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1 Introduction
The genome, which is the complete sequence of DNA in an individual, is composed of a specific order of
nucleotides (A, C, G, T). In the human genome, this sequence’s total length amounts to approximately
six billion letters [1]. Humans are diploid organisms, meaning they inherit two copies of the genome, with
each parent contributing one copy. Inside a human organism, every cell carries a replica of the organism’s
genome, duplicated through the process of cell division. During DNA replication, alterations in the DNA
sequence—referred to as genetic variants—can arise. While many of these variations have no significant
impact, some changes can be detrimental and may be passed down through generations.

Structural variants (SVs) are a type of genetic variation characterized by insertions, deletions, inversions,
and other rearrangements of DNA spanning over 50 letters (see Figure 1). These SVs are rare instances
of DNA changes that offer valuable insights into gene expression regulation, ethnic diversity, extensive
chromosome evolution, and their involvement in disease susceptibility [1, 2, 3, 4]. The primary approach
for detecting structural variants (SVs) in an individual’s genome involves sequencing their DNA, yielding
numerous short DNA sequence reads. These reads are then aligned with a high-quality reference genome
(see Figure 2). Any differences between the sequenced genome and the reference genome indicate SVs. The
computational identification of SVs involves pinpointing clusters of reads exhibiting discordant arrangements
[5, 6]. Despite advancements in DNA sequencing, methods for detecting SVs still suffer from high error
rates during sequencing and mapping processes [5]. While one solution could be sequencing individuals
at extremely high coverage, this approach incurs higher financial and computational costs. Therefore, our
objective is to predict SV locations within a low-coverage framework. In the sequencing process, when
genomic fragments are randomly chosen, the Poisson distribution describes the number of reads covering
any genomic locus [7]. The Poisson assumption with a mean represented by the coverage also assumes the
same variance. However, sequencing technologies introduce biases, leading to significant variation in coverage
depth, especially in low-coverage scenarios [8, 9]. Studies suggest that in such settings, the two-parameter
negative binomial distribution may more accurately describe the distribution of fragments [10, 11].

While the occurrence of newly arising (de novo) structural variants (SVs) is exceedingly rare [12], with
the majority of SVs in a child being inherited from their parents, many computational SV analysis pipelines
fail to leverage information from familial genomes [13, 14, 15, 16, 17].

In this study, we aim to bridge the gap in previous research by introducing a computational framework
designed for predicting the presence of structural variants (SVs). We accomplish this by simultaneously
analyzing diploid related individuals, with a specific focus on a parent and a child. Whereas previous work
assumed mapped reads follow a Poisson distribution, we incorporate a negative binomial distribution to model
the distribution of fragments. Instead of assuming equal mean and variance, we estimate both from the data
and the negative binomial model captures large variability in the sequencing coverage. This allows us to
forecast the most likely SVs within the genome of each individual. To refine our predictions, we constrain our
predictions to only those SVs that conform to Mendelian inheritance patterns [18]. Additionally, we promote
sparsity in our predictions by incorporating an ℓ1 regularization penalty term, reflecting the biological reality
that SVs are rare and reducing the risk of false positive predictions.

Figure 1: Types of structural variants.
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Figure 2: Sequencing an individual genome depicting a high-coverage and a low-coverage regime. In a high-
coverage regime, millions of sequence reads are aligned onto reference genome while the low-coverage regime
covers a mere fraction of the data per sample. Figure created with BioRender.

2 Proposed Method
Here, we describe our computational framework for predicting SVs for related individuals. We only use
diploid data from one parent (P ) and one child (C) for mathematical and computational simplicity. Each
signal consists of n candidate locations in the genome where either 0, 1, or 2 copies of an SV may be present.
We separate the signal from the child to consider both inherited (H) and novel (N) SVs individually.
For this, we denote the true signal of the parent as f⃗∗

P ∈ {0, 1, 2}n, and the true signal of the child as
f⃗∗
C = f⃗∗

H + f⃗∗
N ∈ {0, 1, 2}n, where f⃗∗

H ∈ {0, 1, 2}n and f⃗∗
N ∈ {0, 1, 2}n correspond to the vectors of inherited

(H) and novel (N) structural variants in the child, respectively. For each i ∈ {P,H,N} in our model, we
consider two signals that take on binary values shown in Figure 3: a heterozygous indicator y⃗i ∈ {0, 1}n
which signifies the presence of an SV in only one of the paired chromosomes at a specific location and a
homozygous indicator z⃗i ∈ {0, 1}n the presence of an SV in both chromosomes at a particular location.
Thus, if an individual is heterozygous for an SV at a position j = 1, 2, . . . , n, then (y⃗i)j = 1 and (z⃗i)j = 0.
Similarly, if an individual is homozygous for an SV at position j, then (z⃗i)j = 1 and (y⃗i)j = 0 [19]. The true
signal is then:

(f⃗∗
i )j = 2(z⃗i)j + (y⃗i)j =


2 presence of 2 copies of an SV at location j

1 presence of 0 copy of an SV at location j

0 otherwise

2.1 Observational Model
Observation vectors for the parent and the child are given by the vectors s⃗P ∈ Rn, s⃗C ∈ Rn, respectively.
We assume the observed data follows a negative binomial distribution [10]:[

s⃗P
s⃗C

]
∼ NegBin

([
z⃗P (2λP − ε) + y⃗P (λP − ε)

z⃗H(2λC − ε) + y⃗H(λC − ε) + z⃗N (2λC − ε) + y⃗N (λC − ε)

])
(1)
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where λP , λC represent the sequencing coverage —the average number of reads that align to known reference
bases—of the parent and the child, respectively and ε > 0 is used to reflect the measurement errors incurred
through the sequencing and mapping processes [19], [20]. Let

s⃗ =

[
s⃗P
s⃗C

]
, z⃗ =

z⃗Pz⃗H
z⃗N

 , y⃗ =

y⃗Py⃗H
y⃗N

 , f⃗ =

[
z⃗
y⃗

]
,

where f⃗ ∈ {0, 1}6n. The general observation model can then be written as

s⃗ ∼ NegBin(Af⃗ + ε1)

where 1 ∈ R2n is the vector of ones and A = [Az Ay] ∈ R2n×6n is the sequence coverage matrix with Az, Ay

as the block matrices:

Az =

 (2λP − ε)In 0 0

0 (2λC − ε)In (2λC − ε)In


Ay =

 (λP − ε)In 0 0

0 (λC − ε)In (λC − ε)In


where In ∈ Rn×n is the n× n identity matrix.

2.2 Optimization Formulation
We assume a Negative Binomial process to model the noise in observed sequencing and mapping measure-
ments. The negative binomial distribution is parameterized in terms of its mean µ⃗l = e⃗l

TAf⃗ and variance
σ⃗ 2
l = (e⃗l

TAf⃗)l +
1
r (e⃗l

TAf⃗)2l , l = 1, . . . , 2n, where e⃗l represents the canonical standard basis vectors. When
r → ∞, we have σ2 = µ and this reduces the negative binomial model to the Poisson case. Thus, we assume
r ∈ Z+ and we set the dispersion parameter r = 1 to maximize the variance. With these considerations, the
probability of observing the observation vector s⃗ given the true signal f⃗ , is given by

p(s⃗ |Af⃗) =

2n∏
l=1

(
1

1 + (Af⃗)l + ε

)(
((Af⃗)l + ε)

1 + (Af⃗)l + ε

)s⃗l

, (2)

where ε > 0 represents the sequencing and mapping errors.

Figure 3: Visual representation of indicator vectors for the parent (left) and the child (right). Arrows
illustrate structural variants (SVs), distinguishing between those inherited from the parent and those that
are novel, as they are mapped onto the indicator vectors.

5



Figure 4: Family tree describing inheritance patterns of SVs. For example, if a heterozygous woman and a
homozygous man have children, some of them will have 2 copies of SVs and some will only have 1 copy of
an SV.

The solution space for inferring f⃗ from s⃗ is exponentially large for large n. Thus, we apply a continuous
relaxation of f⃗ such that its elements lie between 0 and 1, i.e. 0 ≤ f⃗ ≤ 1:

0 ≤ z⃗i, y⃗i ≤ 1, i ∈ {P,H,N}.

For the ease of notation, we assume inequalities read element-wise and denote 0 and 1 as the vector of zeros
and ones, respectively.

The continuous relaxation allows us to apply a gradient-based maximum likelihood approach to recover
the indicator values z⃗i and y⃗i by estimating Af⃗ such that the probability of observing the vector of neg-
ative binomial data s⃗ is maximized under our statistical model. In particular, we seek to minimize the
corresponding Negative Binomial negative log-likelihood function

F (f⃗) ≡
2n∑
l=1

(1 + s⃗l) log (1 + e⃗T
l Af⃗ + ε)− s⃗l log (e⃗

T
l Af⃗ + ε) (3)

Familial Constraints. We incorporate additional constraints based on Mendelian inheritance patterns to
leverage biological information about f⃗ and improve accuracy of the model. These inheritance patterns are
illustrated in Figure 4. Since a structural variant cannot be both homozygous and heterozygous, we require
that

0 ≤ z⃗i + y⃗i ≤ 1, i ∈ {P,H,N}.

The signal of the child is comprised of both inherited and novel structural variants, f⃗∗
C = z⃗H + y⃗H + z⃗N + y⃗N ,

where a structural variant cannot be both inherited and novel simultaneously.

0 ≤ z⃗H + y⃗H + z⃗N + y⃗N ≤ 1.

To account for relatedness, we assume the child can have an inherited homogeneous SV only if the parent
has at least a heterogeneous SV. On the other hand, if the parent has a homogeneous SV at a particular
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location, then the child must have at least a heterozygous SV at that location:

0 ≤ z⃗H ≤ z⃗P + y⃗P ≤ 1

0 ≤ z⃗P ≤ z⃗H + y⃗H ≤ 1

Finally, we note that novel structural variants in the child cannot be inherited from the parent. Thus, for a
location j, if (z⃗N )j+(y⃗N )j = 1, then (z⃗P )j+(y⃗P )j = 0. Similarly, if (z⃗P )j+(y⃗P )j = 1, then (z⃗N )j+(y⃗N )j = 0,

0 ≤ z⃗N + y⃗N ≤ 1− (z⃗P + y⃗P ) ≤ 1

S denotes the set of all vectors satisfying these constraints:

S =



0 ≤ z⃗i + y⃗i ≤ 1

0 ≤ z⃗H + y⃗H + z⃗N + y⃗N ≤ 1

f⃗ = [z⃗; y⃗] ∈ R6n : 0 ≤ z⃗H ≤ z⃗P + y⃗P ≤ 1

0 ≤ z⃗P ≤ z⃗H + y⃗H ≤ 1

0 ≤ z⃗N + y⃗N ≤ 1− (z⃗P + y⃗P ) ≤ 1


Sparsity-promoting ℓ1 penalty. Since structural variants are rare in an individual’s genome, a common
challenge with SV recovery is predicting false positive SVs by mistaking fragments that are incorrectly
mapped against the reference genome [19]. To model this, we incorporate multiple ℓ1-norm penalties in our
objective function to enforce sparsity in our predictions. Further, we assume novel SVs are even more rare
since they are not inherited from a parent. Therefore, we use two penalty terms: one for the parent SVs,
z⃗P , y⃗P , and the child’s inherited SVs, z⃗H , y⃗H , and another penalty term for the child’s novel SVs, z⃗N , y⃗N .
We define the penalty as follows:

pen(f⃗) = (∥z⃗P ∥1+∥z⃗H∥1+∥y⃗P ∥1+∥y⃗H∥1) + γ(∥z⃗N∥1+∥y⃗N∥1)
where γ > 1 is the penalty term that enforces greater sparsity in the child’s novel SVs.

Our objective function then takes the form:

minimize
f⃗∈R6n

F (f⃗) + τpen(f⃗)

subject to f⃗ ∈ S
(4)

where F (f⃗) is the Negative Binomial negative log-likelihood function shown in Equation (3) and τ > 0 is
a regularization parameter. Following the SPIRAL framework for sparse Poisson reconstruction [21], we
solve Equation (4) by minimizing quadratic approximations to the Negative Binomial negative log-likelihood
F (f⃗). More specifically, at iteration k, we compute a separable quadratic approximation to F (f⃗) using its
second-order Taylor series approximation at f⃗k and approximate the Hessian matrix by a scalar multiple of
the identity matrix, αkI [21]. This quadratic approximation is then defined as

F k(f⃗) ≡ F (f⃗k) + (f⃗ − f⃗k)T∇F (f⃗k) +
αk

2
∥f⃗ − f⃗k∥22

which we use as a surrogate function for F (f⃗) in Equation (4). Using this approximation, the next iterate
is given by

f⃗k+1 =

arg min
f⃗∈R6n

F k(f⃗) + τpen(f⃗)

subject to f⃗ ∈ S
(5)

We reformulate this constrained quadratic subproblem into the following equivalent sequence of subprob-
lems (see [21]):

f⃗k+1 =
arg min
f⃗∈R6n

Q(f⃗) =
1

2
∥f⃗ − r⃗ k∥22+

τ

αk
pen(f⃗)

subject to f⃗ ∈ S
(6)
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where r⃗ k = [r⃗ k
zP , r⃗

k
zH , r⃗ k

zN , r⃗ k
yP

, r⃗ k
yH

, r⃗ k
yN

]T = f⃗k − 1
αk

∇F (f⃗k). Our objective function Q(f⃗) is separable and
decouples into the function Q(f⃗) =

∑n
j=1 Qj(z⃗P , z⃗H , z⃗N , y⃗P , y⃗H , y⃗N ), where

Qj(z⃗P , z⃗H , z⃗N , y⃗P , y⃗H , y⃗N ) =

1

2

{
((z⃗P − r⃗ k

z⃗P
)j)

2 + ((z⃗H − r⃗ k
z⃗H

)j)
2 + ((z⃗N − r⃗ k

z⃗H
)j)

2

+ ((y⃗P − r⃗ k
y⃗P

)j)
2 + ((y⃗H − r⃗ k

y⃗H
)j)

2 + ((y⃗N − r⃗ k
y⃗H

)j)
2

}
+

τ

αk

{
|(z⃗P )j |+|(z⃗H)j |+γ|(z⃗N )j |+|(y⃗P )j |+|(y⃗H)j |+γ|(y⃗N )j |

}
Since the bounds defining the region S are component-wise, then Equation (6) separates into subproblems

of the form:

f⃗k+1 = arg min
zP ,zH ,zN ,yP ,yH ,yN∈R

1

2

{
((z⃗P − r⃗ k

z⃗P
)j)

2 + ((z⃗H − r⃗ k
z⃗H

)j)
2 + ((z⃗N − r⃗ k

z⃗H
)j)

2

+ ((y⃗P − r⃗ k
y⃗P

)j)
2 + ((y⃗H − r⃗ k

y⃗H
)j)

2 + ((y⃗N − r⃗ k
y⃗H

)j)
2
}

+
τ

αk

{
|(z⃗P )j |+|(z⃗H)j |+γ|(z⃗N )j |+|(y⃗P )j |+|(y⃗H)j |+γ|(y⃗N )j |

}
subject tof⃗ ∈ S

(7)

where zi, yi and rzi , ryi
are scalar components of z⃗i, y⃗i and r⃗zi , r⃗yi

, respectively, at the same location; and
S is the set of scalar constraints obtained from S. Since Equation (7) has closed form solutions (obtained
by completing the square and ignoring constant terms), the constrained minimizer is obtained by projecting
the unconstrained solution to the feasible set.

(a) (b) (c)

Figure 5: The feasible set is shown by the shaded region for each step of the proposed block-coordinate
descent approach. (a) Step 1: We obtain the solution for the parent’s variables z⃗P and y⃗P given fixed child
inherited and novel indicator variables (b) Step 2: We obtain the child’s inherited indicator variables z⃗H and
y⃗H by fixing z⃗P , y⃗P , z⃗N , y⃗N . (c) Step 3: We obtain the solution for the child’s novel indicator variables z⃗N
and y⃗N by fixing z⃗P , y⃗P , z⃗H , y⃗H .

2.3 Optimization Approach
We solve our problem using an alternating block-coordinate descent approach inspired by the methods in
[19], [20], [22]. We fix all but one pair of indicator variables and solve Equation (6). We successively minimize
both indicator variables for each P,H,N while the other variables are fixed. The feasible region for this step
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is illustrated in Figure 5 and the optimization approach is shown in Figure 6.

Step 0: We compute the unconstrained minimizer of Equation (6):

f⃗ =

[
r⃗zP − τ

αk
1n; r⃗zH − τ

αk
1n; r⃗zN − τ

αk
γ1n; r⃗yP

− τ

αk
1n, r⃗yH

− τ

αk
1n, r⃗yN

− τ

αk
γ1n

]T
where 1n ∈ Rn.

Next, steps 1-3 are done for every j in z⃗P , z⃗H , z⃗N , y⃗P , y⃗H , y⃗N . Here, again, zi, yi correspond to scalar
components of z⃗i and y⃗i at the same location. First, we initialize the child’s inherited and novel indicator
variables by applying the following rule:

zH = mid{0, rkzH − τ

αk
, 1}, zN = mid{0, rkzN − τ

αk
γ, 1},

yH = mid{0, rkyH
− τ

αk
, 1}, yN = mid{0, rkyN

− τ

αk
γ, 1}

where mid{a, b, c} chooses the middle value of the three arguments to stay consistent with the constraints in
S. To initialize the parent indicator variables, we let zP = rkzP − τ

αk
and yP = rkyP

− τ
αk

, the values obtained
from the unconstrained minimizer.
Step 1: We project (zP , yP ) onto the feasible set S with fixed inherited and novel variables to obtain the
new parent indicator values ẑP and ŷP .
Step 2: Using Step 1 estimates for the parent diploid indicator variables ẑP and ŷP , we project (zH , yH) onto
our feasible set S with fixed parent and child’s novel indicator variables to obtain the new child’s inherited
indicator variables ẑH and ŷH .
Step 3: Using estimates for the parent diploid indicator variables and child’s inherited diploid indicator
variables ẑH and ŷH from Steps 1- 2, we project (zN , yN ) onto our feasible set S with fixed parent and child’s
inherited indicator variables to obtain the new child’s novel indicator variables ẑN and ŷN .
We repeat Steps 1, 2, and 3 for every j to update f⃗k+1 until the relative difference between consecutive
iterates converges to ∥f⃗k+1 − f⃗k∥/∥f⃗k∥≤ 10−8.

3 Results
We modified the existing SPIRAL approach [21] to include the negative binomial statistical method for solv-
ing the quadratic sub-problems. The implementation is done in MATLAB. We refer to the new algorithm
as NEgative Binomial optimization Using ℓ1-penalty Algorithm (NEBULA). The regularization parameters
(τ, γ) were hyperparameters selected to maximize the area under the curve (AUC) for the receiver operating
characteristic (ROC).

Simulated Data. Similar to previous approaches, we simulated two parent signals of size 105 with a set
number of structural variants and a set similarity of 80% between the parent signals [19, 22]. In the parent
signals, 5000 locations were chosen at random to be structural variants. We then constructed the child
signal by first applying a logical implementation of inheritance to ⌊5000(1 − p)⌋ randomly selected parent
structural variants (where p is the percentage of novel SVs). Next, we chose ⌊5000p⌋ locations from the
remaining (105 − 5000) that were not chosen as a parent variant to be novel variants in the child. After
forming the true signals for each individual, the observed signals were generated by sampling from the
Negative Binomial distribution with a given coverage and error. For the purpose of testing the proposed
approach, only one parent signal was used. The data simulation code was implemented in Python. All code
is available on GitHub1.

1https://github.com/jornelasmunoz/structural_variants
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Figure 6: Optimization approach explained in Section 2.3. The green values represent the indicator variables
used for projection while the brown represent fixed values and the blue represent updated values. Step 1 is
shown in the top panel, Step 2 in the middle, and Step 3 in the bottom.
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Figure 7: ROC curves (top) and Precision-Recall curves (bottom) for the reconstructed homozygous parent
signal (left), reconstructed inherited homozygous child signal (center), and reconstructed novel homozygous
child signal (right) for our NEBULA algorithm (red) and the SPIRAL algorithm (blue). The regularization
parameters used were τ = 1, γ = 2, the percent of novel SVs is 4, and the coverage values for each individual
are (λP , λC) = (7, 3).

Analysis. Figure 7 displays the Receiving Operating Characteristic (ROC) (top) and Precision-Recall
(PR) (bottom) curves obtained for a simulated data set where the parents share 80% of their SVs. Our
method is better able to reconstruct the homozygous signals for each individual despite large sequencing and
mapping error, ε = 0.5. We use the AUC to measure the ability of SPIRAL and NEBULA to distinguish
between classes. Since SVs are very rare, a more informative metric is to examine Precision-Recall curves
to gain a deeper understanding of the performance of our algorithm as it relates to false positives [23]. We
see improvements in AUC and average precision for the parent and child’s inherited signals. We also see
comparable performance for the reconstruction of the child’s novel signal. However, neither method is able
to accurately reconstruct the novel child signal. We note that as this work only considers the relationship
between one parent and one child. This result is similar to the heterozygous results. We hypothesize that
including the information from both parents would enhance the ability to predict the child signal.

4 Conclusion
We present an optimization method for detecting both structural variants and their genotype (homozygous
or heterozygous) from low-coverage DNA sequencing data in related individuals. This method leverages
Mendelian inheritance to improve signal reconstruction of noisy data. This extends previous work that
focused on a Poisson-based optimization algorithm. We compare our method to SPIRAL and applied them to
simulated data to reconstruct heterozygous and homozygous signals. Overall, we achieve improved precision
rates for total SV detection with our method. In future studies, we intend to extend this work to a two
parent and one child framework.
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5 Appendix

5.1 Structural Variant Detection Notation

Notation Description
P Subscript denoting parent
C Subscript denoting child
H Subscript denoting inherited
N Subscript denoting novel
f⃗∗
P ∈ {0, 1, 2}n Vector representing true parent signal
f⃗∗
C ∈ {0, 1, 2}n Vector representing true child signal

f⃗∗
H ∈ {0, 1, 2}n Vector representing true child inherited signal
f⃗∗
N ∈ {0, 1, 2}n Vector representing true child novel signal
z⃗i ∈ {0, 1}n Homozygous indicator vector (i.e. 2 copies)
y⃗i ∈ {0, 1}n Heterozygous indicator vector (i.e. 1 copy)
s⃗P ∈ Rn Observation vector for parent
s⃗C ∈ Rn Observation vector for child
s⃗ = [s⃗P ; s⃗C ]

T Vector of all observation vectors
z⃗ = [z⃗P ; z⃗H ; z⃗N ]T Vector of all homozygous indicator vectors
y⃗ = [y⃗P ; y⃗H ; y⃗N ]T Vector of all heterozygous indicator vectors
f⃗ = [z⃗P ; z⃗H ; z⃗N ; y⃗P ; y⃗H ; y⃗N ]T Vector of all indicator vectors
A = [A1A2] ∈ R2n×6n Sequence coverage matrix

λP sequencing coverage for parent
λC sequencing coverage for child
ε Measurement errors incurred in sequencing and mapping
1 ∈ R2n Vector of ones
0 ∈ R2n Vector of zeros
In ∈ Rn×n Identity matrix
µ⃗ ∈ R2n Mean vector of Neg. Binom. distribution
σ⃗2 ∈ R2n Standard deviation vector of Neg. Binom. distribution
e⃗l ∈ R2n Canonical basis vector with 1 in l-th position

F (f⃗) Negative binomial negative log-likelihood function
F k(f⃗) Second-order Taylor series approximation of F at f⃗k

Q(f⃗) Reformulation of objective function. Separable function
S Set of all vectors satisfying familial constraints
S Set of scalar constraints obtained from S

pen(f⃗) Sparsity-promoting ℓ1 penalty
τ > 0 Regularization parameter
γ > 1 Regularization parameter for novel SVs

αk Scalar used to approximate Hessian
r⃗ f⃗k − 1

αk
∇F (f⃗k)

zi Scalar component of z⃗i at a particular location
yi Scalar component of y⃗i at a particular location
rzi Scalar component of r⃗zi at a particular location
ryi Scalar component of r⃗yi at a particular location
p percentage of novel SVs
r Dispersion parameter of Neg. Binom.
n Number of SV candidate locations.
i ∈ {P,H,N} index for parent, inherited, novel
j = 1, 2, . . . , n index for vector position
k Iteration number
l = 1, 2, . . . , 2n index for observed vector position
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