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A saddlepoint approximation for testing exponentiality against
some increasing failure rate alternatives
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Abstract

In this article we discuss uniformly most powerful unbiased tests for testing exponentiality against a speci-c
class of two-parameter exponential models with increasing failure rate. We show that the optimal test statistic
for this problem admits an alternative representation in terms of a spacings statistic. Using the conditional
saddlepoint approximation proposed by Gatto and Jammalamadaka (J. Amer. Statist. Assoc. 94 (1999) 533),
we provide highly accurate approximations for the signi-cance values. The test procedure is illustrated with
two practical examples from reliability and survival analysis. We also obtain the asymptotic distribution of
the test statistic under a sequence of converging alternatives, which allows for the computation of asymptotic
relative e6ciency. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Exponential distribution; Goodness-of--t test; Reliability analysis; Spacings statistics; Survival analysis; Uniform
spacings

1. Introduction

Increasing failure rate (IFR) and decreasing failure rate (DFR) distributions play a very important
role in reliability and survival studies. These two classes of distributions characterize life durations
of physical units that deteriorate (for IFR) or that improve in reliability (for DFR) with time. The
failure rate or hazard function h(x) of an absolutely continuous random variable X ¿ 0 (representing
the life duration of a physical unit) is de-ned by h(x) dx=P[X ∈ (x; x+dx) |X ¿x]. It can be seen
that IFR (respectively DFR) distributions on R+ are characterized by the fact minus the logarithm
of the density function is a convex (respectively concave) function, see e.g. Barlow and Proschan
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(1981). We consider probability models with density function of the form

f(x | �) = c−1(�) exp{−�1x − �2S(x)}; x¿ 0; (1)

where S is a convex or a concave function, and � = (�1; �2). These are two-parameter exponential
models with parameters �1 and �2, and were considered recently by del Castillo and Puig (1999a, b).
It is important to note that because convexity is invariant under linear transforms, all distributions
in these models are IFR or DFR, depending on whether S is convex or not. There are yet only
three possible choices for the function S that lead to the model being scale invariant, i.e. �X
remains in the same class of distributions, ∀�¿ 0, and we focus here on the particular choice
S(x) = xq. We refer to alternatives S(x) = xq with q¿ 1 as Type I alternatives, and to alternatives
with −1¡q¡ 0 as Type II alternatives. Both Types I and II alternatives represent IFR statistical
models.

We now focus on the problem of testing exponentiality with alternatives of the types considered
above. By the classical theory of uniformly most powerful unbiased (UMPU) tests for multiparameter
exponential families (see e.g. Lehmann, 1994), tests for the null hypothesis H0 : �2 = 0 (i.e. for
exponentiality) against the one-sided alternative H1 : �2¿ 0 of size � are characterized by rejection
regions of the form {x∈Rn

+ | ∑n
i=1 S(xi)¡K(

∑n
i=1 xi)}, K being a function so that, under H0,

P[
∑n

i=1 S(Xi)¡K(
∑n

i=1 Xi)] = �, for all values of the (nuisance) parameter �1 of the exponential
distribution, and where X1; : : : ; Xn are independent random observations from the underlying model.
del Castillo and Puig (1999a) show in particular that for alternatives of Types I and II, this general
form of the rejection region of the UMPU test simpli-es to

{x∈Rn
+ | Ls= Lxq ¡ t�}; where Ls= n−1

n∑
i=1

S(xi); Lx = n−1
n∑
i=1

xi;

and where t� is the value for which the rejection region of the test has size �. Although this exact test
is UMPU, the small sample distribution of the test statistic is not available. For both Types I and II
alternatives, we show that by reexpressing the problem in terms of spacings, which are the gaps be-
tween the successive order statistics, it is possible to apply the conditional saddlepoint approximation
for spacings statistics proposed by Gatto and Jammalamadaka (1999) in this setting. This saddlepoint
approximation allows one to compute signi-cance values or P-values with a relative error of the
order of n−1, or to determine critical values with a relative error of the order of n−3=2. Tests based
on spacings, which are the gaps between the successive values of an ordered uniform sample, have
proved themselves useful in various statistical problems, including goodness-of--t tests, see e.g. Pyke
(1965) for a general review, and Doksum and Yandell (1984) in connection to reliability. For the
special case of Type I model with q=2 (singly truncated normal alternatives) del Castillo and Puig
(1999b) propose reexpressing the critical region of the test by means of a likelihood ratio statistic
which enables one to use a speci-c saddlepoint approximation. By using the conditional approach by
Gatto and Jammalamadaka (1999) together with a general spacings statistic representation, we obtain
a more general approximation, covering the special case q=2 (which corresponds to the well-known
Greenwood spacings statistic). Again by exploiting the spacings representation, we next derive the
asymptotic null distribution of the test statistic for exponentiality, as well as its distribution under
close alternatives.
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The structure of this article is as follows. In Section 2, we describe the saddlepoint approximation
for this particular setting. In Section 3, we give the asymptotic distributions of the test statistic for
exponentiality under the null hypothesis as well as under a sequence of alternatives converging to
the null hypothesis, which allows one to obtain Pitman’s asymptotic relative e6ciency (ARE). The
excellent numerical accuracy of the saddlepoint approximation is -nally discussed in Section 4 and
illustrated by means of two examples based on real data, one on air conditioning failures in aircraft
and the other on remission times for leukemia.

2. Application of the conditional saddlepoint approximation

The saddlepoint method provides very accurate approximations for distribution or density func-
tions of statistics, even in extreme situations (tails of the distribution, very small sample sizes).
It was introduced into statistics by Daniels (1954) and some important general texts and reviews
are: BarndorO-Nielson and Cox (1989), Field and Ronchetti (1990), Field and Tingley (1997),
Jensen (1995), and Kolassa (1994). To -nd the distribution of LS= LX q, where LS = n−1 ∑n

i=1 S(Xi) =
n−1 ∑n

i=1 X
q
i and LX = n−1 ∑n

i=1 Xi, we apply the conditional saddlepoint approximation of a sam-
ple mean given another sample mean, proposed by Skovgaard (1987). To do this we exploit the
conditional representation for exponential random variables given by (6) below.

The important steps for obtaining the saddlepoint approximation of the distribution function of the
test statistic LS= LX q for models of Types I and II are the following. Consider the cumulant generating
function

K(�; t) =−�1t − �2 + log
∫ ∞

0
exp{�1xq + (�2 − 1)x} dx; (2)

where �= (�1; �2) and t ¿ 0 is the point at which we evaluate the distribution function.
Step 1: Find �= (�1; �2), the joint saddlepoint, implicitly de-ned by the equation

@
@�
K(�; t) = 0:

Step 2: De-ne

K ′′(�) =
@2

@�@�T
K(�; t);

s= n1=2�1|det(K ′′(�))|1=2; r = n1=2 sgn(�1){−2K(�; t)}1=2

and

Pn(t) = �(r)− �(r)
{
1
s
− 1
r

}
; (3)

where �(·) and �(·) are the standard normal density and distribution functions.
Then, uniformly for t in sets where (t−E[ LS= LX q])=O(1), i.e. in large deviation regions as n → ∞,

P
[ LS
LX q ¡ t

]
= Pn(t){1 + O(n−1)}: (4)
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The error would also become O(n−3=2) over regions where (t − E[ LS= LX q]) =O(n−1=2), i.e. in normal
deviation regions. The type of tail area probability approximation (3) is due to Lugannani and Rice
(1980). Alternatively, the BarndorO-Nielsen tail area formula is given by

P∗
n (t) = �

(
r +

1
r
log

{ s
r

})
; (5)

and, by Lemma 2.1 in Jensen (1992), Pn(t) = P∗
n (t){1 + O(n−1)}, uniformly in large deviation

regions. The asymptotic term above would also become O(n−3=2) in normal deviation regions.
Gatto and Jammalamadaka (1999) exploited a conditional representation of exponential random

variables to obtain a saddlepoint approximation for spacings statistics, and their saddlepoint approx-
imation is the same as the one given by Steps 1 and 2 above. The gaps between the successive
values of an ordered sample are called the spacings. If U1; : : : ; Un−1 are independent and identically
distributed (i.i.d.) random variables uniformly distributed on [0; 1], and 06U(1)6 · · ·6U(n−1)6 1
are their order statistics, we de-ne the “uniform spacings” as

Di = U(i) − U(i−1); i = 1; : : : ; n;

where U(0)
def= 0 and U(n)

def= 1. If V1; : : : ; Vn are i.i.d. exponential random variables with distribution
function P[V16 v] = 1− exp{−"v}, v; "¿ 0, then it is known that, ∀"¿ 0,

(nD1; : : : ; nDn) ∼
(
V1

LV
; : : : ;

Vn
LV

)
∼ (V1; : : : ; Vn)

∣∣∣∣∣
n∑
i=1

Vi = n ; (6)

where LV = n−1 ∑n
i=1 Vi. It follows that LS= LX q is equivalent in distribution to a sum of spacings, each

one raised to the qth power. This can also be reexpressed as a sum of i.i.d. exponential random
variables each one raised to the qth power and then conditioned on their sum, which allows for the
application of the conditional saddlepoint approximation for spacing statistics in the form provided
by Gatto and Jammalamadaka (1999). In particular, we set #=0 and t2 = 1 as de-ned in Gatto and
Jammalamadaka (1999, p. 534). The point of conditioning is indeed t2 = 1 because we condition on
LV = 1, and the solution of the “conditional saddlepoint equation” is the trivial value # = 0 because
we are free to choose the parameter of the exponential distribution " = 1 here above, so that the
expectation of LV is one and no exponential tilting is then required.

In order to have c(�)¡∞ in the two-parameters exponential model (1), it is necessary to consider
the following restrictions on the parametric space. Let us denote the parametric space as D, � =
(�1; �2)∈D, the interior of D as $, and the boundary of D as $0 = D\$. For Type I, alternatives

$= {(�1; �2) | �1 ∈R; �2¿ 0} and $0 = {(�1; �2) | �1¿ 0; �2 = 0}: (7)

For Type II, alternatives

$= {(�1; �2) | �1¿ 0; �2¿ 0} and $0 = {(�1; �2) | �1¿ 0; �2 = 0}: (8)

We can deduce from (7) and (8) that the integral in the cumulant generating function (2) converges
under the following conditions: for Type I, �1¡ 0, �2 ∈R, or �1 = 0, �2¡ 1; for Type II, �1¡ 0,
�2¡ 1.
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Remark 2.1. The integral appearing in the cumulant generating function can generally not be solved
analytically. In the two examples of Section 4; we evaluated it numerically by a Simpson rule;
after an appropriate change of variables transforming the bounds of integration to become
0 and 1.

Remark 2.2. The special case where q=2 has been the central subject of the paper by del Castillo
and Puig (1999b); who show that in this case the critical region of the test can be reexpressed as
W ¿k�; where W =2[l(�̂)− l(�̃)] is the likelihood ratio test statistic; l is the log-likelihood function;
and �̂ and �̃ are the MLE under H1 and H0. Hence; the saddlepoint approximation for the signed root
likelihood ratio statistic R = sgn �̂2W 1=2 in exponential families can be used here (see e.g. Jensen;
1995; Section 5.2). Up to a second-order asymptotic accuracy; R∗ = R + R−1 log{S=R} is approxi-
mately standard normal; where S = �̂2|det{I(�̂)=I2(�̃2)}|1=2; I(�) = −E�[@2=(@*@*T ) logf(X1 | *)|*=�]
is the Fisher information matrix; and I2(�2) =−E�2 [@2=@*2 logf(X1 | (0; *))|*=�2 ] is the scalar Fisher
information under H0.

The Greenwood test statistic n−1 ∑n
i=1 (nDi)2 for the null hypothesis of uniformity corresponds to

our exponential model with the singly truncated normal model alternative. In connection with this,
Gatto and Jammalamadaka (1999) provide an alternate analytical solution for the integral in (2) for
q= 2, yielding

K(�; t) =

{−�1t1 − �2 − (�2−1)2

4�1
+ 1

2 log{− +
�1
}+ log{�( �2−1√−2�1

)}; if �1¡ 0;

−�2 − log{1− �2} if �1 = 0 and �2¡ 1;

which avoids numerical integration. We provide here a single computation of the saddlepoint approx-
imation for the distribution of the Greenwood test statistic, i.e. of LS= LX q when q=2. We consider the

very small sample size n=4. In this case, as
√
n( LS= LX q−2) D→N(0; 4), the asymptotic approximation

to the distribution of of LS= LX q is given by �(
√
n(t − 2)=2) (see Section 3). The saddlepoint approx-

imation for the distribution of LS= LX q at t = 1:156 is 0.107 when based on the Lugannani and Rice
formula, 0.098 when based on the BarndorO-Nielsen formula, these values compared to the exact
value of 0.100 (Burrows, 1979). From the asymptotic normal approximation, we obtain a probability
close to the double of the exact one (i.e. the relative error is close to 100%).

To summarize, the saddlepoint approximation for the case q = 2 proposed by del Castillo and
Puig (1999b) turns out to be just a special case of our saddlepoint approximation. We also provide
the normal approximation (derived in the next section), in order to show the importance of the
saddlepoint approximation, with small sample sizes.

Remark 2.3. In order to determine critical regions of size �; the �th quantile of LS= LX q; t�; can
be approximated by a one-step inversion of P∗

n ; see Wang (1995) and Gatto (2001) for details.
This one-step method leads to an approximation of t� with a relative error of the order n−3=2; and
has shown to be numerically very accurate with the likelihood ratio goodness-of--t test by Gatto
(2001).

Remark 2.4. For Type II models; i.e. with −1¡q¡ 0; the derivatives K ′′
11 and K ′′

12 must be com-
puted numerically; as it is not possible to exchange the order of derivation and integration. The
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numerical diOerentiation does however not add signi-cant inaccuracies; as we can see in Exam-
ple 3; with q =−1=2. In Example 2; with q = 2 where these derivatives can be found analytically;
very similar numerical results have been obtained with both the analytical and the numerical
diOerentiations.

3. Asymptotic distributions under close alternatives

Our test of exponentiality involves the null hypothesis

H0 : F(x) = F(x | �1; 0) = 1− exp{−�1x};
and the alternative hypothesis

H1 : F(x) = F(x | �1; �2) = c−1(�)
∫ x

0
exp{−�1t − �2tq} dt; �2¿ 0:

For a consistent test, the power at any -xed alternative tends to one as n → ∞. Hence, asymptotic
comparisons of such tests can only be made for sequences of alternatives converging towards the
null as n → ∞ at a su6ciently fast rate. If however this sequence of alternatives converges to the
null too fast, then the test would not be able to distinguish between the null and the asymptotic
sequence of alternatives, and the power would not be any bigger than the size. Typically, there
is a speci-c convergence rate for the sequence of alternatives at which the asymptotic power will
be smaller than one and larger than the size. At that speci-c rate, the test will of course not be
consistent, but it will be possible to compute a non-trivial asymptotic power. This turns out to be
useful for comparison purposes. In this context, Pitman’s ARE can be de-ned as the inverse of the
sample sizes required by two competing tests to attain a speci-c power between the size and one,
for such converging sequences of alternatives (see e.g. SerWing, 1980, Section 10.2).

In what follows we derive the asymptotic distributions of our test statistic for exponentiality under
appropriate asymptotically converging alternatives and, as a special case, we can obtain the asymp-
totic distribution under the null hypothesis. Although we provide this asymptotic approximation,
we recall that it is known that spacings statistics converge rather slowly to normality, and there-
fore the saddlepoint approximation provided in Section 2 is a more reliable method for probability
computations under the null hypothesis.

We take thus H1n : F(x) = F(x | �1; �2n)n→∞→ F(x | �1; 0), ∀x; �1¿ 0, which is the case when the
sequence {�2n} converges to 0. From now on we write F0(x)=F(x | �1; 0) and F1n(x)=F(x | �1; �2n).
Let us now de-ne the random variables Di = nXi= LX ; i = 1; : : : ; n. Our test statistic for the null hy-
pothesis of exponentiality based on the original sample X1; : : : ; Xn is now equal to a goodness-of--t
spacings statistic for the null hypothesis of uniformity, LS= LX q = n−1 ∑n

i=1(nDi)q, because the -rst
equivalence in (6) allows for this “dual” interpretation. (In the dual goodness-of--t problem, the
ordered sample can be constructed by U(1) =D1; U(2) =D1 +D2; : : : ; U(n−1) =D1 + · · ·+Dn−1.) The
particular deviation from exponentiality written above as H1n can now be reexpressed as a particu-
lar deviation from uniformity, H1n : G(u) = F1n(F

(−1)
0 (u)), since PH1n[F0(X1)6 u] = F1n(F

(−1)
0 (u)).

Moreover, by de-ning

Ln(u) = n1=4{F1n(F
(−1)
0 (u))− u}; 06 u6 1; (9)
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we can rewrite the latter sequence of alternatives as

H1n : G(u) = u+ n−1=4Ln(u):

We consider the following regularity conditions as given in Rao and Sethuraman (1975, p. 309):
Ln(0)=Ln(1)=0, Ln continuously diOerentiable, i.e. with ln=L′n continuous, Ln

n→∞→ L uniformly, and
L twice continuously diOerentiable, with l = L′. It was established by Rao and Sethuraman (1975,
p. 312) that statistics based symmetrically on spacings cannot discriminate alternatives H1n at rates
n−0, 0¿ 1=4, and that the rate n−1=4 is appropriate to obtain the asymptotic power over regions of
modest power. With simple algebra we -nd from (9),

ln(u) = n1=4[�−1
1 c−1(�1; �2n) exp{−�2n[− �−1

1 log(1− u)]q} − 1]

= n1=4[�2n{�−q1 1(q+ 1)− (−�−1
1 log{1− u})q}+O(�22n)]:

This shows that we need �2n = n−1=42 + O(n−r), for 2¿ 0 and r ¿ 1=4. With this choice we have
ln(u)

n→∞→ l(u) = 2{�−q1 1(q + 1) − (−�−1
1 log{1 − u})q}. Under this sequence of alternatives H1n,

n−1 ∑n
i=1(nDi)q is then approximately normal with expectation

3n = 1(q+ 1) +
1

2
√
n
q(q− 1)1(q+ 1)

∫ 1

0
l2(u) du

and variance

�2n =
1
n
{1(2q+ 1)− (q2 + 1)12(q+ 1)}:

In particular, under H0, l = 0 so that
∫ 1
0 l

2(u) du = 0. In this case the expected value of the test
statistic under H0 is 3n = 1(q+ 1), and the variance �2n remains -xed. As it could be expected, the
expectation under any sequence of alternatives (and hence the local power) depends on the nuisance
parameter �1.

4. Applications

In this section, we consider applications of the proposed test and saddlepoint approximation to
two real data examples. We show the high numerical accuracy of the conditional saddlepoint ap-
proximation with q= 3 and −1=2, and with sample sizes n= 21 and 29, respectively.

Example 1 (Remission times for leukemia). This example corresponds to the remission times in
weeks of n=21 patients with acute leukemia; proposed by Freireich et al. (1963); which is discussed
in our setting by del Castillo and Puig (1999a). They show by a Weibull probability plot of these
data (because the Weibull model has been used for these data by another author) that model (1)
with S(x) = xq and q = 3 (Type I) gives a good -t to the data. They also motivated the model
with q= 3 by comparing the associated hazard function h (a quadratic function) with the empirical
hazard function. The likelihood equations of the model with q = 3 have a unique solution; as they
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Table 1
Distributions of LS= LX

q
with q = 3 and n= 21, with P-values of the remission times for leukemia data

t PE[ LS= LX
q
¡ t] PLR[ LS= LX

q
¡ t] PBN[ LS= LX

q
¡ t] RAELR(t) RAEBN(t)

1.800 0.001 0.001 0.001 0.193 0.174
2.000 0.003 0.004 0.004 0.072 0.056
2.200 0.011 0.012 0.012 0.041 0.025
2.400 0.027 0.028 0.027 0.011 0.005
2.600 0.052 0.053 0.052 0.023 0.007
2.800 0.086 0.089 0.087 0.028 0.011
2.904 0.108 0.110 0.108 0.024 0.007
3.000 0.129 0.132 0.130 0.027 0.009
3.200 0.176 0.183 0.179 0.037 0.019
3.400 0.228 0.237 0.233 0.041 0.022
3.600 0.280 0.295 0.289 0.052 0.031
3.800 0.333 0.353 0.346 0.060 0.038
4.000 0.385 0.411 0.402 0.068 0.045
4.200 0.432 0.466 0.455 0.077 0.052
4.400 0.480 0.515 0.503 0.074 0.048

Exact left tail probability (PE), Lugannani and Rice (PLR) and BarndorO–Nielsen (PBN) approxima-
tions, absolute relative error of Lugannani and Rice (RAELR = |PE − PLR|=PE) and BarndorO–Nielsen
(RAEBN = |PE − PLR|=PE).

satisfy the condition given in Section 1; and the MLE are �̂1 = 0:0313 and �̂2 = 0:0001. We now
show the accuracy of the saddlepoint approximation in this example. The integral in the cumulant
generating function (2) is evaluated by a quadratic interpolation of the integrand (Simpson rule);
after a change of variable which transforms the domain of integration from (0;∞) onto (0; 1). The
interval (0; 1) is divided into m similar parts and we need evaluating the integrand the at the m+ 1
extremities; this integration will generate an error of the order O(m−4). We selected m=1000; leading
to a negligible error of the order of 10−12. In Table 1; PE denotes the cumulative probabilities of
the distribution of LS= LX q; q = 3, obtained by 105 Monte Carlo samplings, which will be referred
as “exact” probabilities (as they approximate the exact probabilities with negligible errors). PLR

denotes the probabilities obtained by the conditional saddlepoint approximation, in particular with
the Lugannani and Rice method (3). PBN denotes the probabilities obtained by the asymptotically
equivalent BarndorO-Nielsen formula (5). The relative absolute error of both approximations is given
by RAELR(t) = |PE[ LS= LX

q¡ t]− PLR[ LS= LX
q¡ t]|=PE[ LS= LX

q¡ t], for the Lugannani and Rice formula,
and RAEBN(t) is de-ned in a similar way. We can see that the saddlepoint approximation is extremely
accurate, for very small tail probabilities also. Also, there is apparently not a signi-cant diOerence
between both Lugannani and Rice and BarndorO-Nielsen formulas. The exact P-value is also given
in Table 1, namely 0.108, which is very well approximated by both the saddlepoint formulas. We
can remark that, in this example, there is not a very strong evidence against the exponential model
�2 = 0.

Example 2 (Air-conditioning failures). We consider n=29 times in operating hours between succes-
sive failures of the air conditioning equipment of a aircraft. This example was proposed by Proschan
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Table 2
Distributions of LS= LX

q
with q=−1=2 and n=29, with P-values of the air-conditioning failures data

t PE[ LS= LX
q
¡ t] PLR[ LS= LX

q
¡ t] PBN[ LS= LX

q
¡ t] RAELR(t) RAEBN(t)

1.200 0.002 0.002 0.002 0.004 0.003
1.240 0.008 0.008 0.008 0.033 0.027
1.280 0.021 0.022 0.022 0.035 0.029
1.287 0.024 0.025 0.025 0.033 0.027
1.320 0.046 0.046 0.046 0.015 0.009
1.360 0.082 0.083 0.083 0.021 0.016
1.400 0.130 0.133 0.132 0.020 0.015
1.440 0.188 0.192 0.191 0.022 0.016
1.480 0.252 0.259 0.258 0.029 0.023
1.520 0.317 0.331 0.329 0.045 0.039
1.560 0.382 0.406 0.403 0.063 0.056
1.600 0.446 0.493 0.488 0.105 0.093

Exact left tail probability (PE), Lugannani and Rice (PLR) and BarndorO–Nielsen (PBN) ap-
proximations, absolute relative error of Lugannani and Rice (RAELR = |PE − PLR|=PE) and
BarndorO–Nielsen (RAEBN = |PE − PLR|=PE).

(1963). Various other authors have analyzed these data and have often concluded that there was no
strong evidence against the hypothesis of exponentiality. As an IFR alternative would be consistent
with the nature of these data; del Castillo and Puig (1999a) considered the IFR model (1) with
q = −1=2 (Type II). As in the previous example; the integral in the cumulant generating function
(2) is evaluated by Simpson rule; and in Table 2; PE denotes the cumulative probabilities of the
distribution of LS= LX q; q = −1=2; obtained by 105 Monte Carlo samplings, PLR and PBN denote the
probabilities obtained by the Lugannani and Rice method (3) and by the asymptotically equivalent
BarndorO-Nielsen formula (5). The relative absolute error of both approximations are again given
by RAELR(t) = |PE[ LS= LX

q¡ t]− PLR[ LS= LX
q¡ t]|=PE[ LS= LX

q¡ t], for the Lugannani and Rice formula,
and RAEBN(t) is de-ned in a similar way. Here also, the saddlepoint approximation is very accu-
rate, for very small tail probabilities also. The exact P-value corresponding to our sample is 0.024,
as given in Table 2. Note that it diOers from the Monte Carlo P-value of 0.027 provided by del
Castillo and Puig (1999a), on the basis of 104 simulations. Both saddlepoint formulas provide very
good approximations: 0.025. It appears here that the saddlepoint approximation is more reliable than
the Monte Carlo computation with 104 simulations by del Castillo and Puig (1999a). In Fig. 1,
we give a graphical representation of both the absolute errors regarding the saddlepoint formulas
in the upper graph, and the relative absolute errors, in the lower -gure. The absolute error for
the Lugannani and Rice approximation is de-ned by AELR(t) = |PE[ LS= LX

q¡ t] − PLR[ LS= LX
q¡ t]|,

and a similar de-nition holds for the BarndorO-Nielsen approximation. The relative absolute error
is the same as the one de-ned in Table 1. For the saddlepoint approximation, K ′′

12 and K ′′
22 must

be computed numerically, as we cannot diOerentiate inside the integral sign, see Remark 2.4. This
was done on the basis of an elementary quadratic interpolation formula and, although numerical
diOerentiation is sometimes not an accurate method, in this setting the resulting saddlepoint ap-
proximations turn out to be accurate. As in del Castillo and Puig (1999a), the conclusion of this



80 R. Gatto, S.R. Jammalamadaka / Statistics & Probability Letters 58 (2002) 71–81

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.01

0.02

0.03

0.04

0.05

Absolute error |P
E
− P

A
|, q = −1/2, n = 29

A
bs

ol
ut

e 
er

ro
r

Exact left tail probabilities

__ Lugannani and Rice

 -- Barndorff −Nielsen

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.02

0.04

0.06

0.08

0.1

0.12

Relative absolute error |P
E
− P

A
|/P

E
, q = − 1/2, n = 29

R
el

at
iv

e 
ab

so
lu

te
 e

rr
or

Exact left tail probabilities

__ Lugannani and Rice

 --  Barndorff− Nielsen

Fig. 1. Saddlepoint approximation for the distribution of LS= LX
q
with q = −1=2 and n = 29. Upper -gure: absolute error

|PE − PA|. Lower -gure: relative absolute error |PE − PA|=PE. PE: exact left tail probabilities. PA: approximated left tail
probabilities. Solid line: Lugannani and Rice approximation. Dashed line: BarndorO–Nielsen approximation.

example is that there is some evidence against the exponential model (�2 = 0), in favor of Type II
IFR model.
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