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Abstract

Large-scale network services can consist of tens of thou-

sands of machines running thousands of unique software

configurations spread across hundreds of physical net-

works. Testing such services for complex performance

problems, configuration errors, and fault tolerance re-

mains a difficult problem. Existing testing techniques,

for example through simulation or running smaller in-

stances of a service, have limitations in predicting overall

service behavior.

Although technically and economically infeasible at

this time, testing should ideally be performed at the same

scale and with the same configuration as the deployed

service. We present DieCast, an approach to scaling net-

work services; we multiplex all of the nodes in a given

service configuration as virtual machines (VM) spread

across a much smaller number of physical machines in a

test harness. CPU, network, and disk are then accurately

scaled to provide the illusion that each VM matches a

machine from the original service in terms of both avail-

able computing resources and communication behavior

to remote service nodes. We present the architecture and

evaluation of a system to support such experimentation

and discuss its limitations. We show that for a variety of

services, including a high-performance, cluster-based file

system, and resource utilization levels, DieCast matches

the behavior of the original service while using a fraction

of the physical resources.

1 Introduction

Today, more and more services are being delivered by

complex systems consisting of large ensembles of ma-

chines spread across multiple physical networks and ge-

ographic regions. Economies of scale, incremental scal-

ability, and good fault isolation properties have made

clusters the preferred architecture for building planetary-

scale services. A single logical request may touch dozens

of machines on multiple networks, all providing in-

stances of services transparently replicated across mul-

tiple machines. Services consisting of tens of thousands

machines are commonplace [12].

Economic considerations have pushed service

providers to a regime where individual service machines

must be made from commodity components—saving an

extra $500 per node in a 100,000-node service is critical.

Similarly, nodes run commodity operating systems, with

only moderate levels of reliability, and custom-written

applications that are often rushed to production because

of the pressures of “Internet Time.” In this environment,

failure is common [25] and it becomes the responsibility

of higher-level software architectures, usually employing

custom monitoring infrastructures and significant service

and data replication, to mask individual, correlated, and

cascading failures from end clients.

One of the primary challenges facing designers of

modern network services is testing their dynamically

evolving system architecture. In addition to the sheer

scale of the target systems, challenges include: heteroge-

neous hardware and software, dynamically changing re-

quest patterns, complex component interactions, failure

conditions that only manifest under high load [22], the

effects of correlated failures [20], and bottlenecks aris-

ing from complex network topologies. Before upgrad-

ing any aspect of a networked service—the load balanc-

ing/replication scheme, individual software components,

the network topology—architects would ideally create an

exact copy of the system, modify the single component to

be upgraded, and then subject the entire system to both

historical and worst-case workloads. Such testing must

include subjecting the system to a variety of controlled

failure and attack scenarios since problems with a par-

ticular upgrade will often only be revealed under certain

specific conditions.

Of course, creating an exact copy of a modern net-

worked service for testing is both technically challenging

and economically infeasible. The architecture of many

large-scale networked services can be characterized as

“controlled chaos,” where it is often impossible to know

exactly what the hardware, software, and network topol-

ogy of the system looks like at any given time. Even

when the precise hardware, software and network config-

uration of the system is known, the resources to replicate

the production environment might simply be unavailable,

particularly for large services. And yet, reliable, low

overhead, and economically feasible testing of network

services remains critical to delivering robust higher-level

services. As one motivating example, consider that the
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Nikkei Stock Exchange recently shut down for a day [6]

while the New York Stock Exchange indicated an inac-

curate precipitous price drop (dropping 200 points almost

instantly) [2] as a result of, in both cases, unusually high

trading volumes. Today, testing Internet services is rele-

gated to small-scale deployments on hardware, software,

and interconnects that only approximate the target archi-

tecture.

The goal of this work is to develop a testing method-

ology and architecture that can accurately predict the be-

havior of modern network services while employing an

order of magnitude less hardware resources. For ex-

ample, consider a service consisting of 10,000 hetero-

geneous machines, 100 switches, and hundreds of indi-

vidual software configurations. We aim to configure a

smaller number of machines (e.g., 100-1000 depending

on service characteristics) to emulate as closely as pos-

sible the original configuration and to subject the test in-

frastructure to the same (unscaled) workload and failure

conditions as the original service. The performance and

failure response of the test system should closely approx-

imate the real behavior of the target system. Of course,

these goals are infeasible a priori without giving some-

thing up: if it were possible to capture the complex be-

havior and overall performance of a 10,000 node system

on 1,000 nodes, then the original system should likely

run on 1,000 nodes.

A key insight behind our work is that we can trade

time for system capacity while accurately scaling indi-

vidual system components to match the behavior of the

target infrastructure. We employ time dilation to accu-

rately scale the capacity of individual systems by a con-

figurable factor. Time dilation fully encapsulates operat-

ing systems and applications such that the rate at which

time passes can be modified by a constant factor. A time

dilation factor (TDF) of 10 means that for every second

of real time, all software in a dilated frame believes that

time has advanced by only 100 ms. By not changing the

rate of I/O, the system then appears to have substantially

higher processing power, network and disk I/O at the cost

of time itself. If we wish to subject a target system to a

one-hour workload when scaling the system by a factor

of 10, the test would take 10 hours of real time. For many

testing environments, this is an appropriate tradeoff.

In this paper, we present DieCast, a complete envi-

ronment for building accurate models of network ser-

vices (Section 2). Critically, we run the actual operat-

ing system and application software of some target envi-

ronment on a fraction of the hardware in the target envi-

ronment. This work makes the following contributions.

First, we extend our original implementation of time di-

lation [19] to support fully virtualized as well as paravir-

tualized hosts. To support complete system evaluations,

our second contribution shows how to extend dilation to

disk and CPU (Section 3). In particular, we integrate

a full disk simulator into the VMM to consider a range

of possible disk architectures. Finally, we conduct a de-

tailed system evaluation, quantifying DieCast’s accuracy

for a range of services, including a commercial storage

system (Section 4). The goals of this work are ambitious

and we cannot claim to have addressed all of the myriad

challenges associated with large-scale testing, Section 6

summarizes some outstanding issues.

2 System Architecture

We begin by providing an overview of our approach to

scaling a network service down to a target test harness.

We then discuss the individual components of our archi-

tecture.

2.1 Overview

Figure 1 gives an overview of our approach. On the left

(Figure 1(a)) is an abstract depiction of a network ser-

vice. A load balancing switch sits in front of the service

and redirects requests among a set of front-end HTTP

servers. These requests may in turn travel to a middle

tier of application servers who may query a storage tier

consisting of databases or network attached storage.

Figure 1(b) shows how a target service can be scaled

with DieCast. We encapsulate all nodes from the origi-

nal service in virtual machines and multiplex several of

these VMs onto nodes in the test harness. Critically, we

employ time dilation in the VMM running on each phys-

ical machine to provide the illusion that each virtual ma-

chine has, for example, as much processing power, disk

I/O, and network bandwidth as the original configura-

tion. DieCast configures VMs to communicate through

a network emulator to reproduce the characteristics of

the original system topology. We then initialize the test

system using the setup routines of the original system

and subject it to appropriate workloads and fault-loads

to evaluate system behavior.

2.2 Choosing the Scaling Factor

The first question is the desired scaling factor. One use

of DieCast is to reproduce the scale of an original service

in a test cluster. Another application is to scale exist-

ing test harnesses to achieve significantly more realism

than possible from the raw hardware. For instance, if

100 nodes are already available for testing, then DieCast

might be employed to scale to a thousand-node system

with a more complex communication topology. While

the DieCast system may still fall short of the scale of the

original service, it can provide more meaningful approx-

imations under more intense workloads and failure con-

ditions than might have otherwise been possible.

Overall, the goal is to pick the smallest scaling factor

possible while still obtaining accurate predictions from
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(a) Original System (b) Test System

Figure 1: Scaling a network service to the DieCast infrastructure.

experiments in the test system as DieCast predictions will

naturally degrade with increasing scaling factor. For in-

stance, while commodity server hardware typically sup-

ports timer resolutions of 1 ms, most operating systems

only use timer resolutions of 10 ms. Therefore, time di-

lation can operate with perfect fidelity up to a dilation

factor of 10. This degradation depends on the charac-

teristics of the target system (see Section 6). Applica-

tions with coarse grained timing requirements may toler-

ate higher time dilation factors, while time sensitive ap-

plications might experience performance degradation.

Note that it is neither necessary nor possible to uni-

formly scale all aspects of a target service. One feature

that we cannot currently scale is capacity, either for main

memory or disk. Thus, it may not be possible to scale

memory or disk-intensive aspects of the system as ag-

gressively as more processor or I/O bound portions of

the system. However, this is not a fundamental limita-

tion. For example, one partial solution is to configure the

test system with more memory and storage than the orig-

inal system. While this will reduce some of the economic

benefits of our approach, it will not erase them. For in-

stance, doubling a machine’s memory will not typically

double its hardware cost. More importantly, it will not

substantially increase the typically dominant human cost

of administering a given test infrastructure because the

number of required administrators for a given test har-

ness usually grows with the number of machines in the

system rather than with the total memory of the system.

Looking forward, ongoing research in VMM architec-

tures have the potential to reclaim some of the mem-

ory [34, 21] and storage overhead [35] associated with

multiplexing multiple virtual machines on a single physi-

cal machine. For instance, four nearly identically config-

ured Linux machines running the same web server will

overlap significantly in terms of their memory and stor-

age footprints. Similarly, consider an Internet service that

replicates content for improved capacity and availability.

When scaling the service down, multiple machines from

the original configuration may be assigned to a single

physical machine. A VMM capable of detecting and ex-

ploiting available redundancy could significantly reduce

the incremental storage overhead of multiplexing multi-

ple VMs.

In our current implementation, we employ Xen [11]

(version 3.0.4). We allocate the CPU among competing

virtual machines using Xen’s Credit scheduler [1] run-

ning in non-work-conserving mode. Briefly, the Credit

scheduler is a proportional fair share scheduler that also

allows the VMM to upper bound the amount of CPU

available to a VM, even if there are idle cycles in the

system.

2.3 Cataloging the Original System

The next task is to configure the appropriate virtual ma-

chine images onto our test infrastructure. Maintaining a

catalog of the hardware and software configuration that

comprises an Internet service is challenging in its own

right. However, for the purposes of this work, we as-

sume that such a catalog is available. This catalog would

consist of all of the hardware making up the service, the

network topology, and the software configuration of each

node. The software configuration includes operating sys-

tem, installed packages and applications, and the initial-

ization sequence run on each node after booting.

The original service software may or may not run on

top of virtual machines. However, given the increasing

benefits of employing virtual machines in data centers for

service configuration and management and the popular-

ity of VM-based appliances that are pre-configured to run

particular services [7, 3], we assume that the original ser-

vice is in fact VM-based.This assumption is not critical

to our approach but it also partially addresses any base-

line performance differential between a node running on

bare hardware in the original service and the same node

running on a virtual machine in the test system. Tools

such as VMWare’s P2V Assistant [33] automate the pro-

cess of converting an existing physical machine to a VM

image.

2.4 Configuring the Virtual Machines

With an understanding of appropriate scaling factors and

a catalog of the original service configuration, DieCast

then configures individual physical machines in the test

system with multiple VM images reflecting, ideally, a
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one-to-one map between physical machines in the origi-

nal system and virtual machines in the test system. With

a scaling factor of 10, each physical node in the target

system would host 10 virtual machines. The mapping

from physical machines to virtual machines should ac-

count for: similarity in software configurations, per-VM

memory and disk requirements, the capacity of the hard-

ware in the original and test system, etc. In general,

a solver may be employed to determine a near-optimal

matching [27]. However, given the VM migration capa-

bilities of modern VMMs and DieCast’s controlled net-

work emulation environment, the actual location of a VM

is not as significant as in the original system.

DieCast then configures the VMs such that each VM

appears to have resources identical to an entire physical

machine in the original system. Consider a physical ma-

chine hosting 10 VMs. DieCast would run each VM with

a scaling factor of 10, but allocate each VM only 10%

of the actual physical resource. Suppose a CPU inten-

sive task takes 100 seconds to finish on the original ma-

chine. The same task would now take 1000 seconds (of

real time) on a dilated VM, since it can only use a tenth of

the CPU. However, since the VM is running under time

dilation, it only perceives that 100 seconds have passed.

Thus in the VMs time frame, resources appear equivalent

to the original machine.

2.5 Network Emulation

The final step in the configuration process is to match the

network configuration of the original service using net-

work emulation. We configure all VMs in the test system

to route all their communication through our emulation

environment. Note that DieCast is not tied to any par-

ticular emulation technology: we have successfully used

DieCast with Dummynet [28], Modelnet [32] and Netem

[4] where appropriate.

It is likely that the bisection bandwidth of the origi-

nal service topology will be larger than that available in

the test system. Fortunately, time dilation is of signif-

icant value here. Convincing a virtual machine scaled

by a factor of 10 that it is receiving data at 1 Gbps only

requires forwarding data to it at 100 Mbps. Similarly,

it may appear that latencies in an original cluster-based

service may be low enough that the additional software

forwarding overhead associated with the emulation en-

vironment could make it difficult to match the latencies

in the original network. To our advantage, maintaining

accurate latency with time dilation actually requires in-

creasing the real time delay of a given packet, e.g., a 100

µs delay network link in the original network should be

delayed by 1 ms when dilating by a factor of 10.

2.6 Workload Generation

Once DieCast has prepared the test system to be resource

equivalent to the original system, we can subject it to

an appropriate workload. These workloads will in gen-

eral be application-specific. For instance, Monkey [17]

shows how to replay a measured TCP request stream sent

to a large-scale network service. For this work, we use

application-specific workload generators where available

and in other cases write our own workload generator that

both captures normal behavior as well as stresses the ser-

vice under extreme conditions.

To maintain a target scaling factor, clients should also

ideally run in DieCast-scaled virtual machines. This ap-

proach has the added benefit of allowing us to subject a

test service to a high level of perceived-load using rela-

tively few resources. Thus, DieCast scales not only the

capacity of the test harness but also the workload gener-

ation infrastructure.

3 Implementation

We begin this section with a brief overview of network

dilation [19] and then describe the new features required

to support DieCast.

3.1 Time Dilation

Critical to time dilation is a VMM’s ability to modify

the perception of time within a guest OS. Fortunately,

most VMMs already have this functionality, for example,

because a guest OS may develop a backlog of “lost ticks”

if it is not scheduled on the physical processor when it is

due to receive a timer interrupt. VMMs typically do this

by periodically synchronizing the guest OS time with the

physical machine’s clock. The only requirement for a

VMM to support time dilation is this ability to modify

the VM’s perception of time. In fact, as we demonstrate

in Section 5, the concept of time dilation can be ported to

other (non-virtualized) environments with ease.

Operating Systems employ a variety of time sources

to keep track of time, including: timer interrupts (eg. the

Programmable Interrupt Timer or PIT), specialized reg-

isters (eg. the TSC on Intel platforms) and external time

sources such as NTP (Network Time Protocol). Time di-

lation works by intercepting the various time sources and

scaling them appropriately to fully encapsulate the OS in

its own time frame.

3.2 Support for OS diversity

Our original time dilation implementation only worked

with paravirtualized machines, with two major draw-

backs: it supported only Linux as the guest OS, and the

guest kernel required modifications. To be widely appli-

cable, DieCast must support a variety of operating sys-
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tems. Generalizing to other platforms would have re-

quired code modifications to the respective OS.

To address these limitations, we ported time dilation to

support fully virtualized Xen VMs, enabling DieCast to

support unmodified OS images for Windows, FreeBSD,

Solaris, etc. While Xen support for fully virtualized VMs

differs significantly from the paravirtualized VM support

in several key areas such as I/O emulation, access to hard-

ware registers, and time management, the general idea

behind the implementation remains the same: we want to

intercept all sources of time and scale them.

In particular, our implementation scales the PIT, the

TSC register (on x86), the RTC (Real Time Clock) and

the ACPI PM Timer. As in the original implementation,

we also scale the number of timer interrupts delivered to

a fully virtualized guest.

3.3 Scaling Disk I/O and CPU

Our original implementation did not scale disk perfor-

mance, making it unsuitable for any services that perform

significant disk I/O. Ideally, we would scale individual

disk requests at the disk controller layer. The complexity

of modern drive architectures, particularly the fact that

much low level functionality is implemented in disk con-

troller firmware, makes such implementations challeng-

ing. Further complicating matters are the different I/O

models in Xen: one for paravirtualized (PV) VMs and

one for fully virtualized (FV) VMs. DieCast provides

mechanisms to scale disk I/O for both models.

Note that simply delaying requests in the disk device

driver is not sufficient since disk controllers may re-order

and batch requests for efficiency. On the other hand,

functionality embedded in hardware or firmware is dif-

ficult to instrument and modify. Instead, DieCast inte-

grates a highly accurate and efficient disk system simu-

lator — Disksim [14] — which gives us a good trade-off

between realism and accuracy.

Figure 2(a) depicts our integration of DiskSim into the

fully virtualized I/O model: for each VM, a dedicated

user space process (ioemu) in Domain-0 performs I/O

emulation by exposing a “virtual disk” to the VM (the

guest OS is unaware that a real disk is not present). A

special file in Domain-0 serves as the backend storage

for the VM’s disk. To allow ioemu to interact with

DiskSim, we wrote a wrapper around the simulator for

inter-process communication.

After servicing each request (but before returning),

ioemu forwards the request to Disksim, which then re-

turns the time, rt, the request would have taken in its

simulated disk. Since we are effectively layering a soft-

ware disk on top of ioemu, each request should ideally

take exactly time rt in the VM’s time frame, or tdf ∗ rt

in real time. If delay is the amount by which this re-

quest is delayed, the total time spent in ioemu becomes

delay + dt + st, where st is the time taken to actually

serve the request (Disksim only simulates I/O character-

istics, it does not deal with the actual disk content) and dt

is the time taken to invoke Disksim itself. The required

delay is then (tdf ∗ rt) − dt − st.

The architecture of Disksim, however, is not amenable

to integration with the PV I/O model (Figure 2(b)). In

this “split I/O” model, a front-end driver in the VM

(blkfront) forwards requests to a back-end driver in

Domain-0 (blkback), which are then serviced by the

real disk device driver. Thus PV I/O is largely a kernel

activity, while Disksim runs entirely in user-space. Fur-

ther, a separate Disksim process would be required for

each simulated disk, whereas there is a single back-end

driver for all VMs.

For these reasons, for PV VMs, we inject the appro-

priate delays in the blkfront driver. This approach

has the additional advantage of containing the side effects

of such delays to individual VMs — blkback can con-

tinue processing other requests as usual. Further, it elimi-

nates the need to modify disk specific drivers in Domain-

0. We emphasize that this is functionally equivalent to

per-request scaling in Disksim: the key difference is that

scaling in Disksim is much closer to the (simulated) hard-

ware. Overall our implementation of disk scaling for PV

VM’s is simpler though less accurate and somewhat less

flexible since it requires the disk subsystem in the testing

hardware to match the configuration in the target system.

We have validated both our implementations using

several micro-benchmarks. For brevity, we only describe

one of them here. We run DBench [30] — a popular hard-

drive and file-system benchmark — under different dila-

tion factors and plot the reported throughput. Figure 2(c)

shows the results for the FV I/O model (with Disksim).

We first run the benchmark without scaling disk I/O or

CPU, and we can see that the reported throughput in-

creases almost linearly, an undesirable behavior. Next,

we repeat the experiment and this time scale the CPU

alone (thus, at TDF 10 the VM only receives 10% of the

CPU). While the increase is no longer linear, in the ab-

sence of disk dilation it is still significantly higher than

the expected value (ideally, the throughput should remain

constant). Finally, with disk dilation in place we can see

that the throughput tracks the expected value much more

closely.

However, as the TDF increases, we start to see some

divergence. We find that this deviation is due to the way

CPU is scaled. Recall that we scale the CPU by bound-

ing the amount of CPU available to each VM. However,

simply scaling the CPU does not govern how those CPU

cycles are distributed. To illustrate, consider an applica-

tion that consumes 8% CPU in real time. If we run the

same application under TDF 10 (so it is allocated 10%

of the CPU), the execution pattern of the application in
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(a) I/O Model for FV VMs (b) I/O Model for PV VMs
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Figure 2: Scaling Disk I/O

the dilated timeframe may be identical to its execution

in the real timeframe. Suppose a VM should receive 10

ms every 100 ms. With regular CPU scaling, the VM

may consume its 10 ms at any time within that window.

However, for some workloads, we may actually wish to

enforce that the VM’s CPU consumption is spread uni-

formly across those 100 ms.

We modified the Credit CPU scheduler in Xen to sup-

port this mode of operation as follows: if a VM runs for

the entire duration of its time slice, we make sure that it

does not get scheduled for the next (tdf − 1) time slices.

If a VM voluntarily gives up the CPU or is pre-empted

before its time slice expires, it may be re-scheduled in

a subsequent time slice. However, when it consumes a

cumulative total of a time slice’s worth of run time (car-

ried over from the previous time it was descheduled), it

will be pre-empted and not allowed to run for another

(tdf − 1) time slices.

The final line in figure 2(c) shows the results of the

DBench benchmark with disk scaling using this modified

scheduler. As we can see, the throughput remains consis-

tent even at higher TDFs. Note that unlike in this bench-

mark, DieCast typically runs multiple VMs per machine,

in which case this “spreading” of CPU cycles occurs nat-

urally as VMs compete for CPU.

Most of our evaluation in Section 4 does not em-

ploy disk dilation because of the difficulty involved with

building an appropriate DiskSim model for the disk

drives in our physical machines. Note that scaling disk

I/O becomes less important as network latencies begin to

dominate. Fortunately, the workloads were not disk I/O

bound and separate experiments (Section ??) show that

we are able to maintain end-to-end accuracy even with-

out accurate disk dilation. The evaluation of a commer-

cial file system in Section 5 clearly requires disk dilation

and our evaluation there reveals both its requirement and

accuracy.

4 Evaluation

To demonstrate the accuracy of DieCast scaling, we con-

sider three different network services: i) BitTorrent, a

popular peer-to-peer file sharing program; ii) RUBiS, an

Configuration Baseline Disk not

scaled

Disk

scaled

LAN setting 47.71

(15.47)

38.67

(8.09)

47.67

(13.68)

WAN setting 74.98

(4.76)

73.03

(4.06)

71.35

(4.68)

Table 1: Disk I/O scaling only matters for systems it is the primary

bottleneck. Standard deviations are shown in parenthesis.

auction service prototyped after eBay; and iii) Isaac, our

configurable network three-tier service that allows us to

subject DieCast to a range of workload scenarios. We

seek to answer the following questions: i) Can we config-

ure a smaller number of physical machines to match the

CPU cycles, complex network topology, and I/O rates of

a larger service? ii) How well does the performance of a

DieCast-scaled service running on fewer resources match

the performance of a baseline service running with more

resources? iii) What are the limits of DieCast scaling?

At what point do our predictions lose so much accuracy

that they are no longer valuable?

4.1 BitTorrent

Our first experiment establishes the need for disk scal-

ing in systems where disk I/O dominates. For the base-

line, we configure 10 physical machines hosting a single

VM each (TDF 1) to download a 50MB file using Bit-

Torrent. We connect the machines in a fully-connected

mesh. Each link is 100 Mbps and has a one way latency

of 1 ms. For each VM, Disksim simulates a Seagate

ST3217 drive. We next repeat the experiment under a

dilation factor of 10: all 10 VMs are running on a sin-

gle physical machine, with CPU and network resources

scaled appropriately. However, we do not scale disk I/O

requests. Finally, we repeat the experiment with all re-

sources (including disk I/O) scaled appropriately. For

each experiment, we measure the mean and standard de-

viation across the download times of the clients. Table

?? shows that when disk I/O is not scaled, the clients ex-

perience a 20% deviation from the baseline.

However, note that despite the lack of disk I/O scaling,

the deviations from baseline are modest (compared to the
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Figure 3: Topology for BitTorrent experi-

ments .
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Figure 4: Performance with varying file sizes.
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Figure 5: Varying topology and version.
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Figure 7: Different configurations. Figure 8: RUBiS Setup.

pure I/O workload from Figure 2(c)). In our experience,

systems with wide area latencies are typically unaffected

by disk scaling since network latencies are the dominant

bottlenecks. Since we are more interested in large, wide

area services, for the remaining experiments in the paper,

we do not scale disk I/O unless otherwise mentioned.

We now evaluate DieCast’s accuracy for more com-

plex scenarios. For our baseline experiments, we run

a varying number of BitTorrent clients on a total of 50

physical machines. Each machine is a 2.8GHz Pentium

with 1GB RAM running Linux 2.6.10. We configure the

machines to communicate across a ModelNet-emulated

dumbbell topology (Figure 3), with varying bandwidth

and latency values for the access link (A) from each

client to the dumbbell and the dumbbell link itself (C).

We vary the total number of clients, the file size, the

network topology, and the version of the BitTorrent soft-

ware. Unless stated otherwise, we compare the distribu-

tion of file download times across all clients for a baseline

with 50 physical machines to set of five dilated physical

machines hosting 10 virtual machines each, scaled by a

factor of 10 using DieCast. The aim here is to observe

how closely DieCast-scaled experiments reproduce be-

havior of the baseline case for a variety of scenarios.

The first experiment establishes the baseline where we

compare different configurations of BitTorrent sharing a

6MB file across a 10Mbps dumbbell link and constrained

access links of 10Mbps. All links have a one-way latency

of 5ms. We run a total of 50 clients (with half on each

side of the dumbbell).

Figure 4 plots the cumulative distribution of transfer

times across all clients for different file sizes. We show

the baseline case using solid lines and use dashed lines

to represent the DieCast-scaled case. With DieCast scal-

ing, the distribution of download times closely matches

the behavior of the original system. For instance, well-

connected clients on the same side of the dumbbell as

the randomly chosen seeder finish more quickly (before

10 seconds) than the clients that must compete for scarce

resources across the dumbbell (50 seconds). The results

also show that, in this case, there is no significant per-

formance overhead in moving from physical machines to

VMs configured with the same software.

Figure 4 also compares baseline and DieCast-scaled

experiments with a different file size (46MB) as shown

by the right-most pair of curves. The download pattern

of clients remain the same although the absolute down-

load times and the gap between the fast and slow clients

increase due to the larger file size.

Having established a reasonable baseline, we next con-

sider sensitivity to changing system configurations. We

first vary the network topology by leaving the dumbbell

link unconstrained (500 Mbps) with results in Figure 5.

The graph shows the difference in CDFs when compared

to the constrained dumbbell-link case for the 6-MB file

(repeated for reference); all clients finish within a small

time difference of each other as shown by the leftmost

pair of curves.

Next, we consider the relative behavior of two dif-

ferent implementations of BitTorrent, versions 3.4.2 and
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4.4.0, and retain the same topology from the baseline ex-

periment (i.e., bottleneck link of 10Mbps capacity). Fig-

ure 5 also shows these results. Once again, the DieCast-

scaled version of the experiment performs nearly identi-

cally to the baseline configuration. Interestingly, this ex-

periment also shows that the newer version of BitTorrent

attempts to increase “fairness” across the client popula-

tion, resulting in a slowdown for the fast clients in version

4.4.0 relative to the 3.4.2 clients. In the newer version,

fast clients spend more effort trying to help clients on the

other side of the dumbbell. Indeed fast clients now take

around 20 seconds to finish their download whereas slow

clients, on the other side of the dumbbell, complete their

downloads in 40 seconds as compared to 50 seconds for

version 3.4.2.

Next, we consider the effect of varying the total num-

ber of clients. Using the topology from the baseline ex-

periment we repeat the experiments for 100 and 500 si-

multaneous BitTorrent clients. Once again the two cases

are 50 physical machines vs. 5 machines hosting 50

VMs. Figure 6 shows the results. The curves for the

baseline and DieCast-scaled versions completely overlap

each other for 100 clients (left pair of curves) and show

minor deviation from each other for 500 clients (right

pair of curves).

Finally, we consider an experiment that demonstrates

the flexibility of DieCast to reproduce system perfor-

mance under a variety of resource configurations starting

with the same baseline. Figure 7 shows that in addition to

matching 1 : 10 scaling using 5 physical machines host-

ing 10 VMs each, we can also match an alternate con-

figuration of 10 physical machines, hosting 5 VMs each

with a dilation factor of five. This figure demonstrates

that even if it is necessary to vary the number of physical

machines available for testing it may still be possible to

find an appropriate scaling factor to match performance

characteristics. Finally, this graph also has a fourth curve

corresponding to running the experiment with 50 VMs on

five physical machines, each with a dilation factor of 1.

This corresponds to the approach of simply multiplexing

a number of virtual machines on physical machines with-

out using DieCast. The graph shows that the behavior

of the system under such a naive approach varies widely

from actual behavior.

4.2 RUBiS

Next, we investigate DieCast’s ability to scale a fully

functional Internet service. We use RUBiS [29]—an auc-

tion site prototype designed to evaluate scalability and

application server performance. RUBiS has been used

by other researchers to approximate realistic Internet Ser-

vices [16, 15, 13].

We use the PHP implementation of RUBiS running

Apache as the web server and MySQL as the database.

For consistent results, we re-create the database and pre-

populate it with 100,000 users and items before each ex-

periment. We use the default read-write transaction table

for the workload that exercises all aspects of the system

— adding new items, placing bids, adding comments,

viewing and browsing the database, etc. The RUBiS

workload generators warm up for 10 seconds, followed

by a session run time of 100 seconds and ramp down for

10 seconds.

We emulate a topology of 10 nodes consisting of two

database servers, six web servers and two workload gen-

erators as shown in Figure 8. A 100 Mbps network link

connects two replicas of the service spread across the

wide-area. Within a replica group, 1 Gbps links con-

nect all components. Each system component (servers,

workload generators) runs in its own Xen VM.

We now evaluate DieCast’s ability to scale a larger

RUBiS configuration with fewer resources. For the base-

line, we run a VM on each of the 10 physical ma-

chines. For our DieCast-scaled runs, we multiplex 10

VMs on a single physical machine and allocate 10% of

the resources to each VM. Each VM runs with the same

amount of memory in both the scaled and baseline exper-

iments. ModelNet emulates identical network character-

istics for both cases.

Figures 9(a) and 9(b) compare the baseline per-

formance with the scaled system for overall system

throughput and average response time (across all client-

webserver combinations) on the y-axis as a function of

number of simultaneous clients (offered load) on the x-

axis. In both cases, the performance of the scaled ser-

vice closely tracks that of the baseline. Interestingly, for

one of our initial tests, we ran with an unintended mis-

configuration of the RUBiS database: the workload had

commenting-related operations enabled, but the relevant

tables were missing from the database. This led to an

approximately 25% error rate with similar timings in the

responses to clients in both the baseline and DieCast con-

figurations. These types of configuration errors are one

example of the types of testing that we wish to enable

with DieCast.

Next, Figures 11(b) and 11(a) compare CPU and mem-

ory utilization in each node for both the scaled and un-

scaled experiments as a function of time for the case

of 1200 simultaneous clients generating load. One im-

portant question is whether the average performance re-

sults in earlier figures hide significant incongruities in

per-request performance. Here, we see that resource uti-

lization in the DieCast-scaled experiments closely tracks

the utilization in the baseline on a per-node and per-tier

(client, web server, database) basis. Similarly, Figure

11(c) compares the network utilization of individual links

in the topology for the baseline and DieCast-scaled ex-

periment. This graph demonstrates that DieCast closely
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Figure 9: Application performance: Baseline vs. DieCast.
Figure 10: Architecture of Isaac.
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Figure 11: Scaling with DieCast: Accurate emulation of system behavior with 1/10th of the resources.

tracks and reproduces variability in network utilization

for various hops in the topology. For instance, hops 3

and 5 in the Figure correspond to access links of clients

and show the maximum utilization, whereas individual

access links of Webservers (hops 10, 12, 14, 16, 18 and

20) are moderately loaded.

4.3 Exploring DieCast Accuracy

While we were encouraged by DieCast’s ability to scale

RUBiS and BitTorrent, they represent only a few points

in the large space of possible network service configura-

tions, for instance, in terms of the ratios of computation

to network communication to disk I/O. Thus, we built

Isaac, a configurable multi-tier network service to stress

the DieCast methodology on a range of possible config-

urations. Figure 10 shows Isaac’s architecture. Requests

originating from a client (C) travel to a unique front end

server (FS) via a load balancer (LB). The FS makes

a number of calls to other services through application

servers (AS). These application servers in turn may issue

read and write calls to a database back end (DB) before

building a response and transmitting it back to the front

end server, which finally responds to the client.

Isaac is written in Python and allows configuring the

service to a given interconnect topology, computation,

communication, and I/O pattern. A configuration de-

scribes, on a per request class basis, the computation,

communication, and I/O characteristics flowing back and

forth across multiple service tiers. In this manner, we

can configure experiments to stress different aspects of

a service and to independently push the system to ca-

pacity along multiple dimensions. We use MySQL for

the database tier to reflect a realistic transactional storage

tier.

For our first experiment, we configure Isaac with six

DBs, six ASs, six FSes. and 32 clients. The clients gener-

ate requests, wait for responses, and sleep for some time

before generating new requests. Each client generates 20
requests and each such request touches five ASes (ran-

domly selected at run time) after going through the FS.

Each request from the AS involves 10 reads from and

2 writes to a database each of size 1KB. The database

server too is chosen at random at runtime. Upon complet-

ing its database queries, each AS computes 500 SHA1
hashes of the response before sending it back to the FS.

Each FS then collects responses from all five AS’s and fi-

nally computes 5,000 SHA1 hashes on the concatenated

results before replying to the client.

We perform this 50-node experiment both with and

without DieCast scaling. For brevity, we do not show

the results of initial tests validating DieCast accuracy (in

all cases, performance matched closely in both the di-

lated and baseline case). Rather, we run a more complex

experiment where a subset of the machines fail and then

recover. Our goal is to show that DieCast can accurately

match application performance before the failure occurs,

during the failure scenario, and the application’s recovery

behavior. For the baseline, we run 50 physical machines
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Figure 14: Stressing DB/CPU.

with 180MB of RAM each. For DieCast, we run with 50
VMs on five physical machines with a scaling factor of

10 and as usual, configure each VM to receive 10% of

the resources and 180MB RAM. 30 seconds into the ex-

periment, we fail half of the database servers by stopping

MySQL servers on the corresponding nodes. As a result,

client requests accessing failed databases will not com-

plete, slowing the rate of completed requests. After one

minute of downtime, we restart the MySQL server and

soon after we expect to see the rate request completion

to regain its original value. Figure 12 shows the com-

parison of completion time of requests across all clients.

DieCast closely matches the baseline application behav-

ior with a dilation factor of 10. Before the failure, i.e.,

until around 30 seconds, time-spaced requests originat-

ing from clients are synchronized and due to symmetrical

load-distribution, finish in close proximity to each other

resulting in a step function. However, once the databases

start failing, ASes making requests to database servers

that are dead, established connections to dead servers,

variability in ASes talking to dead databases, etc., will

all leave the system desynchronized and hence, when the

database servers eventually heal (90 seconds), the step

function smoothes out. We also show the comparison of

the time spent in each tier of the service in Figure 13.

Encouraged by the results of the previous experiment,

we next attempt to saturate individual components of

Isaac to explore the limits of DieCast’s accuracy. First,

we evaluate DieCast’s ability to scale network services

when database access becomes the bottleneck. Figure 14

shows the completion time for requests where each ser-

vice issues a 100KB (rather than 1KB) write to the

database with all other parameters remaining the same.

This amounts to a total of 1 MB of database writes for

every request from a client. Even for such large data vol-

umes DieCast faithfully reproduces system performance.

While for this workload, we are able to maintain good

accuracy, the evaluation of disk dilation summarized in

Figure 2(c) suggests that there will certainly be points

where disk dilation inaccuracy will affect overall DieCast

accuracy.

Next, we evaluate our ability to perform scaling when

one of the components in our architecture saturates the

CPU. Specifically, we configure our front-end servers

such that prior to sending each response to the client, they

compute SHA1 hashes of the response 500,000 times to

artificially saturate the CPU of this tier. The results of

this experiment too are shown in Figure 14. We see that

the performance of the scaled system begins to diverge

slightly from the baseline. We are encouraged overall

as the system does not significantly diverge even to the

point of CPU saturation. For instance, the CPU utiliza-

tion for nodes hosting the FS in this experiment varied

from 50 − 80% for the duration of the experiment and

even under such conditions DieCast closely matched the

baseline system performance.

5 Commercial System Evaluation

While we were encouraged by DieCast’s accuracy for the

applications we considered in Section 4, all of the ex-

periments were designed by DieCast authors, and were

largely academic in nature. To understand the generality

of our system, we consider its applicability to a large-

scale commercial system.

Panasas [5] builds scalable storage systems targeting

Linux cluster computing environments. It has supplied

solutions to several Government agencies, Oil and Gas

companies, media companies and several commercial

HPC enterprises. A core component of Panasas’s prod-

ucts is the PanFS parallel file system (henceforth referred

to as PanFS ): an object-based cluster file system which

presents a single, cache coherent unified namespace to

clients.

To meet customer requirements, Panasas must ensure

its systems can deliver appropriate performance under a

range of client access patterns. Unfortunately, it is of-

ten impossible to create a test environment that reflects

the setup at a customer site. Since Panasas has several

customers with very large super-computing clusters and

limited test infrastructure at its disposal, its ability to per-

form testing at scale is severely restricted by hardware

availability, exactly the type of situation DieCast tar-

gets. For example, the Los Alamos National Lab has de-

ployed PanFS with its Roadrunner peta-scale super com-
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puter [8]. The Roadrunner system is designed to deliver

a sustained performance level of one petaflop at an esti-

mated cost of $90 million. Because of the tremendous

scale and cost, Panasas cannot replicate this computing

environment for testing purposes.

Porting Time Dilation. In evaluating our ability to ap-

ply DieCast to PanFS , we encountered one primary lim-

itation. PanFS clients use a Linux kernel module to com-

municate with the PanFS server. The client-side code

runs on all recent versions of Xen and hence DieCast sup-

ported them with no modifications. However, the PanFS

server runs in a custom operating system derived from an

older version of FreeBSD that does not support Xen. The

significant modifications to the base FreeBSD operating

system made it impossible to port PanFS to a more re-

cent version of FreeBSD that does support Xen. Thus,

unfortunately we could not easily employ the existing

time dilation techniques with PanFS on the server side.

However, since we believe DieCast concepts are general

and not restricted to Xen, we took this opportunity to ex-

plore whether we could modify the PanFS OS to support

DieCast, without any virtualization support.

To implement time dilation in the PanFS kernel, we

scale the various time sources and consequently the wall

clock. The TDF can be specified at boot time as a ker-

nel parameter. As before, we need to scale down re-

sources available to PanFS such that its perceived capac-

ity matches the baseline.

For scaling the network, we use Dummynet [28],

which ships as part of the PanFS OS. However, there

was no mechanism for limiting the CPU available to the

OS, or to slow the disk. For CPU dilation, we had to

modify the kernel as follows. The PanFS OS does not

support non work-conserving CPU allocation. Further,

simply modifying the CPU scheduler for user processes

is insufficient because it would not throttle the rate of

kernel processing. Thus, we created a CPU-bound task,

(idle), in the kernel and we statically assigned it the

highest scheduling priority. We scale the CPU by main-

taining the required ratio between the run times of idle

task and all remaining tasks. If the idle task consumes

sufficient CPU, it is removed from the run queue and the

regular CPU scheduler kicks in. If not, the scheduler al-

ways picks the idle task because of its priority.

For disk dilation, we were faced by the complication

that multiple hardware and software components interact

in PanFS to service clients. For performance, there are

several parallel data paths and many operations are either

asynchronous or cached. Accurately implementing disk

dilation would require accounting for all of the possible

code paths as well as modeling the disk drives with high

fidelity. In an ideal implementation, if the physical ser-

vice time for a disk request is s and the TDF is t, then the

request should be delayed by time (t − 1)s such that the
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Figure 15: Validating DieCast on PanFS .

total physical service time becomes t × s, which under

dilation would be perceived as s as desired.

Unfortunately, the Panasas operating system only pro-

vides coarse-grained kernel timers. Consequently, sleep

calls with small durations tend to be inaccurate. Using

a number of micro-benchmarks, we determined that the

smallest sleep interval that could be accurately imple-

mented in the PanFS operating system was 1 ms.

This limitation affects the way disk dilation can be im-

plemented. For I/O intensive workloads, the rate of disk

requests is high. At the same time, the service time of

each request is relatively modest. In this case, delaying

each request individually is not an option, since the over-

head of invoking sleep dominates the injected delay and

gives unexpectedly large slowdowns. Thus, we chose to

aggregate delays across some number of requests whose

service time sums to more than 1 ms and periodically in-

ject delays rather than injecting a delay for each request.

Another practical limitation is that it is often difficult to

accurately bound the service time of a disk request. This

is a result of the various I/O paths that exist: requests can

be synchronous or asynchronous, they can be serviced

from the cache or not, etc.

While we realize that this implementation is imperfect,

it works well in practice and can be automatically tuned

for each workload. A perfect implementation would have

to accurately model the low level disk behavior and im-

prove the accuracy of the kernel sleep function. Because

operating systems and hardware will increasingly sup-

port native virtualization, we feel that our simple disk di-

lation implementation targeting individual PanFS work-

loads is reasonable in practice to validate our approach.

Validation We first wish to establish DieCast accuracy

by running experiments on bare hardware and comparing

them against DieCast-scaled virtual machines. We start

by setting up a storage system consisting of an PanFS

server with 20 disks of capacity 250GB each (5TB total

storage). We evaluate two benchmarks from the stan-

dard bandwidth test suite used by Panasas. The first

benchmark involves 10 clients (each on a separate ma-

chine) running IOZone [24]. The second benchmark uses
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Aggregate

Throughput

Number of clients

10 250 1000

Write 370 MB/s 403 MB/s 398 MB/s

Read 402 MB/s 483 MB/s 424 MB/s

Table 2: Aggregate read/write throughputs from the IOZone benchmark

with block size 16M. PanFS performance scales gracefully with larger

client populations.

the Message Passing Interface (MPI) across 100 clients

(again, on separate machines).

For DieCast scaling, we repeat the experiment with our

modifications to the PanFS server configured to enforce a

dilation factor of 10. Thus, we allocate 10% of the CPU

to the server and dilate the network using Dummynet to

10% of the physical bandwidth and 10 times the latency

(to preserve the bandwidth-delay product). On the client

side, we have all clients running in separate virtual ma-

chines (10 VMs per physical machine), each receiving

10% of the CPU with a dilation factor of 10.

Figure 15 plots the aggregate client throughput for

both experiments on the y-axis as a function of the

data block size on the x-axis. Circles mark the read

throughput while triangles mark write throughput. We

use solid lines for the baseline and dashed lines for the

DieCast-scaled configuration. For both reads and writes,

DieCast closely follows baseline performance, never di-

verging by more than 5% even for unusually large block

sizes.

Scaling With sufficient faith in the ability of DieCast to

reproduce performance for real-world application work-

loads we next aim to push the scale of the experiment

beyond what Panasas can easily achieve with their exist-

ing infrastructure.

We are interested in the scalability of PanFS as we in-

crease the number of clients by two orders of magnitude.

We design an experiment similar to the one above, but

this time we fix the block size at 16MB and vary the

number of clients. We use 10 VMs each on 25 physi-

cal machines to support 250 clients to run the IOZone

benchmark. We further scale the experiment by using 10

VMs each on 100 physical machines to go up to 1000

clients. In each case, all VMs are running at a TDF of

10. The PanFS server also runs at a TDF of 10 and all

resources (CPU, network, disk) are scaled appropriately.

Table 2 shows that the performance of PanFS scales to

large client populations. Interestingly, we find relatively

little increase in throughput as we increase the client

population. Upon investigating further, we found that a

single PanFS server configuration is limited to 4 Gb/s

(500 MB/s) of aggregate bisection bandwidth between

the servers and clients (including any IP and filesystem

overhead). While our network emulation accurately re-

flected this bottleneck, we did not catch the bottleneck

until we ran our experiments. We leave a performance

evaluation when removing this bottleneck to future work.

We would like to emphasize that prior to our experi-

ment, Panasas had been unable to perform experiments at

this scale. This is in part due to the fact that such a large

number of machines might not be available at any given

time for a single experiment. Further, even if machines

are available, blocking a large number of machines re-

sults in significant resource contention because several

other smaller experiments are then blocked on avail-

ability of resources. Our experiments demonstrate that

DieCast can leverage existing resources to work around

these types of problems.

6 DieCast Usage Scenarios

In this section, we discuss DieCast’s applicability and

limitations for testing large-scale network services in a

variety of environments.

DieCast aims to reproduce the performance of an orig-

inal system configuration, and is well suited for predict-

ing the behavior of the system under a variety of work-

loads. Further, because the test system can be subject to

a variety of realistic and projected client access patterns,

DieCast may be employed to verify that the system can

maintain the terms of Service Level Agreements (SLA).

It runs in a controlled and partially emulated network

environment. Thus, it is relatively straightforward to con-

sider the effects of revamping a service’s network topol-

ogy (e.g., to evaluate whether an upgrade can alleviate

a communication bottleneck). DieCast can also system-

atically subject the system to failure scenarios. For ex-

ample, system architects may develop a suite of fault-

loads to determine how well a service maintains response

times, data quality, or recovery time metrics. Similarly,

because DieCast controls workload generation it is ap-

propriate for considering a variety of attack conditions.

For instance, it can be used to subject an Internet service

to large-scale Denial-of-Service attacks. DieCast may

enable evaluation of various DOS mitigation strategies

or software architectures.

Many difficult-to-isolate bugs result from system con-

figuration errors (e.g., at the OS, network, or application

level) or inconsistencies that arise from “live upgrades”

of a service’s software configuration. The resulting faults

may only manifest as errors in a small fraction of re-

quests and even then after a specific sequence of opera-

tions. Operator errors and mis-configurations [23, 25] are

also known to account for a significant fraction of service

failures. DieCast makes it possible to capture the effects

of mis-configurations and upgrades before a service goes

live.

At the same time, DieCast will not be appropriate

for certain service configurations. As discussed earlier,
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DieCast is unable to scale down the memory or storage

capacity of a service. Services that rely on multi-terabyte

data sets or saturate the physical memories of all of their

machines with little to no cross-machine memory/storage

redundancy may not be suitable for DieCast testing.

DieCast may change the fine-grained timing of indi-

vidual events in the test system. Hence, DieCast may not

be able to reproduce certain race conditions or timing er-

rors in the original service. Some bugs, such as memory

leaks, will only manifest after running for a significant

period of time. Given that we inflate the amount of time

required to carry out a test, it may take too long to isolate

these types of errors using DieCast.

Multiplexing multiple virtual machines onto a single

physical machine, running with an emulated network,

and dilating time will introduce some error into the pro-

jected behavior of target services. This error has been

small for the network services and scenarios we evalu-

ate in this paper. In general however, DieCast’s accuracy

will be service- and deployment-specific.

Some services employ a variety of custom hardware,

such as load balancing switches, firewalls, and storage

appliances. In general, it may not be possible to scale

such hardware in our test environment. Depending on

the architecture of the hardware, one approach is to wrap

the various operating systems for such cases in scaled vir-

tual machines. Another approach is to run the hardware

itself and to build custom wrappers to intercept requests

and responses, scaling them appropriately. A final option

is to run such hardware unscaled in the test environment,

introducing some error in system performance. Our work

with PanFS shows that it is feasible to scale unmodified

services into the DieCast environment with relatively lit-

tle work on the part of the developer.

7 Related Work

Our work builds upon previous efforts in a number of

areas. We discuss each in turn below.

Testing scaled systems SHRiNK [26] is perhaps most

closely related to DieCast in spirit. SHRiNK aims to

evaluate the behavior of faster networks by simulat-

ing slower ones. For example, their “scaling hypothe-

sis” states that the behavior of 100Mbps flows through

a 1Gbps pipe should be similar to 10Mbps through a

100Mbps pipe. When this scaling hypothesis holds, it

becomes possible to run simulations more quickly and

with a lower memory footprint. Relative to this effort, we

show how to scale fully operational computer systems,

considering complex interactions among CPU, network,

and disk spread across many nodes and topologies.

Testing through Simulation and Emulation One

popular approach to testing complex network services is

through building a simulation model of system behavior

under a variety of access patterns. While such simula-

tions are valuable, we argue that simulation is best suited

to understanding coarse-grained performance character-

istics of certain configurations. Simulation is less suited

to configuration errors or to capturing the effects of un-

expected component interactions, failures, etc.

Superficially, emulation techniques (e.g. Emulab [36]

or ModelNet [32]), offer a more realistic alternative to

simulation because they support running unmodified ap-

plications and operating systems. Unfortunately, such

emulation is limited by the capacity of the available phys-

ical hardware and hence is often best suited to consider-

ing wide-area network conditions (with smaller bisection

bandwidths) or smaller system configurations. For in-

stance, multiplexing 1000 instances of an overlay across

50 physical machines interconnected by Gigabit Ether-

net may be feasible when evaluating a file sharing ser-

vice on clients with cable modems. However, the same

50 machines will be incapable of emulating the network

or CPU characteristics of 1000 machines in a multi-tier

network service consisting of dozens of racks and high-

speed switches.

Time Dilation DieCast leverages earlier work on Time

Dilation [19] to assist with scaling the network configura-

tion of a target service. This earlier work focused on eval-

uating network protocols on next-generation networking

topologies, e.g., the behavior on TCP on 10Gbps Ether-

net while running on 1Gbps Ethernet. Relative to this

previous work, DieCast improves upon time dilation to

scale down a particular network configuration. In addi-

tion, we demonstrate that it is possible to trade time for

compute resources while accurately scaling CPU cycles,

complex network topologies, and disk I/O. Finally, we

demonstrate the efficacy of our approach end-to-end for

complex, multi-tier network services.

Detecting Performance Anomalies There have been

a number of recent efforts to debug performance anoma-

lies in network services, including Pinpoint [16], Mag-

Pie [10], and Project 5 [9]. Each of these initiatives an-

alyzes the communication and computation across mul-

tiple tiers in modern Internet services to locate perfor-

mance anomalies. These efforts are complementary to

ours as they attempt to locate problems in deployed sys-

tems. Conversely, the goal of our work is to test particu-

lar software configurations at scale to locate errors before

they affect a live service.

Modeling Internet Services Finally, there have been

many efforts to model the performance of network ser-

vices to, for example, dynamically provision them in re-

sponse to changing request patterns [18, 31] or to reroute

requests in the face of component failures [13]. Once

again, these efforts typically target already running ser-

vices relative to our goal of testing service configura-

tions. Alternatively, such modeling could be used to feed
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simulations of system behavior or to verify at a coarse

granularity DieCast performance predictions.

8 Conclusion

Testing network services remains difficult because of

their scale and complexity. While not technically or eco-

nomically feasible, a comprehensive evaluation would

require running a test system identically configured to

and at the same scale as the original system. Such test-

ing should enable finding performance anomalies, failure

recovery problems, and configuration errors under a vari-

ety of workloads and failure conditions before triggering

corresponding errors during live runs.

In this paper, we present a methodology and frame-

work to enable system testing to more closely match

both the configuration and scale of the original system.

We show how to multiplex multiple virtual machines,

each configured identically to a node in the original sys-

tem, across individual physical machines. We then di-

late individual machine resources, including CPU cycles,

network communication characteristics, and disk I/O, to

provide the illusion that each VM has as much comput-

ing power as corresponding physical nodes in the orig-

inal system. By trading time for resources, we enable

more realistic tests involving more hosts and more com-

plex network topologies than would otherwise be pos-

sible on the underlying hardware. While our approach

does add necessary storage and multiplexing overhead,

an evaluation with a range of network services, includ-

ing a commercial filesystem, demonstrates our accuracy

and the potential to significantly increase the scale and

realism of testing network services.
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