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Abstract

Given the prevalence and societal impact of autism spectrum disorders (ASD), there is an urgent 

need to develop innovative preventative strategies and treatments to reduce the alarming number of 

cases and improve core symptoms for afflicted individuals. Translational efforts between clinical 

and preclinical research are needed to (i) identify and evaluate putative causes of ASD, (ii) 

determine the underlying neurobiological mechanisms, (iii) develop and test novel therapeutic 

approaches and (iv) ultimately translate basic research into safe and effective clinical practices. 

However, modeling a uniquely human brain disorder, such as ASD, will require sophisticated 

animal models that capitalize on unique advantages of diverse species including drosophila, zebra 

fish, mice, rats, and ultimately, species more closely related to humans, such as the nonhuman 

primate. Here we discuss the unique contributions of the rhesus monkey (Macaca mulatta) model 

to ongoing efforts to understand the neurobiology of the disorder, focusing on the convergence of 

brain and behavior outcome measures that parallel features of human ASD.
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Integrating Clinical and Preclinical ASD Research Efforts

Autism spectrum disorder (ASD) is a collection of neurodevelopmental disorders 

characterized by early onset deficits in social behavior and communication, paired with 

repetitive behaviors and restricted interests. Current estimates indicate that ASD affects over 

1% of children in the United States [1], yet there remains relatively little understanding of 

the underlying cause and few treatment options. Early behavioral interventions are effective 

for some, but not all, children with ASD [2, 3] and at present there are no pharmacological 
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interventions targeting the core symptoms. There is a growing consensus that ASD is 

unlikely to have a single etiology and is actually a number of distinct brain disorders each 

caused by a complex interplay of genetic and environmental factors [4, 5]. This is perhaps 

not surprising given that individuals with ASD may exhibit a range of social and 

communication symptoms (mild to profound impairments), cognitive abilities (enhanced 

function to intellectual disability), and brain growth (both micro and macrocephaly) paired 

with a multitude of common comorbidities, which may include epilepsy, anxiety, 

gastrointestinal dysfunction, sleep disturbances, and abnormal sensory processing. The 

clinical heterogeneity of ASD has made it exceedingly difficult to determine how genetic 

and environmental risk factors interact to alter neurodevelopmental processes and ultimately 

produce ASD symptomatology. These challenges pose major roadblocks to developing novel 

therapeutic interventions and preventative strategies for ASD.

In spite of these challenges, there are some consistent neuroanatomical features emerging 

from research in ASD patient populations [6, 7]. A large body of neuroimaging work 

suggests brain regions that modulate social and emotional behavior, such as the frontal and 

temporal cortices as well as the amygdala, undergo an aberrant growth trajectory in children 

and adults with ASD [8–11]. However, neuroimaging studies lack the resolution to pinpoint 

the underlying neurobiology that contributes to these aberrant brain developmental 

trajectories. Postmortem brains from individuals diagnosed with ASD during life are 

essential to evaluate the neuropathology of the disorder [12] and have revealed consistent 

alterations in brain regions that play a role in social development (reviewed in [13]). 

However, due to the paucity of ASD postmortem brain tissue, relatively few cellular and 

molecular studies have been carried out in ASD as compared to other CNS disorders, such 

as schizophrenia or Alzheimer’s. This, in turn, has severely limited progress toward 

development of targeted therapeutic approaches and preventative strategies. Understanding 

the neurobiology of ASD will require increasingly coordinated research efforts between 

clinical and preclinical approaches. Research using animal models can be used to fill in the 

gaps in our knowledge by providing an experimental system to evaluate hypotheses that, for 

ethical and practical reasons, are impossible to test using human subjects [14, 15]. A unique 

strength of an animal model is the ability to integrate behavior, in vivo neuroimaging, and 

ultimately postmortem pathology in a single organism – an impossibility in human research. 

This allows animal models to play a key role in both “forward translation”, in which new 

basic science discoveries are developed into novel clinical therapies and in “reverse 

translation”, which allows for mechanistic exploration of clinical findings [16]. In this 

review we focus exclusively on nonhuman primate models of autism, emphasizing features 

of neuroanatomy and behavioral complexity that uniquely position the nonhuman primate 

model to bridge the gap between rodent models and ASD patient populations [17]. The 

reader is referred to a series of recent review articles describing other species used in ASD 

preclinical research [18–21].

Assessing Validity in Animal Models of ASD

Developing valid animal models has proven exceptionally challenging for complex brain 

disorders, including ASD, where the varied symptoms are difficult to model in any 

nonhuman species [22–26]. Although efforts to improve reproducibility in preclinical 
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research may address some of these challenges [27–29], the fundamental issue of attempting 

to model a uniquely human disorder in a nonhuman species remains a paramount concern. 

Historically, the validity of animal models has been determined by: (i) Construct validity - 

etiological relevance of the model to human disease(s), (ii) Face validity - resemblance of 

outcome measures of the model to features of the human disease and (iii) Predictive validity 
- response of the model to therapeutic agents used to treat the human disease [30]. Although 

interpretation of these criteria vary [31], a basic goal for a valid animal model of ASD is to 

stem from an etiologically relevant experimental paradigm (high construct validity), produce 

an animal that exhibits species-specific changes in behavior related to core diagnostic 

features of ASD (high face validity) that may ultimately be used to develop and evaluate 

novel therapeutic interventions (high predictive validity).

Construct validity

Although much emphasis has been placed on evaluating the face validity of ASD animal 

models, it is equally important to begin with a model which stems from an etiologically 

relevant question. Early efforts to develop valid animal models of ASD were hindered by the 

lack of knowledge of the underlying cause(s) of ASD. Recent advances from clinical 

research now allows for animal models to experimentally evaluate putative genetic and 

environmental risk factors identified through ASD patient studies. It is, however, important 

to recognize that the vast majority of ASD animal models continue to focus on a single risk 

factor, though ASD likely results from a complex interplay of genetic and environmental 

factors. Single risk factor models are thus expected to produce a circumscribed series of 

brain and behavioral alterations, rather than the full symptomatology of ASD. This 

limitation is important to bear in mind when interpreting the validity of any single hit animal 

model of human disease.

Face validity

An animal model with high face validity will produce animals that exhibit symptoms that 

parallel features of the human disease. Given that ASD is a behaviorally defined disorder, 

the behavioral outcome of the animal model is the primary outcome measure of face validity. 

Individuals with ASD exhibit persistent deficits in social communication and social 

interaction across multiple contexts paired with restricted, repetitive patterns of behavior, 

interests, or activities [32]. In this review we will highlight the potential of the nonhuman 

primate to enhance the translational value of ASD animal models by utilizing a nonhuman 

primate battery of ASD-relevant behavioral tests developed over the past two decades [33, 

34] and by integrating new technologies, such as non-invasive eye tracking. We also 

acknowledge that other innovative approaches are underway, such as the NIH led Research 

Domain Criteria (RDoC) initiative, that have tremendous potential to improve translation of 

basic and clinical neurodevelopmental disorder research [35]. The RDoC objective is to 

provide a novel framework for CNS disorder research that utilizes a dimensional 

classification based on genes, neural circuits and behavioral constructs rather than traditional 

DSM criteria [36]. We are, however, in the earliest stages of applying this approach to 

neurodevelopmental disorders and to our interpretation of preclinical models [37].
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Predictive validity

Predictive validity addresses the specificity of the animal model to treatments that are 

effective in the human disease (i.e., treatments that ameliorate the human symptoms should 

also reverse pathological features in the animal model). As no drug treatment has been 

approved for the core symptoms of ASD, predictive validity cannot currently be determined 

in animal models of ASD. However, epidemiologically informed animal models that utilize 

behavioral assays with strong face validity will likely contribute to the development of 

pharmacological interventions targeting ASD symptomatology [38].

Unique Features of the Nonhuman Primate Model

The vast majority of ASD preclinical research is carried out in rodent models. In early 2017, 

a Pub Med search of “mouse model autism” yielded 915 articles and “rat model autism” 

yielded 294 articles, while a search of “nonhuman primate model autism” yielded only 15 

articles. Mouse models have indeed laid the foundation for developing animal models of 

ASD and will undoubtedly continue to be an important species in ASD research, especially 

in models that incorporate genetic susceptibility. There are, however, limitations in relying 

on a single species to study complex human brain disorders, such as ASD. Renewed interest 

in developing rat ASD models may improve the translational utility of rodent models by 

utilizing animals with complex brains and display an enriched repertoire of social behavior 

[39, 40]. However, we suggest that a uniquely human disorder, such as ASD, may ultimately 

benefit from the use of animal species even more closely related to humans, such as the 

rhesus macaque (Macaca mulatta). Compared with rodents, which are separated from 

humans by more than 70 million years of evolution [41, 42], macaques diverged from human 

evolution closer to 25 million years ago and thus exhibit greater similarity to humans in 

genetics, neurobiology and, ultimately, behavior (Figure 1).

The commonalities between rhesus monkeys and humans provide experimental platforms 

that can be used to evaluate etiologies, identify underlying neuropathology, and ultimately 

develop and test novel pharmacological interventions to alter brain and behavioral 

impairments not found in rodents [43]. Much like humans, rhesus macaques live in complex 

social groups and have evolved a sophisticated social communication system that includes a 

variety of facial expressions, body postures and vocalizations (Figure 2) [44]. Early social 

development in an infant macaque in many ways parallels that of human infants, albeit at an 

approximately four times faster maturational rate. Both human and nonhuman primate 

infants must rapidly learn to interpret and produce social interactions in order to successfully 

integrate into their social group where they will form lasting relationships with peers [45, 

46]. Among macaque social signals, the use of facial expressions is one of the most salient 

features of macaque social behavior and the most similar to our own social communication 

[47–50]. Like humans, monkeys readily attend to social images and show a remarkably 

human-like pattern of visual attention that focuses heavily on the eyes and mouth [51]. 

Although not all human behaviors can be precisely assessed in a nonhuman primate (i.e., 

language, theory of mind), these animals are a closer approximation to humans in both 

neural and behavioral complexity and provide a valuable tool for bridging the gap between 

rodent models and ASD patient populations. Indeed, brain regions underlying complex 
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social behaviors also show similar developmental and activity patterns in human and 

nonhuman primates [52] and are either not well-developed or nonexistent in rodents. For 

example, the frontal cortex has demonstrated the greatest phylogenetic growth of any brain 

region, which likely reflects the demands of living in more complex social environments that 

require increasing complexity of connections between brain regions [53]. There are 

cytoarchectonic regions that are identifiable in the human and nonhuman primate brain that 

are significantly less developed or absent in the rodents, including prefrontal regions that are 

highly implicated in social cognition [54–56]. In addition, the amygdala has nearly identical 

arrangement of nuclei cytoarchitecture, neurochemical distribution, connectivity and 

functional properties in the human and nonhuman primate [57, 58], but remarkably different 

nuclei distribution in the rodent brain [59]. Although the nonhuman primate model may 

provide a bridge from rodent models to human disease, the increased costs and ethical 

considerations constrain the use of nonhuman primates in research. Below we provide 

examples of how the nonhuman primate can be selectively used to improve translation 

between ASD preclinical and clinical research efforts.

Maximizing Translational Utility of the Nonhuman Primate ASD Model

In this review, we focus specifically on the social domain of ASD symptomatology, which is 

inherently complex and requires an ethologically valid approach to assess in animal models 

[60]. Social impairments vary greatly among individuals with ASD [61] and is currently 

defined by the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) by early 

onset “persistent deficits in social communication and social interaction across multiple 

contexts” that may manifest as impairments in (i) social-emotional reciprocity, ranging from 

abnormal social approach and failure to initiate or respond to social interactions, (ii) 

nonverbal communicative behaviors used for social interaction, ranging from poorly 

integrated verbal and nonverbal communication to a total lack of facial expressions and 

nonverbal communication and (iii) deficits in developing, maintaining, and understanding 

relationships, including difficulties adjusting behavior to suit various social contexts and/or 

an absence of interest in peers [32]. There are obvious limitations in our ability to model 

these complex behaviors in a non-human species, and results from preclinical models need 

to be interpreted cautiously [62].

A variety of paradigms have been developed to measure social interactions in rodent ASD 

models, ranging from simple automated procedures to labor intensive quantification of 

reciprocal social interactions [63, 64]. For many mouse models of ASD, simple, automated 

assessments of social interest, such as the three-chambered social approach test is commonly 

used as a first line screening assay for autism like phenotypes [65]. In mice, for example, the 

species-typical response to an unfamiliar conspecific is to approach and investigate; 

decreased time spent investigating a stimulus animal is operationally defined as diminished 

sociability [66–68]. The three-chamber social approach assay does not, however, allow 

animals to engage in species-typical reciprocal social behavior, and may not be sensitive to 

more subtle alterations in social behavior that may be detected in rats, nonhuman primates, 

and other species that engage in reciprocal social behaviors [69]. Although standardized 

behavioral phenotyping tools developed for rodents have led to more coordinated preclinical 

research efforts, there remains a need to develop additional behavioral tests that capture the 
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full spectrum of social deficits relevant to ASD [70]. The rich social repertoire of the rhesus 

monkey provides an opportunity to address the fundamental issue of how to develop 

behavioral assays with high relevance to the diagnostic symptoms of ASD.

The diagnosis of ASD usually occurs in two stages, often beginning with concerns from 

parents and/or ASD-specific screening that has been incorporated into well-child visits. 

Children identified through early screening may then require a comprehensive evaluation 

carried out by a developmental pediatrician, child psychologist, or psychiatrist. These 

commonly include the Autism Diagnostic Observation Schedule (ADOS), which is a semi-

structured, standardized assessment that consists of carefully planned social interactions and 

communication and opportunities to elicit spontaneous behaviors within specific contexts 

[71]. During the ADOS, a trained examiner presents the child with various prompts (i.e., 

response to name, requests for toys etc.) and then rates items on a 4-point scale that are 

summed into two algorithms: Social Affect and Restricted and Repetitive Behaviors. The 

ADOS has a strong predicative validity [72] and, along with the semi-structured parent 

interview Autism Diagnostic Interview Revised (ADI-R), are considered the gold standard 

for diagnosing ASD [73]. Because the ADOS requires a well-trained examiner to engage the 

child using a series of carefully scripted prompts and the ADI-R requires an extensive 

interview to provide the developmental history, it is not feasible to develop comparable 

screening tools for a nonhuman species. However, caregiver-questionnaires commonly used 

in ASD research, such as the Social Responsiveness Scale (SRS) [74], may be more 

amenable for adaptation in a nonhuman species. The SRS provides a quantitative measure of 

behavioral variability that can be used to identify individuals who do not reach diagnostic 

criteria for ASD, but nonetheless display atypical social behaviors in comparison to the 

general population [75]. The 65-item human SRS has been adapted for use in chimpanzees 

by modifying items, such as language, which cannot be ascertained in nonhuman primates 

[76]. Chimpanzee colony caretakers have demonstrated strong interrater reliability on the 

resulting 36-item chimpanzee version and are able to accurately detect individual variation 

in chimpanzee social behavior, suggesting that the SRS may be a useful tool for measuring 

social responsiveness in both humans and chimpanzees. Subsequent efforts to adapt the 

chimpanzee version of the SRS for use in rhesus monkeys have yielded mixed results [77]. 

Highly trained caretakers using the monkey version of the SRS were able to identify a subset 

of macaques displaying atypical patterns of social responsiveness related to social 

avoidance, social anxiety/inflexibility, lack of social confidence, and social awkwardness. 

However, only 4 of 36 items on the monkey SRS were considered highly reliable, suggesting 

that additional work will be needed to address concerns of low intra-item reliability. 

Nonetheless, the potential of adapting ASD screening tools for use in nonhuman primates 

would provide a useful tool for measuring behavioral variability and improve translational 

relevance of preclinical ASD models.

Given that ASD is a behavioral disorder defined by impairments in early social 

development, one of the most direct ways to assess the validity of a putative animal model of 

ASD is to quantify the emergence of species-typical social interactions. Over the past two 

decades, our research team has worked closely with primatologists and child psychologists 

to develop a battery of behavioral tests that can be used to quantify ASD-relevant changes in 

social development in the rhesus monkey (for review, [78]). Although it is beyond the scope 
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of the current review to provide a detailed description of approaches to measuring social 

behavior in nonhuman primates, here we highlight ASD-relevant behavioral phenotyping 

tools that have been developed specifically for use in nonhuman primates by our laboratory 

and others (Table 1). Many of the nonhuman primate behavioral outcome measures we have 

developed have been specifically designed to bridge the gap between rodent models and 

ASD patient populations [81]. Deficits in social play, for example, are a prominent feature of 

ASD that can be measured in preclinical animal models by measuring the frequency and 

duration of species-typical play behaviors [79, 80]. Our recommendations for an ASD-

relevant behavioral battery include: (i) provide the offspring with a social rearing 

environment, ideally consisting of age-matched peers and adults to facilitate species typical 

social development, (ii) screen for delays in motor, reflex or sensory development that may 

interfere with social development, (iii) utilize testing paradigms that allow the animals to 

engage in complex, reciprocal social interactions with both familiar and unfamiliar 

conspecifics, (iv) utilize a comprehensive behavioral ethogram and focal sampling methods 

to obtain a detailed assessment of social interactions and (v) collect longitudinal behavioral 

data to map the trajectory of social development over time.

In addition to behavioral observations of the animal model, it is essential to integrate other 

ASD-relevant outcome measures, such as eye-tracking, in vivo neuroimaging, and ultimately 

postmortem neuropathology, to provide insight into the underlying neural mechanisms. 

Direct behavioral observations can be supplemented with less subjective measurements, 

such as non-invasive eye tracking that allow investigators to measure social attention in 

young humans and nonhuman primates [82]. Eye-tracking outcome measures are highly 

relevant to ASD, as converging evidence from numerous experimental paradigms indicate 

that individuals with ASD demonstrate diminished attention to social stimuli across 

development [83]. Adaptation of human eye-tracking paradigms for use in nonhuman 

primates provides an opportunity to evaluate social attention [84–88], and better identify 

neural circuitry underlying social processing [89]. The use of noninvasive eye-tracking in the 

nonhuman primate model will provide a powerful tool to evaluate novel preventative and 

therapeutic interventions in future studies and can improve translation from animal models 

to clinical populations [90].

Although we are at the earliest stages of understanding the neural underpinnings of ASD 

social deficits, efforts are underway to identify robust biomarkers that may lead to earlier 

identification, improved treatment efficacy and discovery of targeted treatments. Due to 

similarities in brain structure and function, nonhuman primates are particularly well-suited 

for adapting neuroanatomical methods commonly used in ASD clinical populations, such 

neuroimaging and postmortem brain pathology, to map structural alterations in brain 

development. Over the past two decades, structural magnetic resonance imaging (MRI) 

studies have provided insight into the neurobiological basis of ASD in vivo [91]. Structural 

imaging approaches are readily available for nonhuman primate models, which often have 

the additional benefit of collecting longitudinal data from individuals at multiple time points 

throughout development [92, 93]. Including longitudinal neuroimaging as an outcome 

measure, as described in the models below, can improve the translational utility of the 

nonhuman primate model and provide insight into underlying neurobiological and genomic 

mechanisms that can later be explored through extensive evaluation of postmortem tissue 
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duplicating studies carried out in human brains (reviewed in, [94]). In fact, key “social 

brain” regions implicated in ASD, such as the amygdala, anterior cingulate, prefrontal and 

temporal cortices, are remarkably similar in the human brain and nonhuman primate brain 

and undergo similar developmental trajectories [95, 96] (Box 1). Recent efforts to integrate 

neuroscience tools, such as electroencephalography (EEG), into preclinical models will 

enable researchers to assess circuit integrity in ASD populations as well as animal models 

[97].

Overview of Nonhuman Primate Models of ASD

Below we provide a brief history of nonhuman primate models of ASD, then shift our focus 

to recent models that evaluate a specific etiology and/or treatment, highlighting the unique 

potential of the nonhuman primate model to integrate behavior and brain outcome measures. 

The reader is referred to excellent reviews on contributions of nonhuman primates to our 

basic understanding of the neural basis of social behavior [98, 99], including new 

approaches which integrate functional MRI, electrophysiology and anatomical tracer 

injections to redefine the neural basis of social processing [100]. Although these basic 

research studies undoubtedly contribute to the field of ASD research, we have elected to 

focus the review on more direct efforts to model ASD in nonhuman primates (Table 2), 

including: (i) Experimentally induced brain pathology models, (ii) Naturally occurring 

behavior based models, (iii) Epidemiologically informed models, (iv) Genetic models, and 

(v) Treatment models.

Experimentally Induced Brain Pathology Models

Early attempts to develop nonhuman primate models of ASD utilized a neural-systems 

approach to evaluate the role of specific brain structures, such as the amygdala, which had 

been implicated in ASD pathophysiology. The “amygdala theory of autism” that emerged in 

the early 1990s was based on reports of postmortem amygdala neuropathology in individuals 

with ASD [101] paired with emerging functional imaging studies that also implicated the 

amygdala in ASD pathophysiology [102]. Bachevalier and colleagues developed a 

nonhuman primate model to evaluate the role of the amygdala in social development 

utilizing a lesion based approach that had successfully contributed to our understanding of 

the role of the medial temporal lobe structure in memory. Early studies by Bachevalier 

described impairments in social development in peer-reared rhesus monkeys that sustained 

bilateral damage to the amygdala and surrounding cortex early in development [103]. The 

observation that animals with neonatal amygdala damage initiated less social contact and 

more social withdrawal than controls was interpreted as being highly relevant to ASD, 

though concerns were raised over the lack of specificity of the lesions and the restricted 

rearing environment which is known to impact social development. Subsequent studies of 

rhesus monkeys with more selective amygdala lesions that were raised in an enriched social 

environment failed to replicate these early social deficits [104–106], though the animals did 

demonstrate abnormal fear responses [107, 108] and subtle differences in socioemotional 

processes later in life [109–113]. More recent amygdala lesion studies by Bachevalier and 

colleagues have focused on refined changes in emotional reactivity [114, 115], including 

alterations in the hypothalamic-pituitary-adrenal (HPA) axis [116] following neonatal 
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amygdala damage. Collectively, these studies suggest that the primate amygdala most likely 

plays a protracted role in socioemotional behaviors throughout development, but offers little 

evidence that complete damage to the amygdala early in development yields changes in 

behavior specifically relevant to ASD core social impairment. Although there is compelling 

evidence for structural and functional amygdala abnormalities in individuals with ASD 

[117–121], complete amygdala lesions in an animal model clearly do not represent findings 

in the clinical population. Moreover, amygdala pathology is not specific to ASD and appears 

to be a common feature of most all neurodevelopmental and neuropsychiatric disorders 

[122]. Although amygdala lesion research has provided valuable insight into the role of the 

amygdala in socioemotional development, the low construct and face validity of the neonatal 

amygdala lesion model would argue against this approach as a valid animal model of ASD.

Naturally Occurring Behavior Based Models

To the best of our knowledge, ASD is a uniquely human disorder that does not naturally 

occur in other nonhuman species [123]. Nonetheless, substantial effort has been placed on 

identifying animal models that exhibit ASD-relevant behaviors through selective breeding 

practices or through quantification of endogenous variability in species-typical social 

behavior. We suggest that caution should be utilized when selecting an animal model based 

solely on behavioral outcomes (i.e., models that demonstrate high face validity), rather than 

ASD-relevant etiology (i.e., demonstrate high construct validity). Inbred mouse strains, such 

as the BTBR T+tf/J (BTBR), exhibit impairments in social interaction and repetitive 

behaviors interpreted as being highly reminiscent of ASD symptoms [124] and have been 

used to test ASD-relevant social interventions [125–127]. However, the pronounced neural 

deficits present in the BTBR strain that are not present in ASD, such as congenital corpus 

callosum agenesis, have raised questions about the construct validity of this model [128, 

129].

While there are no nonhuman primate models comparable to the BTBR mouse, there is 

renewed interest in capitalizing on naturally occurring variability in social behavior as a pre-

clinical ASD research tool. Capitanio and colleagues have found that like humans, rhesus 

monkeys, show marked and stable individual differences in the tendency to interact socially 

with conspecifics [130, 131]. Adult monkeys classified as “low-sociable” are less interested 

in social interactions and differ from animals categorized as “high-sociable” in response to 

social stimuli [132]. Recent interest in using the low-social monkeys as an ASD model for 

the social deficit seen in ASD suggests that the trait of low sociability appears to result from 

a complex interplay of genes, brain, and environment that manifest as impaired social 

information processing very early in development [133]. Although the early developmental 

time frame of the low social model is relevant to ASD, it is not clear at this point if the low 

social monkeys reflect impaired social functioning or simply a continuum of sociability that 

is within the range of species-typical social behavior. It is plausible that low sociability in 

monkeys may be more relevant to other human conditions such as behavioral inhibition 

[134] and loneliness [135], rather than the profound social impairments that are 

characteristic of ASD. Nonetheless, naturally occurring variability in nonhuman primate 

social behavior could prove to be a useful testbed for identification of potential pro-social 

pharmacological interventions and/or understanding the neurobiological underpinnings of 
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social behavior [136]. For example, previous studies have demonstrated that endogenous 

variability in cerebrospinal fluid oxytocin levels in juvenile and sub-adult macaques are 

positively associated with affiliative social behaviors [137].

Epidemiologically Informed Models

The previous examples of nonhuman primate ASD models illustrate the challenges in 

developing valid models for a uniquely human disorder when the cause(s) are unknown. 

However, recent progress in identifying putative causes of ASD has led to increasingly 

sophisticated preclinical research efforts. Here we highlight examples to demonstrate how 

nonhuman primate models have been used to directly evaluate risk factors initially identified 

through studies in patient populations, including: (i) Vaccine exposure and (ii) Prenatal 

immune challenge.

i. Vaccine Models—In the 1990s, concerns were raised regarding associations between 

the rising rate of ASD and the use of vaccines that contain thimerosal and/or the measles 

mumps rubella (MMR) vaccines. It is important to clearly state that human epidemiology 

studies from the past 20 years have provided no evidence linking vaccines with an increased 

risk of ASD [138]. A series of studies in nonhuman primates were initiated to empirically 

test the theory that vaccines cause alterations in brain and behavioral development in a 

species closely related to humans. The initial nonhuman primate vaccine models utilized 

small cohorts that yielded inconsistent and sometimes controversial findings [139, 140]. 

Subsequent studies with a large sample size, however, found no consistent evidence of 

neurodevelopmental deficits or aberrant behavior in vaccine exposed animals [141, 142]. 

Male nursery-reared nonhuman primates that received either thimerosal containing vaccines 

recommended in the 1990s or the 2008 expanded pediatric vaccine schedule did not exhibit 

consistent differences from unvaccinated controls during a number of neurobehavioral tests, 

including the acquisition of neonatal reflexes, the development of object permanence, the 

formation of discrimination learning strategies, and assessments of social development 

[141]. Moreover, there was no evidence of neuropathology in the cerebellum, hippocampus 

or amygdala of the vaccine treated monkeys [142]. This study also included behavioral data 

from two additional treatment groups: (i) animals that received the thimerosal containing 

vaccines, but no MMR vaccines and (ii) animals that received the MMR vaccines, but not 

the thimerosal containing vaccines, allowing investigators to differentiate between 

thimerosal and MMR exposure groups. Daily observations of the animals in their peer-

socialization groups between 12-18 months of age revealed subtle differences in exploratory 

behavior, but not social interactions, between unvaccinated and vaccinated groups. However, 

there were no significant differences in any behavior measured between the control and 

experimental groups after 6 months of social living (at ~18 months of age). Collectively, the 

nonhuman primate models of vaccine exposure lend further support to epidemiological 

research that has found no link between vaccine and ASD-related brain and behavior 

pathologies.

ii. Prenatal Immune Challenge Models—Recent evidence suggests that the prenatal 

environment, and in particular, the maternal fetal immune environment, may be a promising 

area of ASD etiology research [143–145]. The focus on the prenatal environment is due in 
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part to our growing understanding of the overlap between the developing nervous system 

and the immune environment. We now know that immune signaling molecules play a key 

role in all stages of fetal brain development [146, 147]. Experiences that alter the maternal-

fetal immune environment may disrupt the finely orchestrated events of neural development, 

thereby increasing the risk of offspring central nervous system (CNS) disorders [148–150]. 

The nonhuman primate may prove particularly relevant to evaluate prenatal risk factors of 

ASD given the similarities in gestational and neurodevelopmental timeline, immune 

systems, and placental physiology. Below we describe two prenatal immune-based risk 

factors implicated in ASD: (i) maternal autoantibodies that target fetal brain tissue and (ii) 

prenatal exposure to immune challenges that activate the maternal immune system.

During mid-late gestation, IgG isotype antibodies from the mother are transported across the 

placenta in order to equip the immunologically naïve fetus with protection [151]. However, 

in addition to immunoprotective antibodies, autoantibodies that react to fetal ‘self’-proteins 

can also cross the placenta resulting in a potential neonatal autoimmune disease. IgG 

antibodies targeting fetal brain proteins have been reported in a subset of mothers who have 

given birth to a child with ASD (for reviews, [144, 152]. Specific combinations of these anti-

brain antibodies targeting proteins at 37 and 73 kDa have only been found in mothers who 

have a child with ASD and not in mothers of typically developing children. The recently 

identified protein targets of these antibodies play critical roles in neural development, 

supporting the hypothesis that prenatal exposure to anti-brain autoantibodies could disrupt 

the trajectory of brain development and ultimately lead to one form of ASD [153]. As 

maternal autoantibodies become increasingly implicated in ASD, it has become imperative 

to utilize animal models to evaluate causative effects between prenatal exposure to anti-brain 

antibodies and ASD related brain and behavior pathology [154, 155]. A pilot study of rhesus 

monkeys prenatally exposed to nonspecific ASD-associated maternal antibodies produced 

offspring that exhibited high levels of motor stereotypies [156]. A subsequent nonhuman 

primate model that utilized ASD-specific maternal antibodies found only mothers of human 

children with ASD yielded offspring with social impairments, including increased 

protectiveness from their mothers, inappropriate social approach with a novel animal and 

deficits in reciprocal social interactions with familiar peers [157] (Figure 3). Male monkeys 

exposed to these ASD-specific autoantibodies also demonstrate enlarged brain volumes that 

parallel features of children exposed to the same maternal antibodies in utero [158]. Similar 

to children with ASD, differences in brain volume in male monkeys exposed to ASD-

specific autoantibodies are predominantly accounted for by increases in frontal lobe volume. 

While the convergence of aberrant brain growth in both the clinical populations and the 

nonhuman primate model is compelling (Figure 3), the underlying neuronal mechanisms 

responsible for aberrant primate neurodevelopment following maternal brain-reactive 

antibody exposure remain unknown. Because there are no known human postmortem brain 

tissue samples from an individual prenatally exposed to ASD-specific maternal 

autoantibodies, the nonhuman primate model may provide the only opportunity to evaluate 

neurobiological mechanisms in a closely related species.

Other prenatal challenges, such as maternal infection during pregnancy, have also been 

associated with an increased risk of neurodevelopmental disorders, including ASD [159–

161]. Although initial evidence was based primarily on case reports of ASD following 
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prenatal exposure to infectious agents, such as rubella or cytolomegalovirus [160], recent 

large-scale epidemiology studies [162–165] paired with quantification of inflammatory 

markers obtained from archived maternal samples [166–169] lends further support to the 

link between maternal infection and increased ASD risk. Clearly not all women exposed to 

infections during pregnancy go on to have a child with altered neurodevelopment, suggesting 

that genetic susceptibility, gestational timing, and intensity of the prenatal challenge are 

critical factors to consider. Animal models are playing a key role in determining the 

mechanisms by which prenatal infection may alter fetal brain development. Initial 

nonhuman primate studies by Coe and colleagues evaluated the effects of prenatal exposure 

to viral or bacterial infections on subsequent brain and behavioral development of the 

offspring [170, 171]. Rhesus monkeys born to dams exposed to low dose endotoxemia in the 

third trimester exhibited subtle alterations in behavior and failed to show species-typical 

attenuation of startle responses on tests of prepulse inhibition [170]. At 1 year of age, the 

exposed offspring exhibited a global increase in white matter volume paired with region 

specific alterations in gray matter compared to controls. In a similar study, rhesus monkeys 

born to dams infected with influenza in the third trimester did not differ from controls on 

measures of behavioral development, but did exhibit global reductions of cortical gray 

matter and reduced white matter in the parietal lobe [171]. While these studies were not 

specifically designed as animal models of ASD, their findings demonstrate the power of 

pairing sophisticated behavioral assessments with structural MRI to systematically evaluate 

the effects of a prenatal insult on both brain and behavior development.

The diversity of infections associated with alterations in neurodevelopment suggests that the 

maternal immune response may be the critical link between prenatal exposure to infection 

and subsequent alterations in fetal brain development. Our research team has focused on the 

maternal immune response, rather than a specific pathogen, as the key link between prenatal 

exposure to infection and altered fetal brain development. The emerging maternal immune 

activation (MIA) hypothesis has been directly tested in animal models by artificially 

activating the immune system of pregnant rodents with the viral mimic, 

polyinosinic:polycytidylic acid (polyIC), a toll-like receptor-3 (TLR3) agonist that 

stimulates an inflammatory response in the absence of a specific pathogen. Rodent pups 

born to dams treated with poly IC at mid-gestation demonstrate behavioral abnormalities, 

neuropathology, and altered gene expression relevant to both ASD and SZ (reviewed in, 

[172–175]). Our laboratory adapted this approach to develop the first MIA nonhuman 

primate model by using a modified form of polyIC to stimulate the primate maternal 

immune response. Pregnant rhesus monkeys injected with poly IC at the end of either the 

first or second trimester produce offspring with abnormal motor stereotypies and repetitive 

behaviors [176]. While both first and second trimester MIA offspring produced fewer 

affiliative vocalizations than controls, only the first trimester MIA offspring showed signs of 

atypical social interactions with unfamiliar peers. Given that neurodevelopmental disorders, 

including ASD, are characterized by changes in social cognition and emotion, as well as 

altered visual attention devoted to facial expressions, we then initiated a series of 

noninvasive eye-tracking studies to provide further insight into the nature of the social 

impairments observed in the MIA offspring. As juveniles, male rhesus monkeys born to first 

trimester MIA treated dams differed from controls on several measures of social attention, 
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particularly when viewing macaque faces depicting the “fear grimace” facial expression 

[177]. Compared to controls, these MIA offspring had a longer latency before fixating on the 

eyes, fewer fixations directed at the eyes, and spent less total time fixating on the eyes of the 

fear grimace images. The lack of attention to the eye region exhibited by treated animals 

represents a significant departure from social processing in normal macaques and typically 

developing humans [178] and parallels findings of both ASD and SZ clinical populations 

[179].

The relatively high construct and face validity of the nonhuman primate MIA model 

suggests that this model may provide the opportunity to evaluate underlying neuropathology 

associated with prenatal immune challenge, which may in turn provide insight into neural 

circuits that are vulnerable in ASD. Our preliminary evaluation of postmortem tissue also 

revealed differences in dendritic morphology in DLPFC of MIA-exposed offspring [180]. 

Compared to controls, apical dendrites of MIA-treated offspring are smaller in diameter and 

exhibit a greater number of oblique dendrites. These data provide the first evidence that 

prenatal exposure to MIA alters dendritic morphology in a nonhuman primate MIA model, 

which may have implications for revealing the underlying neuropathology of 

neurodevelopmental disorders related to maternal infection. MIA exposed offspring also 

demonstrate long lasting changes in immune function that may be relevant to ASD, 

including evidence of elevated plasma cytokine concentrations and increased functional 

immune responses following stimulation [181]. Collectively, the changes in brain, behavior 

and immune function observed in the nonhuman primate MIA model lends support to the 

hypothesis that prenatal infection acts as a “neurodevelopmental disease primer” that is 

possibly relevant to a number of neurodevelopmental disorders [182], including ASD [183].

Genetic Manipulation Models

Family and twin studies suggest that ASD is a highly heritable disorder, though 

understanding genetic contributions to ASD has proven to be exceedingly complex [184]. In 

spite of the large number of transgenic mouse models targeting ASD-relevant genes [185], 

there remains little understanding of how specific genetic mutations lead to a cascade of 

molecular abnormalities, alterations in neural circuitry and ultimately changes in behavioral 

development. Recent advances in genetic modification tools may also open the door to 

explore, for the first time, genetic risk factors in a species more closely related to humans 

[186–188]. Preliminary efforts have focused on the autism-related MECP2 gene [189]. 

Many ASD symptoms are present in humans who either have an extra copy of this gene 

(MECP2-duplication syndrome) or who have mutations in this gene (Rett syndrome) [190]. 

Genetically engineered long-tailed macaques (Macaca fascicularis) expressing between one 

and seven extra copies of MECP2, display aberrant behaviors that may be relevant to ASD 

[191]. Compared to controls, transgenic monkeys exhibit increased frequency of repetitive 

circular locomotion, increased anxiety, reduced social interaction with peers, and weak 

evidence of cognitive impairments. Although the monkeys do not mimic the entire spectrum 

of MECP2-duplication symptoms, including seizures and severe cognitive deficits, the 

nonhuman primate model has the potential to improve the translational utility of ASD-

relevant mouse models. For example, future efforts utilizing neuroimaging and postmortem 

histological studies could identify regions of the brain impacted by MECP2 over-expression 
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and CRISPR gene-editing technology could be employed to knock out extra copies. 

Moreover, the ability to experimentally manipulate genetics in a nonhuman primate model 

could expand upon promising gene x environment studies underway in nonhuman primate 

models [192–194].

ASD Treatment Models

The prevalence and societal impact of ASD creates an urgent need for innovative treatments 

that will improve the core social deficits in children with ASD. At present, drug treatments 

target only peripheral symptoms such as aggression, anxiety, and depression, and not the 

core social impairments present in every child with ASD [195, 196]. Efficacious pro-social 

pharmacological treatments delivered early in childhood in parallel with behavioral 

interventions could play a critical role in correcting the social development trajectory, 

greatly improve the quality of life for individuals with autism, and reduce the emotional and 

financial burden on families and society.

Here we highlight one of the most promising areas for ASD treatment research – the 

oxytocin (OT) system [197, 198] - to demonstrate the utility of the nonhuman primate model 

for evaluating ASD-relevant pharmacological interventions. OT is a neuropeptide that 

enhances social attachment and motivation in rodent models [199] and may improve social 

functioning in some individuals with ASD [200]. Although nasal OT therapy has previously 

been promoted as a “safe and promising” therapy for ASD [201], we know very little about 

the efficacy or mechanism of OT treatment in humans [202, 203]. For example, it is not clear 

if OT has a universal pro-social influence on human behavior, or an indirect effect by 

reducing overall anxiety [204, 205]. Moreover, it is not known if the effects of intranasal OT 

in humans are mediated by activity of central OT receptors or OT receptors in peripheral 

tissue. This is due, in part, to our incomplete understanding of the primate OT receptor 

system [206]. There is a clear need for pre-clinical, systematic evaluation of the long term 

safety, efficacy, and mechanism of OT in a species more closely related to humans.

Initial studies carried out in adult nonhuman primates demonstrated that inhaled OT in 

rhesus monkeys penetrates the CNS [207] and increases pro-social behaviors in a reward 

allocation test [208]. Subsequent studies in adult monkeys have reported that intranasal OT 

enhances socially reinforced learning [209], selectively attenuates rhesus monkeys’ attention 

to negative facial expressions [210], decreases social vigilance [211], enhances gaze 

following responses [212], increases fixations to the eye region relative to the mouth [213], 

and alters attention to emotional distractors [214]. Together, these studies support the 

hypothesis that OT promotes social exploration both by amplifying social motivation and by 

attenuating social vigilance in the rhesus monkey [215, 216]. Given that ASD is a 

developmental disorder, studies in younger animals are especially important. Nursery reared 

macaques treated with intranasal OT show an increase in facial gesturing at human care 

givers [217]. Interestingly, early indices of imitative skills predicted OT associated increases 

in affiliative behaviors, suggesting that infants who demonstrate a high propensity for social 

interactions early in life may be more sensitive to OT manipulation. A subsequent study 

from this same group reports that female nursery-reared monkeys are more socially skilled 

at baseline compared to males and that oxytocin improved working memory and gaze 
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following, but only for males [217]. Although these initial pro-social results are intriguing, 

many questions remain regarding the long term effects of OT exposure. For example, 

chronic administration of OT to infant macaques increases the time spent viewing videos of 

dynamic facial expression, but also selectively reduces the attention to the eye region of 

neutral faces in a dose dependent manner [218]. The authors speculate that the mechanism 

of the non-prosocial outcome may be that repeated administration of OT down regulates OT 

receptors in regions of the brain that regulate social attention.

There is a clear need for additional studies focusing on the neural mechanisms that mediate 

the effects of OT in primates. In the rhesus monkey brain, OT receptors are most robustly 

expressed in regions involved with visual processing, including the nucleus basalis of 

Meynert, the superficial gray layer of the superior colliculus, the pedunculopontine 

tegmental nucleus, the trapezoid body, and the ventromedial hypothalamus [219]. A recent 

functional imaging study in macaques revealed that OT reduces responses to both fearful 

and aggressive faces and reduces functional coupling between the amygdala and areas in the 

occipital and inferior temporal cortex selectively in response to fearful and aggressive faces 

[220]. Although a high density of OT receptors has not been found in these regions of 

interest, activity in regions, such as the amygdala, may be modulated by projections from 

areas that do contain OT receptors, including the nucleus basalis of Meynert [221, 222]. The 

homologies between monkeys and humans in neural circuits mediating social behavior may 

provide a valuable test bed for the continued evaluation of OT and future pro-social 

pharmacological manipulations [223].

Future Directions

Evidence from clinical studies suggests that ASD is not a single disease, but rather a number 

of conditions with distinct etiology and pathophysiology that ultimately lead to similar 

behavioral impairments. As our understanding of ASD improves, so does our ability to 

develop increasingly sophisticated preclinical models to evaluate potential etiologies, 

identify underlying pathophysiology, and ultimately to develop novel therapeutic and 

preventative strategies. Although rodent models will continue to be the logical starting point 

for ASD preclinical research efforts, we suggest that it may ultimately be necessary to assess 

validity of an ASD model in a species that is more closely related to humans, such as the 

rhesus macaque. Thus, we would advocate for more coordinated research efforts between 

laboratories that utilize rodent and nonhuman primate models to advance mechanistic 

understanding and ultimately evaluate the efficacy of biological treatments for core 

impairments in ASD.
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Box 1

Regions of the brain most commonly implicated in social processing for 
both humans and nonhuman primates. Although the macaque brain is only 

approximately one tenth the size of the human brain, the regions of the 
“social brain” are well developed. Many of these regions are also 

implicated in ASD neuropathology, thus illustrating the translational utility 
of the nonhuman primate model
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Highlights

• Advanced animal models are needed to study complex brain disorders, such 

as ASD

• Rhesus monkeys demonstrate sophisticated social processing capabilities

• Brain regions implicated in social processing are well developed in rhesus 

monkeys

• This combination makes the rhesus monkey an invaluable preclinical tool for 

ASD
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Figure 1. 
Comparison of ASD relevant considerations of genes, brain and behavior in rodent and 

nonhuman primate preclinical models.
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Figure 2. 
Rhesus monkeys live in large social groups and communicate with a variety of facial 

expressions, vocalizations and body postures. (K. West/California National Primate 

Research Center).
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Figure 3. 
Aberrant brain (A–C) and behavioral (D–F) development in nonhuman primate offspring 

prenatally exposed to autism associated maternal antibodies (IgG-ASD) compared to control 

offspring. Adapted from (157), Bauman et al., Transl Psychiatry, 2013. 3: p. e278.
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Table 1

ASD diagnostic criteria for social communication/interaction domains and examples of relevant rhesus 

monkey behavioral assays highlighted in this review

ASD Social Communication and Social Interaction 
Domains

Rhesus Monkey ASD-Relevant Behavioral Phenotyping

ASD deficits in social-emotional reciprocity:

- Abnormal social approach

- Failure of normal back-and-forth conversation

- Reduced sharing of interests, emotions, or affect

- Failure to initiate or respond to social 
interactions

Rhesus monkey reciprocal social interaction:

- Focal observations to quantify the duration of time spent interacting with 
conspecifics (Bauman et al., 2004,2013,2014; Gadad et al., 2015; Golub et 
al., 2016)

- Non-human primate version of the mouse model 3-chamber social 
approach assay (Bauman et al., 2013, 2014)

ASD deficits in nonverbal communicative behaviors 
used for social interaction:

- Poorly integrated verbal and nonverbal 
communication

- Abnormalities in eye contact and body language

- Deficits in understanding and use of gestures

- Total lack of facial expressions and nonverbal 
communication

Rhesus monkey social communication:

- Focal observations to quantify the use of species-typical vocalizations, 
facial expressions and body postures in different social contexts (Bauman 
et al., 2004,2013,2014; Bliss-Moreau et al., 2013)

- Infant macaque facial expression imitation (Ferrari et al., 2006, 2009; 
Paukner et al., 2014)

- Eye-tracking to quantify social attention (Machado et al., 2011, 2015; Parr 
et al., 2013, 2016; Paukner et al., 2013; Putnam et al., 2016; Simpson et 
al., 2016a, 2016b, 2017)

- Response to social videos (Capitanio 2002; Sclafani et al., 2016)

ASD deficits in developing, maintaining, and 
understanding relationships:

- Difficulties adjusting behavior to suit various 
social contexts

- Difficulties in sharing imaginative play or in 
making friends

- Absence of interest in peers

Rhesus monkey peer social networks:

- Focal observation to quantify the development and longevity of species-
typical social networks (Weinstein et al., 2012, 2014)

- Modified SRS: Monkey caretaker ratings to screen for individual variation 
in macaque social behavior (Feczko et al., 2016)

- Focal observations to quantify reciprocal per social interactions (Bauman 
et al., 2013)

Note that the references listed above are not the only tools available for quantifying macaque social behavior. These studies, have, however, been 
previously utilized in studies of infant and juvenile macaque monkeys and provide the reader with a valuable catalog of ASD-relevant behavioral 
assays.
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Table 2

Rhesus Monkey Models Relevant to ASD

Approach (References) Brain and Behavioral 
Outcomes

Construct Validity Face Validity Predictive Validity

Experimentally-Induced Brain Pathology Models

Neonatal amygdala lesion model 
(Bachevalier et al., 1994; Bauman et al., 
2004a, 2004b; Bliss-Moreau et al., 2011, 
2013; Raper et al., 2013, 2014a, 2014b)

Monkeys with complete bilateral 
amygdala damage demonstrate 
subtle impairments in social 
development and pronounced 
deficits in fear processing

low low N/A

Naturally Occurring Behavior-Based Models

Endogenous variability in social behavior 
(Sclafani et al., 2016)

Juvenile monkeys identified as 
lowsocial show early 
impairments in recognizing 
familiar vs. novel faces and in the 
species-typical gaze aversion

low moderate N/A

ASD-Relevant Etiology Models

Vaccine exposure (Hewitson et al., 2010; 
Curtis et al., 2015; Gadad et al., 2015)

No evidence of ASD relevant 
brain and behavior pathology

low low N/A

Prenatal exposure to maternal 
autoantibodies (Martin et al., 2008; 
Bauman et al., 2013)

Treated monkeys exhibit 
repetitive behaviors, social 
impairments and increased total 
brain volume that parallels 
features of ASD

high high N/A

Prenatal exposure to viral or bacterial 
infections (Willette et al., 2011; Short et 
al., 2010)

Monkeys born to dams treated 
with influenza or LPS late in 
gestation exhibit changes in 
behavior and/or brain 
development

moderate moderate N/A

Prenatal exposure to maternal immune 
activation (Bauman et al., 2014; Machado 
et al., 2015; Weir et al., 2015; Rose et al., 
2016)

Monkeys born to dams treated 
with the viral mimic polyIC 
demonstrate inappropriate social 
interactions, fail to attend to 
salient social cues and brain 
pathology relevant to ASD

moderate high N/A

Genetic Models

Transgenic MECP2 model (Liu et al., 
2016)

Monkeys over expressing 
MECP2 demonstrate increased 
repetitive behaviors and 
decreased social interactions

moderate moderate N/A

ASD-Treatment Models

Oxytocin (OT) treatment models (Chang et 
al., 2012; Ebitz et al., 2013;Parr et al., 
2013, 2014, 2016; Dal Monte et al., 2014; 
Landman et al., 2014; Liu et a., 2015; 
Putnam et al., 2016;Simpson et al., 2017)

OT administration associated 
with pro-social outcomes in 
some, but not all, OT treatment 
models

moderate moderate moderate
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