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Gain Variation in Recurrent Error
Propagation Networks

Steven J. Nowlan
Department of Computer Science
University Of Toronto®

INTRODUCTION

Neural networks have received much attention re-
cently as plausible models for studying the com-
putational properties of massively parallel systems.
Learning algorithms have been developed (Rumel-
hart et al., 1986; Ackley et al., 1985) that enable
these networks to learn internal representations, al-
lowing them to represent complex non-linear map-
pings. Two distinct types of networks have been
studied quite extensively. The first of these uses
analog (continuous-valued) units with a sigmoidal
I/O function (Hopfield and Tank, 1985), and an er-
ror propagation algorithm for updating the weights
to minimize an error function (Plaut et al., 1986;
Plaut and Hinton, 1987). Most of these studies
have focused on strictly feedforward networks. The
second type of network employs stochastic binary
units and symmetric connections. From an initial
state these networks approach a low temperature fix-
point (stable state), which represents a local mini-
mum of a global energy function. The weights in
such networks may be updated by examining the
difference in statistics between the states with in-
puts clamped and unclamped at thermal equilibrium
(Ackley et al., 1985).

Recent work has shown some interesting relation-
ships between these two distinct models. Peterson
and Anderson (1987b) have developed a continuous
approximation to the Boltzmann machine algorithm,
in which the stochastic binary units of the Boltz-
mann machine are replaced with analog units whose
states are mean field approximations to the average
states of corresponding stochastic binary units at
equilibrium. They have shown significant speedup
in convergence and improved generalization for in-
teresting problems (Peterson and Anderson, 1987a)-
Hopfield (1987) has shown that for a certain class of
statistical estimation problems, the statistical net-
work and the analog network have very closely re-
lated properties and learning algorithms. Provided

1The author is currently visiting the University of Toronto,
while completing a Ph.D. at Carnegie-Mellon University

that four conditions are met, the error propagation
update rule for the weights in an analog feedforward
network is a mean field approximation to the up-
date rule for a statistical network using the Boltz-
mann machine algorithm. These four conditions are:
the analog network must use a symmetric diver-
gence (Pearlmutter and Hinton, 1986) rather than
the more common mean square error function; the
statistical averaging in the two state network is per-
formed over the hidden and output units, but not
the input units; the two networks have a small num-
ber of outputs; and the networks have only a single
layer of non-interacting hidden units®.

This work explores another parallel between statis-
tical and analog networks. Recurrent analog net-
works often show better convergence if a global gain
term is introduced which may be varied over a single
settling (Hopfield, 1984). The result is a procedure
similar to simulated annealing (Kirkpatrick et al.,
1983). An error propagation scheme is presented
which allows an analog network to “learn” its own
gain variation schedule, and experimental results for
a constraint satisfaction task show an order of mag-
nitude speedup in learning when this approach is
used.

ERROR PROPAGATION IN
RECURRENT ANALOG NETWORKS

The recurrent analog networks that are considered
here use a synchronous updating procedure, and
place no restrictions on the nature of the connec-
tivity matrix. The activation level of a unit at time
t 1s a non-linear function of the input to the unit at
time t:

(1)

One possibility for g, used in our simulations, is the
logistic function, ¢(z) = 1/(1+e~%). The input is a
weighted sum of the states of units in the previous

time step:
zj: =Gy Z Wjili,t—1
i

it = 9(zj,t)

(2)

The term G, is a global gain term which premulti-
plies the input for every unit. There are also two
distinguished subsets of units: Z the set of input
units and @ the set of output units. The states of
units in Z are determined by the environment.

2This means that to first order the hidden units have no
effect on each other.
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Muitiplicative
gain terms for
aach iteration

A simple iterative net that
is run lor three iterations

An equivalent layered net

Figure 1: A recurrent network and the equivalent layered network. Corresponding weights
in layers must be identical (i.e. w; has the same value in all layers), but the gain terms
(G;) vary between layers. Each layer corresponds to the state of the recurrent network at a

different point in time.

The state vector for the recurrent network at time ¢
can be treated as the vector of states of the t** layer
in an equivalent layered network (figure 1). The tra-
jectory of the state vector for the recurrent network
is then represented by the state vectors of successive
layers in the equivalent network. Since the weights
in the recurrent network are stationary (fixed during
the settling of the network), the set of weights be-
tween successive layers in the layered representation
must be identical.

The dynamics for these networks can be expressed by
finding the continuous differential equations equiva-
lent to the discrete difference equations (1) and (2).
This produces the following set of coupled differen-
tial equations:

dy;

5 = Y+ E) +

(3)

where

zi=G Z wjiyi (4)
I; is defined to be zero for all units not in Z. Equa-
tion (3) is a simple transformation of an equation
that has been studied by both Amari (1972) and
Hopfield (1984). Amari showed that in randomly
connected networks with the dynamics of (3) the at-
tractors were either stable or bistable.
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When the attractors are fixpoints, one can use such
networks to perform constraint satisfaction searches.
The activities of units encode the values of the pa-
rameters of a problem, and the weights on the con-
nections encode the constraints between the param-
eters. This approach has been used for classic op-
timization problems (Hopfield and Tank, 1985) and
for parsing (Selman and Hirst, 1987). Coding the
constraints into the weights by hand becomes a
formidable task for large problems. This raises the
possibility of devising learning algorithms which will
manipulate the weights of a recurrent network to
model the constraints of a specific problem through
some training procedure.

There are several ways in which to pose the problem
of modifying the weights. One approach would be
to consider the fixpoint of the network for a specific
input, and compute some error measure based on
the distance of this fixpoint from a desired fixpoint.
One could then use gradient descent to modify the
weights to minimize this error measure (Pineda,
1987). An alternative is to consider not just the fix-
point, but the entire trajectory of the network. This
approach was first suggested by Rumelhart and Hin-
ton (1986) and is the approach taken here.

Consider a trajectory of length k for a recurrent net-
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work. There is an equivalent layered representation
of this trajectory which has k distinct layers (figure
1). The standard back-propagation algorithm may
be applied to this layered representation, if we define
an error measure E for the final states of units in O.
Using this approach we can derive partials for the

weights:
G y'. t—
E 3 Zj ¢ 1 1

Note that the back-propaganon proceeds through
the sequence of states in the trajectory, and in par-
ticular that the partial of £ with respect to wj;
will vary along that trajectory. Since the weights
are stationary, some form of time averaging is re-
quired. Equation (5) uses a uniform time averag-
ing, although versions which favour the terms near
the end of the trajectory could also be used.® Thus
the weights are being updated based on the aver-
age derivative over the trajectory. The disadvantage
of using this approach to modifying the weights in
the network is that it becomes necessary to store
the entire trajectory for the back propagation phase.
However, the advantage is that the network can be
trained not just to have certain limit behaviour, but
also to have certain behaviour along the trajectory
followed to the limit. One obvious example is to
force the network to learn fixpoints as attractors,
by penalizing bistable behaviour during the last few
states of the trajectory. To allow control over the
trajectory, the back propagation procedure is modi-
fied slightly to allow directly observed error terms in
time steps other than the last to be added to the back
propagated terms for units in @. (This is equivalent
to specifying desired states for intermediate layers in
a layered network.)

(5)

5w,.

The term G, in equation (5) determines the steep-
ness of the non-linearity in the recurrent network,
and has been referred to as the system gain (Hop-
field and Tank, 1985). This term may be allowed to
vary during the settling of the network. For exam-
ple, an increasing gain in a network with mutually
inhibitory connections can implement a winner-take-
all network that converges quickly. Hopfield and
Tank (Hopfield and Tank, 1985) found that increas-
ing the gain slowly as their analog network settled
increased the quality of the solution found by the
network. They suggested that increasing the gain in
this fashion was analogous to following the effective
field solution from a high temperature, resulting in

3The G: terms actually do weight the derivatives, so the
time averaging is not truly uniform.
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a final state near the thermodynamic ground state
of the system.

Rather than determining a gain schedule in advance,
an error propagation scheme can be used to decide
how G, should vary over the trajectory of the net-
work. Gy is optimized by performing gradient de-
scent in the error measure:

A B

Once again averaging is necessary, in this case over
all units in the network, since G is a global premul-
tiplier.

(6)

w}syli 1

Equations (5) and (6) can be combined to produce
an algorithm that will allow networks to exhibit de-
sired trajectories from initial states. These trajecto-
ries correspond to a constraint satisfaction search via
relaxation. An algorithm of this form is described by
Nowlan (Plaut et al., 1986).

PERFORMANCE ON A CONSTRAINT
SATISFACTION PROBLEM

The author investigated the performance of the gain
variation error propagation algorithm through simu-
lations on some small problems (Plaut et al., 1986).
For simple coding and sequencing tasks a network
that learns a variable gain schedule learns to solve
a problem several times faster than a similar net-
work with fixed gain. In addition, the learned gain
variation schedules outperformed several hand de-
signed schedules on the same tasks. These tasks are
all expressed in terms of I/O mappings, a prespeci-
fied output was required for each input. This makes
the dynamics to be learned quite a bit easier. It is
possible for the network to learn a trajectory from
each input to the desired output without construct-
ing a true attractor (a stable state with low error and
a region of attraction around it) for that output.?
A task in which it is necessary to construct robust
attractors which represent the problem constraints
provides a much richer domain in which to study
the performance of gain variation.

The problem selected is the n queens problem. This
is a classical constraint satisfaction problem that was
studied extensively by early Al researchers (Nilsson,

4 Additional simulations showed that this was in fact the
case for several of the experiments discussed.
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1980; Feigenbaum and Barr, 1981). The general
problem is to place n queens on an n by n gnd of
squares, such that there is no vertical, horizontal,
or diagonal line through the grid that contains more
than 1 queen. This problem is easily mapped into
a network: Each cell of the grid is represented by a
unit in the network, and each unit is fully connected
to every other unit including itself.* In addition,
each unit has an external input line to carry envi-
ronmental input. In this special case every unit is
both an input and an output unit (Z = @). One
nice feature of this problem is that it can be easily
scaled.

Given a random initial state vector, the network is
required to settle into a final state which represents
a valid solution to the n queens problem. A valid so-
lution is one in which n units are above the on level
(0.9), and all the rest are below the off level (0.1).
In addition, no two on units can lie on the same
vertical, horizontal, or diagonal line. To solve this
problem, the network must construct stable attrac-
tors for the valid solutions to the problem and the
set of attraction basins must span the entire input
space.

Since this task differs from the typical /O mapping
tasks given to error propagation algorithms, some
care must be taken in deciding on an error measure.
Given a random initial input state, there are in gen-
eral many final states which are equally acceptable as
solutions. One possibility is to measure the distance
of the actual output from each of these final solu-
tions, and take the minimum distance as the error
to be propagated. This results in a form of nearest
neighbour error measure.

An even more sophisticated training method, a form
of shaping, may be used to produce good results and
reduce the training time. The network is first pre-
sented with noisy versions of solution vectors as in-
put. A solution is chosen at random, and then noise
uniformly distributed between 0 and 7 (initially 0.2)
is added to units that are off and subtracted from
units that are on. This noisy vector is clamped to
the external inputs, and the network allowed to set-
tle for v cycles. During the last three cycles, the
mean square distance between the output vector and
the solution vector used to generate the input is cal-
culated as the error measure. The error is taken over
the last three cycles to force the network to learn at-

5The network must learn which of these connections are
really needed to solve the task.
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tractors which are fixpoints. The network is trained
in this fashion until its average error (normalized by
the vector lengths) is less than 20 percent over the
last 50 trials. At this point, the same training regime
is continued, except that the input is presented dur-
ing the first cycle only, rather than being clamped.
During this second phase 7 is gradually increased
to 0.4. Once the average error over 50 trials is less
than 10 percent, a final training phase is performed
in which initial states are randomly generated, and
the nearest neighbour error measure is used over the
last three trials. The first phase of training estab-
lishs the attractors, the second phase stabilizes the
attractors independant of external input, and the
third phase ensures robustness of the attractors.

The simulation results are summarized in Table 1.
One obvious anomaly in the table is the difference
between the 5 queens and 6 queens problems. The
gain variation technique shows a clear advantage for
the 5 queens problem (an order of magnitude im-
provement), but the performance with and without
gain variation is nearly identical for the 6 queens
problem. The answer lies in the second column of
the table. There are only 4 solutions for the 6 queens
problem, and two of these solutions are simple mirror
images of the other two. It is quite easy for the net-
work to set the unit biases to favour the small set of
units which appear in these 4 solutions. This “trick”
makes establishing stable attractors quite easy. On
the other hand for the 5 queens problem, and the
larger problems, there are sufficiently many solu-
tions so that almost every unit is active in at least
one solution, so the biases alone cannot be used to
give the network a head start. Under these circum-
stances, the dynamical behaviour of the network be-
comes much more important, and so a much stronger
advantage is shown by the gain variation algorithm.

The set of weights learned by the network for one ex-
ample of the 5 queens problem (figure 2) shows that
in its solution the network has extracted the essen-
tial constraints of the task. Each unit has learned
to develop a positive weight to itself, and negative
weights along all horizontal, vertical and diagonal
lines which the unit lies on. This means that all of
the units have a natural tendency to turn on, and
along each line (in any orientation) a winner-take-
all network has formed, so that the stable states are
those in which only one unit on a particular line is
on. This is a very natural representation of the orig-
inal problem constraints, which stipulated that no
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No Gain Variation Gain Variation
n | Solutions | Phase 1 Phase 2 Total € Phase 1 Phase 2 Total ¥-€
4 2 115 420 677 | 0.1 70 232 350 | 1.0 x 10~
5 10 6371 11048 19820 | 0.01 371 1048 1540 | 1.0 x 10~*
6 4 371 1048 1420 | 0.1 397 698 1242 | 1.0 x 10-3
7 40 20600 57480 83200 | 0.01 1280 4160 6080 | 1.0 x 10—*
8 92 50000 — 50000 | 0.01 1960 12600 16200 | 1.0 x 10—

Table 1: Simulation results for various sizes of the n queens problem. ¢ is the size of the
weight step, v-¢ is the size of the gain update. The numbers under the columns Phase 1,
Phase 2, and Total are the number of weight updates performed in each training phase (see
text) and in total. One update was performed after every 20 training examples. The results
for the 4 queens problem are averaged over 50 runs, for the 5 and 6 queens problems the
averages are over 20 runs. Only 2 runs are reported for the 7 queens, and 1 run for the 8
queens. The algorithm with no gain variation was not able to meet the 20 percent error
criteria for phase 1 for the 8 queens problem and was terminated after 530000 updates.

- —

- e e

Figure 2: Weights learned for the 5 queens problem. The weight display is recursive, each
large grey square represents one unit. Within each large grey square is a 5 by 5 grid of
squares which represent the weight of the connection from that unit to every other unit
in the network. Black squares represent negative weights, white squares represent positive
weights, and the size of the square represents the magnitude of the weight. Weight decay
was applied to drive all non-essential weights to zero, to simplify the weight display.

670




NOWLAN

Figure 3: Display of the dynamics of the 5 queens problem for 5 different initial states. Each
column represents the settling of the network for one case. The large black squares contain
the activity levels of all 25 units in the network, arranged in a 5 by 5 grid. The size of the
white square in each grid position is proportional to the activity of the corresponding unit.
In all cases the state reached at the end of 6 cycles is a stable fixpoint.

two queens could lie on the same horizontal, vertical
or diagonal line.

The dynamic behaviour of a 5 queens network can
be seen in figure 3. In the third of the 5 examples we
can see the network placing a queen in the third row
when the initial configuration contains no dominant
unit in this row. In the fifth example we can see
competition between two initially dominant units in
both the first and second rows, and also the creation
of a dominant unit in the third row. The perfor-
mance of the network is quite robust, even on highly
ambiguous inputs.

Qur experiments with the simple I/O mapping net-
works showed a tendency for the learned gain sched-
ules to be “annealing” schedules, starting at a low
gain and increasing it as the network settled (Plaut
et al., 1986). This same effect is observed in the
simulations for the n queens problem.

DISCUSSION

Varying the gain for a recurrent network as it settles
has been suggested elsewhere (Hopfield and Tank,
1985; Pineda, 1987), as has an analogy between gain
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in recurrent analog networks, and temperature in
statistical networks (Amari, 1972; Hopfield, 1984;
Pineda, 1987). The unique aspect of this work is
the use of an error propagation scheme to simulia-
neously optimize the weights and gain schedule for a
recurrent network. The empirical results presented
here show that for constraint satisfaction problems
in which a complex attractor structure must be de-
veloped, the parallel optimization of the weights
and gain schedule can produce an order of magni-
tude speed-up in the convergence of the optimiza-
tion. What is not clear is whether this speed-up is
obtained by following a shorter path to the same
weight region that would be reached by optimizing
the weights alone, or whether a qualitatively differ-
ent region of weight space is reached by the combined
optimization.

Some simple simulations tend to support the lat-
ter hypothesis. If an n queens network that has
been trained with gain variation has its gain sched-
ule modified so that the gain is a constant value
(for example the mean of the gain schedule), quali-
tatively different behaviour is observed from the net-
work. Additional stable states are observed, which
do not correspond to solutions to the n queens prob-
lem, and which are not stable when the network is
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allowed to settle using the original gain schedule.
This behaviour is expected. Annealing the analog
network with the gain schedule will force the net-
work into states nearer the global error minimum,
and away from local minima with relatively high er-
ror. It would appear that the use of gain variation
allows the network to find a set of weights that has an
attractor structure with many high error spurious at-
tractors, in addition to the low error attractors that
correspond to solutions to the task. It is apparently
much easier to find a set of weights with an attractor
structure of this form, rather than one with attrac-
tors which correspond only to task solution points.
This leads to the hypothesis that the speed-up in
convergence is obtained by allowing a much larger
region of weight space to satisfy the problem, and
that the combined optimization leads to a qualita-
tively different region of weight space than by opti-
mization of the weights alone.

There is an additional factor which may account
for some of the speed-up in learning observed with
the parallel optimization of the weights and gain
schedule.® The error surface for many problems that
back propagation is applied to is characterized by
ravines with steep sides in most directions, but a
shallow descent in one direction. Once the weight
vector is aligned with the floor of the ravine, one
can move quite rapidly along the floor of the ravine
by simply adjusting a global gain term. To exam-
ine this effect, several of the 5-queens simulations
were repeated with a gain term that was learned by
error propagation, but was constrained to be con-
stant during a settling (as the weights were con-
strained). This algorithm was a factor of two to
three faster than the simple back-propagation algo-
rithm, but still five to six times slower than the par-
allel optimization of the weights and gain schedule,
suggesting that the ability to scale all of the weights
accounted for a small part of the speed-up observed
in the n-queens problem. Nevertheless, the speed-
up was significant enough to suggest using a similar
scale factor in layered networks.
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