models 

are physically convincing by reflecting the complex dynamics of the system. A rigorous 

validation process is carried out to examine the soundness of the derived models, where five 

as-built bridge cases are analyzed under twelve selected velocity and acceleration pulse-type 

motions. Compared to the simulation results under real earthquake scenarios, the proposed 

models are able to yield dependable predictions with the normalized errors less than 17% for 

column drift estimates and 33% for peak uplift angles. The error is larger for the top-pier case, 

and increases when the ground motions feature both velocity and acceleration pulse 

characteristics. In addition, a case study is provided to prove that both the peak and residual 

drifts of the column can be substantially reduced should the column is designed for rocking.  

In summary, this study offers reliable models to estimate both the drift and uplift demands 

for the rocking column system. The proposed models are congruous with the underlying 

physics of the system and can be used with confidence in the assessment and design of the 

bridges with rocking columns.  



191 
 

7. CONCLUSIONS AND FUTURE WORK 

7.1 CONCLUSIONS 

This research addressed three main goals towards seismic resilient and sustainable 

highway bridges: (1) to derive robust modeling and analysis methodologies for 

bridge-foundation-soil systems under seismic shaking and liquefaction induced lateral 

spreading; (2) to develop performance-based evaluation, design and optimization frameworks 

for seismic protective devices for highway bridges; (3) to quantify the seismic responses of 

innovative devices, systems and technologies, such as the rocking column system, etc. 

Recognizing that current simplified practical approaches, such as the substructure-based 

SSI provisions, fail to completely and accurately capture the various SSI effects associated 

with the highway bridge systems under strong shaking. This dissertation developed a 

step-by-step p-y spring based modeling approach to assess the seismic responses of highway 

bridges. Current procedures to compute the SSI effects for pile foundations, the depth varying 

ground motion inputs, and the embankment motion amplification effects were revisited and 

were implemented to the proposed method. Moreover, the nonlinear p-y springs for 

embankments were originally derived based on nonlinear 2D and 3D continuum finite element 

analysis under passive loading condition along both longitudinal and transverse directions. The 

finite element analysis leaded to sound closed-form expressions for the two key input 

parameters of embankment p-y models, namely the ultimate resistant force pult and the 

displacement y50, where 0.5pult is reached. The effectiveness of the proposed approach was 

examined by using it to simulate and validate the seismic responses of a well instrumented 
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highway overcrossing (the Painter Street Overcrossing) against the recorded responses under 

the 1992 Petrolia earthquake. It was shown through this case study that the flexibility and 

motion amplification at end abutments are the most crucial modeling aspects. The study also 

concluded that the proposed p-y modeling approach, including the closed-form p-y parameters, 

can realistically incorporate these two important aspects easily. 

Subsequently, the seismic responses of the bridge-foundation-soil system under 

liquefaction induced lateral spreading were studied in this research. As a good candidate to 

balance between accuracy and efficiency, the dynamic p-y springs were still utilized. However, 

appropriate modeling modifications were considered to capture the distinct features associated 

with liquefaction induced lateral spreading, such as the use of the ‘PyLiq1’ material that owns a 

stress-dependent ultimate capacity, the comparison of the individual mechanism and the block 

mechanism to determine the ultimate capacity of the crust clay layer, the pressure sensitive and 

insensitive soil materials used for the nonlinear site response analysis, as well as the pinning 

effect at end abutments due to liquefaction. Nonlinear time history responses were obtained for 

a benchmark bridge-foundation-soil system when it is subjected to a suite of input motions 

under lateral spreading (liquefaction) and seismic shaking (non-liquefaction) cases. To 

facilitate the practical application, a simplified response modification factor was derived to 

quantify the comparative influences of liquefaction induced lateral spreading on column drifts 

with respect to seismic shaking. Under seismic shaking, the column drift correlated well with 

the peak acceleration of the non-liquefied input motion at ground surface in addition to the 

dynamic characteristics of the bridge. Under lateral spreading and due to its near static loading 
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nature, the column drift related linear logarithmically to the crust layer energy imposed on the 

pile foundation at bridge piers, which was a function of the cumulative absolute velocity of 

non-liquefied ground motion at surface, the lateral resistances and geometric parameters of soil 

layers. By normalizing the column drift under the lateral spreading to that of under the seismic 

shaking, a closed-form expression was derived for the response modification factor. Additional 

multipliers were identified in the proposed formula to account for different bridge designs and 

soil conditions. The proposed method was validated against the simulation results for eight 

randomly selected bridge cases. This study concluded that the proposed model can effectively 

estimate the change of column drift due to lateral spreading with respect to seismic shaking. 

The effectiveness of utilizing base isolators and energy dissipation devices to protect 

highway bridges against earthquake hazards was studied thoroughly in Chapter 4. The Painter 

Street Overcrossing that was considered in Chapter 2 was redesigned with seismic protective 

devices, where the three-dimensional stick model (i.e. the modeling scheme “Case 4” 

presented in Chapter 2) was adopted to model the bridge structure, and bilinear spring materials 

and dashpots were used to model the base isolators and fluid dampers, respectively. To 

effectively quantify the seismic vulnerability of the protected bridges in the system level, the 

bridge repair cost ratios under various levels of earthquake excitations were derived by using a 

performance-based methodology that accounts for the component failure probability, and the 

damage ratios and replacement costs of critical components. It was shown through an initial 

protection design that the proposed repair cost ratio can effectively quantify the seismic 

performance of highway bridges. Subsequently, a multi-objective genetic optimization method 
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with the Pareto optimal concept was employed to identify the optimal design parameters of 

protective designs for six design cases with various combinations of isolation bearings and 

fluid dampers. The optimal design parameters were identified as: (1) bearings’ characteristic 

strength equals to 0.35 and 0.15 of columns’ characteristic strength for the isolation only case 

and the case with both bearings and dampers, respectively; (2) bearings’ post-yielding stiffness 

should be approximately 0.03 of columns’ initial stiffness; (3) the additional damping ratio 

needs to be 33-44% when fluid dampers were used. This research also concluded that bearings’ 

initial stiffness remains trivial in protecting highway bridges. In other words, as long as the 

above-mentioned two parameters, the characteristic strength and the post-yielding stiffness, 

were optimally designed, significant repair cost reductions could be achieved no matter which 

type of bearing is used. In addition, the combination of isolation bearings and fluid dampers 

would yield more excellent seismic protection when compared with the cases using only 

bearings.  

Chapter 5 readdressed the evaluation and design of seismic protective devices for highway 

bridges in a probabilistic manner. To overcome the impediment that distinct protection designs 

would yield different fragility curves when conditioned on ground motion intensity measures, 

uniform fragility functions for various isolated bridge systems were developed by converting 

them as functions of the corresponding median-level engineering demand parameters (EDPs) 

instead. The multiple stripes analysis was carried out for various protected bridge systems to 

generate discrete fragility functions at distinct median EDP levels. The maximum likelihood 

concept was utilized to regress continuous curves for the discrete fragility functions. 



195 
 

Subsequently, the system-level repair cost ratio (RCR) that was derived in Chapter 4 was 

adopted in this chapter to generate the uniform RCR design surface as a function of multiple 

median EDPs. The derived RCR surface could be easily implemented to the 

performance-based seismic protection design and optimization framework without iteratively 

updating the design goal when a new group of design parameters were considered. A numerical 

example was conducted on the Painter Street Overcrossing, where performance-based genetic 

optimization was conducted to identify the optimal protection designs. The effectiveness of the 

identified optimal designs was further validated through the performance-based evaluation 

method that has been developed in Chapter 4. 

Lastly, this study derived the seismic demand models for the rocking columns with 

foundation on rigid supports when subject to horizontal near-fault strong motions. The 

emphasis was placed to realistically predict the column drift and uplift responses for the 

rocking system. To achieve this goal, the system equations of motion were derived to account 

the superstructure mass inertia, the column flexibility, the uplift condition, and the rocking 

impact mechanism. The ordinary differential equations (ODE) method was utilized to solve the 

system’s transient drift and rocking responses numerically. Given the complexity of the 

analytical derivation and the ODE method, this research developed transparent yet robust 

models to predict the peak responses of the rocking system. By representing the near-fault 

ground motions with corresponding pulses, dimensional analyses were carried out to regress 

the closed-form expressions of system’s drift and uplift demands as functions of ground motion 

characteristics and column geometric and dynamic parameters. The derived sound demand 
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models not only quantified the influences of essential parameters, but also consistently 

reflected the complex dynamics of the rocking system. Thereafter, a validation process was 

carried out for five as-built bridge cases under twelve selected velocity and acceleration 

pulse-type motions. Compared to the simulation results under real earthquake scenarios, the 

proposed models was able to yield dependable predictions with small normalized errors. This 

study offered an innovative way to realistically predict the seismic demands of the rocking 

column-foundation system directly from structural and ground motion characteristics, which 

can significantly benefit the design of bridge columns incorporating the rocking column 

concept. In contrast with the conventional design, the rocking columns with foundation on 

rigid supports experienced superior seismic performance with less damage. 

7.2 FUTURE WORK 

Recommendations for future endeavors along the above-mentioned lines of research are 

summarized as follows: 

(1) The dynamic p-y springs that used to model the seismic performance of highway 

bridges under seismic shaking and liquefaction induced lateral spreading is one dimensional 

and is uncoupled in two orthogonal directions. The long-term goal that follows this research 

lies in the development of two-dimensional or three-dimensional coupled dynamic spring 

models to capture the soil structure interaction effects. 

(2) The performance-based design and optimization method developed in Chapter 5 

should be extended to a more general framework that incorporates both structural and 

protection design parameters, which will surely further improve the seismic performance of 
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highway bridges.  

In addition, the general research scope addressed by this study enables the author to 

explore forward on relative subjects toward resilient and sustainable civil structures. Potential 

research interests include: 

(1) Analytical, numerical and experimental investigation of multi-hazard responses of 

structures: This part of research focuses on the development of effective and efficient analysis 

tools for civil structure systems facing multiple threats, including aging and deterioration, and 

natural hazards such as earthquakes, tsunamis, hurricanes, floods, etc. Accurate modeling is 

necessary for individual structures and components, where supplemental analytical and 

experimental investigations must be carried out to reduce modeling uncertainties. Simulations 

based on advanced numerical models are entailed for understanding the key issues of the 

integrated systems under a multitude of hazards, such as the soil-foundation-structure systems 

in coastal regions under earthquakes, surge and wave hazards. Yet, simple and reliable analysis 

procedures under a unified framework have to be developed for practical applications. The 

laboratory and field tests, case histories, as well as the measurements from instrumented 

structures should be used to validate models and analysis procedures and provide key modeling 

parameters. 

(2) Resilience and sustainability based assessment and design frameworks for multiple 

hazards: Current advancements in performance-based earthquake engineering and life cycle 

assessment should be extended to other types of natural hazards including hurricanes and 

floods. Transparent evaluation tools should be developed to link component-level engineering 
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measures to system-level socio-economic metrics, like life cycle costs (direct and indirect), 

environmental impacts and loss of functionality. Moreover, reliable quantitative methods are 

required to evaluate the resilience and sustainability for a portfolio of civil structures across 

communities. Integrated performance-based design frameworks are needed to account various 

hazards at the source and trade off multiple performance goals, where multi-objective 

optimization and decision-making frameworks are necessary for yielding optimal designs 

across different hazards. Frameworks like these would provide policy makers with information 

to plan more resilient and sustainable civil structure networks while engaging government, 

industry and private stakeholders. 

(3) Investigation of innovative materials, devices, systems and technologies for 

multi-hazard mitigation: Many improvements and significant research work can be conducted 

for this part of research including investigating the reliability and effectiveness of smart 

materials, systems and technologies when facing a wide variety of conditions; identifying the 

optimal measures that can mitigate multiple hazards, and their roles as elements of large-scale 

distributed building and infrastructure systems. 
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