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Tailored etch profiles for wafer-level frequency
tuning of axisymmetric resonators

Amir H. Behbahani, Dennis Kim, Philip Stupar, Jeffrey DeNatale, and Robert T. M’Closkey, Member, IEEE

Abstract—This paper reports a wafer-level technique for the
systematic elimination of the modal frequency difference between
a nominally degenerate pair of modes in an axisymmetric
resonator design. A targeted etch process is developed in which
masking resist and a conformal layer are ablated at specific
sites on the resonator thereby exposing the underlying silicon
and enabling site-specific mass removal by SiDRIE. A model of
the perturbed resonator dynamics guides the selection of the
ablation sites so that the subsequent timed etch reduces the
modal frequency differences by a prescribed amount. This wafer-
level process is demonstrated on seven resonators whose modal
frequency differences are reduced below 100 mHz from initial
splits as large as 15 Hz for a pair of modes with 13.5 kHz nominal
frequencies.

Index Terms—Gyroscopes, micro-sensors, mode-matched res-
onators

I. INTRODUCTION

Coriolis vibratory gyros (CVGs) which employ mode-
matched resonators have the advantage of maximizing the
signal-to-noise ratio of the angular rate measurement relative
to noise introduced by signal conditioning electronics. In
many cases the resonators are designed with some degree
of axisymmetry such that one or more pairs of modes pos-
sess nominally degenerate modal frequencies. Small fabrica-
tion errors, however, cause the modal frequencies to detune,
thereby reducing the signal-to-noise ratio that can be achieved
with the associated CVG (see [1] for the analysis of a
disk resonator). With the successful development of mode-
matched micro-scale disk resonators [2], [3], [4], quadruple
mass resonators [5], hemispherical [6], [7], [8], [9], [10], [11],
[12], and hemitoroidal [13], [14] resonators, it has become
imperative to create post-fabrication corrective procedures so
that the pairs of modal frequencies can be brought back to de-
generacy. This paper reports the development and application
of a wafer-level targeted SiDRIE process for eliminating the
modal frequency differences in a planar axisymmetric silicon
resonator. The reduction of the frequency difference below
100 mHz is demonstrated for seven resonators on a wafer by
selective ablation of masking resist and, in a subsequent step, a
conformal layer of Parylene-C such that the mass distribution
of the resonator is altered by the removal of silicon at the
ablated areas with a timed etch.
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There are currently few references reporting the permanent
modal frequency mismatch reduction in MEM mode-matched
resonators as the current focus is to refine the fabrication
processes to yield small initial modal frequency differences
prior to any post-fabrication corrective procedures. A notable
effort is [7] wherein gold was ablated from the lip of a micro-
scale hemispherical resonator in a post-fabrication step. Laser
ablation of a ring was also reported in [15] but it degraded
the quality factors. The planar resonator design in this paper
was also used for modal frequency mismatch reduction by
mass-loading the resonator and the resonator frequency models
introduced in [3] are further refined in the present paper. One
advantage of the present approach over the mass deposition
in [3] is the fact that the etch simply removes silicon and
does not introduce metals or other material that may not
be compatible with downstream processing and packaging.
Electrostatic tuning approaches, which do not yield permanent
modification of the resonator, are not reviewed here.

The paper is organized as follows. Sec. II-A briefly reviews
the resonator used in this study, and Secs. II-B and II-C de-
velop a semi-analytical model of the resonator’s n = 2 modal
frequency difference as a function of mass perturbations. A
global sensitivity parameter is also defined and unifies several
aspects of the model developed in [3]. Sec. III-A introduces the
guided blanket etch, which is the first step in the simultaneous
wafer-level reduction of modal frequency differences for in-
dividual die. In Secs. III-B and III-C the shortcomings of the
guided blanket etch are elucidated and motivate the second
step of the tuning process, which involves further targeted
etching within each die. The results are discussed in Sec. IV
and Sec. V concludes the paper.

II. RESONATOR DESCRIPTION

A. Background

The resonator used in the present work is composed of
nine nested rings connected by spokes of varying widths and
spacing. There are twenty four large spokes at a given radius
which are targets for mass deposition or removal –see Fig. 1.
The innermost large spoke layer is designated as the first layer
(i = 1) and the outermost spoke layer is designated as the
fourth layer (i = 4). The resonator is a modification of the
design described in [3]. The reader is referred to this paper
for information on the resonator fabrication, electrode layout,
test procedure, and the process for extracting pertinent modal
parameters from empirical frequency response data. In this
report the resonator is fabricated without the gold film on,
or the reservoirs in, the large spokes. Consequently, these
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Fig. 1. Electrode arrangement (S is a sense pick-off and D is an electrostatic
forcer), angle reference, and spoke layer indices. The dots “•” indicate the
locations of perturbations for the finite element case studies.

areas are targets for further etching in order to selectively
remove material from the resonator instead of adding material
as was pursued in [3]. It will be shown that material removal
at the large spokes locations does not modify the stiffness
properties of the resonator and so models that readily predict
the changes in the resonator modal properties can be developed
by assuming only the mass distribution is perturbed. The
ultimate goal of this research is the wafer-level production of
axisymmetric resonators with degenerate modal frequencies,
but in order to make the post-blanket etch processing efficient,
improved perturbation models of the resonator are necessary.
Thus, the model developed in [3] is further refined in Sec. II-B
and applied to the resonators on the 4 inch wafer shown
in Fig. 2. Probing of individual resonators is achieved with
the card shown in the figure inset or by direct wire bonding
between the resonator and a buffer board.

B. Perturbation model

Uniform thin rings possess mode shapes given by cos(nθ)
and sin(nθ) with associated degenerate natural frequencies
ω2
n = n6−2n4+n2

n2+1
EI
ρAR4 , for n = 2, 3, 4, . . . , where E is the

modulus of elasticity, I is the ring cross-section moment of
inertia, ρ is the ring material density, A is the ring cross-
sectional area, and R is the ring radius. These mode shapes
and frequencies are derived from a ring equation of motion
that is developed under the same assumptions as those made
for an Euler-Bernoulli beam [16]. If the ring is perturbed,
however, then, generally speaking, the mode shapes associated
with the perturbed frequency ωn are no longer simply cos(nθ)
and sin(nθ) but will be composed of harmonics of all orders.
The mode shapes associated with the resonator considered in
this paper are composed of multiple harmonics even for the
“ideal” resonator because of the manner in which each ring is
attached to its neighbors by the system of spokes, and despite
the fact that the 2θ harmonics have the largest amplitude for
ω2 (the n = 2 wine glass modes), it is necessary to quantify
other dominant harmonics in order to build an accurate model
of the spoke velocities.

Die 1 Die 2

Die 3

Die 7

Die 11

Die 15

Die 16

Fig. 2. Sixteen resonators are fabricated on a 4 inch wafer. Wafer probe of
a single resonator also shown.

Due to the complexity of the resonator design a semi-
analytical approach is adopted in order to develop a per-
turbation model for the resonator dynamics. As in [3], the
natural frequency deviation due to perturbations at the large
spokes is modeled as a change in the resonator kinetic energy
only –the elastic strain energy remains constant under these
perturbations. This assumption is supported by finite element
analysis. For example, Fig. 3 shows the strain energy density
on a portion of the resonator for an n = 2 mode. The dark
vertical bands on the side walls at the root of the spokes are
the areas with the largest strain energy density while the white
areas are where strain energy is smallest. Since the center of
the spokes themselves have very little strain energy, selective
etching these areas is assumed to only modify the kinetic
energy of the modes.

The analysis of the perturbed kinetic energy of a given
mode due to a small change in mass at the large spokes
requires the radial and tangential components of the in-plane
velocities at the large spokes. These velocity components can
be represented as a discrete Fourier series with twelve distinct
spatial harmonics since there are twenty four spokes in a given
layer. It will be shown that the ratios of the amplitudes of these
harmonics can be assumed to be independent of the intensities
and location of the mass perturbations. In other words, it is
assumed that the mass perturbations are sufficiently small so
that the relative amplitudes of the harmonics present in a given
mode are not modified by the presence of the mass pertur-
bations. This assumption is supported by the numerical case
studies reported in Sec. II-C. On the other hand, the spatial
orientations (phases) are dependent on the mass perturbations.
For a given mode of the n = 2 pair, denoted with index
p ∈ {1, 2}, the radial and tangential velocities at particular
spoke, defined by angle θ and spoke layer i ∈ {1, 2, 3, 4}, can
be represented by the following partial Fourier series

Up,i(θ) =
∑

k=2,6,10

αi,k cos(k(θ − ψp,k)),

Wp,i(θ) = βi,2 sin(2(θ − ψp,2)),

(1)

where the index k defines the kθ harmonic of the n = 2
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Fig. 3. Detail of meshed resonator showing the large spokes. The dark
vertical bands on the sidewalls are the areas where the strain energy density
is highest.

mode shape, and Up,i and Wp,i represent the radial and
tangential velocity components, respectively. The amplitudes
of the harmonics are represented by αi,k and βi,2 for the radial
and tangential velocities, respectively, and the phases of the
harmonics are represented by ψp,k. It should be noted that (1)
is specific for the resonator design under consideration and
that other axisymmetric designs may possess a different set
of dominant harmonics in the mode shapes. At the very least,
αi,k and βi,k will differ across resonator designs, however,
Sec. II-C outlines a procedure that can be used to identify the
important harmonics and associated parameters.

The form of (1) requires that the following be justified:
1) only three spatial harmonics are required to represent a
spoke’s radial velocity component (k ∈ {2, 6, 10}), 2) only one
harmonic is required to represent a spoke’s tangential velocity
(k = 2), 3) the amplitudes of the harmonics are independent
of θ and n = 2 mode under consideration (the amplitudes
only depend on the layer, i, and harmonic index, k), 4) the
phases ψp,k depend on the mode and harmonic indices, but
not the layer, and 5) the radial and tangential components
have the same k = 2 phase. The justification is postponed
until Sec. II-C so that an expression for the post-perturbation
change in the differences of the modal frequencies can be
developed.

A single mass perturbation of value m0 (may be negative if
mass is removed) located on the ith layer at angle θ0 creates the
following perturbations to the kinetic energies of each n = 2
mode,

Tp =
1

2
m0

(
U2
p,i(θ0) +W 2

p,i(θ0)
)
, p = 1, 2. (2)

The out-of-plane velocity is negligible for the n = 2 modes
and is ignored in this analysis. The Rayleigh-Ritz method
is used to estimate the perturbation of a modal frequency
due to a perturbation of the resonator kinetic energy [17].
Consequently, the mass perturbation perturbs each modal
frequency according to

ω2
1 = ω2

1,0

1

1 + ε1
≈ ω2

1,0 (1− ε1) ,

ω2
2 = ω2

2,0

1

1 + ε2
≈ ω2

2,0 (1− ε2) ,
(3)

where ω1,0 and ω1 are the pre- and post-perturbation natural
frequencies of one of the n = 2 modes, respectively, and ω2,0

and ω2 are the pre- and post-perturbation natural frequencies
of the second companion n = 2 mode. The relative change
in kinetic energies of the modes due to the perturbation are
denoted ε1 and ε2 and are equal to T1/T1,0 and T2/T2,0, where
T1,0 and T2,0 are the nominal kinetic energies in each mode
prior to the perturbation. It is necessary for T1 << T1,0 and
T2 << T2,0 in order for these approximate expressions to
be accurate, however, this requirement is satisfied in practice
since the absolute change in a given modal frequency is
typically less than one part in a thousand.

The mass perturbations are selected to reduce the difference
in perturbed modal frequencies so it is useful to manipulate
the expressions in (3) such that the difference is explicit,

ω2
2 − ω2

1 = ω2
2,0 − ω2

1,0 − ω2
2,0ε2 + ω2

1,0ε1. (4)

Terms can be factored: ω2
2 − ω2

1 = (ω2 − ω1)(ω2 + ω1) and
ω2
2,0 − ω2

1,0 = (ω2,0 − ω1,0)(ω2,0 + ω1,0). The expressions of
interest are the pre- and post-perturbation differences in the
modal frequencies. The pre-perturbation difference is denoted
∆0 := ω2,0 − ω1,0 and the post-perturbation difference is
denoted ∆ := ω2 − ω1, thus, (4) is rearranged to

∆ = ∆0
ω2,0 + ω1,0

ω2 + ω1
−

ω2
2,0

ω2 + ω1
ε2 +

ω2
1,0

ω2 + ω1
ε1. (5)

Let ω0 represent the average modal frequency of the n = 2
modes for the resonator under consideration, then, the leading
order value of the ratio (ω2,0 + ω1,0)/(ω2 + ω1) is 1 and
the leading order value for the ratios ω2

2,0/(ω2 + ω1) and
ω2
1,0/(ω2 + ω1) is ω0/2. Thus, the following relation approx-

imately relates the pre- and post-perturbation values of the
frequency difference,

∆ = ∆0 −
ω0

2

(
T2
T2,0

− T1
T1,0

)
. (6)

Substituting (2) into (6) yields an expression relating the pre-
and post-perturbation modal frequency differences due to a
mass perturbation of size m0 located on the ith layer at angle
θ0

∆ = ∆0 −
ω0m0α

2
1,2

4T2,0

[(∑
k

α̃i,k cos(k(θ0 − ψ2,k))

)2

+
(
β̃i,2 sin (2(θ0 − ψ2,2))

)2]

+
ω0m0α

2
1,2

4T1,0

[(∑
k

α̃i,k cos(k(θ0 − ψ1,k))

)2

+
(
β̃i,2 sin(2(θ0 − ψ1,2))

)2]
,

(7)

where k is summed over indices {2, 6, 10}. In this expression
the radial harmonic amplitude for k = 2 and i = 1, i.e.
α1,2, is factored out of the kinetic energy expressions and is
used to normalize the remaining amplitudes. In other words,
α̃i,k := αi,k/α1,2 and β̃i,2 = βi,2/α1,2. It will be shown in
Sec. II-C that these normalized amplitudes can be assumed to
be independent of the mode under consideration and indepen-
dent of the size of the (small) mass perturbation. The fact that
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α̃i,k and β̃i,2 are the same for both n = 2 modes, and the fact
that they are independent of the mass perturbation, implies that
the kinetic energy in a given mode is determined by specifying
any one of the harmonic amplitudes. In this analysis, it is
convenient to specify α1,2, which is why it is factored out
of the expressions in (7). Thus, further consolidation in (7)
is possible because α2

1,2/T1,0 = α2
1,2/T2,0. These ratios are

denoted by the parameter αT . Thus, the constant multiplying
the sums with the normalized velocity components is defined
as the resonator sensitivity parameter, denoted γ,

γ =
1

4
ω0m0αT . (8)

This single global sensitivity parameter represents, in a general
sense, the change in the modal frequency difference for a
mass perturbation of value m0 (the unit of γ is rad/s). It
will be numerically estimated in Sec. II-C and experimentally
estimated in Sec. III-B. Note that γ can be used for all
resonators of a specific design, i.e. it is not necessary to
measure the parameter for each resonator. This definition also
removes a shortcoming of the model developed in [3] which
required the estimation of a separate sensitivity parameter
for each layer of spokes. The unified treatment also eases
test requirements because the mass perturbations need not
be located on the anti-nodes, which was the case for the
sensitivity parameters described in [3].

Multiple mass perturbations can be addressed by extend-
ing (7). In fact, the effect of simultaneous perturbations
on the modal frequency difference are additive because the
perturbed kinetic energies of the modes are simply a sum of
the individual perturbations, i.e. these terms are added to (2).
Thus, if there are l mass perturbations, located at angles θq ,
q = 1, 2, . . . , l, and spoke layer iq ∈ {1, 2, 3, 4} with mass
rqm0, where rq represents the mass perturbation relative to
m0, then the expression for ∆ is

∆ = ∆0 − γ
l∑

q=1

rq

[(∑
k

α̃iq,k cos(k(θq − ψ2,k))
)2

+
(
β̃iq,2 sin (2(θq − ψ2,2))

)2
−
(∑

k

α̃iq,k cos(k(θq − ψ1,k))
)2

−
(
β̃iq,2 sin(2(θq − ψ1,2))

)2]
.

(9)

It is worthwhile reviewing what information is required to
use (9) in order to predict ∆. First, ∆0 is estimated from
frequency response measurements of the resonator prior to the
mass perturbation using the modeling process described in [3].
The normalized radial and tangential velocity amplitudes are
determined from finite element analysis (FEA) in Sec. II-C
and yield a numerical estimate of γ (a series of experiments
in Sec. III-B provide an experimental estimate). Finally, the
phases of the harmonics, ψp,k, must be considered. The
phases must be experimentally determined because they will
be different for every fabricated resonator and will change
after a perturbation cycle. This analysis provides insight into
what should be measured for employing a comprehensive

model of the frequency perturbation as a function of the mass
perturbation. For the resonator design under consideration,
however, it is only possible to reliably measure the phase of the
k = 2 harmonic. This is discussed in more detail in Sec. III.

C. Numerical case studies

This section provides numerical justification for the as-
sumptions that were invoked in claiming (1) is a reasonable
model for the spoke velocities. Since the resonator dynamics
are difficult to quantitatively analyze using a first principles
approach, modal analysis of the structure using finite elements
is used to compute the radial and tangential velocity com-
ponents at all large spokes. The finite element model is not
fit to a given empirical frequency response as this would be
a time consuming and ultimately fruitless pursuit since it is
not known how to estimate the local variations in mass and
stiffness that produce the observed deviations from a modally
degenerate “ideal” resonator. Thus, the modal analysis is used
to identify features in the modes which appear to be invariant
under small perturbations.

An example of the fine mesh that is used in the FEA is
shown in Fig. 3. The modal analysis yields the Cartesian
velocity components at any point in the resonator but be-
cause mass is removed from the large spokes in the physical
resonators, the spoke velocity components are of particular
interest. For the FEA study, the mass at the large spokes
is manipulated by changing the density of the elements in
an 80µm×80µm patch in the center of the spokes (also
shown in Fig. 3), Thus, the Cartesian velocity components
are determined at the center of each large spoke on the top
surface of the resonator and then transformed into radial and
tangential components. Then, the discrete Fourier series of the
radial and tangential components are computed for each spoke
layer (24 spokes per layer). Each perturbation “experiment,”
in which the density of the square patch is varied, yields
Fourier series for the velocity components for each mode. A
total of twenty four perturbation case studies were performed:
there are thirteen single spoke perturbations at the locations
shown in Fig. 1. In addition to the single spoke perturbations,
multi-mass perturbations involving pairs of spokes were also
conducted. The modal analysis shows that the ratios of the
amplitudes of Fourier series coefficients for the radial and
tangential velocity components can be assumed to be constant
and independent of the n = 2 mode under consideration, even
when the resonator is perturbed.

The results of all twenty four case studies are summarized
in Fig. 4. The largest magnitude Fourier coefficient in all cases
corresponds to α1,2, that is, the k = 2 harmonic in the radial
velocity at the innermost spoke layer (i = 1). All other Fourier
coefficient magnitudes in each experiment are normalized by
α1,2 to yield the normalized Fourier coefficient magnitudes
(denoted α̃ and β̃) shown in this figure. The following may
be concluded from Fig. 4: 1) only the k ∈ {2, 6, 10} terms
of radial velocity harmonics, and k = 2 term for the tangen-
tial velocity harmonics, need to be retained for an accurate
description of the spoke velocities due to the fact that these
Fourier components are dominant, 2) for a given i and k,
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Fig. 4. (Top) The magnitude of the Fourier series coefficients for the spoke
radial velocities at different layers. All the harmonics are negligible except
for k ∈ {2, 6, 10}. (Bottom) The magnitude of the Fourier series coefficients
for the spoke tangential velocities. All harmonics are negligible except for
k = 2.

the normalized amplitudes are the same for each mode in
the n = 2 pair, and 3) the normalized amplitudes can be
assumed to be independent of the mass perturbation intensity
and location due to the clustering of normalized amplitudes
for a given harmonic and spoke layer. The values of the
normalized amplitudes that are retained for the analysis are
summarized in Table I. It can be argued that retaining the
k = 1, 3 radial velocity harmonics is justified due to their
amplitude relative to k = 10, however, due to the limited
sensing in the present resonators, it is not possible to measure
all of the harmonic phases necessary for predicting the post-
perturbation frequency difference so these terms are neglected
in the analysis.

The phases associated with the Fourier series must also be
addressed. The Fourier analysis has treated each spoke layer
separately, however, the numerical experiments show that for a
given test case, the phases for each harmonic are the same for
all spoke layers. This vastly simplifies the analysis because
all the layers will have the same pattern of motion with
different amplitudes only. This is the reason that the frequency
perturbation model (7) assumes for a given harmonic, that
the phases of each layer are equal. This property is appealing
because it means that it is necessary to measure the phase
of only one spoke layer when determining the phase of the
kθ harmonic. Numerical evidence supports this hypothesis.
For this part of the discussion, the notation will be modified
in order to avoid a proliferation of indices. The phase of
a particular harmonic is still denoted by ψ, however, the
subscript will now indicate the particular spoke layer. The
mean value of the set of phase differentials across layers
{ψ4 − ψ3, ψ4 − ψ2, ψ4 − ψ1} for the radial k = 2 harmonic,
considering both n = 2 modes, and then averaging over the

entire set of numerical cases is −0.0042◦ with a standard
deviation of 0.0123◦. The same computation for the radial
k = 6 harmonic yields a mean value of 0.5326◦ with standard
deviation of 0.2930◦. Finally, for the k = 10 harmonic, the
mean value of ψ2−ψ1 is 0.5117◦ with a standard deviation of
0.4582◦. These results justify the form for the radial velocity
Up,i in (1) in which the phases are independent of the ring
under consideration.

The phases of Fourier series coefficients for the spoke
tangential velocities must be studied in order to justify the
representation of Wp,i in (1). Only the k = 2 harmonic is
significant in the Fourier series of the tangential velocities
according to Fig. 4. The mean value of the set of phase
differentials across layers {ψ4−ψ3, ψ4−ψ2, ψ4−ψ1} for the
tangential k = 2 harmonic, considering both n = 2 modes,
and averaged over the set of numerical cases is −0.0066◦ with
a standard deviation of 0.0250◦. This implies that the phase
of the k = 2 tangential harmonics are equal across the spoke
layers. Furthermore, for a given n = 2 mode, computation
of the phase difference between the k = 2 harmonics for
the radial and tangential velocities is 45.00◦ with a standard
deviation of 0.0194◦, which implies the phases are locked. In
other words, measurement of the k = 2 phase associated with
the radial velocity also determines the phase associated with
the tangential velocity. This analysis is required to justify (1)
since the 45◦ phase difference between the tangential velocities
and radial velocities is accommodated by using the sine
function in Wp,i instead of cosine function with the 45◦ offset.
It is interesting to note that for a thin, uniform, inextensible
ring the kinematic relationship U = dW/dθ exists between
the in-plane radial and tangential velocities, which implies the
phases of the k = 2 radial and tangential velocity harmonics
differ by 45◦ [16].

Additional information can be extracted from the finite
element analysis of the perturbation cases. Considering a
single test case, the phase difference between each mode for
a given harmonic can be computed and then these values
can be averaged over all test cases. Using the same phase
notation as (1), the following is determined for each test case:
ψ2,k−ψ1,k, separately for k = 2, 6, 10. Averaging over all test
cases yields a value of 44.9954◦ for k = 2 with a standard
deviation of 0.0125◦, 15.0200◦ for k = 6 with a standard
deviation of 0.6451◦, and 9.0038◦ for k = 10 with a standard
deviation of 0.0414◦. This shows that the kθ harmonics of the
two n = 2 modes in a given test case can be assumed to be
spatially orthogonal in the sense that |ψ2,k − ψ1,k| = 90◦/k.
The velocity components (1) do not make explicit use of this
property because it is assumed that ψp,k are available from
measurements, however, this property will be assumed when
using (9) to compute a range for ∆ for a given perturbation
scenario due to unmeasured phases. Finally, the FEA is also
estimate the sensitivity parameter

γFEA = 0.325 Hz (10)

for a mass of m0 = 0.1193µg. This mass is equivalent to
an 80µm× 80µm× 8µm rectangular prism of silicon which
corresponds to a nominal amount of silicon to be removed in
the experiments in Sec. III-B.
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TABLE I
NORMALIZED AMPLITUDES OF VELOCITY HARMONICS (STANDARD

DEVIATION IN PARENTHESIS)

layer, i α̃i,2 α̃i,6 α̃i,10 β̃i,2

1
1 0.0413 0.0287 0.4969

(0) (0.00021) (0.00015) (0.00031)

2
0.9289 0.0218 0.0055 0.4603

(0.00011) (0.00023) (0.00040) (0.00036)

3 0.8506 0.0107 0 0.4214
(0.00034) (0.000071 (?) (0.00010)

4 0.7868 0.0065 0 0.3886
(0.00013) (0.00020) (?) (0.00025)

III. WAFER-SCALE FREQUENCY TUNING

The targeted etch approach for reducing the frequency split
across all resonators proceeds in two steps. The first step, after
the standard blanket etch concludes, is to ablate photoresist
on the resonators in strategic areas so that continued etching
will reduce the n = 2 modal frequency differences to a
greater degree than the standard blanket etch alone. The
perturbation model developed in Sec. II-B is used to select
ablation locations, however, it is shown that it is not possible to
fine-tune the modal frequencies since etching with small areas
exposed on the spokes (denoted the guided blanket etch) will
still globally etch the resonator and modify its dynamics in a
manner that is not predicted by the perturbation model. Indeed,
the test results in Sec. III-A suggest that the mass removal
modifies the stiffness and mass distribution of the resonator
in a complicated and unpredictable manner. The second step
of targeted etching occurs once the photoresist is stripped
from the wafer and a conformal coat of Parylene-C is applied.
The coating is then ablated in desired areas and a timed etch
commences, but because the conformal coat withstands the
etch, only the exposed areas have material removed and the
perturbation model in this case accurately predicts the post-
etch modal frequency difference. Thus, the model can be used
as a guide for selecting the areas for conformal coat ablation.
The second step is discussed in Sec. III-C.

A. Guided blanket etch

At the conclusion of the standard blanket etch, there is
an opportunity to selectively remove material from the large
spokes by ablating the photoresist and continuing the etch.
It is necessary to estimate the modal parameters in order to
use (7) to search for ablation locations such that ∆ is reduced
to the desired level. As only one wafer was available for
experimentation, the sensitivity parameter γ was estimated
from the FEA (see (10)), although experimental estimates of
γ are obtained later. The limited sensing in the resonator (the
radial velocity for the outermost ring is measured by electrodes
that subtend a 15◦ arc, [3]) means that it is not possible
to reliably measure ψp,6 and ψp,10 because the normalized
amplitudes associated with the outermost spokes (i = 4) is
about two orders of magnitude smaller than the amplitudes of
the k = 2 harmonics. Furthermore, the spatial filtering of the
electrodes further reduces the gain of these harmonics. The

TABLE II
SUMMARY OF STANDARD BLANKET ETCH RESULTS

Die ω1 (Hz) ω2 (Hz) ∆0 (Hz)

1 13394.90 13407.03 12.13
3 13285.87 13298.98 13.11
4 13508.92 13520.46 11.54
5 13592.69 13603.21 10.52
6 13594.35 13609.33 14.98
7 13306.43 13333.70 27.27
9 13657.04 13670.67 13.63
10 13640.40 13652.94 12.54
11 13110.13 13124.30 14.17
12 13365.44 13377.51 12.07
14 13543.59 13554.77 11.18
15 13056.97 13070.67 13.70
16 13197.65 13213.42 15.77

ideal locations in the resonator for measuring ψp,6 and ψp,10
are in the innermost spoke layers (i = 1) where electrodes
do not currently exist for measuring the in-plane motion. The
perturbation model (9) is truncated to include only the k = 2
harmonics for purposes of selecting the ablation sites. In other
words, the following expression is used to search over θ and
i to determine suitable locations for perturbations that will
reduce |∆| below a desired value,

∆ = ∆0 − γ
l∑

q=1

rq

[
α̃2
iq,2 cos2(2(θq − ψ2,2))

+ β̃2
iq,2 sin2 (2(θq − ψ2,2))

− α̃2
iq,2 cos2 (2(θq − ψ1,2))

− β̃2
iq,2 sin2(2(θq − ψ1,2))

]
.

(11)

Nevertheless, (9) will be used to estimate upper and lower
bounds for ∆ by assuming worst-case values for the unmea-
sured phases ψp,6 and ψp,10.

The modal parameters of each resonator on the 16-die
wafer (Fig. 2) can be estimated after the standard blanket etch
concludes even with the photoresist present. The photoresist
mass-loads the resonator and dampens the modes, however,
reliable estimates of the modal frequency difference, i.e. ∆0,
and the k = 2 phases can be obtained. The measured modal
frequencies are summarized in Table II. Die 2, 8, and 13 are
non-functional and are not included in the table. The n = 2
modal frequencies extend from 13.057 kHz to 13.657 kHz
and the modal frequencies differences extend from 10.52 Hz
to 27.27 Hz. This range of mean frequencies and initial differ-
ences suggests that each die will require a custom etch profile.
The modal frequency differences reported here are always
positive because ω2 is always assigned to higher frequency
n = 2 mode once the measurements have been made. Thus,
the phase ψ2,2 in (11) is associated with the higher frequency
mode as well. It is possible that the models (9) and (11) will
predict ∆ < 0, however, if a subsequent cycle of etching is
desired, then the labels on the modes will be switched along
with their corresponding phases.

The spokes that are selected for ablation are determined by
searching over a handful of ablation sites in a neighborhood of
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Fig. 5. Etched areas on resonator after Parylene ablation.

the lower frequency mode anti-nodes such that a reduction of
the frequency differences of approximately 8 Hz is achieved
for all resonators as predicted by (11), i.e. due to the large
spread in ∆0, the guided blanket etch is designed to achieve
∆−∆0 ≤ 8 Hz. Die 4, 12, 14 and 16 are used for experimental
controls and are not ablated. In other words, these die will
continue to be etched using the standard process, while the
ablated resonators will experience the targeted etch at the
spokes in addition to the standard process. The ablation is
performed using a New Wave Research QuikLaze laser cutting
system. The ablated areas are approximately 80 µm by 80 µm.
A DRIE timed etch is performed such that the modal frequency
difference would be reduced by 8 Hz in the absence of any
other factors that could influence the modal frequencies. The
etch time is defined by the desired etch depth to remove
the targeted mass of material. Using a calibrated etch rate,
the corresponding time is calculated. Due to the large size
of the ablated features and the short etch depths, etch rate
consistency run-to-run is typically within a few percent. The
sensitivity parameter γFEA is used to estimate the duration of
the timed etch based on the desired etch depth. The results of
the guided blanket etch are shown in Table III and it is clear
that the ablated die experience greater reductions in modal
frequency differences compared to the control die. Fig. 5
shows a resonator with trimmed spoke (after Parylene ablation
and etch). Figs. 6 and 7 show empirical frequency responses
of two measurement channels for Die 14 (a control die) and
Die 3, respectively, before and after the guided blanket etch. In
Table III, the modal parameter measurements were made after
the photoresist was stripped so that accurate damping values
are obtained. Note that continuing the blanket etch on the
control die further reduces the modal frequency differences.
The reductions range from 2.5 to 4.4 Hz depending on the die,
but it illustrates the unfeasibility of using the blanket etch to
eliminate the frequency differences across all die, especially
since the range of starting ∆0 is large. Note, however, that
the ablated die all experience significant reductions in their
modal frequency differences but the variability introduced
from etching other areas of the resonator still creates too much
uncertainty to accurately predict the final modal frequency
difference. Nevertheless, this exercise demonstrates that the
guided blanket etch can be used to systematically reduce ∆
and provide a good starting point for the targeted etching that
follows.

TABLE III
SUMMARY OF GUIDED BLANKET ETCH RESULTS

Die ω1 (Hz) ω2 (Hz) Q1 (k) Q2 (k) ∆ (Hz)

1 13327.14 13329.49 47.0 47.2 2.35
3 13239.00 13242.99 48.7 48.6 3.99
4 13465.70 13474.78 45.9 46.0 9.08
5 13554.99 13556.51 46.7 42.8 1.52
6 13557.38 13560.13 46.7 46.9 2.75
7 13231.85 13248.81 46.0 48.1 16.96
9 13613.48 13615.77 40.9 42.4 2.29
10 13592.83 13594.45 46.3 46.4 1.62
11 12979.60 12982.25 44.4 50.3 2.65
12 13282.89 13291.49 47.9 48.2 8.60
14 13467.45 13475.62 47.4 47.4 8.17
15 12943.30 12944.95 47.9 50.8 1.65
16 13063.30 13074.64 46.2 49.5 11.34
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Fig. 6. Mean modal frequencies reduce with further blanket etching. The
modal frequency difference also has a modest reduction.

B. Sensitivity parameter measurements

A coating of Parylene C, approximately 1 µm in thickness,
is applied to the wafer at the conclusion of the guided blanket
etch. The Parylene protects the resonator from further etching
unless the laser is used to expose the underlying silicon.
Parylene was selected based on the ease of ablating the
material without damaging the underlying silicon, and on its
conformality, which protects the sidewalls of the structure
during the etch in addition to the top surface. This sidewall
coating prevents lateral etching, which impacts the width
(and hence stiffness) of the device. In addition, the Parylene
is deposited using a vapor-deposition process, avoiding wet
processing, and it can be cleanly removed using an oxygen
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Fig. 7. Modal frequencies after photoresist ablation on selected spokes and
further blanket etching experiences larger reduction in frequency difference.
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TABLE IV
SUMMARY OF SENSITIVITY PARAMETER ESTIMATES

Die round layer, i ∆0 (Hz) ∆ (Hz) rm γ (Hz)

4 1 3 9.08 8.16 -1.2661 0.3334
4 2 1 8.16 7.08 -1.0200 0.3526
4 3 2 7.08 6.20 -1.0105 0.3724
4 4 4 6.20 5.69 -0.9654 0.3295

12 1 2 8.60 7.69 -1.1579 0.3643
12 2 4 7.69 7.18 -1.0196 0.3453
12 3 1 7.18 6.10 -1.0541 0.3484
12 4 3 6.10 5.33 -1.0279 0.3534
14 1 4 8.17 7.39 -1.2352 0.3438
14 2 2 7.39 6.29 -1.2798 0.3379
14 3 3 6.29 5.63 -0.9766 0.3214
14 4 1 5.63 4.67 -0.9858 0.3428
16 1 1 11.34 10.15 -1.1542 0.3431
16 2 3 10.15 9.33 -1.0689 0.3526
16 3 4 9.33 8.74 -1.0276 0.3369
16 4 2 8.74 7.88 -1.0160 0.3636

plasma.
The initial objective is to experimentally estimate γ from

a series of tests on the control Die 4, 12, 14 and 16. Four
rounds of experiments are conducted on these die in which
four square patches, approximately 80µm×80µm, are opened
on a selected spoke layer in a compass-points pattern. A timed
etch removes approximately 8µm of material from these areas
for each round of experiments. A single round targets different
spoke layers on the different die. For example, in the first
round, Die 4 has material removed from the third spoke layer,
but Die 12 has material removed from the second spoke layer.
The results of the experiments are collected in Table IV. The
volume that is associated with γ is 80×80×8 µm3, which cor-
responds to a mass of m0 = 0.1193µg. At the conclusion of
each round of etching, the modal parameters are measured and
precise dimensions of the material removed are obtained with
a Wyko profilometer. Then, the parameter rm is determined
which relates the actual mass perturbation estimated from the
Wyko measurements relative to the canonical mass m0. The
fact that rm < 0 indicates that material has been removed, and
if |rm| > 1, then more mass was removed than the mass m0.
The sensitivity parameter is then estimated from (11), where γ
is replaced by rmγ. Note that ∆, ∆0, ψ2,2 and ψ1,2 are known
from the pre- and post-etch modal parameter measurements,
θ0 and index i are defined by the etched spoke locations, and
α̃i,2 and β̃i,2 are known from the FEA. Thus, the estimated
γ is calculated for each round and reported in Table IV. The
estimates with the lowest variance correspond to spoke layer
i = 4, i.e. the outermost layer of spokes. This can be attributed
to the fact that the neglected k = 6, 10 harmonics in (11) have
little effect on the spoke velocities in this layer. Thus, the mean
value obtained from perturbations to the outermost spoke layer
are used for the estimate of

γEXP = 0.339 Hz. (12)

Note that the estimates from the other spoke layers are very
close to this value as is the value for γFEA.

TABLE V
MODAL PARAMETERS ASSOCIATED WITH NON-ABLATED DIE

Before Etch After Etch
Die Mean ω (Hz) ∆ (Hz) Mean ω (Hz) ∆ (Hz)

3 13241.00 3.99 13241.80 4.01
5 13555.75 1.52 13555.70 1.60
11 12980.92 2.65 12981.45 2.66
15 12944.12 1.65 12944.35 1.70

The sensitivity parameter experiments also provide an op-
portunity to determine to what extent the modal properties
of non-ablated die have changed. Measurements were made
on the four die shown in Table V and demonstrate that the
Parylene prevents material removal over the short duration of
the timed etch. The mean frequencies are reported along with
the modal frequency difference before and after the etch. The
mean frequencies can vary due to small fluctuations in wafer
temperature (the wafer is not temperature regulated during the
tests). Furthermore, the small differences in pre- and post-
etch ∆ are within the accuracy of the model that is fit to the
frequency response data and from which the modal parameters
are extracted.

C. Wafer-level elimination of modal frequency differences

The sensitivity parameter experiments were conducted using
Die 4, 12, 14 and 16 to provide an estimate of γ but it
is evident in Table IV that the ablation locations were also
selected so as to reduce ∆, although not to a specified target.
Now the objective is to use γEXP and (11) to select ablation
locations on the complementary “test” die in order to achieve
∆ ≈ 0 for these die. Several Parylene deposition-ablate-
etch-measure cycles were performed with the wafer because
of the approximate nature of (11) in predicting the post-
etch frequency difference, however, during each cycle all test
die were modified in order to demonstrate the feasibility
of simultaneously reducing ∆ across all die on the wafer.
Between each cycle, the Parylene is removed with an oxygen
plasma etch. In order to achieve the simultaneous reduction
of ∆, it is necessary to ablate areas of differing sizes on
the spoke surfaces so as to customize the material removal
for each die since each round of etching penetrates the same
depth for all die (typically about 8 µm). For these experiments
areas of dimensions 22µm × 22µm to 87µm × 87µm were
ablated. The model (11) includes the scaling rq to account for
the deviation of the expected material removal with respect
to the mass m0. The final results are compiled in Table VI.
All modal frequency differences are reduced below 100 mHz
with the exception of Die 3 and 7, the latter of which was used
for continued sensitivity parameter experiments. The success
of this approach is easily seen in Figs. 8 and 9, which show
the empirical frequency responses of each test die (with the
exception of Die 7) before and after the targeted etch process.

IV. DISCUSSION

Tailored etching using the Parylene deposition-ablation-etch
cycle appears to be successful in reducing modal frequency
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TABLE VI
SUMMARY OF PARYLENE ETCH RESULTS

Die ω1 (Hz) ω2 (Hz) Q1 (k) Q2 (k) ∆ (Hz)

1 13332.12 13332.16 51.7 47.6 0.04
3 13245.40 13245.73 45.5 45.1 0.33
5 13557.81 13557.84 46.7 48.4 0.03
6 13562.83 13562.89 47.9 43.7 0.06
7 13234.18 13249.51 49.6 48.8 15.33
9 13617.82 13617.86 49.2 49.5 0.04
10 13596.72 13596.77 49.8 49.9 0.05
11 12984.00 12984.06 51.3 48.0 0.06
15 12946.57 12946.61 54.7 55.0 0.04
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Fig. 8. Comparison of resonator frequency responses before and after the
Parylene ablation-etch cycles for Die 1, 3, 5 and 6. The S1/D1 and S2/D2

channels are graphed for the resonators before and after the etch cycles.

differences to below the bandwidth of the resonances when
starting from initial frequency differences of about 3 Hz
or less. The guided blanket etch was an important step in
realizing these starting values for the Parylene cycles. The
challenge with the guided blanket etch, though, is the fact
that the stiffness associated with the n = 2 modes is also
clearly modified in addition to the mass distribution of the
resonator. This is evident by comparing the data summarized in
Tables II and III but is more clearly observed in Fig. 10, which
shows the frequency response of Die 5 after the major etch
steps, and Fig. 11, which shows a bar chart of the frequency
differences for all die after the major etch steps. Note that the
mean modal frequencies of the n = 2 modes decrease by a
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Fig. 9. Comparison of resonator frequency responses before and after the
Parylene ablation-etch cycles for Die 9, 10, 11, and 15. The S1/D1 and
S2/D2 channels are graphed for the resonators before and after the etch
cycles.
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Fig. 11. Bar graph summarizing the n = 2 modal frequency differences for
all die after the major etch steps.

significant amount by continuing the blanket etch. This fact –
uncontrolled modification of the resonator stiffness – renders
the guided blanket etch a useful tool but one that cannot be
used to effectively eliminate the modal frequency difference.
It is also interesting to note that the control die also experience
a reduction in modal frequency difference during the guided
blanket etch, although not to the extent of the die with ablated
photoresist. Thus, it appears that after initial release of the
resonators, continued etching reduces the modal frequency
differences although in a largely unpredictable manner. The
mechanism is attributed to continued lateral etching of the
exposed resonator sidewalls, impacting both local stiffness and
mass.

Performing a timed etch after deposition, and then ablation,
of Parylene, produces highly repeatable and predictable results
because the areas where the material removal occurs, i.e.
the large spokes, has little impact on the n = 2 stiffness
properties and so can be modeled as purely a perturbation
to the resonator mass distribution. This was the basis of the
perturbation model (9). Evidence of mass-only perturbations
is also supported by Figs. 8 and 9 where it is clear that
material removal uniformly increases the modal frequencies
of the n = 2 modes. This demonstrates that the conformal
Parylene coating is effective in preventing sidewall etching
during the site-specific mass removal. Ideally, the compre-
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TABLE VII
BOUNDS FOR ∆ COMPUTED FROM (9)

Die ∆min (Hz) ∆max (Hz)

1 -0.36 0.07
3 -0.32 0.42
5 -0.03 0.31
6 0.05 0.41
7 15.35 15.52
9 0.05 0.27
10 -0.13 0.17
11 -0.15 0.37
15 0.07 0.26

hensive perturbation model (9) would be used to search for
ablation sites, but due to the limited sensing of the outer ring
radial motion, it is not possible to reliably estimate all of
the parameters necessary for application of (9). In particular,
the phases associated with the k ∈ {6, 10} harmonics are
not known. The analysis shows that the largest k ∈ {6, 10}
harmonic amplitudes are located in spoke layer i = 1 and
have amplitudes that are approximately 4% and 3% of k = 2
harmonic amplitude. Thus, locating sense electrodes in this
area of the resonator would be advantageous for measuring
these phases. Nevertheless, bounds on ∆ can be computed
using (9) by searching for worst-case values of ψp,6 and ψp,10
where the relations |ψ1,6−ψ2,6| = 15◦ and |ψ1,10−ψ2,10| = 9◦

are assumed based on the finite element results. Profilometer
measurements provide accurate estimates of the mass removal
so the largest uncertainty in the parameters in (9) are the
unknown phases. The bounds are shown in Table VII and
are computed using accurate mass removal estimates starting
from the resonator states after the guided blanket etch but
before any targeted etching with the Parylene has occurred.
The bounds demonstrate that ∆ can significantly deviate from
the final desired modal frequency difference of approximately
zero. The real utility of the bounds is in showing the possible
range of outcomes for ∆ if only a single ablation-etch cycle
is permitted in which the simplified model (11) is used to
reduce ∆ to approximately zero. The bounds imply that the
absolute modal frequency difference may actually be as large
as 0.4 Hz (excluding Die 7). These potentially large deviations
were avoided by employing several ablation-etch cycles, thus,
this method has been demonstrated to be compatible with
iterative execution, enabling repeated application to achieve
increasingly small frequency splits. Ultimately, however, a
single ablation-etch cycle is most desirable, but this will
necessitate the measurement of the unknown phases.

Finally, the quality factors are reported and appear to have
experienced modest changes over the course of the experi-
ments. In some cases the quality factors have increased and
in others, they have decreased, but in general they appear to
remain high throughout the post-fabrication steps.

V. CONCLUSION

A wafer-level post-fabrication technique has been demon-
strated for simultaneous reduction of the modal frequency
differences between the n = 2 modes in an axisymmetric

resonator. The resonator is designed so that mass removal at
the large spokes creates a readily predictable perturbation to its
dynamics. Using a model-based approach to select these areas,
a laser is used to ablate the masking resist and, subsequently, a
conformal layer of Parylene-C, to expose the silicon for further
etching with SiDRIE. The lateral dimensions can be tightly
controlled with a fixed mask for the laser and the depth is
controlled through a timed etch. Since only silicon is removed
from the resonator, the process is compatible with any further
processing, including wafer-level packaging operations.
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