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ABSTRACT OF THE DISSERTATION

The origin, evolution, and diversification of rockfishes of the genus Sebastes (Cuvier):
Insights into speciation and biogeography of temperate reef fishes.
by
John R. Hyde
Doctor of Philosophy in Marine Biology
University of California, San Diego, 2007
Philip A. Hastings, Chair
Dispersal and speciation in the marine environment have long been key topics in
evolutionary biology and more recently in conservation biology. The genus Sebastes,
with approximately 110 species, is found throughout most of the world’s cold-temperate
seas. Their breadth of phenotypic and species diversity, ecological dominance, and
importance to world fisheries has made them a focus of intensive study by countless
researchers. In this dissertation, DNA sequence and microsatellite data were used to
investigate patterns of speciation, distribution, and mating habits.
In Chapter I, DNA sequence data from seven mitochondrial and two nuclear
genes, were used to evaluate possible geographic origin, patterns and timing of dispersal,

speciation patterns and drivers, and inter-species relationships. The data support a middle

XViil



Miocene origin for Sebastes spp. in deep habitats of the Northwest Pacific followed by
dispersal into the Northeast Pacific and eventually into the southern hemisphere, driven
by progressive cooling and strengthening of major ocean currents. Previous hypothesized
relationships, shown to be mostly poly- or para- phyletic, were revised in light of the
findings.

Chapter I provided evidence for two new “cryptic” species. In Chapter II,
sequence of the mitochondrial cytochrome b gene, in combination with nine
microsatellite loci, was used to evaluate the geographic and bathymetric range of the
vermilion rockfish species complex, as well as test for reproductive isolation between the
putative species. Genetic analyses supported the presence of two species, separated
primarily by depth of adult occurrence. This finding, in association with distribution
patterns of 12 recent species pairs, suggests a novel speciation mode based upon the
loss/truncation of an ontogenetic migration phase.

In Chapter III, DNA sequence data from Chapter II was used to evaluate patterns
of population connectivity and gene flow within the vermilion rockfish. A range-wide
analysis showed high levels of genetic heterogeneity, likely driven by limited larval
dispersal and barriers to gene flow across major oceanographic features.

Patterns of paternity and mating system were investigated in Chapter IV using
microsatellite loci. Paternity analyses were performed on larvae from both captive and
wild populations, representing most major lineages found in Chapter I. Ten of the 17
examined species, showed evidence for multiple sires within a single brood. The
implications for genetic diversity produced by this polygynandrous mating system are

discussed.
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Abstract

The evolutionary relationships of the livebearing rockfishes of the genus Sebastes have been a point of interest since their original descrip-
tion. With over 65 species found in the northeast Pacific (NEP), 27 in the northwest Pacific (NWP), seven in the Gulf of California (GC), four
in the north Atlantic (NA) and at least two in the southern hemisphere (SH), they represent a fascinating lineage for studies of spatial and
temporal patterns of dispersal, vicariance and speciation in the marine environment. Previous studies of Sebastes species have attempted to
reconstruct their phylogeny using allozyme patterns or portions of a single mitochondrial gene while incompletely sampling the genus, result-
ing in a partial picture with low statistical support. In this study, genetic analyses using sequence data (5581 characters) from seven mitochon-
drial genes (cytochrome b, cytochrome ¢ oxidase subunit 1, 12S rRNA, 16S rRNA, tRNA proline, tRNA threonine and the control region)
and two nuclear genes (recombination activating gene 2 and internal transcribed spacer 1), along with a near complete sampling of species,
have produced a well supported phylogenetic hypothesis of the relationships between Sebastes species as well as clarifying their position
within the scorpaenid subfamily, Sebastinae. Though studies of similar magnitude have been conducted at the family and subfamily level, this
represents the most detailed and extensive examination of biogeography and marine speciation within a single, widely distributed marine fish
genus. Both Bayesian posterior and maximum parsimony analyses produced highly similar phylogenies suggesting an origin for Sebastes at
high-latitudes in the NWP. The majority of previously proposed sub-generic groupings based upon morphology are found to be either para-
or polyphletic. Using Bayesian-derived genetic distance measures together with rate smoothing techniques, a molecular clock was applied to
the phylogeny. The clock-calibrated data suggest that Sebastes originated in the middle Miocene, concordant with fossil data, and began sub-
stantial diversification and dispersal in synchrony with high-latitude cooling and establishment of productive upwelling systems across the
north Pacific (NP) in the late Miocene. Contrary to contemporary taxonomic criteria that often group Asian and North American species
based on common morphology, the molecular phylogenies tend to indicate geographically circumscribed lineages with no evidence for
repeated long distance dispersal between disjunct biogeographic provinces (e.g., Asian species nested within a North American lineage). No
examples of large-scale glacial vicariance as would be suggested by Asian and North American sibling species were observed. To the contrary,
sibling species tended to be in geographic proximity. While occasional long distance dispersal may occur, such as the single colonization of
the SH, and thermal barriers presently exist between the NP, NA, GC, and SH taxa, the observable patterns in Sebastes suggest colonization
occurs by stepwise invasion of newly available habitat when temperature conditions permit. Colonization events are spread throughout the
sub-generic lineages. Vicariant isolation processes may occur on smaller geographic scales perhaps due to local isolating mechanisms such as
glacial advance and retreat, sea level change, and ocean currents. Allopatric differences may be enhanced by a tendency for female mate
choice and assortative mating in these livebearing species. The ongoing process of thermal advance and retreat is reflected in contemporary
patterns of phylogeographic population genetic structure within species and may be enhanced under climate warming.
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1. Introduction

The processes of genetic divergence, reproductive isola-
tion, and species formation in the marine environment are
poorly understood. Typically, marine species are character-
ized by large population sizes, extensive planktonic dis-
persal, and large geographic ranges; all processes that tend
to limit genetic differentiation and species formation
(Palumbi, 1994). For marine fishes, the study of speciation
is compounded by the great age and deep genetic separa-
tion typical of most fish taxa (Grant and Bowen, 1998).
Phylogenetic lineage reconstruction is often obscured or
poorly supported due to saturation and back mutation at
informative genetic loci while paleo-geographic landmarks
are often so distant they do not provide good mileposts for
estimating the timing of speciation events. Differences in
the rates of nucleotide substitution based on body size, met-
abolic rate and generation time can confound molecular
clock comparisons between distant fish taxa (Martin et al.,
1992; Martin and Palumbi, 1993). The genus Sebastes has
attracted the attention of marine evolutionary biologists
because of: (1) The comparatively recent (Miocene) origin
of the genus (Wourms, 1991), (2) The incredible richness
and ecological diversity of species (Love et al., 2002), (3) A
variety of well defined paleo-geographic colonization
events that can serve as calibration points for molecular
clocks, (4) Phylogenetically informative levels of inter-spe-
cific genetic variance (Seeb, 1986; Rocha-Olivares et al.,
1999a,b), (5) A wide array of recently evolved sibling spe-
cies pairs (Orr and Blackburn, 2004; Narum et al., 2004;
Gharrett et al., 2005), and (6) High levels of intra-specific
genetic structure that can be correlated with ocean currents
(Rocha-Olivares and Vetter, 1999) and alterations in sea
level and ice cover (Buonaccorsi et al., 2002). Studies using
innovative analytical approaches to the study of marine
speciation, such as the “ancient species flocks” concept,
have already been applied to Sebastes (Johns and Avise,
1998; Ruber and Zardoya, 2005) but limited species num-
bers, sample size, genetic loci, and paleo-oceanographic
information have severely limited the full understanding of
the radiation of the genus and its utility in understanding
general mechanisms of marine speciation.

Sebastes is the most speciose scorpaenid genus with
approximately 110 species known worldwide (Eitner et al.,
1999; Love et al., 2002; Kai et al., 2003; Orr and Blackburn,
2004; Nelson, 2006). Together with Helicolenus, Hozukius,
and Sebastiscus they are grouped into the scorpaenid sub-
family Sebastinae. This group is notable for possession of a
developed swimbladder with associated musculature (Hall-
acher, 1974) as well as the evolution of viviparity (Wourms,
1991). Species of Sebastes occur in cold-temperate waters
throughout the northeast Pacific (NEP) (n~70 species)
(Love et al., 2002), northwest Pacific (NWP) (n~ 33 species)
(Kai et al., 2002a,b, 2003), north Atlantic (NA) (n =4 species)
(Nedreaas et al., 1994; Johansen et al., 2000, 2002; Roques
et al., 2002), and across the southern hemisphere (SH) (n~2
species) (Rocha-Olivares et al., 1999¢). Along both coasts of

North America, many species are heavily exploited in both
commercial and recreational fisheries (Love et al., 2002).

Morphologically and ecologically, Sebastes species are
notable for their diversity in form and function. They can
be found from tide pools (ie., S. rastrelliger) to depths in
excess of 1000m (ie., S. cortezi) (Chen, 1975; Love et al.,
2002). Body shape, size, and head spination seem strongly
correlated with the life history parameters of individual
species or clades. Mobile, semi-pelagic species (e.g., S. bre-
vispinis, S. goodei, S. jordani, S. owstoni and S. paucispinis)
tend to have an elongated body, greatly reduced head
spines, and a general drab to dusky coloration. Sedentary,
benthic species (e.g., S. chrysomelas, S. hubbsi, S. levis,
S. oblongus, S. serriceps, and S. simulator) have more typi-
cal scorpaenid morphologies with deep bodies, strong head
spination, and distinctive, often striking color patterns.
With over 100 species, intermediates between these mor-
phologic extremes are common.

Ecologically, Sebastes species show a wide range of roles.
Near-shore species are partitioned by depth, benthic habi-
tat relief, and relationship to macro-algal environments
(e.g., stands of Macrocystis pyrifera). Further offshore, this
trend continues with species partitioned again by depth,
benthic relief, and substrate type (e.g., soft sediment, cobble,
boulder fields, etc.) (Allen, 1982; Gunderson and Vetter,
2005). To further add complexity to the habitat partitioning
by adults, many species show strong ontogenetic shifts in
affinity. In the extreme example, S. diploproa juveniles may
spend up to a year associated with drifting surface algal
rafts, followed by a period of mid-water residence, eventu-
ally settling as adults onto soft bottom habitat in depths to
almost 800 m (Boehlert, 1977; Love et al., 2002). A common
pattern in the NEP is recruitment of pelagic juveniles to
near-shore environments, often kelp (Macrocystis and
Nereocystis) and seagrass (Phyllospadix and Zostera) beds,
followed by a transition to adult habitat ranging from kelp
forest (e.g., S. atrovirens), deep soft sediment (e.g., S. saxi-
cola), to deep offshore high relief reefs (e.g., S. paucispinis)
(Love et al.,, 1991). Once settled, adult Sebastes spp. tend to
show strong site fidelity (Mitamura et al., 2002; Starr et al.,
2002).

Despite their broad geographic distribution and diver-
sity in form and function, Sebastes species are limited to
cool-temperate, upwelling driven systems. Warm, oligo-
trophic waters represent a significant barrier to their
spread. Short-term disruptions of upwelling events (e.g.,
ENSO events) can have profound effects upon reproduc-
tion and survival (Eldridge et al., 1991; Boehlert and Yokla-
vich, 1984; Ventresca et al., 1995; Woodbury, 1999). On
local scales, larval and pelagic juvenile distributions can be
strongly influenced by the unique physical parameters of
these upwelling systems (Moser and Boehlert, 1991; Moser
and Smith, 1993; Ross and Larson, 2003).

The phylogeny and evolution of the group has been the
subject of much debate and has resulted in a great deal of
confusion (see Kendall, 2000; for a comprehensive and
entertaining review). Early studies on the relationships
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between species used both morphologic (e.g., head spin-
ation, body shape, gas bladder musculature, and color pat-
terns) as well as meristic characters to identify up to 23 sub-
generic lineages (several sub-genera have at times been
raised to genera) within the currently recognized genus
Sebastes. These groupings have been variously lumped and
split by different authors, mostly based upon their personal
belief on the scoring of character states and the inclusion
and weighting of phylogenetic characters. Clearly, the pres-
ence of such great morphological variation coupled with
the propensity of Sebastes species for ecological partition-
ing of different habitats suggests that there could be a fair
amount of convergent evolution of body shape and mor-
phology. Additionally, though certain morphologic charac-
ters, such as the presence of particular head spines, may
seem like novel features, larvae of all examined Sebastes
species typically possess a full or nearly full, scorpaenid
compliment of head spines, some of which are subsequently
lost during development (Moser, 1996). Character states
that are lost during ontogeny may confuse relational stud-
ies unless scored at appropriate life stages.

More recently, protein and mitochondrial DNA
(mtDNA) data have been used to test the validity of several
of these sub-genera and to provide an overview of the bio-
geography of the genus (Seeb, 1986; Rocha-Olivares et al.,
1999a,b; Kai etal, 2003). The majority of the species
(n="75) have had a portion of their mitochondrial cyto-
chrome b gene (751 bases) sequenced and subjected to phy-
logenetic analyses (Rocha-Olivares etal, 1999a,b; Kai
et al., 2003). The relationships hypothesized by these studies
have both supported (Rocha-Olivares et al., 1999b) and
refuted (Kai et al., 2003; Li et al., 2006) previous classifica-
tions.

These mtDNA-based studies have helped provide valu-
able information on the possible area of origin and timing
of speciation events for Sebastes as well as evidence of
their relation to other members of the subfamily Sebasti-
nae (Rocha-Olivares et al., 1999b; Kai et al., 2003). How-
ever, to better understand the pattern and timing of
dispersal and speciation it is necessary to more completely
sample the genus and collect data from additional mito-
chondrial and nuclear loci. This approach is necessary to
corroborate phylogenetic hypotheses and to improve sta-
tistical support of groupings by increasing the number of
informative characters available for analysis (Zwickl and
Hillis, 2002). Unfortunately, many remaining species have
proven difficult to obtain for genetic analysis because of
their rarity. In some cases the only known specimens have
been fixed in formalin and thus are not ideal for genetic
analysis (i.e., Lea and Fitch, 1972, 1979; Chen, 1975).
Obtaining genetic data from these rare, often type, speci-
mens in museum collections, while difficult, is a necessity
to ultimately answer questions on the relationships
between members of the genus and to understand the
radiation of the genus as well as the role of environmental
factors such as the advent of ocean cooling and develop-
ment of upwelling systems.

One of the primary motivations for this study was to test
Barsukov’s (1981) hypothesis of origin for Sebastes in the
NWP as there are no other extant genera of Sebastinae in
the NEP. Traditional use of the fossil record to infer origin
is difficult due to the relatively recent origin of the genus
and the paucity of fossil data. The best fossil deposits of
Sebastes spp. are found in the late Miocene diatomite
deposits in Lompoc, California (Jordan and Gilbert, 1920;
Barsukov, 1989) and Tertiary deposits in Japan (Niino,
1951). Species diversity “hot spots”, likely due to the inter-
action between cold and warm temperate waters in these
areas, occur on both sides of the Pacific, one centered off
Japan and the other in the southern California bight. The
Goldilocks dilemma of temperate reef fishes is that expan-
sion to the south is blocked by waters that are too warm
while expansion to the north is blocked by cold Arctic
waters. Clearly this was not always the case as disjunct lin-
eages exist in the NA, Gulf of California (GC), and the SH.

In this paper we will provide the most comprehensive
and robust phylogenetic analysis of Sebastes to date.
Clades with high statistical support will be used to reconcile
past disagreements over the correct placement of species
within sub-generic classifications. Additionally, genetic dis-
tance metrics will be applied to these groups in an attempt
to understand the timing and possible mechanisms of speci-
ation. Finally sibling species will be examined to evaluate
the role of vicariance and dispersal in speciation processes
and how this may relate to previously hypothesized evolu-
tionary patterns (e.g., Barsukov, 1981).

This study examined 101 species, 103 individuals and
nine loci and as such represents, to our knowledge, the most
detailed and extensive examination of biogeography and
marine speciation within a single, widely distributed marine
fish genus. As such, Sebastes presents a unique opportunity
to examine the paleo-biogeography of fish colonization of
the NP during the past 10 million years.

2. Materials and methods
2.1. Sample collection

Fish were collected using various techniques including
hook and line, bottom trawl, pole spear, trap, and surface
dip netting. In most cases, specimens were captured fresh
and identified to species using Phillips (1957), Chen (1971,
1975), Miller and Lea (1972), Eschmeyer et al. (1983),
Kramer and O’Connell (1988), Masuda et al. (1992), Love
et al. (2002), and Nakabo (2002). Tissues from the major-
ity of the NWP species were kindly donated by Y. Kai and
T. Nakabo, Kyoto University, Japan. Tissues, either white
muscle or pectoral fin, were preserved in 95% un-dena-
tured ethanol pending genetic analysis. In a few cases,
DNA was obtained from formalin-fixed museum speci-
mens. Due to the difficulty of obtaining sufficient genetic
data from formalin-fixed specimens, all species in this
analysis that had DNA extracted from fixed specimens
were ultimately replaced with ethanol-preserved larvae
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(i.e., S. rufinanus) or pelagic juveniles (i.e., S. cortezi, S.
peduncularis, and S. sinensis) that were positively identi-
fied to species by comparison of morphology and DNA
sequence to reference museum specimens (J. Hyde,
unpublished data). Collection location and sample data
are provided in Table 1.

The dataset consists of 97 currently recognized species of
Sebastes, two new cryptic species (S. miniatus Type 1 and
S. saxicola N, J. Hyde unpublished data), a single species
from each of the three other Sebastinae genera, and one
Sebastolobus species as an outgroup. Previous phylogenetic
studies of the Scorpaeniformes (Smith and Wheeler, 2004)
have shown that the Sebastinae is a valid subfamily and
that Sebastolobus is an appropriate outgroup for this sub-
family. Several nominal NWP Sebastes species were not
included in this analysis as they are not reciprocally mono-
phyletic at the examined mitochondrial genes, forming spe-
cies complexes that are still undergoing lineage sorting (Y.
Kai, 2005, pers. comm.). In these cases, a single species from
each of the complexes was used for the analyses: (nominal
species used in this study in brackets): [S. hubbsi]—S. lon-
gispinis; S. cheni—[S. inermis|—S. ventricosus; S. chalco-
grammus—S. nigricans—S. nudus—I{S. pachycephalus);
S. ijimae—/S. vulpes|—S. zonatus. Though S. carnatus and
S. chrysomelas in the NEP are still undergoing mitochon-
drial lineage sorting (Alesandrini and Bernardi, 1999), the
work of Narum et al. (2004) shows that these are valid spe-
cies and we therefore feel they warrant inclusion in this
analysis. Additionally, the inclusion of this species pair
allows us to roughly approximate the minimum time neces-
sary for sympatric species to reach reciprocal monophyly of
mitochondrial lineages at the examined genes. Other than
members of the four NWP complexes, only five of the cur-
rently recognized 110 Sebastes species are missing from this
analysis; S. itinus, S. koreanus, S. nivosus, S. varispinis, and
S. wakiyai.

2.2. DNA extraction

2.2.1. Ethanol preserved specimens

DNA was extracted from ethanol preserved tissue using
various protocols, most often using a standard proteinase
K digestion followed by a lithium chloride:chloroform
nucleic acid purification and subsequent ethanol precipita-
tion (Gemmel and Akiyama, 1996). DNA from the remain-
ing samples was extracted using either the DNeasy kit
(Qiagen) following the manufacturer’s protocol or by use
of a Chelex™ (Bio-Rad Laboratories) boiling technique
(Hyde et al., 2005).

2.2.2. Formalin preserved specimens

Amplifiable DNA was extracted from formalin-fixed tis-
sues using a modified antigen retrieval method based upon
the protocol of Shi et al. (2002). This technique was success-
ful for specimens that had been preserved for several
months to nearly 100 years (J. Hyde unpublished data).
Briefly, tissue was soaked overnight in 95% ethanol to help

remove residual formalin. Approximately 100 mg of tissue
was allowed to air dry and then placed in a boil-proof
1.5ml tube containing 180puL of the extraction buffer
(28.6mM citric acid, 28.6 mM KH,PO,, 28.6mM H;BO;,
pH 11). The sample was then placed in an autoclave and
subjected to high temperature (~120°C) and pressure for
20 min after which the pressure was allowed to slowly vent
in order to minimize boiling of the sample. The alkaline
buffer in conjunction with the high temperature and pres-
sure is believed to reverse the fixative’s cross-linking effect
on the proteins, allowing them to be better digested by the
proteinase. Once the sample had cooled to room tempera-
ture, 1.5uL of 3M sodium acetate (pH 5.2) was added to
lower the pH to an acceptable level for proteinase K diges-
tion. At this point the protocol followed that of the manu-
facturer for the QiaAmp DNA extraction kit (Qiagen) with
a few exceptions. After digestion of the tissue with the pro-
teinase K, 0.5 uL of 3 M sodium acetate (pH 5.2) and 1 uL
of carrier RNA (1 pg/ul) (Qiagen) was added to help facili-
tate adsorption of DNA to the silica matrix of the spin col-
umn. DNA was eluted in 50 uL of the provided elution
buffer.

2.3. PCR amplification

DNA was amplified from seven mitochondrial genes
(cytochrome b (cytb), cytochrome ¢ oxidase subunit 1
(coxl), 12S rRNA, 16S rRNA, tRNA proline, tRNA threo-
nine and the non-coding mitochondrial control region).
Additionally, two nuclear genes (recombination activating
gene 2 (RAG?2) and internal transcribed spacer 1 (ITS1))
were sequenced. In the case of DNA extracted from forma-
lin preserved tissue, small fragments (200-300bp) were
amplified and subsequently assembled from cytb only.
Primer information is presented in Table 2.

For all primer pairs, 10 pL reaction volumes containing
(67mM Tris-HCI pH 8.8, 16.6 mM (NH,),SO,, 10 mM f-
mercapto-ethanol, 2mM MgCl,, 800 pM dNTPs, 0.4 uM
each primer, 0.5 units 7ag DNA polymerase (New
England Biolabs), and 1pL of DNA template) were
amplified using the following temperature profile in a
PTC200 DNA Engine (MJ Research); 94°C (2:00), 35
cycles of [94 °C (0:30), 59 °C (1:00), 72 °C (1:00)], followed
by 3min at 72 °C. All PCR batches contained at least one
no template negative control to monitor for possible
DNA contamination. Products were electrophoresed
through a 2% (w/v) agarose gel in 1 x Tris-Borate-EDTA
buffer, stained with ethidium bromide and visualized via
an UV-transilluminator. Reactions were digested using
ExoSAP-IT (USB Corp.) to remove unincorporated prim-
ers and deoxynucleotides prior to cycle sequencing. Prod-
ucts had both strands individually cycle sequenced with
BigDye v.1.1 Dye Terminators (Applied Biosystems) and
analyzed on an ABI 3100 automated capillary sequencer
(Applied Biosystems). DNA sequences from both strands
were aligned and edited using Sequencher v4.5 (Gene-
Codes, Inc.).
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2.4. Sequence alignment and phylogenetic analysis

Sequence alignments between species were accomplished
using ClustalW (Higgins et al., 1994) as implemented in
MEGA v3.1 (Kumar et al., 2004) with the default settings.
Additional manipulation and alignment optimizations were
done manually. The propensity of the control region and
ITS1 for insertions and deletions made automated
sequence alignment nearly impossible. A small portion of
ITS1 that was difficult to unambiguously align was
removed from analysis. Sequence alignment, including gap
characters, produced a data matrix containing 5581 nucleo-
tides. Of these, 3682 sites are constant, 1134 are parsimony
informative, and 765 are variable and parsimony uninfor-
mative (see Table 3).

Pairwise comparisons of uncorrected p-distance for each
gene were conducted between all species pairs using
PAUP*(v4.b10) (Swofford, 2001). These distances were
used to evaluate the relative evolutionary rate of the differ-
ent genes examined. Using cytb distance as a reference,
ratios to individual gene distance were examined. The
means and standard deviations of these measures are pre-
sented in Table 4.

As a heuristic examination for saturation of substitution
sites, plots were generated to compare substitution number
at 1st, 2nd, and 3rd codon positions versus total uncor-
rected genetic distance. An unsaturated dataset should
show a linear relationship between substitution number at
a particular codon position and increasing genetic distance.
In the case of saturation of substitution sites one would
expect to see a plateau in this relationship at larger genetic
distances. The three protein coding genes (cytb, cox1, and
RAG?2) were examined in this fashion and did not show
evidence for saturation (see Fig. 1).
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-ea Lod = Gene partitions were subjected to a partition homoge-
“ - neity test as implemented in PAUP* using 1000 repli-
g. cates, each including 10 random sequence addition
o = replicates. Test results indicated that there was no signifi-
=} . . . . .
SoS®E . 1828 cant conflict in phylogenetic signal between gene parti-
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T R i tions, so all sequence data was concatenated and
- analyzed as a single unit in parsimony analyses. Maxi-
SHog % Sa@e mum parsimony analysis was conducted using PAUP*.
b S BasEgoE Character state optimization was set to ACCTRAN,
E g é E =) § E § g multi-state characters treated as polymorphic, gaps
zzzz ﬁ == 3§ treated as a “Sth base”, TBR branch swapping was
N nnEhnnnn

employed, and multiple saved trees and “max trees” were
set to automatically increase if needed. The “5th base”
rather than “missing” setting for gaps was chosen as gaps
often prove to be informative phylogenetic characters.
This was observed to be the case with preliminary analy-
ses showing that several otherwise highly supported
clades contain one or more synapomorphic gap charac-
ters (J. Hyde unpublished data). All other settings were
left at the default values. Heuristic tree searches were
done using 1000 replicates of random sequence addition.

variabilis
acentrus

umbrosus
wilsoni

Institutional abbreviations follow Leviton et al. (1985) except for SWFSC which corresponds to the Southwest Fisheries Science Center, La Jolla, California. NA, not available. Institutional abbrevia-

tions follow Leviton et al. (1985) except for SWFSC which corresponds to the Southwest Fisheries Science Center, La Jolla, California. NA, not available.

Please cite this article in press as: Hyde, J.R., Vetter, R.D., The origin, evolution, and diversification of rockfishes of the genus Sebastes
(Cuvier), Mol. Phylogenet. Evol. (2007), doi:10.1016/j.ympev.2006.12.026




J.R. Hyde, R.D. Vetter | Molecular Phylogenetics and Evolution xxx (2007 ) xxx—xxx

Table 2
PCR primers used in this study for DNA amplification

Amplified region Primer Sequence 5'-3" Reference

Control region D-RF CCT GAA AAT AGG AAC CAAATG CCA G This study
Thr-RF GAG GAY AAA GCA CTT GAA TGA GC This study

cytb Glu-RF2 AAC CAT CGT TGT TAT TCA ACT ACA AGA ACC This study
RevThr-RF2 TTT ACA AGA CCA GGG CTC TG This study

coxl Cox1-RF-R CCT GAG AAT AGT GGG AAT CAG TG This study
Cox1-Tyr-RF-F TAC AAT CCA TCG CTT AAA AAC TCA GC This study

16S 16SA CGC CTG TTT ATC AAA AAC AT Palumbi et al. (1991)
16SB CCG GTC TGA ACT CAG ATCACG T Palumbi et al. (1991)

128 12SA AAA CTG GGA TTA GAT ACC CCACTA T Palumbi et al. (1991)
12SB GAG GGT GAC GGG CGG TGT GT Palumbi et al. (1991)

RAG2 RAG2-RF-F GTA GAG CTC CTC GGA GTC TTC GAG This study
RAG2-RF-R ACC ATG GAT AGC CGT GGC TGC This study

ITS1 18d CACACCGCCCGT CGCTACTACCGATT Hillis and Dixon (1991)
5.8¢c GTG CGT TCG AAG TGT CGA TGA TCA A Hillis and Dixon (1991)

Table 3

Nucleotide base composition and character number for genes used in this study

Gene A C G T No. of characters No. of parsimony
informative characters
cytb 0.25046 0.29186 0.15671 0.30097 1141 349
tThr-tPro 0.27044 0.2648 0.19134 0.27342 143 14
dloop 0.39439 0.16457 0.12436 0.31667 512 224
12s 0.27726 0.28893 0.23748 0.19633 387 34
16s 029114 0.25299 0.23125 0.22462 590 32
coxl 0.24112 0.26372 0.189 0.30616 1161 265
rag2 0.22359 0.27522 0.2816 0.2196 713 42
itsl 0.18092 0.32951 0.31269 0.17688 934 174
Total 5581 1134
Table 4 batch files were edited to treat multi-state characters as

Pairwise comparisons of uncorrected p-distance between species at
selected genes expressed as a ratio to cytochrome b

Gene Mean ratio SD

dloop 1.85885458 0.94247422
coxl 0.69475085 0.15226424
128 0.31133226 0.14986064
16S 0.13326596 0.08049313
RAG2 0.16529698 0.23730285
ITSI1 0.25389092 0.18723527

This is used as a metric to compare relative evolutionary rates between
different gene regions.

In addition to the standard heuristic search for the most
parsimonious trees, a parsimony ratchet (Nixon, 1999) was
implemented to further search treespace. The parsimony
ratchet has been shown to quickly and thoroughly search
treespace often finding shorter trees in much less time than
simple heuristic searches. This was accomplished through
200 iterations of the random re-weighting of 15% of the
characters and subsequent short heuristic searches. When
compared to the unperturbed dataset this method acts to
“warp” tree space, facilitating the rapid exploration of
many tree islands at the expense of thorough searching of
any one island. The key element of this method is that the
ratchet proceeds only to progressively better islands. In
analysis of the Sebastes dataset, 20 independent runs of the
parsimony ratchet were done using PAUP* and batch files
generated using PAUPrat (Sikes and Lewis, 2001). The

polymorphic and gaps as “Sth bases”. Saved trees from all
runs were combined and filtered for the shortest trees.
These trees were then combined into a single 50% majority-
rule consensus tree.

To assess statistical support values for the nodes, a non-
parametric bootstrap resampling scheme was applied in
PAUP*. Trees were assembled by stepwise addition using
10 random sequence addition replicates for each of 1000
bootstrap iterations. To reduce computational time, max
trees were limited to 1000 trees saved per iteration. Though
there was some minor tree buffer overflow, the trees saved
from the majority of the replicates were well below this
ceiling suggesting that any effect on the results is likely
negligible.

2.4.2. Bayesian posterior analysis

In addition to the maximum parsimony analysis, the
genetic data was subjected to a Bayesian posterior analysis.
Genetic data were evaluated for evolutionary model testing
using MrModeltest v2.2 (Nylander, 2004) as implemented
using the PAUP* framework. This program uses both the
hierarchical likelihood ratio test (Huelsenbeck and Crand-
all, 1997) and Akaike (Akaike, 1974) information criterion
to test the fit of the data to 24 different evolutionary mod-
els. This analysis was done both on the concatenated
sequence data and on the individual genes. In all but one
case the model chosen was a general time reversible (GTR)

Please cite this article in press as: Hyde, J.R., Vetter, R.D., The origin, evolution, and diversification of rockfishes of the genus Sebastes
(Cuvier), Mol. Phylogenet. Evol. (2007), doi:10.1016/j.ympev.2006.12.026
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Fig. 1. Graphical presentation of the number of nucleotide substitutions at Ist (black), 2nd (dark gray), and 3rd (light gray) codon sites as a function of
uncorrected p-distance. Used as an evaluation tool to check for saturation of substitution sites in protein coding genes. Saturation would be indicated as a

plateau in substitution number at increasing genetic distance.

model (Rodriguez et al., 1990) considering an empirically
derived proportion of invariant sites (I) and gamma shape
distribution (I'). The one exception, RAG2, fit the Hase-
gawa etal, 1985) (HKY)+I+T model best. MrBayes
v3.1.1 (Huelsenbeck and Ronquist, 2001; Ronquist and
Huelsenbeck, 2003) was used to generate a Bayesian
inferred phylogenetic hypothesis using Metropolis coupled
Markov chain Monte Carlo analysis. The results of the
MrModeltest analysis showed that although the same evo-
lutionary model fit most of the genes, both I and I" varied
between them. For this reason, the data was partitioned
into eight unlinked sets each with its own estimation of I
and I' (tRNA threonine and tRNA proline were analyzed
together). All partitions except RAG2 were set to nst=6,
Dirichlet (1,1,1,1), and the program empirically estimated
both I and I'. The RAG?2 partition settings were the same as
above with the exception of nst=4, corresponding to the
HKY +1+T model.

Two independent runs of four Markov chains each were
allowed to proceed for 4,000,000 cycles. Each run consisted
of a single “cold” chain and three “heated” chains with a
temp setting of 0.3. The heated chains act to flatten the likeli-
hood surface being explored by the chains so as to avoid

becoming trapped in local minima and to facilitate state
changing between the chains. The utilization of two indepen-
dent runs serves as a diagnostic tool for checking the status
of the analysis. When the “average standard deviation of split
frequencies” between the two runs decreases towards zero it
is indicated that the runs have both converged upon the same
region of tree space and the analysis has reached stationarity,
giving an accurate representation of the posterior probability
distribution. In addition to this diagnostic, the first 25% of
the analysis was discarded to eliminate the inclusion of data
from the “burn-in” phase of the analysis where the posterior
probabilities may have not yet reached stationarity.

3. Results
3.1. Nucleotide composition

Nucleotide base composition analyses showed similar
results to other studies of mitochondrial genes. As
noted by Rocha-Olivares et al. (1999a,b) and Kai et al.
(2003) for Sebastes there is a strong anti-g bias in the cyto-
chrome b gene. This same bias is seen in the cytochrome ¢
oxidase I, tRNA proline, and tRNA threonine genes. The
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mitochondrial control region shows both a strong anti-c
and anti-g bias. In contrast, internal transcribed spacer 1
shows a strong anti-a and anti-t bias. Base composition
values and number of characters for each gene are pre-
sented in Table 3.

3.2. Maximum parsimony

Both standard heuristic and ratchet-based parsimony
analyses produced shortest trees of the same length (7621
steps). Standard heuristic searches were fairly short and
seemed to perform comparably to the ratchet method. This
is likely due to the large number of parsimony informative
characters in the dataset (n = 1134) facilitating resolution of
the phylogeny despite the relatively large number of taxa.
Fig. 2 presents the 50% majority rule consensus tree of 204
equally parsimonious trees obtained by combining trees
from both the standard heuristic and ratchet searches with
a consistency index (Kluge and Farris, 1969) of 0.35 and
retention index (Farris, 1989) of 0.58, when uninformative
characters are retained. Prior to combining the trees from
these two analyses, a Kishino-Hasegawa test was applied in
PAUP* to test for any significant difference between trees
from both methods. As no significant difference was found,
the trees were combined. In fact, both methods of tree
searching produced the same set of 204 equally parsimoni-
ous trees. This strong concordance between methods sug-
gests that tree space had been thoroughly searched and that
the saved trees represent the true most parsimonious set of
trees. Bootstrap support values >50 are noted above the
branch at all nodes (see Fig. 2).

3.3. Bayesian inference

The MCMC analysis was stopped after 4,000,000 cycles
as the “average standard deviation of split frequencies diag-
nostic” indicated that the two runs had converged on the
same region of treespace. The Bayesian analysis produced a
credible set of 20,708 trees. The consensus tree with the
maximum posterior probability (see Fig. 3) is very similar
in topology to that produced using maximum parsimony
(see Fig. 2). Minor differences in topologies are possibly due
to the inability for current distance-based metrics such as
maximum likelihood and Bayesian inference to incorporate
alignment gaps in analyses, instead coding these characters
as missing (Felsenstein, 1981). Despite the exclusion of
these potentially informative gap characters, most posterior
support values (Fig. 3) are similar to or greater than the
bootstrap values (Fig.2) from the maximum parsimony
analysis.

3.4. Construction of a clock calibrated ultra-metric tree

In order to better understand the timing of speciation
events, an ultra-metric tree was constructed using branch
length measures obtained from the consensus tree gener-
ated during the Bayesian posterior analysis. Bayesian-

derived branch lengths were chosen as they were derived
from a parameter-rich model that independently analyzed
each data partition. This should act to minimize rate incon-
sistencies between genes, reducing biases that are present in
currently available likelihood and distance based programs
(Huelsenbeck et al., 2002). The included branch length mea-
sures represent the average of the branch lengths from the
posterior distribution of credible trees. The outgroup,
Sebastolobus alascanus, was removed from this analysis in
order to minimize the effect of unequal evolutionary rate
between it and the ingroup taxa. Raw branch length data
were run through the program r8s v1.7 (Sanderson, 2003) in
order to determine node age and correct for inconsistency
of evolutionary rate between lineages. Branch length cor-
rection was accomplished using the penalized likelihood
function (Sanderson, 2002) with a truncated Newton
method with bound constraints. The penalty function was
set to additive. A cross validation analysis was conducted
to choose the proper rate smoothing parameter (parame-
ters between 0.1 and 1000 were assessed). The best smooth-
ing parameter was determined to be around 1.05.

The tree was age calibrated by setting the most recent
common ancestor to S. alutus and S. norvegicus at 3 million
years ago (MYA). This calibration point was previously
used by Rocha-Olivares et al. (1999a,b) for cytb data as
high-latitude cooling and reduced sea level caused a cessa-
tion of favorable conditions for genetic interchange
between the NA and NP at this time. Both Bayesian infer-
ence and maximum parsimony analyses supported S. alu-
tus, from the NP, as the sister taxon to the four closely
related Atlantic species. The resulting chronogram was
drawn using Mesquite v1l.l (Maddison and Maddison,
2002) and is presented in Fig. 5. In addition to the presented
chronogram, data on diatom mass accumulation rates
(MAR) at three NP sites and historic eustatic sea level are
presented on the same time scale. Data were adapted from
Barron’s (1998) study of diatom deposition rates through-
out the NP and Miller et al.’s (2005) studies of paleo-sea
level fluctuation.

4. Discussion

This study represents the most robust and comprehen-
sive phylogenetic analysis of the rockfishes of the genus
Sebastes. Both maximum parsimony and Bayesian infer-
ence analyses of the genetic data produce similar and well-
supported phylogenies. These studies provide supported
phylogenetic hypotheses for relationships between individ-
ual species, relationships between clades (sub-genera), as
well as the relationship between Sebastes species and the
other members of Sebastinae. The extraordinary amount of
new genetic data, some of it extracted from rare formalin
fixed material, is a database so rich it cannot be discussed
fully in this paper and invites analyses by other scientists
interested in the general properties of marine speciation.
The application of a molecular clock, based on multiple
genes, constrained within a single taxonomic lineage, and
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Fig. 2. Maximum parsimony 50% majority rule consensus tree of 204 equally parsimonious trees. Tree length is 5581 steps. Numbers above nodes indicate

bootstrap support values >50%. Current morphology based sub-generic classification (Kendall, 2000) is indicated to the right of the species name with
“Type” species in bold.
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anchored by known paleo-oceanographic events is a partic-
ularly important result.

Maximum likelihood methods were not employed in this
paper due to computational constraints and the similarity
in method to Bayesian inference. Though maximum likeli-
hood has proved amenable to analyses of single genes, we
believe that the analysis of multiple genes under this meth-
odology, each with different evolutionary rates, introduces
unacceptable biases. When multiple genes are analyzed
together, Bayesian inference should prove superior given its
ability to set optimal model parameters for each data parti-
tion (Castoe etal., 2004). Current maximum likelihood
models are unable to accommodate such model optimiza-
tion across multiple genetic loci, instead creating a single
model for the data as a whole (Huelsenbeck et al., 2002).

When considering statistical support for clades, it is
important to consider known biases associated with these
measures. Bootstrap resampling of phylogenies has been
shown to be an overly conservative measure of support and
tends to decrease with increasing number of analyzed taxa
(Cummings et al., 2003). Conversely, Bayesian posterior
probability may tend to overestimate support, (Cummings
et al.,, 2003; Simmons et al., 2003) especially when incorrect
model parameters are employed. As it is clearly worse to
overly support the wrong phylogeny than to inadequately
support the correct phylogeny we advocate consideration
of these biases when assessing the support values, especially
when they show large discrepancies.

Though five of the 110 species are missing from these
analyses, their inclusion is not expected to substantially
alter tree topology as these species are likely contained
within currently represented clades. According to Y. Kai
(2005) pers. comm., cytochrome b data suggest that S. kore-
anus and S. nivosus are both closely related to S. pachyceph-
alus, S. oblongus, and S. hubbsi. Barsukov (1981) suggested
that S. wakiyai is closely related to S. steindachneri; both of
these are very similar in morphology to S. itinus (Y. Kai,
pers. comm. 2005). Three of the Gulf of California species
(S. cortezi, S. peduncularis, and S. sinensis) are all very simi-
lar to S. varispinis (Chen, 1975) and this is likely a species
complex that is still undergoing genetic lineage sorting (J.
Hyde unpublished data).

4.1. Species flocks

Greenwood (1984) defined species flocks as geographi-
cally circumscribed, monophyletic groups of species that
have undergone an explosive burst of speciation, in com-
parison to sister taxa, usually due to the evolution of
novel adaptive traits or colonization of new habitat.
Johns and Avise (1998), using an algorithm devised by
Wollenberg et al. (1996), had posited that Sebastes might
be an ancient marine species flock. This conclusion was
based on partial sequence of a single mitochondrial gene
from 28 species representing multiple phylogenetic lin-
eages. As noted by the authors, support was low for the
majority of the internal nodes. This was likely due to the

inadequate resolution provided by relying upon a single
gene for phylogenetic information. The combination of
small sample size and a limited number of characters in
phylogenetic analyses often creates long branches and
polytomies, which supports the hypothesis of rapid flock-
like radiations. Also, the results of their tests were highly
contingent on outgroup choice and its effect on cumula-
tive distribution functions. No close sebastine outgroup
was used, but rather the more distantly related Sebastolo-
bus or Scorpaena species. While a formal reanalysis
awaits, the data presented here clearly show a wide variety
of speciation patterns between different lineages, some
ancient and some modern. It is interesting that some lin-
eages such as Sebastodes, containing S. paucispinis and
S. jordani, that are epibenthic and maintain large popula-
tion sizes, have single lineages stretching back almost 6
million years despite presumed displacements due to gla-
cial advance and retreat. At the other extreme, lineages
such as FEosebastes and Sebastomus, that have endemic
species within the Gulf of California, have rapidly formed
multiple new species within the past half to one million
years. Thus this analysis indicates there are variable speci-
ation rates within Sebastes (see Fig. 6), an idea which is
inconsistent with the expectations of a species flock.
Future analyses of species flocks involving Sebastes
should focus on the monophyletic and geographically
constrained clades within the genus (e.g., Acutomentum,
Pteropodus, Sebastocles, Sebastomus) rather than analyz-
ing the genus as a whole.

4.2. Comparison to previous studies

Phylogenetic hypotheses generated in this study are sim-
ilar to those put forth by Rocha-Olivares et al. (1999a,b)
and Kai et al. (2003). The genus Sebastes remains mono-
phyletic. Interestingly the genus Sebastiscus, once consid-
ered a subgenus of Sebastes, proves to be the sister group to
the remainder of the Sebastinae. The subgenus Sebastomus
(sensu Chen, 1971) has withstood a more thorough analy-
sis, Pteropodus (sensu Matsubara 1943) remains polyphy-
letic, and “clade NWP” and “clade NEP” of Kai et al.
(2003) are recovered. Increased character and taxon sam-
pling in this study have, however, dramatically improved
tree stability resulting in higher statistical support, espe-
cially at the deeper nodes. This increase in clade support
allows us to make revisions to previous sub-generic classifi-
cations (see Fig. 3). For this, we chose to use the phyloge-
netic hypothesis produced by Bayesian inference both
because of its typically higher support values, enhancing
resolution for clades near the base of the tree, and its fur-
ther use in construction of the molecular clock based analy-
ses (Fig. 5). When possible, we used previously proposed
named sub-genera (see Table 5). When multiple generic
type species were nested within a clade, the subgenus with
historical precedence was used (e.g., Sebastichthys). If no
type species resided within a clade a simple name was
applied (i.e., clade “A”, clade “B”, clade “C”, clade “D”).
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Table 5
List of valid subgenera (Kendall, 2000), type species, and descriptive
authority

Subgenus Type species Authority

Sebastes ovalis
S. sinensis

Acutomentum
Allosebastes

Eigenmann and Beeson (1893)
Hubbs (1951)

Auctospina S. auriculatus Eigenmann and Beeson (1893)
Emmelas S. glaucus Jordan and Evermann (1898)
Eosebastes S. aurora Jordan and Evermann (1896)
Hatumeus S. owstoni Matsubara (1943)
Hispaniscus S. rubrivinctus Jordan and Evermann (1896)
Mebarus S. inermis Matsubara (1943)

Matsubara (1943)
Matsubara (1943)
Eigenmann and Beeson (1893)

Murasoius
Neohispaniscus
Primospina

S. pachycephalus
S. schlegelii
S. mystinus

Pteropodus S. maliger Eigenmann and Beeson (1893)
Rosicola S. pinniger Jordan and Evermann (1896)
Sebastes S. norvegicus Ascanius (1772)

Sebastichthys
Sebastocarus
Sebastocles

Gill (1862)
Jordan and Evermann (1927)
Jordan et al. (1925)

S. nigrocinctus
S. serriceps
S. hubbsi

Sebastodes S. paucispinis Gill (1861)
Sebastomus S. rosaceus Gill (1864)
Sebastopyr S. rubberimus Jordan and Evermann (1927)
Sebastosomus S. melanops Gill (1864)

Matsubara (1943)
Jordan and Evermann (1898)

Takenokius
Zalopyr

S. oblongus
S. aleutianus

Despite improvements to the genetic phylogeny, the
majority of previously proposed morphologic sub-genera
were found to be either para- or poly-phyletic (see Fig. 2).
This disagreement between phenotype and genotype is
likely due to episodes of convergent evolution driven by the
habitat and life history of individual species or clades. As
the sister genera to Sebastes, Helicolenus and Hozukius, are
deep water, demersal fishes with strong head spines, it
would seem likely that the ancestral form of Sebastes
shared similar traits (Barsukov, 1981). This seems to be
supported by the observation that several of the early
branching lineages of Sebastes (i.e., S. borealis, S. flammeus,
S. iracundus, and S. matsubarae) fit this description (see
Figs. 2 and 3). The reduction and loss of head spines in
association with a semi-pelagic lifestyle seems, in general, to
be a derived condition. In comparison to a demersal life-
style, a semi-pelagic lifestyle would seem more conducive to
adult dispersal, perhaps facilitating the spread of Sebastes
species throughout the NP. Starr et al. (2002) showed that
S. paucispinis, a semi-pelagic species, exhibited larger indi-
vidual home range size than S. chlorostictus, a demersal
species.

The genetic analyses corroborate Barsukov’s (1981)
hypothesis that the plesiomorphic trait of strong head spin-
ation in association with a more demersal lifestyle has reap-
peared in several clades (e.g., Sebastomus, Pteropodus, and
Sebastocles). However, Barsukov’s (1981) hypothesis that
speciation occurs in threes, due primarily to depth segrega-
tion and competitive exclusion of the intermediate depth
form, seems to be incongruent with our finding that the
majority of species within a clade co-occur and often share
very similar morphologies. Additionally, the molecular

clock based analysis (Fig. 5) yields few examples of “triple
synchronous” speciation events, instead suggesting that
speciation events occur in a progressive stepwise fashion.
Our findings are more suggestive of an evolutionary model
in which species disperse into newly available habitat and
subsequently segregate based upon fine-scale ecological
(e.g., Allen, 1982) and assortative mating preferences (e.g.,
Narum et al., 2004). This may ultimately be enhanced by
fluctuations in temperature and sea level leading to the iso-
lation of populations, potentially resulting in allopatric spe-
ciation.

4.3. Convergent evolution of morphology

Pteropodus (sensu Matsubara, 1943) and Mebarus (sensu
Chen, 1985) are polyphyletic in both this analysis and that
of Kai et al. (2003) and Li et al. (2006). Both sub-genera
contain species found primarily at mid-latitudes on both
sides of the Pacific, suggesting a vicariant origin for such a
distribution, perhaps by high-latitude glaciation (as sug-
gested by Barsukov, 1981). However, this does not seem to
be the case. These two sub-genera are perhaps the best
examples in the Sebastinae for taxonomic confusion due to
convergent evolution. Kai etal. (2003) termed the two
clades, containing species previously classified mostly as
Pteropodus or Mebarus, as “clade NWP” (S. hubbsi, S. iner-
mis, S. joyneri, S. oblongus, S. pachycephalus, S. schlegelii,
S. taczanowskii, S. thompsoni, S. trivittatus, and S. vulpes)
and “clade NEP” (S. atrovirens, S. auriculatus, S. carnatus,
S. caurinus, S. chrysomelas, S. dallii, S. maliger, S. nebulo-
sus, and S. rastrelliger). The sister species to both of these
clades (S. scythropus and S. kiyomatsui, “clade NWP”;
S. elongatus, S. saxicola N, S. saxicola S, and S. semicinctus,
“clade NEP”) are deep water, low relief reef/soft bottom
dwellers with weak to moderate head spines. In both clades
there seems to be a progression toward more demersal,
shallow, high relief reef dwelling species with strong head
spination.

Within Kai et al’s (2003) “clade NWP” there are two
clades with different morphologies. Members of the first
clade, Mebarus, containing S. inermis, S. joyneri, and S.
thompsoni, dwell on coastal rocky reefs at shallow to mod-
erate depths (<200m) and have weak to moderate head
spines. Both S. inermis and S. thompsoni are known to asso-
ciate with drifting algal rafts as juveniles, exhibiting a semi-
pelagic lifestyle, at least during this life stage. The second
clade, Sebastocles, contains some of the shallowest occur-
ring species in the NWP (i.e., S. hubbsi, S. nivosus, S. trivitt-
atus) and tend to be demersal, high relief rocky reef
dwellers with strong head spination.

In agreement with Li et al. (2006) we choose to maintain
the subgenus Pteropodus for species within “clade NEP”.
Most species within this clade are shallow dwelling
(<100m), associated with high relief reef, and have strong
head spination. The exception is S. atrovirens, previously
classified as Mebarus, which shows reduced head spination,
likely associated with its preferential midwater affinity for
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stands of macro-algae (e.g., Macrocystis pyrifera) rather
than rocky reef. The sister clade to Pteropodus, clade “D”,
is closely related to and shares several traits with Preropo-
dus species (e.g., larval pigment pattern and juvenile habi-
tat) yet differ in general adult morphology (e.g., reduced
head spination), depth (occur deeper than Pteropodus spe-
cies), and adult habitat preference (i.e., soft bottom or low-
relief reef).

It seems that the similar trends in morphology found in
clades on opposite sides of the NP are driven more by the
similarity between their habitats than their evolutionary
lineage. Within lineages it appears that morphology
evolves rapidly depending on the habitat or life history
preferences of individual species (e.g., reduction of head
spination in S. atrovirens). Such examples of ecology-linked
morphology seem relatively common throughout Sebastes
leading to numerous examples of species that appear super-
ficially similar but are not closely related in genetic analyses
(e.g., S. alutus—S. goodei; S. brevispinis—S. macdonaldi -
S. paucispinis; S. aleutianus—S. borealis—S. melanostomus;
S. ciliatus—S. mystinus).

4.4. Paleo-oceanography of the north Pacific and evolution of
Sebastes

Barsukov (1981) proposed an origin for Sebastes in the
NWP based upon his reasoning that the more primitive
members of Sebastinae are not found in the NEP. The phy-
logenies produced by both maximum parsimony and
Bayesian inference support the NWP as the center of origin.
The oldest Sebastes fossils are found in late Miocene (~6—
10 million years ago) diatomite deposits in Lompoc, Cali-
fornia (Barsukov, 1989) and are similar to extant NEP spe-
cies (i.e., S. brevispinis, S. flavidus, S. gilli, S. goodei, and
S. semicinctus). Interestingly, these are mostly semi-pelagic
species with weak head spination, supporting the hypothe-
sis that dispersal into the NEP was facilitated by this
derived lifestyle. Unfortunately, the NWP is depauperate in
accessible Miocene deposits so there is little comparative
fossil record from this area. The ages of these fossils are in
agreement with the molecular clock estimates in Fig. 5.

The development of paleo-oceanographic features con-
ducive to the evolution and spread of Sebastes species
seems to have begun with the middle Miocene (~15-
17MYA) shoaling of the Indonesian Seaway (Tsuchi,
1997). This disruption of the circum-global Tethyan Sea
and its associated westward currents led to a dramatic
change of currents in the Pacific. Of particular importance
were the strengthening of the warm northward Kuroshio
current in the NWP, increased ocean gyre circulation, and
the subsequent strengthening of the cool southward Cali-
fornia current in the NEP. Coincident with these changes,
significant diatom deposits began to appear and gradually
increase in the NWP (Barron, 1998). These patterns were
further intensified with the progressive shoaling of the Cen-
tral American Seaway (Marincovich, 2000). In addition to
surface current flows, these changes marked the beginning

of cold deepwater formation in the NA and establishment
of its global circulation (Haug and Tiedemann, 1998). This
deepwater circulation would play a key role in the provi-
sioning of cool, nutrient laden water to the north Pacific
(NP), altering climate and promoting dramatic increases in
primary production.

Intense geologic shifts in the middle Miocene
(~15MYA) led to the rotation of the back-arc shelf of
Southwest Japan creating the Japan Sea (Itoh et al., 1997).
This caused a dramatic change in the faunal assemblage of
the region. The northeast islands were subjected to a dra-
matic cooling as they began to be influenced by the cool,
southward Oyashio current (Tsuchi, 1997). Fossils of cold-
temperate species began to appear in NE Japan at this time.
In contrast, the newly opened Japan Sea was fed by the
warm Kuroshio-derived Tsushima current through the
Tsushima Strait and was dominated by species of tropical
affinity. The transition from the middle to late Miocene
(~10-11 MYA) epoch in this region was marked by further
geologic activity resulting in the uplifting of the Tsushima
Strait, ceasing the warm water input to the Japan Sea from
the south. This dramatic cooling of the Japan Sea likely
opened the door for invasion of Sebastes species from the
northeast. Cool conditions dominated the Japan Sea until
warm water input was restored in the middle Pliocene
(~3.5MYA) (Tsuchi, 1997).

The increase and subsequent fluctuations of upwelling
driven primary and secondary production during the Mio-
cene epoch was suggested as the driving force behind popu-
lation expansion/contraction and species radiations of
cetaceans and pinnipeds (Lipp and Mtichell, 1976). This
hypothesis suggests that increased upwelling brings with it
the growth of a species range, due to the expansion of suit-
able habitat and prey resources, while subsequent contrac-
tions of these favorable conditions may lead to the
extinction or isolation of populations. Additionally, the
development of productive ecosystems likely favored the
evolution of specialist species through niche partitioning.
By these mechanisms, similar trends in abundance and spe-
cies radiation should be expected in other upwelling depen-
dent taxa (e.g., Sebastes spp.).

Primary production dramatically increased in the NWP,
primarily off the Kamchatka peninsula (site 884, Detroit
Seamount (51°27' N, 168°20" E)), beginning ~9MYA (Bar-
ron, 1998). This first period of high productivity was likely
due to the input of nutrients into the NWP through
increased deepwater circulation but was not associated
with dramatic cooling. A second peak in primary produc-
tion began ~8.3MYA across the NP, coincident with the
initial diversification of Sebastes (node A, Fig.5), and
peaked ~6.5-5.5 MYA. This protracted period of enhanced
primary production was possibly driven by increased
upwelling caused by high-latitude cooling and increasing
deepwater and ocean gyre circulation due to the continued
shoaling of the Central American Seaway (Barron, 1998).
Interestingly, this bloom of primary production seems to
have peaked off California ~6.5 MY A (Isaacs, 1983, 1985),
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Fig. 4. Biogeographic map of the north Pacific. Provinces correspond to those proposed by Briggs (1974) and Brusca and Wallerstein (1979) with areas of
disagreement represented by overlap of provinces. Arrows indicate general direction of major ocean and basin currents.

coincident with a period of initial diversification of Sebastes
in this region (node E, Fig. 5), and spread westward to cen-
tral Japan ~5.5MYA (site 438 (40°38'N, 143°13’E)). This
time of major upwelling, resulting in increased primary pro-
duction and cooling of mid and high-latitudes, coincides
with the initial diversification (see Figs. 3-5) and rapid
spread of Sebastes species throughput the NP, both to the
east and south to mid-latitudes on both sides of the Pacific.

Approximately 4-3.5MYA, during a period of high lati-
tude warming, the Bering Straits opened and allowed biotic
exchange from the NP into the Bering Sea and eventually
the NA (Vermeij, 1991; Briggs, 1995). Dramatic cooling
and glaciation at high latitudes began ~3.0-2.7MYA and
ceased favorable conditions for biotic exchange between
the two oceans. Many taxa are documented to have made
this journey into the NA, among them was the ancestor of
the S. alutus clade (node F, Fig. 5). This lineage successfully
colonized much of the NA eventually forming four closely
related species (S. fasciatus, S. mentella, S. norvegicus, and
S. viviparus). This dispersal event allows us the unique
opportunity for calibrating a molecular clock model of
genetic evolution. Such a calibration allows placement of
approximate times on the nodes of the phylogeny (see
Fig. 5).

4.5. Sea level change as a promoter of speciation

With the cessation of flow through the Central Ameri-
can Seaway (~3MYA), modern ocean circulation patterns
were largely established. This event also marked the begin-
ning of a period of frequent glacial-interglacial cycles. Peri-
ods of intense glaciation are notable not only for the great
ice sheets that formed at high latitudes but also for a signifi-
cant decrease in global sea level of 50-100m (Haq et al.,
1987; Miller et al., 2005), cooler sea surface temperatures,
and alteration of major ocean currents (Herbert et al.,
2001). Periods of low sea level occurred primarily at 6.3—

5.6 MYA, 5.1-46 MYA, 42-40MYA, 3.532MYA, 29
25MYA, 23-20MYA, 19-1.6 MYA, 1.3-1.9MYA and
repeatedly throughout the past 800,000 years (Haq et al.,
1987; Graham et al., 2003; Miller et al., 2005) (see Figs. 5
and 6). Such large changes in sea level can have profound
implications on regional ocean circulation patterns as pre-
vious submarine ridges become barriers to circulation. This
is especially important in the SCB and Japan where low sea
levels create semi-isolated basins, possibly restricting gene
flow, promoting divergence and subsequent speciation.
Lower sea level not only altered current flows but dramati-
cally increased near-shore macro-algal and rocky habitat,
at least in the SCB (Graham et al., 2003). Perhaps this
spurred the evolution of specialist species to these habitats
(ie., S. atrovirens, S. auriculatus, S. carnatus, S. caurinus, S.
chrysomelas, S. dallii, S. maliger, S. melanops, S. nebulosus,
S. rastrelliger, S. serranoides), many of which have evolved
during a protracted period of low sea level during the past 3
million years.

Recent studies of population structure in several
Sebastes species have shown that despite a lengthy pelagic
dispersal phase there can be fairly low geographic dispersal
(Buonaccorsi et al., 2002, 2004, 2005; Taylor, 2004; Taylor
et al., 2004). Regional signals of genetic isolation can be
present due to interactions of major ocean currents
(Rocha-Olivares and Vetter, 1999), persistent regional
excursions and eddies of current systems (Buonaccorsi
et al., 2002, 2004, 2005; Cope, 2004; Matala et al., 2004),
and even local bathymetric and current features (Withler
et al.,, 2001; Buonaccorsi et al., 2002). Clearly this indicates
a tendency for Sebastes species to become genetically iso-
lated during periods of expansion/contraction of cool water
systems, changes in sea level, or major alterations of current
flow.

To test whether changing sea level acted to promote evo-
lution of new species in Sebastes, sea level data (Miller
et al., 2005) was averaged over 100 kyr periods and com-
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pared to deviations of the instantaneous speciation rate
from the average rate. To do this, node ages were binned
into 100 kyr periods and assembled into a graph of cumula-
tive speciation events. A polynomial curve of best fit was
applied and used to calculate the deviation between the
observed and expected number of speciation events at each
time period, effectively creating a measure of the instanta-
neous change in speciation rate. Correlation analysis
between change in sea level and change in speciation rate
was not significant. However, the graph of sea level and
cumulative speciation events (Fig. 6) appears to show a
general increase in speciation events in association with
large drops in sea level and conversely a decrease in specia-
tion events during periods of increasing or stable sea level.
The lack of significance may be due to small node-age
errors introduced during the rate smoothing and calibra-
tion processes resulting in slight phase shifts in this rela-
tionship.

As Sebastes species have complex mating behavior (Hel-
vey, 1982; Shinomiya and Ezaki, 1991; J. Hyde unpublished
data) including internal fertilization and possible phero-
mone (Helvey, 1982) and sound production (Hallacher,
1974), isolation events would be expected to be particularly
effective at promoting speciation. It is easy to envision drift
in mating preference between isolated regions leading to the
maintenance of reproductive isolation even after subse-
quent reconnection of populations. Development of diver-
gent and heritable mating preferences are hallmarks of
incipient stages of speciation (Haesler and Seehausen,
2005).

4.6. What does the future hold for the genus Sebastes?

Our ability to recognize new species is dependent upon
the evolution of unique physical and/or genetic characters,
a process that can take a great deal of time. There are exam-
ples in several Sebastes species where color morphs, which
are not reciprocally monophyletic at the examined mito-
chondrial genes, show evidence for assortative mating when
examined using faster evolving nuclear markers (Kai et al.,
2002a and Kai et al., 2002b; Narum et al., 2004). These spe-
cies complexes are likely in the early stages of speciation
and will continue to diverge in the future. As genetic tech-
niques continue to advance and additional species are
examined in detail, we will likely find more incidences of
cryptic species, indicating that the process of speciation is
ongoing in this genus.

These magnificent fishes have succeeded in spreading
around the globe due in large part to the cooling of the
world oceans since the middle Miocene. However, anthro-
pogenic drivers over the past century seem to be forcing the
oceans to gradually warm (Field et al., 2006). This likely
marks the end of southward expansion in the northern
hemisphere but may reopen the door to the north as arctic
waters warm and again become hospitable to these fishes.
Perhaps additional lineages will colonize the NA from the
NP, leading to eventual speciation. Species at mid-latitudes
will likely face additional temperature challenges as sea-
sonal periods of cool, favorable conditions for larval sur-
vival are reduced. Endemic species within the GC will likely
be maintained as the unique geology and oceanography of
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this region promotes strong upwelling of cool, nutrient-rich
water (Lopez et al., 2006). However, thermal barriers that
currently exist will likely be strengthened. Additionally,
expansion of persistent low oxygen “dead zones” (Dybas,
2005) across the NP may act to further restrict population
connectivity, perhaps fostering the speciation process.

Though climate change may alter the long-term evolu-
tionary trajectory of Sebastes spp., the short-term threats of
pollution and overfishing are likely more disruptive. Com-
mensurate with the growth of human populations, there is
an increasing demand for fishery resources worldwide.
Recent studies project dire consequences for world fisheries
within the next 40-50 years unless current trends of exploi-
tation are changed (e.g., Worm et al., 2006). Sebastes spp.
have been heavily exploited by both commercial and recre-
ational fishermen for over 50 years throughout the NP. Sev-
eral NEP Sebastes spp. are currently classified by the Pacific
Fisheries Management Council as overfished (ie.,
S. crameri, S. entomelas, S. levis, S. paucispinis, S. pinniger,
S. ruberrimus), while many others are well below their his-
toric levels of abundance.

5. Summary

The phylogenetic hypotheses put forth in this study sup-
port the origin of Sebastes during the middle Miocene
epoch at high-latitudes in the NWP. The dramatic cooling
and increase in primary production that began ~9-8§ MYA
in the NWP seems to coincide with the initial diversification
of the genus as seen in the ultra-metric tree analysis (node
A, Fig. 5). Pronounced upwelling with increased primary
production and ocean cooling began ~8-6MYA across
most of the NP and seems to coincide with a second burst
of diversification both to the east and south. It would seem
that the radiation initially was to the east into the Gulf of
Alaska (node B, Fig. 5) but was soon followed by expan-
sion south to the mid-latitude Japanese Islands (node C,
Fig. 5). This was soon followed by further expansion east
and south into the California Current system and to mid-
latitudes in the NEP (node D, Fig. 5). More recent tectonic
events and additional cooling allowed further expansion
southward and subsequent speciation in the Gulf of Cali-
fornia (S. cortezi, S. exsul, S. macdonaldi, S. peduncularis,
S. sinensis, S. spinorbis, and S. varispinis) and eventually the
SH (S. capensis and S. oculatus). In all cases, both ancient
and recent, colonization of newly created temperate habitat
appears to have been progressive and stepwise. Examina-
tion of the biogeographic map and color-coded tree (Figs. 3
and 4) did not reveal a single case of trans-Pacific dispersal
such that an Asian species occurs in a strictly North Ameri-
can lineage or vise versa. Colonization of both the Gulf of
California and southern hemisphere came from the lineages
with the most southern affinity. It is also interesting to note
that all of the basic ecological morphotypes commonly
observed in NP habitats, (e.g., soft bottom vs. hard bottom,
shallow reef vs. deep reef, schooling vs. solitary), (Gunder-
son and Vetter, 2005) had evolved prior to 3 million years

ago. Subsequent Pleistocene glacial cycles have mostly
developed variations on these basic ecological themes.

From these analyses it would seem that the evolution
of a more fusiform morphology and semi-pelagic lifestyle,
in conjunction with increased upwelling and cooler ocean
temperatures, facilitated the spread of Sebastes species
throughout the NP. This hypothesis is similar to those
proposed in previous studies (e.g., Barsukov, 1981). Such
innovations away from the typical demersal existence of a
deep bodied, spiny scorpaenid fish is not surprising con-
sidering recent genetic (Smith and Wheeler, 2004) and
morphologic (Imamura and Yabe, 2002) analyses of the
Scorpaeniformes. Their results clearly show the order to
be polyphyletic with numerous percoids nested within the
Scorpaeniformes. Such results suggest that the morpho-
logic characters typical of scorpaenid fishes are more
labile than previously believed. Nowhere is this more evi-
dent than within Sebastes where species range from small,
relatively head-spine free, semi-pelagic species (e.g., S. jor-
dani and S. owstoni) to large, strong head spination,
demersal species (e.g., S. aleutianus, S. levis, and S. mela-
nostomus).
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Abstract of Chapter II:

A recent phylogenetic review of the genus Sebastes suggested the existence of a
cryptic species of vermilion rockfish (S. miniatus). To evaluate the geographic and
bathymetric range of the Type 1 and Type 2 forms reported in Hyde & Vetter (2007),
cytochrome b sequences were examined from 548 fish. Type 1 fish were found primarily
south of Point Conception on reefs deeper than 100m. Type 2 fish were common range-
wide at sites shallower than 100m. Reproductive isolation between the two types was
tested using nine microsatellite loci. Estimates of genetic divergence were made using
the fixation index (Fsr) and correspondence between haplotype and genotype was tested
by Bayesian population assignment and multivariate plotting of individual genotypes.
Microsatellite analyses gave strong support for the presence of two distinct groups of
genotypes. All fish with Type 1 haplotypes and fish with Type 2 haplotypes from <100m
depth had genotypes unique to their haplotype group. However, most (68%) fish with
Type 2 haplotypes from >100m depth assigned strongly to the Type 1 genotype group.
Morphometric comparisons between the two genotypic groups revealed significant
differences at three of the six examined measurements. Differences in both genetics,
depth of occurrence, and morphology suggests these are separate species. This finding
along with evidence of depth segregation in many recent species pairs led us to
hypothesize a speciation model for Sebastes spp. by which the loss or truncation of a
depth related ontogenetic migration can lead to the creation of reproductively isolated

populations.
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Introduction:

Failure to recognize the existence of two reproductively isolated entities (cryptic
species) within an exploited stock is one of the most critical errors in management. This
error can be compounded if management strategies include spatial or depth related
closures that favor one unrecognized entity over the other. Such a potential problem came
to light in a recent phylogenetic examination of the heavily exploited rockfishes, genus
Sebastes (Hyde & Vetter 2007). The subgenus Rosicola historically contained two
species, the canary rockfish, S. pinniger, and the vermilion rockfish, S. miniatus that
together represent an important component of the west coast commercial and recreational
fisheries. The investigations of Hyde & Vetter (2007), based on seven mitochondrial and
two nuclear loci, suggested the presence of a third taxon that was reasonably old
(~2.3MYA) but previously unrecognized. This situation was not unlike the recent
discovery of a cryptic species pair within S. aleutianus (Gharrett et al. 2005; Gharrett et
al. 2006). This study examines the presence of a cryptic species within Rosicola, the
common occurrence of bathymetric parapatry in recent sister taxa of Sebastes, and the
proposal of a previously unrecognized general mechanism for reproductive isolation
based upon the truncation of a bathymetric ontogenetic migration (sensu Gunderson &
Vetter 2000).

Canary rockfish, S. pinniger, are abundant from British Columbia to Point
Conception. They are generally found on the inner continental shelf from 80-200m depth
and are susceptible to trawl and hook & line fisheries (Love et al. 2002; Williams &

Ralston 2002). They release live young that spend three to four months in the pelagic
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environment before settling as juveniles in shallow kelp forest habitats. This benthic
settlement phase is followed by an ontogenetic migration to greater depths as they mature
(Vetter & Lynn 1997). Presently canary rockfish are considered overfished, placing
stringent management on the directed fishery and limiting other fisheries, both
commercial and recreational, due to their presence as bycatch.

Vermilion rockfish (S. miniatus) are very similar in morphology and appearance
to canary, tending to be more red than orange (see color plates in Love et al. 2002). They
generally inhabit shallower water north of Point Conception where they typically occur
inshore of canary habitat in depths <100m. The timing of reproduction, typically in the
fall, differs from the winter spawning canary but spawning and settlement peaks are not
well defined (Love et al. 2002), perhaps due to the presence of more than one
unrecognized taxon. South of Point Conception, where canary are uncommon, vermilion
rockfish expand their known depth range to include habitat down to 200m on coastal
reefs and offshore banks, again hinting at the possibility of an unrecognized taxon (Love
et al. 2002). Vermilion populations are heavily exploited (currently ranked #1 in the
southern California recreational fishery and #3 statewide, MacCall 2005) and are partly
protected by extensive area and depth closures designed to protect cowcod (S. levis).

The discovery of a deep phylogenetic division (Hyde & Vetter 2007) followed by
a fresh look at long known anomolies in life history characters (e.g., multiple settlement
peaks and a wide depth expansion south of Pt. Conception, Love et al. 2002) prompted a
detailed examination of the habitat and genetic relationships between canary and the
Type 1 and Type 2 vermilion of Hyde & Vetter (2007). This required an exhaustive

sampling effort that paid strict attention to location, depth of capture, and morphology.
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In this paper we present mitochondrial cytochrome b sequence data, coupled with an
examination of allelic variation at nine nuclear microsatellite markers, to examine 548
vermilion rockfish from throughout the known latitudinal and depth range of the species.
We also examined the depth preferences for 12 pairs of recent sister species within the
genus and offer a general evolutionary scenario of how paedomorphosis (i.e., truncation
of a life history trait such as ontogenetic bathymetric migration) can lead to reproductive

isolation and perhaps speciation within the genus.

Methods:

Sample collection:

Fish were collected throughout the entirety of the species common range using
various techniques (i.e., hook and line, bottom trawl, pole spear) and identified to species
using Love et al. (2002). In addition to standard sample information, care was taken to
obtain accurate collection location and depth of capture (see Table 2-1). Tissues, either
white muscle or pectoral fin, were preserved in 95% un-denatured ethanol pending DNA

extraction and genetic analysis.

DNA extraction:
DNA was extracted using various protocols. Most samples had DNA extracted
using a standard proteinase K digestion followed by a lithium chloride:chloroform
nucleic acid purification and subsequent ethanol precipitation (Gemmel & Akiyama

1996). DNA from the remaining samples was extracted using either the DNeasy kit
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(Qiagen) following the manufacturer’s protocol or by use of a Chelex (BioRad

Laboratories) boiling technique (Hyde et al. 2005).

PCR amplification:
Mitochondrial DNA:

DNA was amplified for sequencing from the mitochondrial cytochrome b (cytb)
gene using primers GluRF2 5> AAC CAT CGT TGT TAT TCA ACT ACA AGA ACC
and CB3RF2 5 CGA ACA GGA ART ATC AYT CTG G in a 10puL reaction volume
containing (67mM Tris-HCI pH 8.8, 16.6mM (NH4),SO4, 10mM B-mercapto-ethanol,
2mM MgCl,, 800uM dNTPs, 0.4uM each primer, 0.5 units 7ag DNA polymerase (New
England Biolabs), and 50-100ng of DNA template) and amplified using the following
temperature profile in a PTC200 DNA Engine (MJ Research); 94°C (2:00), 35 cycles of
[94°C(0:30), 59°C(1:00), 72°C(1:00)], followed by three minutes at 72°C. All PCR
batches contained at least one no template negative control to monitor for possible DNA
contamination. Products were electrophoresed through a 2% (w/v) agarose gel in 1 X
Tris-Borate-EDTA buffer, stained with ethidium bromide and visualized via an UV-
transilluminator. Reactions were digested using ExoSAP-IT (USB Corp.) to remove
unincorporated primers and deoxynucleotides prior to cycle sequencing. Products had
both strands individually cycle sequenced using BigDye v.3.1 Dye Terminators and
analyzed on an ABI 3130XL automated capillary sequencer (Applied Biosystems). DNA
sequences from both strands were aligned and edited using Sequencher v4.5 (GeneCodes,

Inc).
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Microsatellites:

Nine microsatellite loci (see Table 2-2) were chosen from the libraries developed
by Gomez-Uchida et al. (2003) and Westerman et al. (2005). These loci were selected
based upon previous experience showing them to be robust, easily scored, and
moderately polymorphic. All microsatellite loci were amplified by polymerase chain
reaction (PCR) following the conditions described in Gomez-Uchida et al. (2003) and
Westerman et al. (2005). Fluorescently labeled PCR products were sized using an ABI
3130XL Genetic Analyzer with the ROX 500 size standard (Applied Biosystems) and
scored using Genemapper v3.7 software. The computer program MicroChecker (van

Oosterhaut et al. 2004) was used to examine the data for common genotyping errors.

Phylogenetic analysis:

Partial sequence (782bp) of cytb from all currently described species of Sebastes
in the northeast Pacific (Hyde & Vetter 2007) were combined with 548 sequences of
vermilion and eight of canary rockfish generated in this study. These sequences
represented 44 unique vermilion rockfish haplotypes and four unique canary rockfish
haplotypes. Sequence data of unique haplotypes have been deposited in GenBank,
accession numbers EF587183-EF587231. Genetic data were evaluated for evolutionary
model testing using MrModeltest v2.2 (Nylander 2004) as implemented within the
PAUP*(v4.b10) (Swofford 2001) framework. This program uses both the hierarchical
likelihood ratio test (Huelsenbeck & Crandall 1997) and Akaike information criterion
(Akaike 1974) to test the fit of the data to 24 different evolutionary models. The model

chosen by both methods was the GTR model of Rodriguez et al. (1990), considering an
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empirically derived proportion of invariant sites (I) and gamma shape distribution (T').
MrBayes v3.1.1 (Huelsenbeck & Ronquist 2001; Ronquist & Huelsenbeck 2003) was
used to generate a Bayesian inferred phylogenetic hypothesis using Metropolis coupled
Markov chain Monte Carlo analysis. The evolutionary model was set to nst=6, Dirichlet
(1,1,1,1), and the program empirically estimated both I and I'. Two independent runs of
four Markov chains each were allowed to proceed for 2,000,000 cycles using the default
heating values. The first 25 percent of the analysis was discarded to eliminate the
inclusion of data from the “burn-in” phase of the analysis where the posterior

probabilities may have not yet reached stationarity.

Microsatellite analyses:

To test for reproductive isolation between the two mtDNA clades of vermilion
rockfish we chose to examine allelic variation at nine codominant nuclear microsatellite
loci. As the canary rockfish clade is of similar divergence as the two vermilion rockfish
clades (Hyde & Vetter 2007), we chose to use it as a comparative benchmark for
measuring inter-specific divergence. A range-wide population genetic study using
microsatellite markers is the subject of a separate paper (J. Budrick in prep), so we chose
to limit the geographic scope of our analysis in this study. As canary rockfish are
exceedingly rare south of Point Conception, we used samples from the central California
coast, for our comparisons.

Samples were grouped and analyzed first by collection site (i.e., central
California, southern California <100m, southern California >100m) and then by

mitochondrial clade (i.e., Type 1, Type 2, canary rockfish). Standard measures of
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molecular diversity, expected and observed heterozygosity, and measures of the fixation
index Fsr (Weir & Cockerham 1984) were performed for all loci individually and
collectively using Genepop v3.4 (Raymond & Roussett 1995). The local inbreeding
coefficient (Fs) was calculated for each locus in order to measure conformance to the
expectation of Hardy-Weinberg equilibrium (Fis=0). Probabilities for Hardy-Weinberg
and linkage equilibrium were calculated using an exact test based upon the Markov chain
algorithm as described by Guo & Thompson (1992) and implemented in Genepop with
1,000,000 steps. Probabilities were combined across all loci using Fisher’s method
(Sokal & Rolf 1995). Significance probabilities at individual loci were corrected for type
1 error using the sequential Bonferroni correction for multiple comparisons (Rice 1989).
The program Structure v2.1 (Pritchard et al. 2000) was used to generate a
Bayesian inference of population structure. By this method, a model of k populations is
assumed, where £ is often unknown, and samples are grouped in order to minimize
linkage disequilibrium and maximize conformity to Hardy-Weinberg equilibrium across
all analyzed loci. At diploid nuclear loci, the erroneous grouping of genetically divergent
populations can result in departures, at multiple loci, from both the expected values of
Hardy-Weinberg and linkage equilibrium for a randomly mating population. By
assessing the change in Markov chain Monte Carlo (MCMC) derived likelihood scores
for increasing values of £, it is possible to deduce the number of populations with the
maximum posterior probability. Starting with k=1, the likelihood scores decrease
dramatically with increasing values of & until reaching a relative plateau when the most
likely value of & has been reached. All samples were originally grouped as “populations”

either by their site of origin or clade of origin (i.e., Type 1, Type 2, and canary), values of
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k=1 to k=5 were tested, admixture between populations was allowed and 1,000,000
iterations of MCMC were performed after a burn-in period of 200,000 iterations. Though
putative population assignment is provided in the input file, program output results in a
reassignment of individuals to the most likely of the k& populations. This assignment
metric also allows us to assess the possibility of hybrid ancestry of individuals within the

sample.

Morphometric comparisons:

To evaluate the two vermilion types for differences in phenotype we measured
several morphometric parameters following Phillips (1957). In particular we measured,
head length, orbit length, inter-orbit width, caudal peduncle depth, lower jaw length, and
snout to dorsal-fin length. Only a subset of our genotypically analyzed fish (92 of 548)
were available in their entirety for this analysis. Measurements were made with digital
calipers to the nearest 0.0lmm and expressed as a fraction of the standard length (SL) of
the fish. The ratios of measure/SL were compared within and between the two vermilion
rockfish groups and tested using a two-tailed t-test in order to test for significant

differences between the groups.

Results:

Phylogenetic and Phylogeographic analyses:

Analysis of the sequence data from vermilion rockfish, sampled throughout their

common range, produced two distinct clades with high Bayesian posterior support values



35

(Figure 2-1). The level of intra-specific haplotypic diversity within both of these clades
is similar to that found within most other species of Sebastes (J Hyde unpublished data),
including the sister species, canary rockfish. Additionally, the inter-specific divergence
between these clades is of similar or greater magnitude than that observed for most sister
species of Sebastes (see Hyde & Vetter 2007) including the canary rockfish (S. pinniger).
Phylogeographic analysis revealed a high degree of geographic and bathymetric
segregation of the two clades. Type 1 haplotypes were found primarily south of Point
Conception and were most abundant in samples collected from offshore banks and
submarine canyons in depths greater than 100m, but were also found in much lower
abundance at shallow (<100m), nearshore sites. All fish with Type 1 haplotypes
collected at these shallow sites were young of the year or sub-adult fish (i.e., <250mm
TL). Type 2 haplotypes were found throughout the common range of vermilion rockfish
and were found primarily in collections from shallow (<100m), nearshore sites, but were

also found in much lower abundance on deep (>100m), offshore banks (Figure 2-2).

Microsatellite analyses:
Hardy-Weinberg and linkage equilibrium:

When grouped by sampling site, all vermilion rockfish collections from southern
California showed a strong departure from both Hardy-Weinberg (Table 2-3) and linkage
equilibrium. Alternatively, the samples were grouped by mitochondrial clade (i.e., Type
1, Type 2) and reanalyzed. In this analysis the Type 1 clade showed no departure from
Hardy-Weinberg equilibrium at all but the Spi6 locus (Table 2-3). Linkage

disequilibrium between loci was also greatly reduced. However, the Type 2 clade
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remained out of equilibrium at most loci. Such strong departures, across multiple loci,
are usually indicative of mixed populations being analyzed together. Analysis of genetic
data with MicroChecker (van Oosterhaut et al. 2004) found no evidence for genotyping
errors at most loci, however, excess homozygosity at the Spi6 locus suggested the

presence of null alleles.

Structure analysis:

Structure v2.1 (Pritchard et al. 2000) acts to group samples into k-populations by
combining samples in order to minimize departures from both Hardy-Weinberg and
linkage equilibrium. When all vermilion and canary rockfish samples were analyzed
together, the value of k£ with the highest likelihood was =3 (log, (P) = -19540, Table 2-
4). The resultant groupings (canary, Genotype A, Genotype B) largely conformed to
mitochondrial clade assignment (i.e., canary, Type 1, Type 2, see Figure 2-3A). All
canary rockfish and all but one Type 1 vermilion rockfish assigned with high probability
to their respective group. However, though the majority of Type 2 vermilion rockfish
assigned strongly together (Genotype A), there were a number of fish collected from
depths >100m that assigned strongly with Type 1 fish (Genotype B, n=57 of 347 fish, see
Figure 2-3B). Despite these examples of disagreement between mtDNA haplotype and
nuclear genotype there were few potential hybrid genotypes, with only one a potential F1
hybrid. To better visualize the positions of individual samples in multivariate space we
used the program PCAGEN v.1.21 (Goudet 1999) to perform a principal component
analysis (PCA) of the genotype data. As suggested by the Structure results, the primary

component axis of PCA produced three distinct distributions of genotypes (Figure 2-3A).
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As before, these distributions largely conformed to mtDNA haplotype grouping with the
exception of a subset of the vermilion Type 2 haplotypes nested within the Genotype B

distribution.

Genetic fixation measurements:

The use of F-statistics to measure genetic distance is common in studies
examining intra-specific divergence of populations, but this metric may be inappropriate
when measuring inter-specific divergence. However, due to the close relationship
between the canary and vermilion rockfish (Hyde & Vetter 2007) we feel that this metric
is useful for measurements of genetic distance between the two vermilion clades. Despite
the strong violation of both Hardy-Weinberg and linkage equilibrium found in the first
two groupings, we chose to retain them in our analyses and compare the samples by
sampling site, mtDNA clade, and the genotypic groups determined by Structure.
Individual fish that showed strong disagreement between mtDNA haplotype and
genotype assignment were removed from the genotypic groups prior to pairwise
measurement of Fsy. In all comparisons, highly significant Fgr values were obtained
across the nine loci (Table 2-5). However, the highest and most significant values of Fsr
were found between the groups determined by Structure. The divergence between the
two vermilion groups (Fst = 0.1013) was similar to that between canary rockfish and

either of the vermilion groups (Fst=0.0915 - 0.1161).



38

Morphometric analysis:

In total, 92 of the 548 vermilion rockfish used for genetic analysis were available
for morphometric examination. As mitochondrial haplotype and nuclear genotype were
in disagreement for some fish, we chose to label fish with the genotypic group
assignment produced by the Structure analysis. Of the six morphometric characters, three
were significantly different between the two groups (orbit length, inter-orbit width, and
caudal peduncle depth) (Table 2-6). In general, Type 1 fish had smaller eyes, greater

inter-orbit width, and a more slender caudal peduncle than Type 2 fish.

Discussion:

Speciation in the sea is generally thought to be reduced due to the great dispersal
capacity and consequent high gene flow of pelagic larval phases of most organisms.
Despite this generality, many cases of restricted gene flow, population genetic structure,
and ultimately speciation do occur and the mechanisms that promote limited gene flow
are becoming better characterized (e.g., Palumbi 1994; Hellberg 2006). Environmental
factors such as persistent oceanographic features and discontinuous habitats (e.g.,
temperate rocky reefs) coupled with life history characteristics such as assortative mating,
larval retention, homing behavior, migration and local adaptation can create barriers to
gene flow. The temperate rocky reef systems of the Pacific Northwest include many of
the environmental conditions that can lead to restricted gene flow and metapopulation
structure. Sebastes spp. dominate these temperate rocky reefs and exhibit many life

history characteristics that can further restrict gene flow including mate selection, internal
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fertilization, release of free swimming live young, short distance homing, and long
distance patterns of ontogenetic migration (Gunderson & Vetter 2006). Thus it is no
surprise that Sebastes is the most speciose scorpaenid genus with approximately 110
species found throughout the world’s cold temperate seas (Nelson 2006; Hyde & Vetter
2007). The evolutionary relationships between species have been a point of contention
and confusion for decades (Kendall 2000), but most of the subgeneric and specific
relationships are now well characterized on the basis of molecular phylogenetic
approaches (Rocha-Olivares et al. 1999; Hyde & Vetter 2007). Additionally, a recent
flurry of population genetic studies has shown a strong tendency for several rockfish
species to exhibit a greater degree of intra-specific genetic structure and restricted gene
flow than is typical of most r-selected marine species (e.g., Withler et al. 2001;
Buonaccorsi et al. 2002, 2004, 2005; Cope 2004; Matala et al. 2004; Taylor 2004; J Hess,
NMEFS, pers comm).

In addition to present day barriers to dispersal, the north Pacific has had a very
dynamic history during the evolution of Sebastes (see Hyde & Vetter 2007). Numerous
periods of great fluctuations of major ocean currents (e.g., Herbert et al. 2001), sea level
(Haq 1987; Miller et al. 2005), ocean temperature (Miller et al. 2005) and upwelling
(Barron 1998) have occurred since the middle Miocene. These fluctuations bring with
them the opportunity for habitat expansion, contraction, and the subsequent isolation of
populations. This may be particularly important in the Southern California Bight (SCB),
a transition zone between the San Diegan and Oregonian biogeographic provinces
(Briggs 1974). Periods of past sea level drop have dramatically altered the ecology and

oceanography of the SCB, greatly enhancing the amount of nearshore macro-algal and
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rocky habitat (e.g., Graham et al. 2003). This drop in sea level also resulted in the
effective separation of the SCB from the cool California Current flow due to the shoaling
of the Channel Islands and offshore banks during periods of glacial maxima (see Figure
2-2, 100m depth contour is similar to the paleo-coastline at glacial maxima). It is easy to
imagine how such scenarios of separation and subsequent behavioral and genetic drift
may enhance the speciation process, especially in fishes such as Sebastes which show

little dispersal as adults.

Phylogeography:

Phylogenetic analysis of the vermilion rockfish samples produced two distinct
clades with high posterior support values, partitioned by both depth and location. The
Type 2 clade was found from Neah Bay, Washington to Punta Baja, Baja California,
Mexico. The Type 1 clade was found from Monterey, California to Colnett Bank, Baja
California, Mexico and offshore to Guadalupe Island. In addition to the partial
geographic separation, there was a strong bathymetric segregation with Type 2 fish
dominating collections shallower than 100m (93.7%) and Type 1 fish dominating
collections deeper than 100m (64.2%) (see Table 2-1 and Figure 2-2). Additionally, all
of the collections of Type 1 fish from shallow sites were of young of the year or sub-adult
fish (i.e., <250mm TL). This as well as the lack of juveniles and sub-adults observed on
offshore banks (J Butler, NMFS, pers comm.) suggests that though juveniles of both
clades settle in relatively shallow, nearshore habitats (J Hyde unpublished data), Type 1
fish must subsequently undertake an ontogenetic migration to greater depths and offshore

banks whereas Type 2 fish remain resident to these shallow habitats.
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Cryptic species:

Our results clearly show two distinct genetic units within the currently recognized
vermilion rockfish, defined primarily by mitochondrial haplotype (i.e., Type 1, Type 2).
These evolutionary units showed segregation both geographically and bathymetrically
with a small degree of overlap. The question at hand is what to make of this finding?
Are these differences merely the result of a high degree of population subdivision caused
by restricted dispersal between nearshore and offshore reefs? Fortunately, the canary
rockfish can serve as an appropriate metric for comparison, as it and the two clades of
vermilion rockfish are of similar levels of divergence (Hyde & Vetter 2007). Analysis of
microsatellite data from our canary and vermilion rockfish samples, using Structure,
strongly supported the existence of three distinct genetic groups (Table 2-4). Further
analyses of the microsatellite data showed similar levels of divergence between all
members of this triumvirate at all loci when measured using the fixation index, Fst (see
Table 2-5). Using principal component analysis, these results were further corroborated
by the finding of three distinct groupings in multivariate space (see Figure 2-3A). As
suggested by the Fgr values, there were marked differences in allele frequencies at most
loci, including a large number of private alleles (see Figure 2-4). These results are
incongruent with the expectations of intra-specific population comparisons at the
regional, or even sub-specific level.

Our finding of significant differences in both genetics and morphology suggest
that the two types of vermilion rockfish should be afforded equal evolutionary status as

that enjoyed by the canary rockfish. We therefore recommend that the Type 1 and Type
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2 vermilion rockfish of Hyde & Vetter (2007) be recognized as separate species. The
vermilion rockfish, S. miniatus, was originally described by Jordan and Gilbert (1880)
from specimens collected off Monterey and Santa Barbara, California. A junior
synonym, S. eigenmanni, was described by Cramer (in Jordan 1896) from a specimen
collected off Monterey. A survey of our sample collections showed three (of 110
specimens examined) Type 1 fish north of Point Conception and only one (of 38
specimens examined) was found in the Santa Barbara collection. It is therefore assumed
that the type specimens represent only the Type 2 species. The two forms can be
distinguished by color with the Type 1 fish having an orange-red coloration in contrast to

the more uniform red coloration typical of the Type 2 fish (see Figure 2-5).

Mitochondrial introgression:

Despite the existence of two distinct genetic groups, the reproductive barrier does
not seem to have been 100% effective. Though all fish with Type 1 mtDNA haplotypes
had genotypes that assigned with high likelihood to a single group (Genotype B), many
(67.6%) of the fish with Type 2 haplotypes found in depths >100m also assigned to this
group (see Figure 2-3B). Interestingly, this disagreement between haplotype and
genotype was not seen in fish with Type 2 haplotypes collected from shallow (<100m)
sites, however such occurrences should be expected with increased sampling. These
misassigning fish were either derived from either hybrid ancestry or incomplete lineage
sorting. Assignment tests using Structure showed little evidence for F1 or F2 hybrids
among these fish, with the exception of one fish, of 548 sampled. Additionally, one of

the Type 2 haplotypes (Hap18) was unique to these misassigned fish. Given the low
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level of haplotypic divergence of Hap18 (1bp), the presence of a shared common
haplotype (Hap 1), as well as the long divergence time between clades (~2.3 MYA), it
seems unlikely that these misassigned fish represent incomplete lineage sorting. Rather,
this suggests that a one-way mitochondrial introgression occurred from Type 2 into Type
1 fish. This finding is not unexpected as studies of other rockfish species have uncovered
evidence that such hybridization events have occurred and continue to occur (e.g., Seeb

1998; Buonaccorsi et al. 2005; Gharrett et al. 2005).

The role of upwelling, sea level recession and bathymetry in the speciation process.:

It is tempting to speculate as to the possible drivers behind the divergence of these
three species. Using sequence data from seven mitochondrial and two nuclear genes, as
well as a near complete sampling of species, Hyde & Vetter (2007) provided an estimate
of the timing of divergence at ~2.7 million years ago (MYA) for the canary rockfish and
~2.3 MYA for the vermilion rockfish clades. With the final shoaling of the Isthmus of
Panama ~3 MY A, modern ocean current patterns were largely established. Concurrent
with this event was the beginning of a period of increased global cooling and more
frequent glacial-interglacial cycles. The strengthening of the California Current as well
as decreasing global temperature likely opened the door for colonization of the Southern
California Bight (SCB) and may have created more favorable conditions in shallow water
habitats. Barron (1998) showed a rapid onset of diatom accumulation, indicative of
greatly enhanced upwelling, at ~2.7 MY A in the SCB. This coincides with the
hypothesized time of divergence between vermilion and canary rockfish (Hyde & Vetter

2007). Perhaps a colonization event of the SCB by the ancestor of vermilion and canary
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rockfish, followed by subsequent restriction of geneflow, led to a speciation event
through peri- or parapatric mechanisms. This is not unreasonable as population genetic
studies of several rockfish species have shown that Point Conception can act as a strong
barrier to geneflow on an evolutionary time-scale (Buonaccorsi et al. 2002, 2004, 2005;
Matala et al. 2004; Taylor 2004; J Hyde in prep). Similarly, analysis of catch data from
three years of coast-wide pelagic juvenile rockfish surveys showed strong declines in
abundance at Point Conception, Cape Blanco, and Cape Mendocino (Sakuma et al. 2006),
suggesting that these features continue to act as barriers to gene flow on a contemporary
time-scale.

Large-scale glaciation at high latitudes had profound effects upon global sea level
(Haq 1987; Miller 2005), major ocean currents (e.g., Herbert et al. 2001), and the amount
of nearshore macro-algal and rocky habitat (e.g., Graham et al. 2003; Kinlan et al. 2005).
During periods of peak glaciation, sea level dropped 50 to 125m relative to current levels
(Haq 1987; Graham et al. 2003; Miller 2005). As a result, the offshore banks in the SCB
offered new areas of shallow rocky habitat and likely fostered extensive macro-algal
communities (Graham et al. 2003; Kinlan et al. 2005). In addition to the new shallow
habitat created by the shoaling of these offshore banks, Graham et al. (2003) and Kinlan
et al. (2005) hypothesized that both the island and mainland coasts fostered greater rocky
and macro-algal habitat than at present. The rapid proliferation of these highly
productive habitats would likely have attracted numerous species of shallow dwelling
rockfishes, including the ancestor of S. miniatus. The hypothesized time of divergence

between Type 1 and Type 2 fish of ~2.3 MY A coincides with the beginning of this period
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of increasing shallow reef productivity, inferred from the progressive decline in sea level
observed between ~2.3 to ~1 MYA (Haq 1987; Miller et al. 2005).

Phylogenetic review of the genus (Hyde & Vetter 2007) showed that the
biogeographic expansion of Sebastes spp. into the northeast Pacific and the evolution of
the major ecological groups were accomplished by the early Pliocene (e.g., shallow
structure schooling (Sebastosomus), deep structure schooling (Sebastodes), shallow
solitary demersal (Pteropodus), deep solitary demersal (Sebastomus), deep soft sediment
(Eosebastes), solitary lurker predator (Sebastichthys)). Hyde & Vetter (2007) suggested
that the ancestor of Sebastes was likely a demersal species, strongly associated with deep
high-relief reefs and therefore the evolution of both semi-pelagic and shallow dwelling
species was novel. However, the recruitment of pelagic juveniles to shallower habitats,
followed by an ontogenetic migration to depth is likely plesiomorphic, as this trait is
common in many scorpaenid species. With this in mind, examination of recently evolved
sister species suggests a remarkable pattern. In contrast to the typical patterns of
vicariant formation of sister species (e.g., across the Isthmus of Panama (Knowlton
1993), the Florida peninsula (Avise 1992), the Baja peninsula (Bernardi et al. 2003)),
recently evolved sister species of Sebastes tend to be sympatric in a geographic sense but
segregated by preferred adult habitat depth. Though there obviously exist some closely
related taxa separated primarily by latitude (e.g., S. babcockilS. rubrivinctus, S. miniatus
Type 1/S. pinniger, S. simulator/S. helvomaculatus), it is common for recent sister
species to co-occur across a wide latitudinal range while being separated from each other
by depths of only 10’s of meters. Numerous examples of this exist throughout the genus

(see Table 2-7). We suggest that for temperate rocky reef fishes, depth and the patchy
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distribution of rocky habitats (Gunderson & Vetter 2006) can play a significant role in the
speciation process, often greater than latitudinal thermal gradients or topographically
constrained oceanographic features.

Genetic studies such as the present study and that of Hyde & Vetter (2007) have
presented several hypothesized mechanisms by which speciation may proceed in these
fishes (e.g., allopatry, sexual selection, niche partitioning). A common theme among
Sebastes spp. is the recruitment of juvenile fish to shallow nearshore habitats followed by
an ontogenetic migration to adult habitats, usually at greater depths (Love et al. 1991).
Such migrations necessitate not only large-scale movement but also great physiological
adaptation (Vetter et al. 1994, Vetter & Lynn 1997). Truncation of this cycle,
particularly where habitat is discontinuous, such as offshore banks and islands, may result
in the creation of reproductively isolated populations with different habitat affinities. For
example, the ancestral depth habitat for adult vermilion and canary rockfish was likely
deep (100-200m) rocky reef while the juvenile habitat was shallow (<30m) macro-algal
dominated reef (Scenario A, Figure 2-6). A loss or truncation of the ontogenetic
migration phase in some fish would lead to their retention in shallow juvenile habitats
(Scenario B, Figure 2-6). Assuming subsequent survival to maturity, sufficient prey
resources, and heritability of this character loss, the offspring of these fish would likely
recruit to similar habitats and reproduce with others that share this habitat affinity,
fostering the speciation process. Such a mechanism is simple in that it requires only a
loss of a behavior rather than the complex evolution of novel characters (i.e.,
physiological adaptations to greater depth). This concept of speciation by life history

truncation (i.e., paedomorphosis) is a well-documented phenomenon but we believe that
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the loss of an ontogenetic migration as a speciation driver is a novel concept for benthic
coastal fishes. It is becoming increasingly clear that in conjunction with a solid
understanding of their phylogenetic relationships, Sebastes spp. offer us a unique

opportunity to study speciation patterns in the marine realm, both modern and historic.

Management implications:

Vermilion rockfish have historically supported important commercial and
recreational fisheries in California, Oregon, and Washington. During the 14-year period
1990-2004, the California commercial and recreational fisheries took 2,386 and 3,341
metric tons, respectively (MacCall 2005). For the period 2000-2006, among
recreationally caught rockfishes, vermilion rockfish ranked #1 in the southern California
fishery and #3 statewide (http://www.psmfc.org/recfin).

The presence of a cryptic species within this important fishery has considerable
implications for management. In 2001, the 4300 mile’ Cowcod Conservation Area was
created in southern California to protect the severely overfished cowcod, closing all
fishing in depths greater than 36m. Prompted by declining stocks of other rockfish
species (i.e., pacific ocean perch (S. alutus), bocaccio (S. paucispinis), canary,
darkblotched (S. crameri), widow (S. entomelas), and yelloweye (S. ruberrimus)
rockfish), additional depth closures soon followed throughout California waters and have
since varied temporally and regionally between 55-110m as maximum allowable fishing
depths. These total closures have afforded an ancillary benefit to other rockfish species

that co-occur with these overfished species, including the sunset and vermilion rockfish.
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Our data show a strong segregation in abundance of both species in association
with depth. Throughout their ranges, S. miniatus Type 2 were most abundant in depths
shallower than 100m while S. miniatus Type 1 occurred primarily south of Point
Conception and were most abundant in depths between 100-200m. Clearly the difference
in depth preference between these two species complicates current management
strategies. For example, with the closure of the rockfish fishery in depths greater than
55-110m, additional effort was placed upon shallow, nearshore populations of rockfishes.
When considering vermilion rockfish as a single species this seems acceptable as fish are
abundant within both the fished and unfished areas. However, when considered as two
species, separated by depth, it becomes clear that Type 1 fish are afforded a
disproportionate amount of protection at the expense of Type 2 fish, which now receive a
disproportionately large amount of the fishing effort. This increased effort results in a
severe decline in the means of both age and size frequency (e.g., Love et al. 1998) with
the remaining populations of large vermilion rockfish restricted to small marine reserves
(e.g., Parnell et al. 2005). This loss of older and larger fish can be especially detrimental
to the future reproductive quality and capacity of the population (e.g., Berkeley et al.
2004).

Our finding of a cryptic species of vermilion rockfish within southern California
suggests a significant need for revised management strategies for these species. As the
#1 recreationally caught rockfish in southern California and #3 statewide, there exists a
great potential for fishery decline if improperly managed. This is especially relevant
during the current move to establish marine reserves as a solution to fishery management.

Without proper scientific study and knowledge of the component species managed by
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these reserves, it is unlikely that their promise of fishery management and enhancement
will be realized, a fact that is becoming increasingly clear as genetic studies continue to
uncover instances of cryptic speciation (i.e., Rocha-Olivares et al. 1999; Kai et al. 2002a,
2002b; Gharrett et al. 2005; M Burford pers comm.) and strong population subdivision
within these magnificent fishes (e.g., Rocha-Olivares & Vetter 1999; Withler et al. 2001;

Buonaccorsi et al. 2002, 2004, 2005).
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Table 2-1
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Collection data for samples used in this study. Samples of vermilion rockfish are

binned in depths < and > 100m. Percentage of Type 1 and Type 2 haplotypes (see
Figure 2-1) present in each sample are noted. Detailed collection data are available
from the authors.

vermilion rockfish Latitude | Longitude
Location n collection period| % Type 1 | % Type 2 | deg | min | deg | min
Halfmoon Bay 69 2001-2005 0 100 37 | 28 | 122| 26
S. miniatus Piedras Blancas 41 1994-2003 0 100 35| 39 | 121 | 16
San Miguel Island 31 1993-2001 0 100 34| 5 | 120 32
Collections <100m |Santa Barbara 38 2001-2005 2.6 97.4 34 | 24 | 119] 51
San Diego 89 1999-2004 16.9 98.1 32| 42 | 117 ] 16
San Quintin, Baja 59 2000-2006 6.8 93.2 30 | 30 | 116] 8
Total = 327
vermilion rockfish Latitude | Longitude
Location n collection period| % Type 1 | % Type 2 | deg | min | deg | min
Monterey 10 1998 30 70 36 |54.5] 122 11
S. miniatus Tanner Bank 82 1994-2004 65.9 34.1 3 42 | 119 4
9-mile Bank 2 2002 50 50 32| 37 | 117 ] 18
Collections >100m |60-mile Bank 10 1994 80 20 321 6 | 118] 14
Colnett Bank, Baja 116 2000-2006 64.7 353 30 | 53 | 116 30
Guadalupe Island | 1996 100 0 20 | 10 | 118 ] 16
Total = 221
canary rockfish Latitude | Longitude
Location n collection period| % Type 1 | % Type 2 | deg | min | deg | min
S. pinniger Fort Bragg - 39 | 28 | 123 | 50
San Miguel Island 133 1994-2003 NA NA 34 | 5 [ 120 32
Total = 133




Table 2-2
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Molecular diversity values for individual microsatellite loci. Sra Loci are from

Westerman et al. (2005) and Spi loci are from Gomez-Uchida et al. (2003).

Groups correspond to those produced through Structure (Pritchard et al. 2000)
analysis. Microsatellite repeat motif, number of alleles (A), expected
heterozygosity (Hg), observed heterozygosity (Hp), inbreeding coefficient (Fis),
and associated p-value (p) are presented.

Locus repeat motif A He Ho Fis p
Sra. 7-2.2 di 20 116.59 114 0.0223 0.1183
Sra. 7-7.3 di 26 13746 139  -0.0113 0.2824
Sra. 7-25.4 di 24 14347 139 0.0313 0.6097
S. miniatus Type 1 |Sra. 15-23.7 tetra 5 19.93 21 -0.0541 1
Sra. 16-5.8 tetra 11 124.67 120 0.0375 0.8451
n=155 fish Sra. 15-8.9 tetra 17 133.64 132 0.0123 0.5584
Spi. 4 tetra 13 12894 128 0.0073 0.0604
Spi. 6 tetra 22 13892 118 0.151 0
Spi 10 tetra 8 102.6 109 -0.0626 0.92
Locus repeat motif A He Ho Fis p
Sra. 7-2.2 di 28 29297 272 0.0717 0.2516
Sra. 7-7.3 di 25 28745 271 0.0573 0.6959
Sra. 7-25.4 di 25 213.59 214  -0.0019  0.9073
S. miniatus Type 2 |Sra. 15-23.7 tetra 9 24796 233 0.0604 0.4401
Sra. 16-5.8 tetra 23 27357 261 0.046 0.0373
n=321 fish Sra. 15-8.9 tetra 14 2753 256 0.0702 0.2288
Spi. 4 tetra 20 151.08 141 0.0669 0.0021
Spi. 6 tetra 15 144.004 89 0.3829 0
Spi 10 tetra 10 22413 209 0.0676 0.9059
Locus  |repeat motif A He Ho Fig p
Sra. 7-2.2 di 79  131.06 125 0.0464 0.0014
Sra. 7-7.3 di 16 11075 111  -0.0023 0.4395
Sra. 7-25.4 di 18 103.22 96 0.0702 04111
S. pinniger Sra. 15-23.7 tetra 2 9.66 10 -0.0356 1
Sra. 16-5.8 tetra 30 11835 120 -0.014 0.2874
n=133 fish Sra. 15-8.9 tetra 13 111.7 102 0.0872 0.0249
Spi. 4 tetra 20 108.71 108 0.0066 0.5072
Spi. 6 tetra 45 12741 127 0.0032 0.4318
Spi 10 tetra 13 111.84 109 0.0255 0.8826




Table 2-3
Probability of Hardy-Weinberg equilibrium by sampling site (A.), species (B.),
mitochondrial clade (C.), and Structure determined groups (D.).
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A.
Locus [Half Moon Bay | Piedras Blancas| San Miguel 1| Santa Barbara San Diego San Quintin | Tanner Bank | Colnett Bank
Sra7-2 o * ok ns ns ns *E
Sra7-7 ns ns ns ns ns ns
Sra7-25 ns ns ns ns ns wk
Sral5-23 ns ns ns ns ns ok
Sral6-5 ns ns ns ns w3 ns ns ns
Sral5-8 ns ns ns ns ns ns
Spid NA * NA NA * ns
Splﬁ NA *s NA NA ksl ksl ek sk
Spilo ns ns ns HE ns ns ns ns
B. C.
Locus vermilion canary Locus mtDNA Type 1| mtDNA Type 2
Sra7-2 ok o Sra7-2 ns ok
Sra7-7 ok ns Sra7-7 ns *
Sra7-25 ns Sra7-25 ns
Sral5-23 ns Sral5-23 ns
Sral6-5 ns Sral6-5 ns
Sral5-8 * Sral3-8 ns
Spid ns Spid ns
Spi6 ns Spi6 ok
Spil0 ns Spil0 ns ns
D.
Locus Genotype B Genotype A
Sra7-2 ns ns
Sra7-7 ns ns
Sra7-25 ns ns
Sral3-23 ns ns
Sral6-5 ns * NA = no data available for this comparison
Sral5-8 ns ns > 0.05
Spid ns * <0.05
Spi6 ok ok okeok <0.01
Spil0 ns ns <0.001




Table 2-4
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Likelihood output from Structure v2.1. Values of k represent the putative number
of source populations contained within the sample of genotypes. The most likely

value of k is the value after which the likelihood surface plateaus.

-In likelihood

ahwNn =X

-23934.1
-21232.4
-19540
-19472.1
-19453.9




Table 2-5

Pairwise comparisons of Fgr and associated p-values between sampling depths
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(A.), mitochondrial clade groups (B.), and groups determined by Structure analysis

(C.). Shallow refers to samples collected in depths <100m while deep refers to

samples collected in depths >100m.

A.

Locus shallow vs. deep shallow vs. canary deep vs. canary
Sra7-2 0.0906 ok 0.0435 ok 0.1156 ok
Sra7-7 0.0523 ek 0.0836 oAk 0.1033 ok ok
Sra7-25 0.1415 ok 0.2517 otk 0.1234 sk
Sral5-23 0.3594 ok 0.4856 ok 0.8324 ok ok
Sral6-5 0.0567 ok 0.0138 ek 0.0669 Ak
Sral5-8 0.0318 ok 0.0724 ok 0.075 ok ok
Spi4 0.0647 ok 0.0533 ok 0.062 ok ok
Spi6 0.0319 ok 0.0314 ok 0.0335 ok
Spil0 0.0096 dkok 0.0551 sk ok 0.0982 Kk
Overall 0.0942 ok 0.1302 ok ok 0.1734 e ok
B.

Locus Type | vs. Type 2 Type 1 vs. canary Type 2 vs. canary
Sra7-2 0.0905 ok 0.1245 otk 0.0282 ok ok
Sra7-7 0.0521 ok 0.0943 ok 0.0544 kK
Sra7-25 0.1255 otk 0.0878 ok 0.1707 e ko
Sral5-23 0.2008 ok 0.4934 Ak 0.2908 Kok ok
Sral6-5 0.0478 ok 0.0457 ok 0.0023 ok ok
Sral5-8 0.0479 ok 0.0468 ok 0.0617 ok ok
Spi4 0.0503 ok 0.0484 ok 0.0303 ok
Spi6 0.0201 i 0.0373 **E 0.0200 ok
Spil0 0.0118 ok 0.0483 el 0.0455 el
Overall 0.0730 okck 0.1162 okw 0.0818 sk ok
C.

[ocus Genotype B vs. Genotype A | Genotype B vs. canary | Genotype A vs. canary
Sra7-2 0.1174 ok 0.1209 hoxk 0.0302 kK
Sra7-7 0.0699 ok 0.0932 ok 0.0576 kR
Sra7-25 0.1742 *okk 0.0877 ook sk 0.2125 ko
Sral5-23 0.2588 ok 0.4933 ok 0.3022 ok ok
Sral6-5 0.0618 ok 0.0458 ok 0.0044 ok ok
Sral5-8 0.0665 ok 0.0477 otk 0.0736 ok ok
Spi4 0.0887 ok 0.0483 ok 0.0492 ok ok
Spi6 0.0396 ok 0.0365 ok 0.0254 wok &
Spil0 0.0140 Ak 0.0495 Ak 0.0430 Kok ok
Overall 0.1013 ok 0.1157 kol 0.0920 ok ok
p>0.05 ns

p<0.05 *

p<0.01  **

p<0.001 *#*
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Table 2-7

Depth and common occurrence of recent species pairs. Hypothesized divergence
times from Hyde and Vetter (2007). "*" indicates species pairs that exhibit
incomplete mtDNA lineage sorting

57

species divergence time [ common depth | common latitude reference
S. chlorostictus 60-240 39-28 Love et al. 2002
S. rosenblatti 0.21 MYA 100-490 37-28 J. Butler pers. comm.
S. ciliatus 10-153 59-55 Orr and Blackburn 2004
S. variabilis *0.40 MYA 100-300 59-55
S. reedi 180-275 58-45 Love et al. 2002
S. crameri 0.51 MYA 140-210 51-36
S. carnatus 12-35 38-30 Love et al. 2002
S. chrysomelas *0.58 MYA 1-18 38-34
S. lentiginosus 75 33-29 Love et al. 2002
S. umbrosus 0.63 MYA 45-60 34-27
S. variegatus 100-300 59-48 Love et al. 2002
S. wilsoni *0.66 MYA 60-150 59-32
S. flammeus 200-500 42-34 Nakabo 2002
S. iracundus 0.70 MYA 450-1000 44-33
S. exsul 110-150 29 Love et al. 2002
S. spinorbis 0.77MYA 150-200 29 J. Hyde pers. obs.
S. aleutianus <250m 59-54 Hawkins et al. 2005
S. melanostictus 1.32 MYA >250m 59-54
S. melanops 1-55 59-37 Love et al. 2002
S. flavidus 1.34 MYA 90-180 59-35
S. miniatus Type 1 100-200 34-30 Love et al. 2002
S. miniatus _Type 2 2.3 MYA 30-100 42-30 this study
S. rubrivinctus 60-200 36-30 Love et al. 2002
S. serriceps 2.60 MYA 1-60 35-30
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Map showing sampling locations for vermilion rockfish used in this study.
Bathymetry is color coded with yellow (0-100m) and red (100-300m). Arrows
indicate sampling sites and are color coded by collection depth to match the
colored depth contours. Haplotypic (i.e., Type 1, Type 2) and genotypic
assignment (i.e., Group A, Group B) for each sample group are presented as pie
charts. The consensus Bayesian posterior tree of all haplotypes is presented for
each sample group, haplotypes present in each group are indicated with an A or B,
corresponding to genotypic assignment of individuals at that haplotype.
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Sub-tree of Bayesian derived phylogenetic tree based upon cytochrome b sequence

data from all northeast Pacific Sebastes spp. Branch lengths represent genetic

distance and measures of posterior support >50 are presented.
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A. Primary component axis of principal component analysis of individual
genotypes from this study. Samples are color-coded based upon mitochondrial
clade membership (Green = S. miniatus Type 2, Red = S. miniatus Type 1, Blue =

S. pinniger).

B. Output of population assignment from Structure analysis considering the most

likely number of populations (k=3). Assignment probability of individual fish are
represented by individual vertical bars on a scale of 0-1. Samples are grouped by
mitochondrial clade and Type 2 samples are separated into two depth bins.
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Sebastes miniatus Type 2

R

Figure 2-5
Underwater photographs of Sebastes miniatus Type 1 (depth ~30m) and S.
miniatus Type 2 (depth ~150m).
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Figure 2-6

Hypothesized pattern of larval release, juvenile settlement, and ontogenetic
migration to adult habitat for S. miniatus Type 1 (A.) and S. miniatus Type 2 (B.).
Truncation or loss of the ontogenetic migration present in scenario A. can result in
the retention and establishment of reproductive populations near juvenile habitat
(scenario B).
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Abstract of Chapter II1:

Recent studies strongly support the splitting of vermilion rockfish into two
species separated primarily by depth of adult occurrence. Evaluation of population
connectivity is necessary as current depth-based management policies have placed
increased fishing effort upon the already heavily exploited vermilion rockfish. Analysis
of gene flow between populations and calculations of larval dispersal values, were
accomplished using 782bp of DNA sequence data from the mitochondrial cytochrome b
gene of 365 vermilion rockfish sampled from Cape Blanco, Oregon to San Quintin,
Mexico. A hierarchical Analysis of Molecular Variance (AMOVA) showed significant
partitioning of genetic variance across Point Conception (®c1=0.09690, p=0.02861),
Cape Blanco (®¢1=0.09724, p=0.00347), and Cape Mendocino (®c1=0.09231,
p=0.00463). Isolation by distance analysis produced a strong and significant correlation
(®s1=0.11/1000km, Mantel r=0.77621, p=0.00074). Calculated values of average larval
dispersal distance were < 25km. The finding of both strong population structure and
limited larval dispersal in the number one caught rockfish in the Southern California
fishery and third statewide, has profound implications for current management strategies

and the future design of marine reserve networks.
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Introduction:

Recent phylogenetic investigations (Hyde & Vetter 2007; Chapter II) have
provided evidence for a second species, within the previously described vermilion
rockfish, S. miniatus (Hyde & Vetter 2007). The two species are separated primarily by
depth, with S. miniatus Type 2 found shallower (typically <100m) than S. miniatus Type
1 (typically >100m). This segregation by depth, coupled with the current practice of
management by depth closure, has produced a dichotomy in their exploitation. Due to
severe overexploitation of several rockfish species (i.e., Pacific Ocean perch (S. alutus),
bocaccio (S. paucispinis), canary (S. pinniger), cowcod (S. levis), darkblotched (S.
crameri), widow (S. entomelas), and yelloweye (S. ruberrimus) rockfish) a series of
depth restricted management areas were created. These closures began in 2001 with the
establishment of the 4300 mile* Cowcod Conservation Area, soon followed in 2002 with
the creation of the California Rockfish Conservation Area, together restricting much of
the fishery, both temporally and regionally, with restrictions varying between 36-110m as
the maximum allowable fishing depth. These closures have resulted in the near-total
protection of S. miniatus Type 1 populations while placing increased fishing effort upon
the already heavily exploited nearshore S. miniatus Type 2 populations.

Together, the two species of vermilion rockfish represent a significant portion of
the current and historical commercial and recreational fishery along much of the west
coast of North America. During the period 2002-2006, vermilion rockfish ranked

number one in the Southern California recreational fishery and third statewide
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(http://www.psmfc.org/recfin). The first stock assessment for vermilion rockfish was
done in 2005 and it was found that despite the species being overfished in the 1990’s,
abundance estimates are currently above the precautionary management threshold
(MacCall 2005). However, catch values and biomass estimates used in the 2005 stock
assessment were based upon the assumption of a single species, potentially a critical
management error. Though not currently overfished, at least when assessed as a species
complex, vermilion rockfish populations have shown severe declines in both size and age
frequencies since the early 1980’s with a near complete loss of larger size classes (Love
et al. 1998). Such a loss of older and larger fish can be particularly detrimental to the
future reproductive quality and capacity of populations (e.g., Berkeley et al. 2004).
Tagging (Miller & Geibel 1973; Lea et al. 1999) and acoustic tracking (Mitamura
et al. 2002, 2005; Starr et al. 2002) studies of several Sebastes species, including
vermilion rockfish, have shown remarkable site fidelity and homing behavior in these
fishes, suggesting that the majority of geographic dispersal is accomplished during larval
and pelagic juvenile stages. Sebastes spp. exhibit a simplified form of viviparity:
fertilization and gestation are internal and poorly developed larvae are released alive.
Though live-bearing is found in other fishes (e.g., Embiotocidae, Poeciliidae and many
elasmobranchs), Sebastes spp. are unique in their high fecundity, which ranges from
thousands to 2.7 million larvae per brood (Wourms 1991; Love et al. 2002). Larvae and
subsequent pelagic juveniles may spend from a month to a year in the pelagic realm
before recruiting to benthic habitat (Boehlert 1977; Love et al. 2002). Such extended
pelagic dispersal phases offer the opportunity for large-scale geographic transport,

especially in quasi-permanent oceanographic features such as those found within the
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California Current system (e.g., Parrish et al. 1981). Organisms with both high fecundity
and lengthy periods of larval dispersal are expected to show a high-degree of gene flow
with little or no genetic differentiation between populations. Despite such traits in
Sebastes spp., there seems to be overwhelming evidence for genetic heterogeneity among
populations of most species studied to date (e.g., Withler et al. 2001; Buonaccorsi et al.
2002, 2004, 2005; Matala et al. 2004; Taylor 2004; Gomez-Uchida & Banks 2005).

The understanding of population connectivity is key to ensuring the persistence of
species throughout their historic ranges. This topic is especially relevant, as the
establishment of no-take marine reserves is being promoted as a solution to fishery
management (e.g., Polachek 1990; McArdle 1998; Murray et al. 1999). However, great
care must be taken that reserve networks and management regions are designed to
properly preserve population connectivity while also providing an exploitable fishery
resource. In this paper we use DNA sequence data from the mitochondrial cytochrome b
gene to examine population connectivity between vermilion rockfish populations
throughout their common range, test for barriers to gene flow, and provide estimates of

average larval dispersal.

Materials and Methods:

Sample collection:
Fish were collected throughout common range of the species using various
techniques (i.e., hook and line, bottom trawl, pole spear) and identified to species using

Love et al. (2002). Sampling locations were chosen to represent regions of the west coast
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that correspond to either current management zones (i.e., Northern, Central, Southern,
http://www.dfg.ca.gov/mrd) or areas between putative phylogeographic breaks
recognized for other species in this region (e.g., Buonaccorsi et al. 2002, 2004, 2005;
Cope 2004; Matala et al. 2004; J. Hess, NMFS pers. comm.) (see Figure 3-1). Tissues,
either white muscle or pectoral fin clips, were preserved in 95% un-denatured ethanol

pending DNA extraction and genetic analyses.

DNA extraction:
DNA was extracted from preserved tissue using various protocols. The majority
of samples had DNA extracted using a standard proteinase K digestion followed by a
lithium chloride:chloroform nucleic acid purification and subsequent ethanol
precipitation (Gemmel & Akiyama 1996). DNA from the remaining samples was
extracted using either the DNeasy kit (Qiagen) following the manufacturer’s protocol or

by use of a Chelex (BioRad Laboratories) boiling technique (see Hyde et al. 2005).

PCR amplification:

DNA was amplified for sequencing from the mitochondrial cytochrome b gene
using primers GluRF2 5> AAC CAT CGT TGT TAT TCA ACT ACA AGA ACC and
CB3RF2 5° CGA ACA GGA ART ATC AYT CTG G in a 10uL reaction volume
containing (67mM Tris-HCI pH 8.8, 16.6mM (NH4),SO4, 10mM B-mercapto-ethanol,
2mM MgCl,, 800uM dNTPs, 0.4uM each primer, 0.5 units 7ag DNA polymerase (New
England Biolabs), and 50-100ng of DNA template) and amplified using the following

temperature profile in a PTC200 DNA Engine (MJ Research); 94°C (2:00), 35 cycles of
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[94°C(0:30), 59°C(1:00), 72°C(1:00)], followed by three minutes at 72°C. All PCR
batches contained at least one no template negative control to monitor for possible DNA
contamination. Products were electrophoresed through a 2% (w/v) agarose gel in 1 X
Tris-Borate-EDTA buffer, stained with ethidium bromide and visualized via an UV-
transilluminator. Reactions were digested using ExoSAP-IT (USB Corp.) to remove
unincorporated primers and deoxynucleotides prior to cycle sequencing. Products had
both strands individually cycle sequenced using BigDye v.3.1 Dye Terminators (Applied
Biosystems) and analyzed on an ABI 3130XL automated capillary sequencer (Applied
Biosystems). DNA sequences from both strands were aligned and edited using

Sequencher v4.5 (GeneCodes, Inc).

Genetic Analyses:
Measures of molecular diversity:

Standard indices of molecular diversity, including haplotype (h) and nucleotide
diversity (;t) were calculated for individual sample sites and the dataset as a whole using
Arlequin v3.1 (Excoffier et al. 2005). To test for neutrality (equilibrium) among
individual samples, Tajima’s D was calculated using Arlequin and significance tested
using 10,000 bootstrap replicates. Demographic history can be estimated using the D
statistic, with negative values signaling an excess of low frequency haplotypes, possibly

due to recent demographic expansion.
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Population structure and gene flow:

In order to assess the geographic partitioning of genetic variance, a hierarchical
analysis of molecular variance (AMOVA) was performed using Arlequin. To investigate
whether previously proposed phylogeographic breaks may act to restrict gene flow,
samples were evaluated using an adjacent sample pooling analysis (sensu Buonaccorsi et
al. 2004, 2005). If such a barrier to gene flow exists, it would be expected that
populations on either side would be relatively homogeneous while populations across the
barrier would be distinct. By this method, adjacent samples were pooled to create two to
five groups, in all possible combinations. The best grouping of populations would show
the greatest and most significant levels of among-group heterogeneity (®cr) while at the
same time showing the smallest and least significant levels of within-group heterogeneity
(Psc)-

Pairwise comparisons of ®gr, between all samples (Table 3-2), were compiled
using Arlequin to assess the level of gene flow between populations. These values were
linearly transformed (®sr /(1- ®s1)) (Slatkin 1993) and plotted against geographic
distance data (Figure 3-2) obtained using the path measurement tool in Google Earth

(http://earth.google.com). A Mantel test (100 000 permutations) was performed to test

the correlation between genetic and geographic distance and the slope of the resultant
regression was used to calculate values for average larval dispersal distance.
Buonaccorsi et al. (2004, 2005) suggested that the slope of this relationship, combined
with estimates of adult density, assuming linear habitat, is amenable to the calculation of
average larval dispersal distance for nearshore species of Sebastes. Roussett (1997)

suggested that habitat can be treated as linear when the habitat width is much less than
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the distance over which it is compared. Though vermilion rockfish are found in low
abundance on offshore banks (Chapter II) and around islands in the Southern California
Bight, their distribution along much of the coast is primarily within a narrow band of
moderately shallow (10-100m), nearshore rocky habitat (Love et al. 2002; Chapter II),
conforming well to Rousset’s requirement. By comparing the inverse of the slope of the
genetic and geographic regression to the product D(c?), while inserting reasonable values
for adult density (D), the standard deviation or average dispersal distance (o) can be
calculated. Using this relationship we calculated values of average larval dispersal, for a
wide range of reasonable adult densities, assuming symmetrical, exponential dispersal

along a linear habitat (Table 3-3).

Statistical Parsimony and Nested Clade Phylogeographic Analysis:

The computer program TCS v1.21 (Clement et al. 2000) was used to generate a
statistical parsimony network among all vermilion haplotypes, rooted with a single
canary rockfish haplotype, and using the default 95% parsimony connection limit (Figure
3-3). The haplotype network was then partitioned into sequentially nested groupings of
1-step clades following Templeton et al. (1995). Nested clade analysis was performed
using the computer program GeoDis v2.5 (Templeton et al. 1995) in conjunction with the
geographic distance matrix used in the isolation by distance analysis. The results of this
analysis were interpreted using the dichotomous key provided on the GeoDis website

(http://darwin.uvigo.es/).
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Results:

Haplotype and nucleotide diversity:

In total, 782bp of DNA sequence were analyzed from 365 individuals from nine
geographic locations throughout the species common range (Table 3-1). We found 27
unique haplotypes among the nine sites. Haplotype sequences have been deposited in
GenBank, accession numbers EF587183-EF587231. The most common haplotype was
found in high abundance in all populations and dominated the samples south of Point
Conception (see Figure 3-1). A general trend of decreasing haplotype diversity with
decreasing latitude was observed. Values for Tajima’s D were significant only at the
Southern California sample sites, suggesting recent demographic expansion in this

region.

Population subdivision as revealed by mtDNA sequence:

AMOVA revealed significant partitioning of genetic variance across multiple
geographic features within the study area (see Table 3-4). The strongest population
subdivision occurred between groups of populations across Point Conception (2 groups,
Dc1=0.09690, p=0.02861). When additional subdivisions were considered, significant
restrictions to gene flow were found across Cape Blanco (3 groups, ®c1=0.09724,
p=0.00347), Cape Mendocino (4 groups, ®cr=0.09231, p=0.00463), and Monterey Bay
(5 groups, ®c1=0.08710, p=0.01468).

Pairwise ®@gr values were highly significant between most population pairs across

Point Conception, even after Bonferroni correction for multiple comparisons (see Table



79

3-2). The one non-significant comparison was between the Piedras Blancas and San
Miguel Island sites. Comparisons between adjacent population pairs north of Point
Conception were not significant at the a=0.05 level, however significance was obtained
at greater geographic distance. South of Point Conception, all mainland samples were
significantly different at the a=0.05 level.

Isolation by distance analyses revealed a significant positive correlation between
increasing genetic and geographic distance when all sample locations were compared
(Figure 3-2A, Mantel r=0.77621, p=0.00074, r’=0.6025) and also when only sites within
the Oregonian Province (sites 1-5) were compared (Figure 3-2C, Mantel r=0.81065,
p=0.01638, r’=0.6571). The plotted relationships between ®sr and geographic distance
produced a regression with a slope of ®sr=0.11 per 1000 km when all samples were
compared and a @s1=0.08 per 1000 km when only sites within the Oregonian Province
were compared. Interestingly, removal of the Santa Barbara site greatly improved the fit
of the overall regression (Figure 3-2B, Mantel r=0.91280, p=0.00067, = 0.8332),
perhaps a consequence of the complicated current patterns within the SCB resulting in
non-linear dispersal. Using a range of adult densities, we calculated possible values for
average larval dispersal distance (o) (see Table 3-3). These values ranged from 21 km
(D=10 adults/km) to 2 km (D=1000 adults/km) (®sr=0.11 per 1000 km) and 25 km
(D=10 adults/km) to 2.5 km (D=1000 adults/km) (®sr=0.08 per 1000 km). Such values
are similar to those found for other nearshore Sebastes species (e.g., Buonaccorsi et al.

2002, 2004, 2005; Taylor 2004).
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Nested Clade Phylogeographic Analysis:

Nested clade analysis revealed a significant phylogeographic pattern of restricted
gene flow. This pattern was driven by the near-complete restriction of 12 haplotypes to
populations north of Point Conception and a progressive change, with latitude, in the
relative frequencies of several dominant haplotypes (see Figure 3-3). This finding is in
agreement with the results of the isolation by distance analysis. The predominance of
several derived haplotypes in northern samples, as well as the southern affinity of the
ancestral haplotypes, suggests that the historical trend of gene flow has been primarily

northward.

Discussion:

Phylogeography and population structure:

Analysis of population structure revealed significant genetic heterogeneity
throughout the range of vermilion rockfish. AMOVA partitioned the genetic variance
mostly within the separate coastal upwelling regions as proposed by Parrish et al. (1981)
with the exception of an additional partition across Cape Mendocino. The strongest
barrier to gene flow was across Point Conception, a well-documented biogeographic
break between the Oregonian and San Diegan provinces (Briggs 1974). Recent studies
have suggested that Point Conception may not function as a genetic barrier for all species
(e.g., Burton 1998) and that stronger barriers may be present elsewhere within the
Southern California Bight. However, studies of other Sebastes species have shown that

populations north and south of Point Conception are often significantly different (i.e.,
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Buonaccorsi et al. 2002, 2004, 2005; Matala et al. 2002). After Point Conception,
AMOVA supported further barriers to gene flow across Cape Blanco, Oregon and Cape
Mendocino, California. These oceanographic features have been shown to function as
strong genetic barriers for other species, including the blue (S. mystinus) (Cope 2004) and
yellowtail (S. flavidus) rockfish (J. Hess, NMFS, pers comm.). Similarly, analysis of
catch data from three years of coast-wide pelagic juvenile rockfish surveys showed strong
declines in abundance at Point Conception, Cape Blanco, and Cape Mendocino (Sakuma
et al. 2006), further supporting the hypothesis that these features act as barriers to gene
flow for many Sebastes species.

A significant and positive correlation was found between increasing genetic and
geographic distance. This was true when all samples were compared, as well as when
only samples within the Oregonian Province were compared, however, there was no
significant relationship found between samples south of Point Conception. This lack of a
signal south of Point Conception is likely due to the complicated dispersal patterns
caused by the unique oceanography and bathymetry of this region, including the presence
of ten islands and numerous offshore banks. The impingement of the California Current
on the SCB produces a topographically constrained, quasi-permanent cyclonic eddy, a
factor complicating the understanding of population connectivity. The regressions fit to
the entire dataset and the Oregonian Province subset differed slightly in their slopes,
®dgr=0.11 and Ps7=0.08 per 1000 km, respectively. This slight difference may be an
artifact of comparing populations across the genetic barrier found at Point Conception
and we therefore suggest a consideration of both regressions when interpreting our

calculated values of larval dispersal distance.
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Using the equations of Rousset (1997), the slopes of the isolation by distance
regressions, and reasonable values for adult density, we calculated a range of values for
average larval dispersal distance. The obtained values (Table 3-3) were much less than
would be expected for a species with a larval and pelagic juvenile phase of two to three
months. However, studies of other nearshore rockfish species (i.e., Buonaccorsi et al.
2002, 2004, 2005) have produced even lower values for geographic dispersal.
Buonaccorsi et al. (2004, 2005) suggested that this limited dispersal may be due in part to
the existence of a coastal boundary layer (sensu Largier 2003) acting to retain larvae
nearshore, reducing entrainment in the bulk alongshore flow, thereby limiting dispersal.

Vermilion rockfish, in a pattern atypical of most Sebastes spp., show peak larval
release during fall and early winter months (Love et al. 2002). In contrast to the typical
south-ward flow driven by the California Current throughout much of the year, fall and
early winter (Sept-Feb) are characterized by weak north-ward flow, at least in the
nearshore, driven by sporadic pulses of the northerly flowing Davidson Current. This
pattern of weak northward transport is in agreement with the results of the nested clade
and isolation by distance analyses. Larval release during a period of low-level, sporadic
pole-ward flow may help account for the high degree of population structure and low-
levels of larval dispersal observed. Within the Santa Barbara channel (SBC), northward
of Santa Rosa Island, the interaction between the Davidson and California Currents
creates a strong and persistent cyclonic eddy, especially in the fall and early winter. This
eddy may act as a barrier to dispersal within the SBC, perhaps explaining the unexpected

behavior of the Santa Barbara site in the isolation by distance analysis (see Figure 3-2).
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Settlement of juveniles to shallow, nearshore habitat followed by an ontogenetic
migration to deeper adult habitat is a common theme among Sebastes spp. (Love et al.
1991). In Chapter II, we suggested that a truncation or loss of this ontogenetic migration
in S. miniatus may have resulted in a speciation event and the subsequent divergence of
Type 1 and Type 2 vermilion rockfish. It is easy to envision how such a mechanism,
when combined with limited adult dispersal (e.g., Miller and Geibel 1973; Lea et al.
1999; Mitamura et al. 2002, 2005; Starr et al. 2002), may effectively shorten the dispersal

capacity of this species.

Management implications:

Vermilion rockfish have historically represented an important commercial and
recreational fishery in California, Oregon, and Washington. During the 14-year period
1990-2004, the California commercial and recreational fisheries took 2,386 and 3,341
metric tons, respectively (MacCall 2005). Among recreationally targeted rockfishes,
vermilion rockfish currently rank #1 in the Southern California fishery and #3 statewide.

At current levels of exploitation, there exists a great potential for fishery decline.
Our analyses showed significant barriers to gene flow across several geographic features
that impinge into the California Current system (i.e., Point Conception, Cape Blanco,
Cape Mendocino), suggesting that vermilion rockfish should be managed on a regional
scale between these features rather than on a coast-wide basis. Current rockfish
management regions within California (i.e., Northern, Central, and Southern) fit our
results well, however, separate regional harvest guidelines should be considered.

Isolation by distance analysis suggested that larval dispersal is relatively small (i.e. <
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25km), suggesting a stepping-stone model of dispersal between adjacent reefs. This
finding has obvious implications for the planning of marine reserve networks and is
especially relevant during the current move to establish marine reserves as a solution to
fishery management. In order to maintain sustainable populations within the reserves,
while also providing access and benefit for the fishery, these reserves must be spaced
close enough to effectively communicate larvae and maintain gene flow. Without proper
scientific study and knowledge of the component species managed by these reserves, it is
unlikely that their promise of fishery management and enhancement will be realized.
This realization is becoming increasingly clear as the use of genetic tools continues to
uncover instances of strong population subdivision within these fishes (e.g., Rocha-
Olivares and Vetter 1999; Withler et al. 2001; Buonaccorsi et al. 2002, 2004, 2005; Cope

2004).
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Measures of molecular diversity for Sebastes miniatus. Site # refers to map points
in Figure 3-1. "*" indicates values signicant at the a=0.05 level

Sampling Location site # N No. of haplotype nucleotide Tajima's
haplotypes diversity diversity D

Cape Blanco, OR 1 50 9 0.856 +/-0.019 0.002 +/- 0.002 -0.18
Brookings, OR 2 45 8 0.853 +/- 0.027 0.002 +/- 0.001 -0.39
Half Moon Bay, CA 3 53 11 0.809 +/- 0.033 0.002 +/- 0.001 -1.23
Piedras Blancas, CA 4 36 10 0.832 +/- 0.042 0.002 +/- 0.001 -1.33
San Miguel Island, CA 5 30 9 0.635 +/- 0.097 0.001 +/- 0.001 -1.96*
Santa Barbara, CA 6 47 8 0.528 +/- 0.074 0.001 +/- 0.001 -1.66*
San Diego, CA 7 54 12 0.452 +/- 0.085 0.001 +/- 0.001 -2.27*
San Quintin, Mexico 8 50 9 0.598 +/- 0.075 0.001 +/- 0.001 -1.39

Overall 365 27 0.751 +/- 0.022 0.002 +/- 0.001 -1.89*%
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Table 3-3
Calculations of average larval dispersal distance based upon isolation by distance
regression from all sample sites (A.) and sites within the Oregonian Province (B.).

Various values for adult density per km of linear coastline (D) and associated

dispersal values are presented.
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A.
o’ D average dispersal (km)
909.09 10 21.3
90.91 100 6.7
9.09 1000 2.1
0.91 10000 0.7
B.
o? D average dispersal (km)
1250 10 25.0
125 100 7.9
12.5 1000 2.5
1.25 10000 0.8
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Figure 3-1

Sampling locations for vermilion rockfish used in this study with pie charts
depicting relative mitochondrial haplotype content at each site. Hypothesized
phylogeographic breaks are indicated with arrows.



91

0.24 4 - -
Cape Blanco to San Quintin
.
.
0.19
—_
b 0.14
o
1
-
z
=
g 0.09 { .
y = 0.0001x - 0.0031
R? = 0.6025
0.04
.
-0.01 g 200 400 600 800 1000 1200 1400 1600 1800 2000
km
0.24 L.
Cape Blanco to San Quintin w/o Santa Barbara
.
0.19
-
g 0.14
1
-
Z
~
 0.09
=
y = 0.0001x - 0.0266
0.04 R? = 0.8332
.
.
001 /2(;) 400 600 800 1000 1200 1400 1600 1800 2000
km
C
0.13
Cape Blanco to San Miguel Island
0.11
*
0.09
-
-
a 0.07 .
1 *
-
Z
E 0.05 M
&
0.03 4 - y = 8E-05x - 0.0127
" R? = 0.6571
0.01 .
hd .
200 400 600 80O 1000 1200 1400
0.01

Figure 3-2

Plots of linearized (Slatkin 1995) genetic distance (Fsr), between pair-wise
comparisons of sampling sites, in relation to geographic distance. Relationships
are presented for all sampling sites (A.), all sites except Santa Barbara (B.), and
sites within the Oregonian biogeographic province (C.).
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Abstract of Chapter IV:

The understanding of mating systems and their effect on genetic diversity is of
strong interest to conservation geneticists and those tasked with managing harvested
populations. This is particularly true for marine species that produce large numbers of
pelagic eggs or larvae and that often exhibit large discrepancies between effective and
census population sizes. The development of polymorphic genetic markers, such as
codominant nuclear microsatellite loci, has made it possible to study the paternity of
individual offspring within a brood. This has precipitated a host of studies on breeding
strategies in birds, mammals, and fishes. Concerns about the loss of genetic diversity in
long-lived, viviparous fishes has led to interest in their mating systems. Multiple
paternity is common in broadcast spawning fishes, but was thought to be less common in
fishes that have internal fertilization. By examining broods from pregnant females in field
and aquarium studies we have been able to examine paternity patterns within the live-
bearing scorpaenid genus Sebastes. We report the first finding of multiple paternity
within individual broods of 10 species. Through examination of larvae from aquarium
studies we show that at least three sires can contribute paternity to a single brood. Using
field caught specimens of gravid fish we surveyed a phylogenetically and ecologically
diverse sample of Sebastes species. In total, we found instances of multiple paternity in
10 of the 17 examined species, showing that this is not a rare event within a single
species and is likely common throughout the genus. Sebastes spp. are notable for their
highly variable reproductive success, with strong recruitment events occurring

approximately once a decade. Such sweepstakes-like reproductive events are likely due to
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the chance matching of larval parturition of a subset of the population with favorable
environmental conditions. In broadcast-spawning fishes, such high variance in
reproductive success is often correlated with low genetic diversity. Despite this high
variance in reproductive success, Sebastes species, in general, show moderate to high
levels of genetic diversity. We suggest that multiple paternity may be a form of bet
hedging that serves to maximize genetic diversity within discrete recruitment pulses and
subsequently maintain genetic diversity of the population as a whole. Regardless of the
selective value of multiple paternity at the level of individual fitness, the net effect at the
population level may be a genetic buffer to the consequences of severe overexploitation.
This is especially relevant as population sizes of many species of Sebastes are currently
below 10 percent of historical, unfished levels, with five species considered severely

overfished.
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Introduction:

The accumulation and maintenance of genetic diversity is a key topic in
conservation genetics. Ultimately the amount of genetic diversity in a population at
equilibrium is a function of both mutation and drift. The interpretation of present day
patterns of spatial and temporal genetic diversity (i.e., effective population size (Ng),
allelic richness and levels of heterozygosity) and population connectivity requires not
only an understanding of historical patterns of migration, population expansion and
contraction but also of basic life history parameters that may affect genetic diversity (i.e.,
through drift and selection). These parameters include; mating system (e.g., Nunney
1993), age and/or size dependent effects on fecundity and offspring quality (e.g.,
Berkeley et al. 2004), and ecologically linked effects on larval survival (e.g., Cushing
1975, 1990). All of these parameters can have important ramifications upon genetic
effective population size and management plans that aim to conserve genetic diversity in
fishes that are under intensive fishery exploitation or declining due to habitat degradation
and/or climate change.

Of the eight subfamilies of the scorpionfish family Scorpaenidae, viviparity is
confined to the subfamily Sebastinae. Among the four sebastine genera, species within
the genus Sebastes exhibit the most advanced form of viviparity (Barsukov 1981;
Wourms 1991). Though the form of viviparity exhibited by Sebastes spp. is primitive
when compared to other live-bearers (e.g., Embiotocids, Poeciliids, and most sharks),
their compromise between maternal investment (Boehlert & Yaklovich 1984; Boehlert et

al. 1986) and high fecundity results in broods comparable in size to those of oviparous,
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broadcast spawning fishes, ranging from a few thousand to over 2.7 million larvae
(Moser 1967; Love et al. 2002). Most species produce only a single brood annually,
though a few species, mainly within the Southern California Bight, show evidence for
multiple annual broods (e.g., S. paucispinis) (Moser 1967; MacGregor 1970). Despite
the combination of high fecundity and enhanced survivorship due to the inherent
protection afforded to the developing larvae during the typical period of greatest
mortality for oviparous species (i.e., egg and early larval stages), larvae of Sebastes spp.
still suffer high levels of mortality and variability in recruitment success. This results in
dominant year classes occurring approximately once per decade (Tolimieri & Levin
2005) when parturition coincides with favorable environmental parameters (sensu
Cushing 1975). The genetic diversity of the subsequent year-class likely represents a
disproportionate contribution from a very small subset of the spawning females (sensu
Hedgecock 1994). This bias toward a reduction in genetic diversity is clearly greater in
species that produce broods with a single sire as compared to multiple sires.

Of the 100+ Sebastes species, courtship behavior has been formally described for
only two, S. inermis (Shinomiya & Ezaki 1991) and S. mystinus (Helvey 1982), demersal
and semi-pelagic species, respectively. Anecdotal observations of S. melanops and S.
miniatus have been reported in Love et al. (2002). In all cases, an elaborate courtship
dance is performed by the male in an attempt to entice the female, however the ultimate
decision to mate resides with the female. Despite the practice of mate choice, females
and males of both species have been observed to mate with multiple partners suggesting a

polygynandrous mating system in these fishes.
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Unlike the closely related Helicolenus dactylopterus (Munoz et al. 2000), no
sperm storage structure within the ovaries has been found in the examined species of
Sebastes. However, there is an asynchrony between mating, maturation of oocytes, and
the development of embryos. This as well as the finding of both free swimming and
embedded spermatozoa in the ovaries, suggests that sperm are stored in some manner
(Moser 1967; Eldridge et al. 1991; Takahashi et al. 1991; K. Clifford pers. obs.). Studies
that examined both hormonal changes (Mori et al. 2003) and general gonad histology
(Takahashi et al. 1991) have found that insemination can precede fertilization by up to six
months.

Observation of females engaged in multiple mating events with different males
leads to the question as to whether multiple males are able to sire offspring within the
same brood? To address this question we examined broods from both captive and wild
populations of several species. The captive populations represent two species that are
important components of the US west coast commercial and recreational fishery. The
first group was composed of 12 adult grass rockfish (S. rastrelliger) maintained at the
Southwest Fisheries Science Center experimental aquarium (La Jolla, CA). The second
group was composed of 80 adult yelloweye rockfish (S. ruberrimus) maintained in an
exhibit at the Oregon Coast Aquarium (Newport, OR). Samples from wild populations
were collected opportunistically from fishery caught animals and selected to represent a

phylogenetically diverse sample of species (Hyde & Vetter 2007).
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Methods:

Sample collection:
Aquarium studies:

All fish were captured, individually tagged (using either PIT or Floy T-Bar tags),
measured, and tissue samples were taken. Tissue was taken from the caudal end of the
anal fin and immediately stored in 95% undenatured ethanol. Gravid females were
identified visually by their distended abdomens and were placed in isolation tanks until
parturition to ensure that all collected larvae could be correctly associated with the
mother. After parturition, larvae were randomly collected from the tank and stored whole

in 95% undenatured ethanol.

Wild caught fish:

Twenty-eight gravid females and associated larvae, representing 16 species, were
collected opportunistically using various methods including; otter trawl, pole spear, and
hook and line. Specimens were identified to species using and Love et al. (2002). A
sample portion of fin tissue was preserved in 95% undenatured ethanol from the gravid
female. In most cases, barotrauma caused by overexpansion of the swim bladder caused
forced expulsion of larvae upon capture. These larvae were mixed to provide a
representative sample of the brood and preserved in mass in 95% undenatured ethanol.
In some cases, whole ovaries were excised and larvae were sampled from the anterior,

middle, and posterior parts of each ovary.
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DNA extraction:

For adult fish and larvae from wild caught fish, DNA was extracted from fin clips
by a proteinase K digestion followed by nucleic acid separation and purification using a
LiCl:chloroform protocol and subsequent ethanol precipitation (Gemmel & Akiyama
1996). In order to expedite the analyses for multiple paternity from wild caught fish, 100
randomly sampled larvae were co-extracted in a single extraction. For larvae from the
aquarium husbandry studies, a Chelex (BioRad laboratories) based boiling protocol was
employed using a single, whole larva for each extraction (Hyde et al. 2005). All DNA

extractions were stored frozen at -20°C until needed.

PCR amplification of microsatellites:

All fish from the aquarium studies were genotyped at six (S. rastrelliger) or eight
(S. ruberrimus) microsatellite loci. For wild caught specimens, the goal of the study was
to identify instances of multiple paternity rather than the assignment of paternity to an
individual, so only five loci were surveyed. The microsatellite loci used were chosen as
they work well across multiple species while also exhibiting moderate levels of
polymorphism (Gomez-Uchida et al. 2003; Westerman et al. 2005; J. Hyde unpublished
data). Neff & Pitcher (2002) showed that it should be possible to detect multiple
paternity with >90% probability by using as few as two mildly polymorphic (e.g., five
alleles) microsatellite loci on samples of greater than 20 larvae, therefore it is expected
that 100 larvae and five loci are more than sufficient to survey for incidences of multiple
paternity. All microsatellite loci were amplified by polymerase chain reaction (PCR)

following the conditions described in Gomez-Uchida et al. (2003) and Westerman et al.
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(2005). Fluorescently labeled PCR products were sized using either an ABI 377XL
automated sequencer or an ABI 3130XL Genetic Analyzer with the ROX 500 size

standard and scored using Genemapper v3.7 software (Applied Biosystems).

Determination of paternity:

Paternal alleles were deduced by subtraction of the maternal alleles from each
larval genotype. Paternity of larvae from the aquarium husbandry studies was assigned
by comparison of deduced paternal alleles to the genotypes of potential sires using
Cervus v2.0 (Marshall et al. 1998). Cervus assigns paternity by exclusion of individuals
with mismatching genotypes. In cases where there remain two or more possible sires for
an individual offspring, a likelihood-based probability is used to assign the most probable
sire. In all instances in this study, larvae were unambiguously assigned to a single sire by
genotype exclusion.

For wild caught specimens, paternal alleles were deduced by exclusion of
maternal alleles as before. The finding of three or more paternal alleles at any
microsatellite locus was recorded as a positive finding of multiple paternity. As the
genotypes of the potential sires in the wild populations were unknown, the measure of
paternity by this method is conservative, providing only a minimum estimation of the
number of sires. For example, if sires share alleles with each other or with the mother it
is possible to have instances of multiple paternity within a brood while only detecting two

or fewer paternal alleles at any locus.



105

Modeling the effect of multiple paternity on Fis and genetic diversity:

To examine the potential effect of multiple paternity on the genetic diversity of a
brood we resampled genotypic data from several fish in our aquarium husbandry studies.
Genotypic data, from the pairing of a female with each of the implicated breeding males,
were sampled with replacement for 1000 iterations, using Resampling Stats (Simon 1997)
and used to construct composite offspring genotypes. The genotypes of these “pseudo-
larvae” were then combined in every possible combination, considering the number of
sires of a brood and assuming equal levels of paternity for all males. The inbreeding
coefficient, Fis (Weir & Cockerham 1984), and the number of alleles present at each
locus were determined using GenePop v3.4 (Raymond & Rousset 1995). Means and the
standard deviations of Fis (Figure 4-2) and total allele number across all loci (Figure 4-3)

are presented for up to four (S. rastrelliger) or five (S. ruberrimus) sires.

Results:

Aquarium husbandry studies:

As seen in Table 4-1, more than one father was identified in broods three and four
from S. rastrelliger. The finding of three fathers in brood three supports the assertion of
Neff & Pitcher (2002) that multiple fathers can be detected with low sample size (n=11 of
approximately 400,000 larvae). The levels of paternal contribution in brood three suggest
a correlation with male size, perhaps larger size being a proxy for greater sperm capacity
and subsequent transfer and competition. Unfortunately, few samples were available

from this brood and represent an insufficient proportion of the total brood size to
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accurately assess this hypothesis. In contrast, brood four does not seem to fit this
pattern, as the smaller male seems to be the primary contributor of paternity.
Similarly, for the S. ruberrimus broods, it was found that multiple males
contributed to the paternity of a single brood (see Table 4-1). In contrast to S.
rastrelliger, ratios of paternity within a brood were strongly skewed towards a single

individual. All sires were of similar size but the females were markedly smaller.

Wild-caught specimens:

All wild caught females and larvae were successfully genotyped at four or five
loci. As 100 larvae were pooled and co-extracted, the resulting allelogram represented all
alleles at each locus within a brood with no quantification as to the number of larvae with
a particular genotype. After subtracting the maternal alleles from this composite
genotype the number of paternal alleles was counted. If more than two paternal alleles
were found at any of the five analyzed loci the brood was scored as positive for multiple
paternity. As stated previously, this is a conservative assay for multiple paternity as
shared alleles between dam and sire, as well as between different sires, can easily mask
the true number of sires (see Table 4-1 to compare the number of deduced paternal alleles
at each locus with the number of sires found in the aquarium studies). Of the 28
individuals, representing 16 species, broods from nine species showed evidence for

multiple paternity (see Table 4-2).
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Discussion:

Our results show occurrences of multiple paternity in 10 species of Sebastes (S.
atrovirens, S. brevispinis, S. diploproa, S. elongatus, S. goodei, S. jordani, S. proriger, S.
rastrelliger, S. ruberrimus, and S. rufus). The remaining nine species showed no
evidence of multiple paternity, but such events may have been missed due to the limited
and conservative nature of this study. Finding positive evidence of this in 10 of the 17
(59%) species examined, using a fairly conservative approach, suggests that multiple
paternity within the genus is common. Furthermore, examples of multiple paternity were
found in species representing the majority of clades and ecotypes (i.e., deep soft-sediment
(S. diploproa and S. elongatus), deep high-relief reef (S. ruberrimus and S. rufus),
schooling semi-pelagic (S. jordani), midwater nearshore (S. atrovirens), and shallow
high-relief reef (S. rastrelliger)), in the northeast Pacific (see Figure 4-1). Ng et al.
(2003) found evidence for multiple paternity in Sebastiscus marmoratus, an appropriate
outgroup for Sebastes (Hyde & Vetter 2007). As such, the most parsimonious hypothesis
is that this is a plesiomorphic trait and examination of additional species within the genus
and subfamily will likely yield additional occurrences of multiple paternity.

This finding begs the question as to the possible advantages gained through
mating behaviors that result in multiple paternity. This can be considered from the point
of view of both individual reproductive fitness and the subsequent consequences on
population level genetic diversity. Rockfish females seem to gain no direct material
(e.g., food and shelter) or protective (e.g., egg guarding by males) benefits from the

mating event, gaining little more than gametes. This contrasts with other animals such as
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birds (Gray 1997; Lank et al. 2002), where females often gain material benefits (e.g.,
access to male’s territory or shelter, food, protection) through mating.

Darwin (1871) proposed that sexual selection acts to disproportionately enhance
the reproductive success of a few individuals that exhibit unique traits that are desirable
to the opposite sex. These unique traits may or may not confer physical advantages,
other than the increased probability of mating, and in some cases may be detrimental
(e.g., conspicuous coloration or behavior increasing the risk of predation). As with most
species, it would seem advantageous for a female to mate with a high quality male to help
ensure that her offspring acquire evolutionarily beneficial traits. There is a great deal of
literature on sexual selection and mating strategies but much of the literature may be less
relevant to Sebastes spp. Much of the theory of sexual selection is based upon K-selected
organisms (primarily birds and mammals) where offspring fitness based on mate choice
outweighs chance as a predictor of successful recruitment. However, in r-selected marine
species that produce large quantities of progeny, most of which die at early life stages,
chance and environmental matching (sensu Cushing 1975, 1990) is thought to play a
greater role in subsequent reproductive success. Under these environmental constraints,
bet-hedging to match unpredictable environmental conditions may be an important
component of reproductive success. Here we consider a few ideas that may have direct
bearing on Sebastes spp. and give a few examples where benefits of these strategies have

been realized in other taxa.
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Genetic diversity:

Enhancement of genetic diversity, as a consequence of multiple paternity, has
been proposed as theory to explain this behavior and this is particularly compelling for 7-
selected species. As phenotype and physiological variation are usually determined
through the interaction of multiple genes acted upon by selection, the direct comparison
of allelic diversity at selectively neutral loci does not represent the true extent of
phenotypic variation possible within a population. However, estimates of genetic
diversity using these markers may act as a proxy for assessing the potential for adaptive
variability within a population (Carvalho et al. 2002). Using genotypic data from our
aquarium studies, we show that the average number of alleles in a single brood, across all
microsatellite loci examined, increases significantly when the brood is the result of
multiple sires (see Figure 4-3). This can have multiple advantages. Due to the
potentially large dispersal distances for larvae of Sebastes spp. and the uncertainty of
settling conditions, it would seem beneficial to maximize genetic diversity within a brood
such that some larvae are genetically predisposed to survive a variety of potential
challenges. Many species of Sebastes appear to recruit in a sweepstakes fashion, likely
due to the timing of parturition coinciding with favorable environmental conditions
(sensu Cushing 1975, 1990), with dominant year classes occurring approximately once a
decade (Tolimieri & Levin 2005). The few successful spawners probably do not
represent the genetic diversity of the population as a whole (Hedgecock 1994) but
multiple paternity may help to ameliorate this bias. Beyond the direct benefit of
increased diversity, several indirect benefits have been realized by other taxa. In the

guppy, Poecilia reticulata, offspring from multiply sired broods show increased
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schooling competence and greater predator avoidance when compared to single sired
broods (Evans & Magurran 2000). Colonies of the bumblebee, Bombus terrestris, started
by multiply inseminated queens had fewer parasites than colonies from singly
inseminated queens (Baer & Schmid-Hempel 1999). Both of these examples result in
decreased mortality from predation and disease, traits that are universally advantageous

and directly applicable to Sebastes spp.

Inbreeding depression:

Inbreeding depression, the loss of genetic heterozygosity in a population as a
result of related individuals mating, can have profound effects upon reproductive success
and subsequent conservation and management strategies of exploited species (see
Edmands 2007). This reduction in genetic heterozygosity both increases the risk that
detrimental recessive traits will be expressed, as well as reducing the overall genetic
diversity of the population. When it does occur, inbreeding can be reduced by both
sperm selection and the dilution of the less desirable gametes with those from different
sources (Stockley et al. 1993). Resampling the genotypic data from our aquarium
husbandry studies we modeled the change in the inbreeding coefficient of a brood (Fis)
when multiple sires were present (see Figure 4-2). The inbreeding coefficient of a brood
increasingly tends toward zero with increasing number of sires. Given the remarkable
site fidelity, lack of movement of adult rockfish, and low geographic dispersal of larvae
in some demersal species (Mitamura et al. 2002; Starr et al. 2002; Buonaccorsi et al.
2005) there is a reasonable concern for inbreeding. However, the discovery of this

mating behavior throughout the ecological (schooling vs. solitary, shallow vs. deep
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dwelling, reef associated vs. midwater) as well as phylogenetic breadth (see Figure 4-1)

of the genus suggests a more basic advantage.

Population ramifications:

Under ideal conditions, the effective (Ng) and census population sizes (N¢) should
be equal. However, several factors may act to decrease Ng (e.g., unequal sex ratio,
mating system, age/size biased reproductive success, over-lapping generations, and
populations that experience a high variance in reproductive success). Hedgecock (1994)
proposed that environmental match or mismatch (sensu Cushing 1975, 1990) acts to
disproportionately favor the reproductive success of a subset of the population, which in
effect wins the reproductive sweepstakes. This can result in a large discrepancy between
N and N, in the case of the oysters in his study, the difference was five orders of
magnitude. Recent studies of N in populations of several r-selected marine fishes
including squirefish (Chrysophrys auratus (Hauser et al. 2002)), red drum (Sciaenops
ocellatus (Turner et al. 2002)), canary (S. pinniger) (Gomez-Uchida 2006) and
darkblotched (S. crameri) rockfish (Gomez-Uchida & Banks 2006) and Atlantic cod
(Gadus morhua (Hutchinson et al. 2003)) have shown similar discrepancies of three to
five orders of magnitude.

By analyzing historical samples (archived scales and otoliths) of squirefish
(Hauser et al. 2002) and red drum (Hutchinson et al. 2003) it was found that heavy
fishery exploitation over the past 50 years has caused a significant decline in both Ng and
overall genetic diversity of these species. These results are especially significant as the

census population sizes of the species from both of these studies are in the millions, a
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number that was thought to be too high to experience a reduction in genetic diversity.
Their reasoning for this disparity was that the large difference between Ng and N¢ in
these species requires very large census population sizes to maintain genetic diversity.
Using widely accepted values for the effective number of individuals needed to maintain
short-term heterozygosity (n=50) and long-term population adaptability (n=500), Hauser
et al. (2002) calculated that populations of 5 million and 50 million individuals,
respectively, would be required. This suggests that many of the world’s exploited species
have already undergone a reduction in genetic diversity and perhaps adaptability due to
the intense levels of exploitation over the past 50-100 years.

Interestingly, in a study of the heavily over-fished canary rockfish (S. pinniger),
Gomez-Uchida (2006) did not find a reduction in genetic diversity from samples
spanning 31 years. The discordance between his finding and that in other species may be
due to the lack of samples from the pre- or early exploitation period. Also, canary
rockfish have a roughly 75% greater lifespan than the squirefish in Hauser et al.’s (2002)
study, a life history trait that would act to temporarily dampen the effect of overfishing on
genetic diversity. Though they were not assayed in this study, the finding of multiple
paternity throughout the genus suggests that canary rockfish also exhibit this behavior.

Mating behavior that results in multiple paternity within a brood creates offspring
with more possible genetic combinations than would be possible with single father
parentage. This can have important implications in the maintenance of genetic diversity
and preventing the loss of rare alleles (Robbins et al. 1987; Waples 1987) within
populations that undergo sweepstakes-like recruitment. Interestingly, Gilbert-Horvath et

al. (2006) found no evidence for genetic heterogeneity between individual recruitment
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pulses of young of the year or adult populations of kelp rockfish (Sebastes atrovirens), a
species shown in this study to practice multiple paternity. The authors attribute this to a
lack of sweepstakes recruitment in this species, however this lack of heterogeneity may
also be due to the increased genetic diversity afforded to multiply sired broods.
Concomitant with increased genetic diversity, multiple paternity carries with it an
increase in the effective population size of spawning individuals (Waples 1987; Sugg &
Chesser 1994; Martinez et al. 2000). Waples (1987) calculated that multiple paternity
can almost double effective population size. Though a two-fold difference may seem
minor, when coupled with the large discrepancies between census and effective
population sizes this equates to a realized buffer against loss of genetic diversity of
millions to 10’s of millions of fish. This buffer should help recover and maximize genetic
diversity during bottleneck (e.g., overfishing, severe environmental fluctuations, disease)
and/or founding events. Such a behavioral trait, in conjunction with the potential for long
distance dispersal and assortative mating, may be an important reason for the high species
diversity of Sebastes (Hyde & Vetter 2007). The ability to carry a diverse genetic
reservoir within the ovaries of a single female would help reduce the chance of a genetic
bottleneck should only a single or a few females disperse to a novel geographic area (e.g.,
the colonization of the north Atlantic, Gulf of California and the southern hemisphere) or
adopt assortative mating strategies (e.g., assortative mating presumably based on color in

S. carnatus and S. chrysomelas, Narum et al. 2004).
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Number of deduced paternal alleles from wild caught specimens after subtraction
of maternal alleles from collective genotypes of 100 co-extracted larvae from each
brood. NA indicates failed amplification of microsatellite locus.
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Figure 4-1

Bayesian derived phylogeny for Sebastes spp. and other members of the
scorpaenid subfamily, Sebastinae (adapted from Hyde & Vetter 2007). Species
names in red, with arrows were found to have multiple paternity within a single
brood. Species names in green showed no evidence for multiple paternity in this
study.
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Effect of multiple sires on the inbreeding coefficient (F,s)
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Figure 4-2

Genotypic data from all possible mate pairings were sampled with replacement for
1000 iterations, using Resampling Stats (Simon 1997) and used to construct
composite offspring genotypes. Means and standard deviations of the inbreeding
coefficient, Fig (Weir & Cockerham 1984) are plotted for both S. rastrelliger and
S. ruberrimus
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Effect of multiple sires on genetic diversity of a brood
S. rastrelliger
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Figure 4-3

Genotypic data from all possible mate pairings were sampled with replacement for
1000 iterations, using Resampling Stats (Simon 1997) and used to construct
composite offspring genotypes. Means and standard deviations of the average
number of alleles per brood, across all examined loci, are plotted for both S.
rastrelliger and S. ruberrimus.
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