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Introduction

It is a classical idea that general principally polarized abelian varieties (ppavs) and their

moduli spaces are hard to understand, and that one can use algebraic curves to study some

special classes, such as Jacobians and Prym varieties. This works particularly well in small

dimension, where in this way one reduces the study of all abelian varieties to the rich and

concrete theory of curves. For g ≤ 3, a general ppav is a Jacobian, and the Torelli map

Mg → Ag between the moduli spaces of curves and ppavs respectively, is birational. For

g ≤ 5, a general ppav is a Prym variety by a classical result of Wirtinger [Wir95]. In

particular, for g = 5, this gives a uniformization of A5 by curves, as follows. We denote

by Rg the Prym moduli space of pairs [C, η] consisting of a smooth curve C of genus g

and a non-trivial 2-torsion point η ∈ Pic0(C); in particular, the projection Rg → Mg is a

finite map of degree 22g − 1. Then by Donagi-Smith [DS81], the Prym map P : R6 → A5
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is generically of degree 27, with fibers corresponding to a configuration of the 27 lines on a

cubic surface.

The uniformization of Ag for g ≤ 5 via the Prym map for P : Rg+1 → Ag has been

used, among many other things, to determine the birational type of Ag in this range. The

Prym moduli space Rg+1 is known to be unirational for g ≤ 5, hence it follows that Ag is

unirational for g ≤ 5 as well. The case g = 5 was proved in [Don84]. Other proofs followed in

[MM83] and [Ver84]. The first proof of the unirationality of A4 uses intermediate Jacobians

of double solids and appeared in [Cle83]. It was shown in [ILS09b] that this proof actually

implies the unirationality of R5.

The purpose of this paper is to prove a similar uniformization result for the moduli space

A6 of principally polarized abelian varieties of dimension 6. The idea of this construction

is due to Kanev [Kan89b] and it uses the rich geometry of the 27 lines on a cubic surface.

Suppose π : C → P1 is a cover of degree 27 whose monodromy group equals the Weyl group

W (E6) ⊂ S27 of the E6 lattice. In particular, each smooth fibre of π can be identified with

the set of 27 lines on an abstract cubic surface and, by monodromy, this identification carries

over from one fibre to another. Assume furthermore that π is branched over 24 points and

that over each of them the local monodromy of π is given by a reflection in W (E6). A

prominent example of such a covering π : C → P1 is given by the curve of lines in the

cubic surfaces of a Lefschetz pencil of hyperplane sections of a cubic threefold X ⊂ P4, see

[Kan89a], as well as Section 1 of this paper. Since deg(X∨) = 24, such a pencil contains

precisely 24 singular cubic surfaces, each having exactly one node.

By the Hurwitz formula, we find that each such E6-cover C has genus 46. Furthermore, C

is endowed with a symmetric correspondence D of degree 10, compatible with the covering

π and defined using the intersection form on a cubic surface. Precisely, a pair (x, y) ∈ C×C
with x 6= y and π(x) = π(y) belongs to D if and only if the lines corresponding to the points

x and y are incident. The correspondence D is disjoint from the diagonal of C × C. The

associated endomorphism D : JC → JC of the Jacobian of C satisfies the quadratic relation

(D − 1)(D + 5) = 0. Using this, Kanev [Kan87] showed that the associated Prym-Tyurin-

Kanev variety

PT (C,D) := Im(D − 1) ⊂ JC

of this pair is a 6-dimensional ppav of exponent 6. Thus, if ΘC denotes the Riemann theta

divisor on JC, then ΘC|P (C,D) ≡ 6 · Ξ, where Ξ is a principal polarization on P (C,D).

Since the map π has 24 branch points corresponding to choosing 24 roots in E6 specifying

the local monodromy at each branch point, the Hurwitz scheme Hur parameterizing E6-covers

π : C → P1 as above is 21-dimensional (and also irreducible, see [Kan06]). The geometric
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construction described above induces the Prym-Tyurin-Kanev map

PT : Hur→ A6

between two moduli spaces of the same dimension. It is tempting to conjecture that this

map is generically finite. The following theorem answers a conjecture raised by Kanev in his

lectures given in 1987 and thereabouts (see also [LR08, Remark 5.5]):

Theorem 0.1. The Prym-Tyurin-Kanev map PT : Hur→ A6 is generically finite. It follows

that the general principally polarized abelian variety of dimension 6 is a Prym-Tyurin variety

of exponent 6 corresponding to a E6-cover C → P1.

This result, which is the main achievement of this paper, gives a structure theorem for

general abelian varieties of dimension 6 and offers a uniformization for A6 by curves with

additional discrete data. Just like the classical Prym map P : R6 → A5, it is expected

that the Prym-Tyurin-Kanev map PT will open the way towards a systematic study of

the geometry of A6. Potentially, this theorem also gives a way to determine the birational

type of A6, which is a notorious open problem. Recall that Ag is a variety of general type

for g ≥ 7, see [Mum83] and [Tai82]; as already indicated, Ag is unirational for g ≤ 5. It

has been recently established in [FV14] that the boundary divisor ∂A6 of the perfect cone

compactification A6 of A6 is unirational, which induces a lower bound on the slope of the

effective cone of A6.

The main idea of the proof of Theorem 0.1 is to study degenerations of Prym-Tyurin-

Kanev varieties as the branch locus (P1, p1 + · · · + p24) of the cover π : C → P1 approaches

a maximally degenerate point of M0,24. The map PT becomes toroidal and its essential

properties can be read off a map of fans. Then to show that PT is dominant, it is sufficient

to show that the rays in the fan describing the image span a 21-dimensional vector space, i.e.

that a certain (21× 21)-matrix has full rank. This can be done by an explicit computation,

once the general theory is in place. The theory of degenerations of Jacobians is well known,

see e.g. [Ale04]. It was extended to Prym varieties by Alexeev-Birkenhake-Hulek in [ABH02].

One of the main goals of the present paper is a further extension of this theory to the case

of Prym-Tyurin-Kanev varieties.

In view of the structure Theorem 0.1 it is of compelling interest to understand the bira-

tional geometry of the space H classifying E6-covers [π : C → P1, p1, . . . , p24] together with

a labeling of the set of their 24 branch points. The space H admits a compactification H
by admissible coverings. Precisely, H is the moduli space of twisted stable maps from curves

of genus zero into the classifying stack BW (E6), that is, the normalization of the stack of

admissible covers with monodromy group W (E6) having as source a nodal curve of genus
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46 and as target a stable 24-pointed curve of genus 0 (see Section 5 for details). One has a

finite branched morphism

b : H →M0,24.

In Section 5, we show that H is a variety of general type (Theorem 5.26). From the point of

view of A6, it is more interesting to study the global geometry of the quotient space

Hur := H/S24,

compactifying the Hurwitz space Hur of E6-covers (without a labeling of the branch points).

The Prym-Tyurin-Kanev map PT extends to a regular morphism PT Sat : Hur → ASat

6 to

the Satake compactification ASat

6 of A6. We establish the following result on the birational

geometry of Hur, which we regard as a compact master space for ppav of dimension 6:

Theorem 0.2. The exists a boundary divisor E of Hur that is contracted by the Prym-Tyurin

map PT : Hur 99K A6, such that KHur + E is a big divisor class.

The proof of Theorem 0.2 is completed after numerous preliminaries at the end of Section

8. We stop short of stating that Hur is of general type, for we do not prove that the

singularities of Hur do not impose adjunction conditions, that is, that pluricanonical forms

defined on the smooth part of Hur extend to any resolution of singularities of Hur. Such

a result has been established for Mg in [HM82] and for Rg in [FL10], but not yet on any

Hurwitz space.

In the course of proving Theorem 0.2, we establish numerous facts concerning the geometry

of the space Hur. One of them is a surprising link between the splitting of the rank 46 Hodge

bundle E on Hur into Hodge eigenbundles and the Brill-Noether theory of E6-covers, see

Theorem 8.3. For a point [π : C → P1] ∈ Hur, we denote by D : H0(C,KC) → H0(C,KC)

the map induced at the level of cotangent spaces by the Kanev endomorphism of JC and by

H0(C,KC) = H0(C,KC)(+1) ⊕H0(C,KC)(−5),

the decomposition into the (+1) and the (−5)-eigenspaces of holomorphic differentials re-

spectively. Setting L := π∗(OP1(1)) ∈ W 1
27(C), for a general point [π : C → P1] ∈ Hur, we

show that the following canonical identifications hold:

H0(C,KC)(+1) = H0(C,L)⊗H0(C,KC ⊗ L∨)

and

H0(C,KC)(−5) =

(
H0(C,L⊗2)

Sym2H0(C,L)

)∨
⊗

2∧
H0(C,L).

In particular, the (+1)-Hodge eigenbundle is fibrewise isomorphic to the image of the Petri

map µ(L) : H0(C,L)⊗H0(C,KC ⊗ L∨)→ H0(C,KC), whenever the Petri map is injective
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(which happens generically along Hur, see Theorem 8.2). The identifications above are

instrumental in expressing in Section 8 the class of the (−5)-Hodge eigenbundle E(−5) on a

partial compactification GE6 of Hur in terms of boundary divisors. The moduli space GE6

differs from Hur only along divisors that get contracted under the Prym-Tyurin-Kanev map.

Note that the class λ(−5) = c1(E(−5)) is equal to the pull-back PT ∗(λ1) of the Hodge class λ1

on A6. The explicit realization of the class λ(−5) is then used to establish positivity properties

of the canonical class KHur.

We are also able to describe the ramification divisor of the Prym-Tyurin-Kanev map in

terms of the geometry of the Abel-Prym-Tyurin curve ϕ(−5) = ϕH0(KC)(−5) : C → P5 given

by the linear system of (−5)-invariant holomorphic forms on C.

Theorem 0.3. An E6-cover [π : C → P1] ∈ Hur such that the Petri map µ(L) is injective

lies in the ramification divisor of the map PT : Hur→ A6 if an only if the Abel-Prym-Tyurin

curve ϕ(−5)(C) ⊂ P5 lies on a quadric.

The conclusion of Theorem 0.3 can be equivalently formulated as saying that the map

Sym2H0(C,KC)(−5) −→ H0(C,K⊗2
C )

given by multiplication of sections is not injective. Note the striking similarity between

this description of the ramification divisor of the Prym-Tyurin-Kanev map and that of the

classical Prym map P : Rg+1 → Ag, see [Bea77]: A point [C, η] ∈ Rg+1 lies in the ramification

divisor of P if and only if the multiplication map for the Prym-canonical curve

Sym2H0(C,KC ⊗ η)→ H0(C,K⊗2
C )

is not injective. An important difference must however be noted. While the general Prym-

canonical map ϕKC⊗η : C → Pg−2 is an embedding when g ≥ 5, the Abel-Prym-Tyurin curve

ϕ(−5)(C) ⊂ P5 has 24 points of multiplicity 6, corresponding to the ramification points lying

over each branch point of the cover π : C → P1 (see Section 9 below).

It is natural to ask how the E6-Prym-Tyurin varieties considered in this paper generalize

classical Prym varieties. It is well-known [Don92], [FL10] that the Prym variety of the

Wirtinger cover of a 1-nodal curve of genus g is the Jacobian of its normalization. Thus, if

∆
′′
0 ⊂ Rg+1 is the boundary divisor of such covers, then P (∆

′′
0) = Mg ⊂ Ag, thus showing

that Jacobians arise as limits of Prym varieties. We generalize this situation and explain

how ordinary Prym varieties appear as limits of Prym-Tyurin varieties.

Via the Riemann Existence Theorem, a general E6-cover π : C → P1 is determined by a

branch divisor p1 + · · · + p24 ∈ Sym24(P1) and discrete data involving a collection of roots

r1, . . . , r24 ∈ E6 which describe the local monodromy of π at the points p1, . . . , p24. Letting
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two branch points, say p23 and p24, coalesce such that r23 = r24, whereas the reflections in the

remaining roots r1, . . . , r22 span the Weyl group W (D5) ⊂ W (E6), gives rise to a boundary

divisor DD5 of Hur. We show in Section 7 that the general point of DD5 corresponds to the

following geometric data:

(i) A genus 7 Prym curve [Y, η] ∈ R7, together with a degree 5 pencil h : Y → P1 branched

simply along the divisor p1 + · · · + p22; the unramified double cover F1 → Y gives rise to a

degree 10 map π1 : F1 → P1 from a curve of genus 13.

(ii) A genus 29 curve F2 ⊂ F
(5)
1 , which is pentagonally related to F1, and is thus completely

determined by F1. Precisely, F2 is one of the two irreducible components of the locus{
x1 + · · ·+ x5 ∈ F (5)

1 : π1(x1) = · · · = π1(x5)
}

inside the fifth symmetric product F
(5)
1 of F1.

One has a degree 16 cover π2 : F2 → P1 induced by π1.

(iii) A distinguished point q1 + · · · + q5 ∈ F2, which determines 5 further pairs of points(
qi, q1 + · · ·+ ι(qi)+ · · ·+q5

)
∈ F1×F2 for i = 1, . . . , 5, which get identified. To F2 we attach

a rational curve F0 at the point q1 + · · ·+q5. The resulting nodal curve C1 = F0∪F1∪F2 has

genus 46 and admits a map π : C1 → P1 of degree 27 having π|Fi
= πi for i = 0, 1, 2, where

π0 is an isomorphism. The map π can easily be turned into an E6-admissible cover having

as source a curve stably equivalent to C1. A general point of the divisor DD5 is realized in

this way.

We show in Section 7 that PT ([C1, π]) = P ([F1/Y ]) = P ([Y, η]) ∈ A6; furthermore, each

ordinary Prym variety from P (R7) ⊂ A6 appears in this way. We summarize the above

discussion, showing that the restriction PTDD5
of the Prym-Tyurin map factors via the

(generically injective) Prym map P : R7 99K A6 in the following way.

Theorem 0.4. If DD5 ⊂ Hur is the boundary divisor of W (D5)-covers defined above, one

has the following commutative diagram:

(0.1) DD5
//

PTD5
��

Hur

PT
��

R7
P // A6

The fibres of the map PTD5 : DD5 → R7 are 2-dimensional and PT−1
D5

(
P [F1/Y ]

)
is the

fibration over the curve W 1
5 (Y ), having as fibre over a pencil A ∈ W 1

5 (Y ) the curve F2

obtained by applying the 5-gonal construction to A.

We close the introduction by discussing the structure of the paper. In Section 1 we

discuss Kanev’s construction, whereas in Section 2 we collect basic facts about the E6 lattice

and the group W (E6) that are used throughout the paper. After recalling the theory of

degenerations of Jacobians and ordinary Prym varieties in Section 3, we complete the proof
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of Theorem 0.1 in Section 4, by describing the Prym-Tyurin map in the neighborhood of

maximally degenerate point of the space Hur of E6-admissible covers. Section 5 is devoted to

the birational geometry of this Hurwitz space, whereas in Section 6 we completely describe

the Prym-Tyurin map PT : Hur 99K A6 at the level of divisors. After proving Theorem

0.4 in Section 7, we complete in Section 8 the proof of Theorem 0.2 after a detailed study

of the divisors Dazy and Dsyz of azygetic and syzygetic E6-covers respectively on a partial

compactification GE6 of Hur. The ramification divisor of the Prym-Tyurin map is described

in Section 9. Finally, in Section 10 we construct effective divisors on Hur and link the

computation of the Kodaira dimension of A6 to a version of the Slope Conjecture concerning

effective divisors on M46.

Acknowledgments: We owe a great debt to the work of Vassil Kanev, who first constructed

the Prym-Tyurin map PT and raised the possibility of uniformizing A6 in this way. The

authors acknowledge partial support by the NSF: VA under grant DMS 1200726, RD under

grant DMS 1304962, EI under grant DMS-1103938/1430600. The work of GF and AO has

been partially supported by the DFG Sonderforschungsbereich 647 “Raum-Zeit-Materie”.

1. Kanev’s construction and Prym-Tyurin varieties of E6-type

Consider a cubic threefold X ⊂ P4 and a smooth hyperplane section S ⊂ X. The cubic

surface S contains a set of 27 lines Λ := {`s}1≤s≤27 forming a famous classical configuration,

which we shall review below in Section 2. Consider the lattice ZΛ = Z27 with the standard

basis corresponding to `s’s, and let deg : ZΛ → Z be the degree homomorphism, so that

deg(`s) = 1 for all s = 1, . . . , 27.

1.1. By assigning to each line `s the sum
∑
{s′: `s·`s′=1} `s′ of the 10 lines on S intersecting

`s, we define a homomorphism D′Λ : Z27 → Z27 of degree 10. It is easy to check that D′Λ

satisfies the following quadratic equation:

(D′Λ + 5)(D′Λ − 1) = 5

(
27∑
s=1

`s

)
· deg

In particular, the restriction DΛ of D′Λ to the subgroup Ker(deg) satisfies the equation

(DΛ + 5)(DΛ − 1) = 0.

Consider a generic pencil {St}t∈P1 of cubic hyperplane sections of X. This defines:

• a degree 27 smooth curve cover π : C → P1; the points in the fiber π−1(t) correspond

to the lines lying on St;

• a symmetric incidence correspondence D̃ ⊂ C × C of degree 10;
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• a homomorphism D′ = p2∗ ◦ p∗1 : Pic(C) → Pic(C) (where pi : D̃ → C are the two

projections) satisfying the quadratic equation (see also [Kan89a, Proposition 3.1])

(D′ + 5)(D′ − 1) = 5π−1(0) · deg;

• the restriction D of D′ to JC = Pic0(C), satisfying (D + 5)(D − 1) = 0.

For a generic such pencil the map π : C → P1 has 24 branch points on P1, corresponding

to singular cubic surfaces in the pencil, each with one node. Over each of the 24 points, the

fibre consists of 6 points of multiplicity two and 15 single points. By the Riemann-Hurwitz

formula, we compute g(C) = 46.

1.2. We refer to [Kan89b, LR08], for the following facts. The cover π : C → P1 is not Galois.

The Galois group of its Galois closure is W (E6), the reflection group of the E6 lattice. As

we shall review in Section 2, the lattice E6 appears as the lattice K⊥S ⊂ Pic(S). The 27 lines

can be identified with the W (E6)-orbit of the fundamental weight ω6, and one has a natural

embedding W (E6) ⊂ S27. The intermediate non-Galois cover C → P1 is associated with the

stabilizer subgroup of ω6 in W (E6), that is, with the subgroup W (E6) ∩ S26
∼= W (D5).

1.3. By Riemann’s Existence Theorem, a 27-sheeted cover C → P1 ramified over 24 points

is defined by a choice of 24 elements wi ∈ S27 satisfying w1 · · ·w24 = 1. For a cover coming

from a pencil of cubic surfaces, each wi ∈ W (E6) is a reflection in a root of the E6. It is a

double-six, that is, viewed as an element of S27, it is a product of 6 disjoint transpositions.

Definition 1.4. Let Hur be the Hurwitz space parametrizing irreducible smooth Galois

W (E6)-covers C ′ → P1 ramified in 24 points, such that the monodromy over each point is a

reflection in a root of the E6 lattice.

1.5. Note that points in the space Hur correspond to covers where we do not choose a labeling

of the branch points. The data for the cover C ′ consists of the branch divisor p1 + . . .+ p24

on P1, and, for each of these points, the monodromy wi ∈ W (E6) given by a reflection

in a root, once a base point p0 ∈ P1 and a system of arcs γi in π1(P1 \ {p1, . . . , p24}, p0)

with γ1 · · · γ24 = 1 has been chosen. The elements {wi}24
i=1 generate W (E6) and satisfy the

relation w1 · · ·w24 = 1. The monodromy data being finite, the space Hur comes with a finite

unramified cover

br : Hur→M0,24/S24

to the moduli space of 24 unordered points on P1. Thus dim(Hur) = 21. An important fact

about this space is the following result of Kanev [Kan06]:

Theorem 1.6. For any irreducible root system R, the Hurwitz scheme parameterizing Galois

W (R)-covers such that the monodromy around any branch point is a reflection in W (R), is

irreducible.
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1.7. In particular, the space Hur is irreducible. If [π′ : C ′ → P1] ∈ Hur, let π : C → P1

be an intermediate non-Galois cover of degree 27, that is, the quotient of C ′ by a subgroup

W (E6) ∩ S26
∼= W (D5) in S27. Since W (E6) acts transitively on the set {1, . . . , 27}, the 27

subgroups S26 ⊂ S27 are conjugate, and the corresponding curves C are isomorphic. Thus,

Hur is also a coarse moduli space for degree 27 non-Galois covers π : C → P1, branched over

24 points such that the monodromy at each branch point is a reflection of W (E6).

Remark 1.8. Up to conjugation, W (E6)∩S26 is the unique subgroup of index 27 in W (E6).

1.9. Let π : C → P1 be an E6-cover as above. Each fiber of π can be identified consistently

with the set of 27 lines on a cubic surface. The incidence of lines, in the same way as for

the correspondence DΛ in 1.1, induces a symmetric correspondence D̃ ⊂ C × C of valence

10, which is disjoint from the diagonal ∆ ⊂ C × C. In turn, D̃ induces a homomorphism

D′ : Pic(C)→ Pic(C), whose restriction D : JC → JC satisfies the quadratic relation

(1.1) (D − 1)(D + 5) = 0 ∈ End(JC).

Definition 1.10. The Prym-Tyurin-Kanev variety PT (C,D) is defined as the connected

component of the identity PT (C,D) :=
(
Ker(D + 5)

)0
= Im(D − 1) ⊂ JC.

1.11. Using [Kan87], Equation (1.1) implies that the restriction of the principal polarization

ΘC of JC to PT (C,D) is a multiple of a principal polarization. Precisely, ΘC|PT (C,D) = 6 ·Ξ,

where (PT (C,D),Ξ) is a ppav. Since

0 = D̃ ·∆ = 2deg(D̃)− 2tr
{
D : H0(C,KC)→ H0(C,KC)

}
,

we obtain that

dim PT (C,D) =
1

6

(
g(C)− deg(D̃)

)
=

1

6
(46− 10) = 6,

see also [LR08, Proposition 5.3]. We have the morphism of moduli stacks

PT : Hur −→ A6

[C,D] 7−→ [PT (C,D),Ξ].

Both stacks are irreducible and 21-dimensional. The main result of this paper (Theorem 0.1)

is that PT is a dominant, i.e., generically finite, map.

1.12. Our main concrete examples of E6-covers of P1 are the curves of lines in Lefschetz

pencils of cubic surfaces. The subvariety T ⊂ Hur corresponding to pencils {St}t∈P1 of

hyperplane sections of cubic 3-folds X ⊂ P4 has expected dimension(
7

3

)
− 1 + dim Gr(2, 5)− dim PGL5 = (35− 1) + 6− (25− 1) = 16.
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1.13. We now describe the restriction of the map PT to the locus T ⊂ Hur parametrizing

such covers. Let V be a 5-dimensional vector space over C whose projectivization contains

X and let F ∈ Sym3(V ∨) be a defining equation for X. Denote by F := F(X) the Fano

variety of lines in X. Let JX := H2,1(X)∨/H3(X,Z) be the intermediate Jacobian of X. It

is well known [CG72] that the Abel-Jacobi map defines an isomorphism JX ∼= AlbF , where

AlbF is the Albanese variety of F . Let Λ be a Lefschetz pencil of hyperplane sections of

X and denote by E its base curve. The curve C classifying the lines lying on the surfaces

contained in Λ lives naturally in F . The map sending a line to its point of intersection with

E induces a degree 6 cover C → E. Furthermore, the choice of a base point of C defines a

map C → JX. So we obtain a well-defined induced map JC → E × JX. The transpose

E × Pic0(F) = E × JX → JC of this map is given by pull-back on divisors on each of the

factors, using the map C → E and the embedding C ↪→ F respectively. On the locus T we

can explicitly determine the Prym-Tyurin variety, see also [Kan89a]:

Lemma 1.14. The map JC → E × JX (or its transpose E × JX → JC) induces an

isomorphism of ppav PT (C,D)
∼=→ E × JX.

Proof. We first show that the correspondence D restricts to multiplication by (−5) on both

factors E and JX. For ` ∈ C, let D̃(`) be the sum of the lines incident to ` and E inside

X. We denote by H` the hyperplane spanned by E and ` and put S` := H` ∩X. The lines

incident to E and ` form 5 pairs (`1, `
′
1), . . . , (`5, `

′
5), with `+`i+`

′
i ∈ |−KS`

| for i = 1, . . . , 5.

Consider first the intermediate Jacobian JX. We have

D̃(`) =
5∑
i=1

(`i + `′i) ≡ 5| −KS`
| − 5`,

where ≡ denotes linear equivalence in S`. Since | − KS`
| is constant as ` varies, it follows

that D restricts to multiplication by (−5) on JX.

Consider the elliptic curve E. Then D̃(`) in E is the sum of the intersection points of `i, `
′
i

with E. Thus (`+`i+`′i)|E is also the intersection of the plane Πi := 〈`, `i, `′i〉 with E. Hence∑5
i=1(`+ `i + `′i)|E is the intersection of the 5 planes Π1, . . . ,Π5 with E. Projecting from `,

we see that the union of these planes is the intersection of H` with the inverse image Q of the

plane quintic in P2 = P(V/`) parametrizing singular conics (the discriminant curve for the

projection of X from `). Therefore
∑5

i=1(`+ `i + `′i)|E is contained in the intersection Q∩E
and since the two divisors have the same degree, we obtain that

∑5
i=1(`+ `i + `′i)|E = Q∩E

is constant. This implies that D is multiplication by (−5) on E as well.

So the Prym-Tyurin variety is isogenous to E × JX. To show that they are isomorphic,

we show that the pull-back of the polarization of JC to E × JX is 6 times a principal

polarization. This is immediate on the factor E, since the map C → E has degree 6. To see
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it on the JX factor as well, we again use the Abel-Jacobi embedding C ↪→ F ↪→ JX and

recall the fact [CG72] that one model of the theta divisor in JX is the image of the degree

6 difference map ϕ : F × F → AlbF = JX, defined by ϕ(`, `′) = `− `′. �

We denote by J5 ⊂ A5 the moduli space of intermediate Jacobians of cubic threefolds.

Lemma 1.15. The dimension of T ⊂ Hur equals its expected dimension, which is 16.

Proof. First note that dim(J5) = 10; the Grassmann bundle over J5 parametrizing pencils

of hyperplane sections has dimension 16, so dim T ≤ 16.

We degenerate the pencil so that the base curve E has 1, 2 or 3 ordinary double points.

The number of moduli for T is 3 more than the number of moduli for the pencils where E

has 3 double points, that is, it is a union of three lines.

We count the number of parameters for the curves of lines C corresponding to pencils

with E = `1 ∪ `2 ∪ `3 being a union of three lines. The stable model of C breaks into three

components Q̃1, Q̃2, and Q̃3, parametrizing lines incident to `1, `2 and `3 respectively. Each

Q̃i is an étale double cover of a plane quintic Qi which is the discriminant curve for the

projection of X from `i. For a general choice of X ∈ |OP3(3)| and of a line `1 ⊂ X, the curve

Q1 is a general plane quintic, hence depends on 12 moduli. The choice of lines `2 and `3

coplanar with `1 depends on the choice of a point of Q1, giving 1 parameter. The moduli of

the curves Q2, Q3 varies with the choice of the lines `2, `3. Therefore, we have a total of 13

moduli for the union Q̃1 ∪ Q̃2 ∪ Q̃3. The number of moduli for T is thus 3 + 13 = 16. �

Corollary 1.16. We have the following equality of 11-dimensional irreducible cycles in A6:

PT (T ) = J5 ×A1 ⊂ A5 ×A1 ⊂ A6.

Remark 1.17. One might think that Corollary 1.16 offers potentially a way of proving the

dominance of the map PT in the style of [DS81]. It would suffice to show that the extended

Prym-Tyurin map on blow-ups P̃ T : BlT (Hur)→ BlJ5×A1(A6) maps the exceptional divisor

of the source onto the exceptional divisor of the image. Surprisingly however it turns out

that for a general product [JX × E] ∈ J5 ×A1, the union⋃
z∈PT−1[JX×E]

Im
{

(dPT )z : P
(
NT /Hur

)
z
→ P

(
NJ5×A1/A6

)
[JX×E]

}
is a divisor in the target projective space. In other words, the first order information encoded

in this first blow-up does not suffice to prove dominance of PT . So at least one further blowup

is needed. The situation seems similar to that for the ordinary Prym map P near an elliptic

tail curve, cf. [DS81]: the boundary divisor of elliptic tails is blown down to a codimension 2

locus of cuspidal curves, which is in the closure of another component, the locus of Wirtinger
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covers. In the present work we therefore follow a different path to establish the dominance

of the map PT .

2. The E6 lattice

In this section we recall basic facts about the E6 lattice. Our reference for these is [Dol12,

Chapters 8,9].

2.1. Let I1,6 be the standard Lorenzian lattice with the quadratic form x2
0 −

∑6
i=1 x

2
i . The

negative definite E6 lattice is identified with k⊥, where k = (−3, 1, . . . , 1). Its dual E∨6 is

identified with I1,6/Zk. Let us denote the standard basis of I1,6 by f0, f1, . . . , f6, to avoid

confusion with the edges ei in a graph.

The roots of E6 are the vectors with square −2. There are
(

6
2

)
+
(

6
3

)
+ 1 = 36 pairs of

roots corresponding to αij = fi− fj, αijk = f0− fi− fj − fk and αmax = 2f0− f1− . . .− f6.

Obviously, if r ∈ E6 is a root then −r is a root as well. The simple roots, corresponding to

the E6 Dynkin diagram can be chosen to be r1 = α123, r2 = α12, r3 = α23, r4 = α34, r5 = α45

and r6 = α56.

2.2. The Weyl group W (E6) is the group generated by the reflections in the roots. It has

51,840 elements. The fundamental weights ω1, . . . , ω6 are the vectors in E∨6 with (ri, ωj) = δij.

The exceptional vectors are the vectors in the W (E6)-orbit of ω6. They can be identified

with vectors ` in I1,6 satisfying `2 = k` = −1. There are 6 + 6 + 15 = 27 of them, namely:

ai = fi, for i = 1, . . . , 6;

bi = 2f0 − f1 − · · · − f6 + fi, for i = 1, . . . , 6;

cij = f0 − fi − fj, for 1 ≤ i < j ≤ 6.

2.3. For each root r ∈ E6, there are 15 exceptional vectors that are orthogonal to it, 6

exceptional vectors with r · ` = 1 and 6 vectors with r · ` = −1. The collections of the 6 pairs

of exceptional vectors non-orthogonal to a root vector are called double-sixes. The elements

in each pair are exchanged by the reflection wr ∈ W (E6) in the root r.

There are 36 double-sixes, one for each pair ±r of roots. For example, the double-six for

the root r = αmax is {a1, a2, . . . , a6}, {b1, b2, . . . , b6}. The reflection group acts transitively

on the set of the exceptional vectors. This gives rise to an embedding W (E6) ⊂ S27. Under

this embedding, each reflection corresponds to a product of 6 transpositions. For example,

the reflection in the root r = αmax is the permutation (a1, b1) · · · (a6, b6) ∈ S27.

Note that the choice of a root is equivalent to an ordering of the pair: when we write the

same element of W (E6) as a product (b1, a1) · · · (b6, a6), it corresponds to the root −αmax.
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The W (E6)-action by conjugation is transitive on the set of double sixes, so to study their

properties it is usually sufficient to make computations for this special representative.

2.4. For a smooth cubic surface S, the above objects have the following incarnation:

• I1,6 = Pic(S) together with the intersection form,

• k = KS and E6 = K⊥S ⊂ Pic(S),

• the exceptional vectors are identified with the lines `1, . . . , `27 on S,

• a sixer is a set of 6 mutually disjoint lines, a double-six is the set of two sixers

corresponding to the opposite roots.

The relationship between the W (E6)-action and the correspondence given by the line

incidence is as follows.

Definition 2.5. The correspondence on the set of exceptional vectors is defined by setting

D(`) :=
∑
{`′: `′·`=1} `

′.

Remark 2.6. For further use, we retain the following computation:

D(a1) = b2 + · · ·+ b6 + c12 + · · ·+ c16

D(b1) = a2 + · · ·+ a6 + c12 + · · ·+ c16

D(a1 − b1) = (b2 − a2) + . . . (b6 − a6).

2.7. The group W (E6) has 25 irreducible representations corresponding to its 25 conjugacy

classes, which will appear several times in this paper. For conjugacy classes we use the

ATLAS or GAP notation 1a, 2a, 2b, 2c, . . . , 12a, (command ’ConjugacyClasses(WE6)’).

The number refers to the order of the elements in the conjugacy class. For instance, the

reflections in W (E6) (products of six transpositions) belong to the conjugacy class 2c, the

product of two syzygetic reflections belongs to the class 2b, whereas the product of two

azygetic reflections belongs to the class 3b (see Section 5 for precise definitions).

3. Degenerations of Jacobians and Prym varieties

3.1. By a theorem of Namikawa and Mumford, the classical Torelli map Mg → Ag sending

a smooth curve to its Jacobian extends to a regular morphismMg → Avor

g from the Deligne-

Mumford compactification of Mg to the toroidal compactification of Ag for the second

Voronoi fan. See [AB12] for a transparent modern treatment of this result, and extension

results for other toroidal compactifications of Ag. The result applies equally to the stacks

and to their coarse moduli spaces. Here, we will work with stacks, so that we have universal

families over them.
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3.2. At the heart of the result of Namikawa and Mumford is the Picard-Lefschetz formula

for the monodromy of Jacobians in a family of curves, see e.g. [Nam73, Proposition 5]. The

map of fans for the toroidal morphism Mg → Avor

g is described as follows. Fix a stable

curve [C] ∈ Mg, and let Γ be its dual graph, with a chosen orientation. Degenerations of

Jacobians are described in terms of the groups

C0(Γ,Z) =
⊕

vertices v

Zv, C1(Γ,Z) =
⊕

edges e

Ze, H1(Γ,Z) = Ker
{
∂ : C1(Γ,Z)→ C0(Γ,Z)

}
.

The Jacobian JC = Pic0(C) is a semiabelian group variety that is an extension

(3.1) 1→ H1(Γ,C∗)→ Pic0(C)→ Pic0(C̃)→ 0,

where C̃ is the normalization of C. In particular, Pic0(C) is a multiplicative torus if and

only if C̃ is a union of P1’s, or equivalently, if b1 = h1(Γ) = g.

The monodromy of a degenerating family of Jacobians is described as follows. Fix a lattice

Λ ' Zg and a surjection Λ� H1(Γ,Z). The rational polyhedral cone for a neighborhood of

[C] ∈Mg lives in the space Λ∨ ⊗R with the lattice Λ∨. It is a simplicial cone of dimension

b1 = h1(Γ) with the rays e∗i corresponding to the edges of Γ. Here, e∗i is the linear function

on H1(Γ,Z) ⊂ C1(Γ,Z) taking the value δij on the edge ej ∈ C1(Γ,Z).

The rational polyhedral cone corresponding to a neighborhood of [JC] ∈ Avor

g lives in

the space Γ2(Λ∨) ⊗ R = (Sym2(Λ) ⊗ R)∨, where the lattice Γ2(Λ∨) is the second divided

power of Λ∨. It is a simplicial cone with the rays (e∗i )
2 for all e∗i 6= 0, which means that ei

is not a bridge of the graph Γ. We explain what this means in down to earth terms. In an

open analytic neighborhood U of [C], one can choose local analytic coordinates z1, . . . , z3g−3

so that the first N coordinates correspond to smoothing the nodes of C, labeled by the

edges ei of the graph Γ. Thus, we have a family of smooth curves over the open subset

V = U −⋃N
i=1{zi = 0}.

Then a complex-analytic map V → Hg to the Siegel upper half-plane is given by a formula

(see [Nam73, Thm.2] or [Nam76, 18.7])

(zi) 7→
N∑
i=1

Mi ·
1

2π
√
−1

log zi + (a bounded holomorphic function),

where Mi are the g × g integral matrices corresponding to the quadratic functions (e∗i )
2 on

Λ� H1(Γ,Z). After applying the exponential map

C
g(g+1

2 → (C∗)
g(g+1

2 , uij 7→ exp(2π
√
−1 uij),

the matricesMi·(log zi/2π
√
−1) become Laurent monomials in zi, and one obtains a complex-

analytic map from U to an appropriate toroidal neighborhood of [JC] ∈ Avor

g .
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3.3. The following weak form of Torelli’s theorem is a sample of our degeneration technique.

This is far from being the easiest way to prove the Torelli theorem, but it gives a good

illustration of our method which we later apply to Prym-Tyurin-Kanev varieties.

Lemma 3.4. The image of the Torelli map Mg → Ag has full dimension 3g − 3.

Proof. For every g, there exists a 3-edge connected trivalent graph Γ of genus g (exercise in

graph theory). By Euler’s formula, it has 3g − 3 edges. Recall that a connected graph is

2-edge connected if it has no bridges, i.e. the linear functions e∗i on H1(Γ,Z) are all nonzero,

and it is 3-edge connected if for i 6= j one has e∗i 6= ±e∗j , i.e. (e∗i )
2 6= (e∗j)

2.

Let C be a stable curve whose dual graph is Γ and whose normalization is a disjoint union

of P1’s. Then the 3g − 3 matrices Mi in the formula (3.2), i.e. the functions (e∗i )
2, are

linearly independent in Sym2(Zg), cf. [AB12, Remark 3.6]. By looking at the leading terms

as zi → 0, this easily implies that the image has full dimension 3g − 3.

Equivalently, after applying the exponential function, the map becomes

(z1, . . . , z3g−3) 7→ (monomial map)× (invertible function),

Since the monomial part is given by monomials generating an algebra of transcendence degree

3g − 3, the image is full-dimensional. �

Remark 3.5. Note that the regularity of the extended Torelli map Mg → Avor

g played no

role in the proof of Lemma 3.4. All we need for the conclusion is the fact that the monodromy

matrices Mi are linearly independent.

3.6. The theory for Jacobians was extended to the case of Prym varieties in [ABH02]. We

briefly recall it. Let Rg be the stack of Prym curves of genus g, classifying admissible pairs

[C, ι] consisting of a stable curve with involution ι : C → C, so that C/ι is a stable curve of

genus g and the map C → C/ι is an admissible map of stable curves. We refer to [Bea77]

and [FL10] for background on Rg. Consider one pair [C, ι] ∈ Rg and a small analytic

neighborhood U of it. As before, Γ is the dual graph of C.

Then the space H1(C,Z) of the Jabobian case is replaced by the lattice H1/H
+
1 . Here,

H+
1 and H−1 are the (+1)- and the (−1)-eigenspaces of the involution action ι∗ on H1(C,Z)

respectively. Via the natural projection H1 � H1/H
+
1 , we identify H−1 with a finite index

sublattice of H1/H
+
1 .

The degeneration of Prym varieties as groups is

P (C, ι) = Ker(1 + ι∗)0 = Im(1− ι∗), ι∗ : Pic0(C)→ Pic0(C).

The monodromy of a degenerating family of Prym varieties is obtained by restricting the

monodromy map for JC to the (−1)-eigenspace. Combinatorially, it works as follows: For



16 V. ALEXEEV, R. DONAGI, G. FARKAS, E. IZADI, AND A. ORTEGA

every edge ei of Γ we have a linear function e∗i on the group H−1 , the restriction of the linear

function on H1(C,Z). For the divisor {zi = 0} on U corresponding to smoothing the node Pi

of C, the monodromy is given by the quadratic form (e∗i )
2 restricted to H1(Γ,Z)−. Similarly

to Lemma 3.4, this can be used to prove various facts about the Prym-Torelli map, but we

will not pursue it here.

4. Degenerations of Prym-Tyurin-Kanev varieties

We choose a concrete boundary point in a compactification of the Hurwitz scheme Hur.

We start with a single cubic surface S and the set {`1, . . . , `27} of 27 lines on it. Sometimes

we shall use the Schläfli notation {ai, bi, cij} for them, as in Section 2. We fix an embedding

of W (E6) into the symmetric group S27 permuting the 27 lines on S.

4.1. We choose 12 roots ri which generate the root system E6. Let wi ∈ W (E6) be the

reflections in ri; they generate W (E6). As we saw in Section 2, each wi is a double-six.

Fixing the root ri gives it an orientation.

4.2. Consider a nodal genus 0 curve E whose normalization is a union of P1’s and whose dual

graph is the tree T shown in the left half of Figure 1. The 24 ends of this tree correspond

to 24 points p1, . . . , p24 on E. We label the points by roots r1, . . . , r12. Each of the outside

vertices has two ends, we use the same label ri for both of them.

r1
r1r2 r2

r3

r3

r4

r4

r5

r5

r6

r6

r7r7 r8
r8

r9

r9

r10

r10

r11

r11

r12

r12

. . . −→

a1

b1

a6

b6

. . .

cij

. . .

a1

b1

a6

b6

. . .

cij

Figure 1. The tree T for the target curve E of genus 0

Definition 4.3. Let π : C → E be an admissible 27 : 1 cover ramified at the point pi with

monodromy wi for i = 1, . . . , 24.
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For every irreducible component of E, the product of the monodromy elements equals 1;

this count includes the nodes. Since we required that for every component on the boundary

the two wi’s are the same, the map is unramified at the nodes. Thus, π is étale over

E \ {p1, . . . , p24}.

4.4. Here is a concrete description of the dual graph Γ of C. It has

10× 27 + 12× (6 + 15) vertices and 21× 27 edges

Each vertex v of T in the étale part has 27 vertices over it. Over each of the outside 12

vertices, there are 6 vertices, where the map P1 → P1 is 2 : 1 and ramified at a pair of the

points pi and pi+12, and 15 other vertices where the map P1 → P1 is 1 : 1.

All the nodes of E lie in the étale part, so for each internal edge e of the tree T there are

27 edges of Γ.

4.5. The graph Γ is homotopically equivalent to the following much simpler graph Γ′. It

has:

(1) 27 vertices {vs}27
s=1, labeled by the lines on S. (Here, s stands for “sheets”.)

(2) 12× 6 edges eij. For each of the twelve roots ri, there are 6 edges. For example, for

r = rmax, the edges are (a1, b1), . . . , (a6, b6). The first edge is directed from a1 to b1,

etc.

The graph Γ′ is obtained from Γ by contracting the tree in each sheet to a point, and

removing the middle vertex of degree 2 for each of the 12 × 6 paths corresponding to the

double-sixes. The process is illustrated in the right half of Figure 1.

By Euler’s formula, the genus of Γ is 12×6−27+1 = 46. Thus, the curve C has arithmetic

genus 46.

4.6. Next we define a correspondence D̃ ⊂ C × C of bidegree (10, 10), as follows. To each

point Q ∈ C over the étale part in the sheet labeled `i, associate 10 points in the same fiber

of π that are labeled `ij by the lines that intersect `i.

This defines the curve D̃0 ⊂ C0×C0, where C0 = C\π−1{p1, . . . , p24}. The correspondence

D̃ ⊂ C×C is the closure of D̃0. Let pi be a ramification point with monodromy wi. Without

loss of generality, we may assume w = wmax. The points in the fiber π−1(pi) are labeled a1b1,

. . . , a6b6 and cij for i 6= j. Then the correspondence is described by:

a1b1 7→
6∑
i=2

(aibi + c1i), c12 7→ a1b1 + a2b2 +
∑
i,j 6=1,2

cij, etc.
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Lemma 4.7. There exists an analytic neighborhood U ⊂ M0,24 of the point [E, p1, . . . , p24]

and a family of covers πt : Ct → Et together with correspondences D̃t ⊂ Ct × Ct over U ,

which extends π : C → E and D̃.

Proof. Since the map π is étale over each node of E, the families Ct and D̃t extend naturally.

The monodromy data determine the Ct’s as topological spaces. Then the finite map Ct → Et

determines a unique structure of an algebraic curve on Ct. �

Lemma 4.8. The correspondence D̃ ⊂ C × C induces an endomorphism of the homology

group D : H1(Γ,Z) → H1(Γ,Z) satisfying the relation (D − 1)(D + 5) = 0. The (−5)-

eigenspace H
(−5)
1 can be naturally identified with Ker(φ), where

φ :
12⊕
i=1

ZRi → E6, Ri 7→ ri.

Here, R1, . . . , R12 are standard basis vectors in Z12. Since the vectors ri generate the lattice

E6, one has rkH
(−5)
1 = 6.

Proof. We will work with the graph Γ′ defined in 4.5, since the homology groups of Γ and Γ′

are canonically identified. The group C0(Γ′,Z) of vertices is
⊕27

i=1 Zvi. The endomorphism

D0 on it is defined in the same way as the correspondence on the 27 lines. The induced

endomorphism D1 on C1(Γ′,Z) is the following. Pick one of the roots ri. Without loss of

generality, let us assume r = αmax. Then

D1(a1, b1) = −(a2, b2)− . . .− (a6, b6).

By (2.6), D commutes with ∂, so defines an endomorphism on H1(Γ′,Z).

The endomorphism D1 on C1(Γ′,Z) splits into 12 blocks each given by the (6×6)-matrix N

such thatNii = 0 andNij = −1 for i 6= j. It is easy to see that (N−1)(N+5) = 0 and that the

(−5)-eigenspace of N is 1-dimensional and is generated by the vector (a1, b1) + . . .+ (a6, b6).

This gives an identification C1(Γ′,Z)(−5) =
⊕12

i=1 ZRi. The homomorphism ∂ : C1 → C0 is

defined by Ri 7→
∑27

s=1(ri, e
s)vs, where es are the 27 exceptional vectors. Since the bilinear

form on E6 is nondegenerate and es span E∨6 , one has

∂
( 12∑
i=1

niRi

)
= 0 ⇐⇒

(
φ
( 12∑
i=1

niRi

)
, es

)
= 0 for s = 1, . . . , 27 ⇐⇒ φ

( 12∑
i=1

niRi

)
= 0.

Therefore, H
(−5)
1 = C

(−5)
1 ∩Ker(∂) = Ker(φ). �

It is an elementary linear algebra exercise to pick an appropriate basis in Ker(φ), which

becomes especially easy if r1, . . . , r6 form a basis in E6.
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Theorem 4.9. The limit of Prym-Tyurin varieties P (Ct, Dt) as a group is the torus (C∗)6

with the character group H
(−5)
1 . For each of the 21 internal edges ei of the tree T , the

monodromy around the divisor {zi = 0} in the neighborhood U ⊂ M0,24 is given by the

quadratic form Mi =
∑27

s=1((esi )
∗)2 on H

(−5)
1 .

Proof. The first statement is immediate: the limit of Jacobians as a group is a torus with

the character group H1(Γ,Z), and the Prym-Tyurin varieties are obtained by taking the

(−5)-eigenspace.

Every internal edge ei of T corresponds to a node of the curve E. Over it, there are 27 nodes

of the curve C. The map is étale, so the local coordinates zsi for the smoothings of these nodes

can be identified with the local coordinate zi. By Section 3, the matrix for the monodromy

around zsi = 0 is ((esi )
∗)2. The monodromy matrix for Prym-Tyurin varieties is obtained by

adding these 27 matrices together and restricting them to the (−5)-eigenspace. �

To compute the linear forms (esi )
∗ on H1(Γ,Z), we need to unwind the identification

H1(Γ,Z) = H1(Γ′,Z).

Lemma 4.10. Let p :
⊕12

i=1 ZRi →
⊕21

j=1 Zej be the map which associates to Ri the oriented

path in the tree T of Figure 1 from the central point O to an end labeled ri. Then, using the

identification H1(Γ,Z)(−5) = Ker(φ) ⊂ ⊕12
k=1 ZRk, the linear functions (esi )

∗ are defined by

the formula

(esi )
∗(Rk) = 〈rk, `s〉 · 〈p(Rk), e

∗
i 〉,

where the first pairing is E6 × E∗6 → Z, and for the second one 〈ej, e∗i 〉 = δij.

Proof. Let (vs1 , vs2) be an edge in Γ′. To it, we associate the path in the graph Γ going from

the center of level s1 to the center of level s2:

path(Os1 , r
s1
1 ) + path(vs1 , vs2)− path(Os2 , r

s2
1 ).

This rule gives an identification H1(Γ′,Z) = H1(Γ,Z).

For each of the 12 roots rk, we have 6 edges in the graph Γ′ going from the vertices s with

〈rk, `s〉 = 1 to the vertices s with 〈rk, `s〉 = −1. The contribution of Rk to the adjusted cycle

therefore is
27∑
s=1

〈rk, `s〉 · path(Os, rk) =
27∑
s=1

〈rk, `s〉 · p(Rk)
∣∣
ei=esi

The value of the linear function esi on it is therefore given by the formula in the statement. �

To complete the computation, we have to do the following:

(1) Choose a basis of the 6-dimensional space H1(Γ,Z)(−5) = Ker(φ) ⊂⊕12
k=1 ZRk.

(2) Compute the 21× 27 linear functions (esi )
∗ on this 6-dimensional space.
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(3) Compute the 21 × 27 quadratic functions ((esi )
∗)2, each of which is a symmetric

6× 6-matrix.

(4) And finally compute the 21 monodromy matrices Mi =
∑27

s=1((esi )
∗)2 of Theorem 4.9.

Theorem 4.11. There exist collections of E6 roots r1, . . . , r12 generating the lattice E6 for

which the 21 symmetric (6× 6)-matrices Mi of Theorem 4.9 are linearly independent.

Proof. A concrete example is r1 = α135, r2 = α12, r3 = α23, r4 = α34, r5 = α45, r6 = α56,

r7 = α456, r8 = α26, r9 = α123, r10 = α125, r11 = α256, r12 = α15. An explicit computation

using the the formula in Lemma 4.10, aided by a computer algebra system, shows that

(1) The monodromy matrices Mi are all divisible by 6. This corresponds to the fact that

the restriction of the principal polarization from the Jacobian to the Prym-Tyurin

variety is 6 times a principal polarization.

(2) For the normalized forms M ′
i = Mi/6, the determinant of the corresponding (21×21)-

matrix is 212 6= 0.

A Mathematica notebook with an explicit computation is available at [Web15]. �

Corollary 4.12. Theorem 0.1 holds.

Proof. By the same argument as in the proof of Lemma 3.4, the image of the complex-analytic

map U → A6 has full dimension 21. Thus, the map PT : Hur→ A6 is dominant. �

Remark 4.13. Computer experimentation shows that for a very small portion of random

choices of the roots r1, . . . , r12, the matrices Mi are linearly independent. In most of these

cases the determinant is 212 but in some cases it is 213.

A necessary condition is for the roots r1, r2 to be non-orthogonal, and similarly for the

pairs r3, r4, etc. Experimentation also shows that there is nothing special about the graph

in Figure 1. Any other trivalent graph with 12 vertices of degree one works no worse and no

better.

Remark 4.14. The theme of determining the Prym-Tyurin variety associated to an E6-

admissible cover will be picked-up again more systematically in Section 6 in the context of

completely describing the map PT : Hur 99K A6 at the level of divisors.

5. The global geometry of the Hurwitz space of E6-covers

5.1. We denote by H the Hurwitz space of E6-covers π : C → P1 together with a labeling

(p1, . . . , p24) of its branch points. Let H be the compactification of H by admissible W (E6)-

covers. By [ACV03], the stack H is isomorphic to the stack of balanced twisted stable maps
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into the classifying stack BW (E6) of W (E6), that is,

H :=M0,24

(
BW (E6)

)
.

For details concerning the local structure of spaces of admissible coverings, we refer to

[ACV03]. Note that H is the normalization of the Harris-Mumford moduli space HME6

defined (in the case of covers with Sn-monodromy) in [HM82]. Points of HME6 are E6-

admissible coverings [π : C → R, p1, . . . , p24], where C and R are nodal curves of genus 46

and 0 respectively, and p1, . . . , p24 ∈ Rreg are the branch points of π. The local monodromy

of π around pi ∈ P1 is given by a reflection wi ∈ W (E6), for i = 1, . . . , 24. Let b : H →M0,24

be the branch morphism and ϕ : H → M46 be the source morphism. Obviously, S24 acts

on H and the projection q : H → Hur is a principal S24-bundle. Passing to the S24-quotient

and denoting as usual M̃0,n :=M0,n/Sn, we consider the induced branch and source maps

br : Hur→ M̃0,24 and ϕ̃ : Hur→M46,

respectively. For each E6-cover [π : C → P1] ∈ Hur, the Kanev endomorphism D : JC → JC

induces, at the level of (co-)differentials, an endomorphism D : H0(C,KC) → H0(C,KC),

which we denote by the same symbol, as well as a splitting

H0(C,KC) = H0(C,KC)(+1) ⊕H0(C,KC)(−5)

into (+1) and (−5)-eigenspaces respectively. In turn, this induces a decomposition of the

rank 46 Hodge bundle E := ϕ̃∗(E) pulled-back from M46 into eigenbundles

E = E(+1) ⊕ E(−5),

where rk(E(+1)) = 40 and rk(E(−5)) = 6. We set λ(+1) := c1(E(+1)) and λ(−5) := c1(E(−5)),

therefore λ := ϕ̃∗(λ) = λ(+1) +λ(−5). We summarize the discussion in the following diagram:

(5.1) H q
//

b
��

Hur

br
��

ϕ̃
// M46

M0,24
// M̃0,24

5.2. Let Ag be the perfect cone compactification of Ag. The rational Picard group of Ag
has rank 2 and it is generated by the first Chern class λ1 of the Hodge bundle and the

class of the irreducible boundary divisor Dg := Ag − Ag. Following [Mum83], we consider

the moduli space Ãg of principally polarized abelian varieties of dimension g together with

their degenerations of toric rank 1. This is a partial compactification of Ag isomorphic to

the blow-up of the open subset Ag,tor.rk≤1 = Ag t Ag−1 in the Satake compactification ASat

g .
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Moreover, Ãg = Ag t D̃g, where D̃g is an open dense subvariety of the boundary divisor

Dg isomorphic to the universal Kummer variety over Ag−1. Denote by bg the proper map

Ãg → ASat
g .

Lemma 5.3. Both Hodge eigenclasses λ(+1) and λ(−5) ∈ CH1(Hur) are nef.

Proof. Kollár [Kol90] showed that the Hodge bundle E is semipositive, therefore the eigen-

bundles E(+1) and E(−5) as quotients of E are semipositive as well. Therefore det(E(+1)) and

det(E(−5)) are nef line bundles. �

Theorem 5.4. There exists an open subset Hurtor.rk≤1 ⊂ Hur such that PT restricts to a

proper morphism PT : Hurtor.rk≤1 → Ã6.

Proof. The rational map PT extends to a regular morphism PT Sat : Hur → ASat

6 to the

Satake compactification. At the level of points, it maps an admissible cover π : C → P1 to

the abelian part of the semiabelian Prym-Tyurin variety. In particular, the preimage

(PT Sat)−1(A6,tor.rk≤1) =: Hurtor.rk≤1 ⊆ Hur

is open.

By [Ale02], the toroidal compactification Avor

g for the 2nd Voronoi fan has a geometric

meaning: its normalization is the (main irreducible component of the) moduli space of

principally polarized stable semiabelic pairs (G y X,Θ). Here, G is a semiabelian group

variety, X is a reduced projective variety with G-action, and Θ is an ample Cartier divisor

not containing any G-orbits and satisfying Θg/g! = 1. See [Ale02] for more details.

Using this fact, we obtain a rational map PT : Hur 99K Avor
6 . It may not be regular.

However, we claim that it is regular on Hurtor.rk≤1. The map PT is regular around a point

π = [π : C → R] ∈ Hur if and only if for any 1-parameter family [πt : Ct → Rt] with π0 = π,

the limit semiabelic pair (X,Θ) ∈ Avor

6 depends only on π and not on the family πt.

The semiabelian Prym-Tyurin variety G depends only on P . But for a semiabelian variety

G of toric rank at most 1, there exists a unique stable pair G y X ⊃ Θ. (See e.g. [Ale02]

again; these are Mumford’s “first order degenerations” from [Mum83]. For toric rank ≥ 2

this is no longer true). Thus, PT is a morphism over Hurtor.rk≤1 and the image is contained

in Ã6. Note that Ãg is an open subset that is shared by all toroidal compactifications of Ag,
in particular by those for perfect cones and second Voronoi fans.

Thus, we have maps Hurtor.rk≤1
PT−→ Ã6

b6−→ A6,tor.rk≤1. Since both b6 and b6 ◦ PT are

proper, it follows that PT is also proper. �

5.5. The conclusion of Theorem 0.1 can be restated in terms of the positivity of λ(−5). The

fact that the Prym-Tyurin map PT : Hur 99K A6 is dominant can be interpreted as saying
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that the class λ(−5) ∈ CH1(Hur) is big. A similar statement can be made concerning the

Kodaira dimension of A6, as we explain now.

Corollary 5.6. Let Di be the irreducible divisors supported on Hur \ Hurtor.rk≤1. Then to

prove that A6 is of general type, it suffices to show that there exist some integers ai such that

the divisor PT ∗(KÃ6
) +

∑
aiDi on Hur is big.

Proof. If this divisor is big on Hur, then its corresponding linear system has maximal

Iitaka dimension. Then the linear system |PT∗PT ∗(KÃ6
)| has maximal Iitaka dimension

as well. Since all boundary divisors Di are contracted under the Prym-Tyurin map, we write

PT∗

(
PT ∗(KÃ6

)
)

= PT∗

(
PT ∗(KÃ6

) +
∑

i aiDi

)
= deg(PT )KÃ6

, so KÃ6
is big. �

It is amusing to note that one can reprove along these lines Wirtinger’s classical result

[Wir95] on the dominance of the Prym map in dimension 5:

Proposition 5.7. The Prym map P : R6 → A5 is generically finite if and only there exists

an effective divisor D ∈ Eff(M6) of slope s(D) < 8.

Proof. We consider the rational Prym map P : Rg+1 99K Ag from the moduli space of stable

Prym curves, the projection π : Rg →Mg and use the notation from [FL10] for divisors on

Rg. In particular, δram
0 denotes the class of the ramification divisor of π and δ

′′
0 is the divisor

class of Wirtinger covers. The map P is generically finite for g = 6 if and only if the class

P ∗(λ1) = λ− 1

4
δram

0 ∈ CH1(R6)

is big. Since π∗(δ0) = δ
′
0 + δ

′′
0 + 2δram

0 , the class λ − 1
4
δram

0 − π∗([D]) ∈ CH1(R6) is big for

an effective divisor [D] = sλ− δ ∈ Eff(Mg), if s < 8. Such a divisor D exists. For instance,

one can choose D to the Petri divisor on M6 consisting of curves [C] ∈M6 having a pencil

A ∈ W 1
4 (C) with H0(C,KC⊗A⊗(−2)) 6= 0. It is known that the slope of D equals 47

6
< 8. �

We now turn to describing the geometry of the Hurwitz space H. We make the following:

Definition 5.8. For a partition µ = (µ1, . . . , µ`) ` n, we define lcm(µ) := lcm(µ1, . . . , µ`)

and 1
µ

:= 1
µ1

+ · · · + 1
µ`

. For i = 2, . . . , 12, we denote by Pi the set of partitions µ ` 27

describing the conjugacy class of products of i reflections in W (E6).

5.9. Each boundary divisor of H corresponds to the following combinatorial data:

(1) A partition I t J = {1, . . . , 24}, such that |I| ≥ 2, |J | ≥ 2.

(2) Reflections {wi}i∈I and {wj}j∈J in W (E6), such that
∏

i∈I wi = u,
∏

j∈J wj = u−1,

for some u ∈ W (E6). The sequence w1, . . . , w24 is defined up to conjugation by the

same element g ∈ W (E6).
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To this data, we associate an E6-admissible covering with a labeling of the branch points

t :=
[
π : C → R, p1, . . . , p24

]
∈ H,

where [R = R1 ∪q R2, p1, . . . , p24] ∈ B|I| ⊂ M0,24 is a pointed union of two smooth ra-

tional curves meeting at the point q. The marked points lying on R1 are precisely those

labeled by the set I. Over q, the map π is ramified according to u, that is, the points

in π−1(q) correspond to cycles in the permutation u considered as an element of S27. Let

µ := (µ1, . . . , µ`) ` 27 be the partition induced by u ∈ S27 and denote by Ei:µ the bound-

ary divisor on H classifying E6-admissible coverings with π−1(q) having partition type µ,

and precisely i of the points p1, . . . , p24 lying on R1. Clearly only partitions from Pi are

considered.

In Table 1 we give the list of partitions of 27 appearing as products of reflections in W (E6)

(using GAP notation for the conjugacy classes). For future use, we also record the invariants
1
µ
, for each µ ∈ Pi.

5.10. We recall the local structure of the morphism b : H → M0,24, over the point t, see

also [HM82] p.62. The (non-normalized) space HME6 is locally described by its local ring

(5.2) Ôt,HME6
= C[[t1, . . . , t21, s1, . . . , s`]]/s

µ1
1 = · · · = sµ`` = t1,

where t1 is the local parameter on M0,24 corresponding to smoothing the node q ∈ R. By

passing to the normalization ν : H → HME6 , we deduce that over each point of the fibre

ν−1(t) the map b : H → M0,24 is ramified with index lcm(µ). Indeed, if π̃ : C̃ → R is

the Galois closure of the degree 27 cover π : C → R corresponding to t, then each point

from π̃−1(q) has ramification index lcm(µ) over q. Thus for each i = 2, . . . , 12, we have a

decomposition

b∗(Bi) =
∑
µ∈Pi

lcm(µ)Ei:µ,

where the partitions in Pi can be found in Table 1.

In view of applications to the Kodaira dimension of H, we discuss in detail the pull-back

b∗(B2). We pick a point t = [π : C = C1 ∪ C2 → R = R1 ∪q R2, p1, . . . , p24] ∈ B2 like in

5.9, where Ci = π−1(Ri). Without loss of generality, we assume that I = {1, . . . , 22}, thus

p1, . . . , p22 ∈ R1 and p23, p24 ∈ R2. The group G = 〈w1, . . . , w22〉 generated by the reflections

in the remaining roots r1, . . . , r22 ∈ E6 is the Weyl group for a lattice L = LG ⊂ E6. Since∏24
i=1wi = 1, it follows that w23 · w24 ∈ G, hence rk(L) ≥ rk(E6)− 1 = 5.

5.11. Assume that the reflections w23 and w24 corresponding to the coalescing points p23

and p24 are equal, hence w23 = w24. In this case, the corresponding partition is µ = (127) and
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Number of reflections Partition µ of 27 Conjugacy class 1
µ

0, 2, 4, 6 127 1a 27

1, 3, 5 (26, 115) 2c 18

2, 4, 6 (210, 17) 2b 12

2, 4, 6 (36, 19) 3b 11

3, 5 (212, 13) 2d 9

3, 5 (45, 21, 15) 4d 27
4

3, 5 (61, 34, 23, 13) 6e 6

4, 6 (212, 13) 2a 9

4, 6 (39) 3c 3

4, 6 (46, 13) 4a 9
2

4, 6 (45, 23, 1) 4b 15
4

4, 6 (55, 12) 5a 3

4, 6 (63, 23, 13) 6b 5

4, 6 (62, 32, 24, 1) 6d 4

5 (45, 23, 1) 4c 15
4

5 (62, 35) 6f 2

5 (64, 31) 6g 1

5 (83, 21, 1) 8a 7
8

5 (101, 53, 21) 10a 58
5

5 (121, 61, 42, 1) 12b 7
4

6 (39)∗ 3a 1
3

6 (64, 31)∗ 6a 11
3

6 (63, 23, 13)∗ 6c 5

6 (93) 9a 1
3

6 (122, 31) 12a 19
6

Table 1. Products of reflections in W (E6)

we set E0 := E2:127 . We denote by EL the boundary divisor of admissible covers in E2:(127)

corresponding to the lattice L. The map b is unramified along each divisor EL and we have

E0 =
∑
L⊂E6

EL ⊂ H.

The general cover t corresponding to each divisor EL carries no automorphism preserving

all branch points p1, . . . , p24, that is, Aut(t) = {Id}.
Suppose now that the reflections w23 and w24 are distinct. Following [Dol12], we distinguish

two possibilities depending on the relative position of the two double-sixes, described in terms

of a general admissible cover t =
[
π : C = C1 ∪ C2 → R1 ∪q R2, p1, . . . , p24

]
.
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5.12. The reflections w23 and w24 form an azygetic pair, that is, the corresponding roots r23

and r24 satisfy r23 ·r24 6= 0. In this case, 〈w23, w24〉 = W (A2) and r23 +r24 or r23−r24 is again

a root that is azygetic to both r23 and r24. The double-sixes associated to w23 and w24 share

6 points and the permutation w23 · w24 decomposes into 6 disjoint three cycles, therefore

µ = (36, 19) ` 27. Accordingly, C2 = π−1(R2) decomposes into six rational components

mapping 3 : 1, respectively 9 components mapping isomorphically onto R2. If

Eazy := E2:(36,19) ⊂ H

is the boundary divisor parametrizing such points, then b is triply ramified along Eazy. The

general point of Eazy has no non-trivial automorphisms preserving all the branch points.

5.13. The reflections w23 and w24 form a syzygetic pair, that is, r23 · r24 = 0. We have

〈w23, w24〉 = W (A2
1). The two associated double-sixes share 4 points and w23 · w24 ∈ S27

decomposes into a product of 10 disjoint transpositions, therefore µ = (210, 17). Eight of

these transpositions are parts of the double-sixes corresponding to w23 and w24 that remain

disjoint respectively. Note that C2 consists of 8 rational components mapping 2 : 1 onto

R2, as well as a smooth rational component, say Z, mapping 4 : 1 onto R2. The fibers

π−1
Z (q), π−1

Z (p1) and π−1
Z (p2) each consist of two ramification points. We denote by

Esyz := E2:(210,17) ⊂ H

the boundary divisor of admissible syzygetic covers. For a general cover t ∈ Esyz, note that

Aut(t) = Z2, see Remark 5.16.

5.14. To summarize the discussion above, we have the following relation:

(5.3) b∗(B2) = E0 + 3Eazy + 2Esyz.

In opposition to E0, we show in Theorem 6.19 that the boundary divisors Eazy or Esyz have

fewer components. Precisely, for a general element t ∈ Eazy or t ∈ Eazy, we always have

G = W (L) = W (E6), hence the subcurve C1 = π−1(R1) is irreducible.

5.15. The Hurwitz formula applied to the ramified cover b : H →M0,24, coupled with the

expression KM0,24
≡∑12

i=2

( i(24−i)
23
− 2
)
Bi to be found e.g. in [KM13], yields

(5.4) KH = b∗KM0,24
+ Ram(b) = − 2

23
[E0] +

19

23
[Esyz] +

40

23
[Eazy] +N,

where N is the effective combination of the boundary divisors of H disjoint from E0, Esyz and

Eazy, with the coefficient of [Ei:µ] for i = 3, . . . , 12 being equal to lcm(µ)
( i(24−i)

23
−1
)
−1 > 0.

The ramification divisor of the projection q : H → Hur is contained in the pull-back

b∗(B2) (recall the commutative diagram 5.1). Note that B2 is the ramification divisor of
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the map M0,24 → M̃0,24. The general point of each of the components of E0 and Eazy

admits an involution compatible with the involution of the rational curve R2 preserving q

and interchanging the branch points p23 and p24 respectively. No such automorphism exists

for a general point of the divisor Esyz (see Remark 5.16), thus

Ram(q) = E0 + Eazy.

Remark 5.16. We illustrate the above statement in the case of the divisor Esyz. We choose

a general point t :=
[
π : C → R = R1∪qR2, p1, . . . , p24

]
∈ Esyz, and denote by πZ : Z → R2,

the degree 4 cover having as source a smooth rational curve Z and such that π∗Z(q) = 2u+2v,

and π∗Z(pi) = 2xi + 2yi, for i = 23, 24. Then Aut(t) = Z2. Furthermore, there exist a unique

automorphism τ ∈ Aut(R2) such that τ(q) = q, τ(p23) = p24 and τ(p24) = p23, as well as a

unique automorphism σ ∈ Aut(Z) with σ(u) = u, σ(v) = v, σ(x23) = y23 and σ(x24) = y24

and such that πZ ◦ σ = τ ◦ πZ . Note that σ induces the unique non-trivial automorphism

of t fixing all the branch points. In contrast, the general point of Eazy corresponds to an

admissible cover which has no automorphisms fixing all the branch points.

Definition 5.17. On the space Hur of unlabeled E6-covers, we introduce the reduced bound-

ary divisors D0, Dsyz, Dazy, as well as the boundary divisors
{
Di:µ : 3 ≤ i ≤ 12, µ ∈ Pi

}
which

pull-back under the map q : H → Hur to the corresponding divisors indexed by E’s, that is,

q∗(D0) = 2E0, q∗(Dazy) = 2Eazy, q∗(Dsyz) = Esyz and q∗(Di:µ) = Ei:µ, for 3 ≤ i ≤ 12 and

µ ∈ Pi. More generally, for each sublattice L ⊂ E6, we denote by DL ⊂ Hur the reduced

divisor characterized by pulling-back to EL under the map q.

If D is an irreducible divisor on Hur, we denote as usual by [D] := [D]Q ∈ CH1(Hur)Q its

Q-class, that is, the quotient of its usual class by the order of the automorphism group of a

general point from D.

Theorem 5.18. The canonical class of the Hurwitz space Hur is given by the formula:

KHur = −25

46
[D0] +

19

23
[Dsyz] +

17

46
[Dazy] +

12∑
i=3

∑
µ∈Pi

(
lcm(µ)

(i(24− i)
23

− 1
)
− 1
)

[Di:µ].

Proof. We apply the Riemann-Hurwitz formula to the map q : H → Hur and we find

q∗(KHur) = KH − [E0]− [Eazy] = −25

23
[E0] +

19

23
[Esyz] +

17

23
[Eazy] + · · · ∈ CH1(H).

�

5.19. We describe the Hodge class on H in terms of boundary divisors, and to that end

we set notation. For 2 ≤ i ≤ 12, let Bi :=
∑
|T |=i δ0:T ∈ Pic(M0,24) be the boundary

class, where the sum runs over all subsets T ⊂ {1, . . . , 24} of cardinality i. Recall that δ0:T
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is the closure of the locus of pointed curves consisting of two rational components, such

that the marked points lying on one component are precisely those labeled by T . Let B̃i

be the reduced boundary divisor on M̃0,24 which pulls-back to Bi under the quotient map

M0,24 → M̃0,24. Furthermore, let ψ1, . . . , ψ24 ∈ Pic(M0,24) be the cotangent tautological

classes corresponding to the marked points. The universal curve overM0,24 is the morphism

π := π25 :M0,25 →M0,24, forgetting the marked point labeled by 25. The following formulas

are well-known, see e.g. [FG03]:

Proposition 5.20. The following relations hold:

(1) c1(ωπ) = ψ25 −
24∑
i=1

δ0:i,25 ∈ CH1(M0,25).

(2)
24∑
i=1

ψi =
12∑
i=2

i(24− i)
23

[Bi] ∈ CH1(M0,24), (3) κ1 =
12∑
i=2

(i− 1)(23− i)
23

[Bi].

We now find a boundary expression for the Hodge class at the level of H.

Theorem 5.21. The Hodge class at the level of H is given by the following formula:

λ =
12∑
i=2

∑
µ∈Pi

1

12
lcm(µ)

(9i(24− i)
23

− 27 +
1

µ

)
[Ei:µ].

Note that a boundary formula for λ in the case of Sn-covers has appeared first in [KKZ11]

and confirmed later with algebraic methods in [vdGK12].

Proof. Over the Hurwitz space H we consider the universal E6-admissible cover f : C → P ,

where P := H ×M0,24
M0,25. Note that P is the universal orbicurve of genus zero over H.

This means that over a general point t = [C → R, p1, . . . , p24] of a boundary divisor Ei:µ,

where µ = (µ1, . . . , µ`) ∈ Pi corresponding to the local description (5.2), even though P

has a singularity of type Alcm(µ)−1, the space C has singularities of type Alcm(µ)/µi−1 at the `

points corresponding to the inverse image of Rsing.

We further denote by φ : P → H and by q̃ : P → M0,25 the two projections and by

v := φ ◦ f : C → H and f̃ := q̃ ◦ f : C → M0,25 respectively. The ramification divisor of f

decomposes into components R = R1 + · · ·+ R24 ⊂ C, where a general point of Ri is of the

form [C → R, p1, . . . , p24, x], where x ∈ C is one of the six ramification points lying over the

branch point pi. In particular f∗([Ri]) = 6[Bi], where Bi ⊂ P is the corresponding branch

divisor.

We apply the Riemann-Hurwitz formula for f and write: c1(ωv) = f ∗q̃∗c1(ωπ) + [R]. We

are going to push-forward via v the square of this identity and describe all the intervening
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terms in the process. Over H we have the identity:

ϕ∗(κ1) = v∗c
2
1(ωv) = v∗

((
f̃ ∗c2

1(ωπ) + 2f̃ ∗c1(ωπ) · [R] + [R]
)2
)
.

We evaluate each appearing term: v∗

(
f̃ ∗c1(ωπ) · [R]

)
=

24∑
i=1

φ∗(q̃
∗c1(ωπ) · 6[Bi]) = 6

24∑
i=1

φ∗q̃
∗
(
c1(ωπ) · [∆0:i,25]

)
= 6b∗

( 24∑
i=1

ψi

)
.

Furthermore, f ∗(Bi) = 2Ri + Ai, where Ai is the anti-ramification divisor mapping 15 : 1

onto Bi. Note that Ai and Ri are disjoint, hence f ∗([Bi]) ·Ri = 2R2
i , therefore

v∗([Ri]
2) = 3φ∗([B

2
i ]) = 3φ∗(q̃

∗(δ2
0:i,25)

)
= −3b∗(ψi).

Using Proposition 5.20, we find that

v∗([R]2) = v∗
( 24∑
i=1

[Ri]
2
)
≡ −3

12∑
i=2

i(24− i)
23

b∗(Bi).

We will use Proposition 5.20, and the relation π∗(δ
2
0:i,25) = −ψi, to write:

v∗f̃
∗c2

1(ωπ) = φ∗

(
27q̃∗c2

1(ωπ)
)

= 27b∗π∗

(
ψ25 −

24∑
i=1

δ0:i,24

)2

=

27b∗
(
κ1 −

24∑
i=1

ψi

)
≡ −27b∗

( 12∑
i=2

Bi

)
.

We find the following expression for the pull-back of the Mumford class to H:

(5.5) v∗c
2
1(ωv) ≡

12∑
i=2

(9i(24− i)
23

− 27
)
b∗(Bi) ≡

12∑
i=2

∑
µ∈Pi

lcm(µ)
(9i(24− i)

23
− 27

)
Ei:µ.

Using Mumford’s GRR calculation in the case of the universal genus 46 curve v : C → H,

coupled with the local analysis of the fibres of the map b, we have that

12ϕ∗(λ) ≡ v∗c
2
1(ωv) +

12∑
i=2

∑
µ∈Pi

lcm(µ1, . . . , µ`)
( 1

µ1

+ · · ·+ 1

µ`

)
Ej:µ.

Substituting in (5.5), we finish the proof. �

Remark 5.22. Using Definition 5.17, we spell out Theorem 5.21 at the level of Hur:

(5.6) λ =
33

46
[D0] +

7

46
[Dazy] +

17

46
[Dsyz] + · · · ∈ CH1(Hur).

Proposition 5.23. The morphism ϕ : H → M46 has ramification of order 12 along the

divisor E0. In particular, the class ϕ∗(δ0)− 12[E0]− 2[Esyz] ∈ CH1(H) is effective.
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Proof. The morphism ϕ factors via Hur, that is, ϕ = ϕ̃ ◦ q, where recall that q : H → Hur

is the projection map and ϕ̃ : Hur → M46. We have observed that q is ramified along E0.

Furthermore, since the general element of ϕ(E0) is a 6-nodal curve, the local intersection

number
(
ϕ̃(Γ) · δ0

)
ϕ̃(t)

, for any curve Γ ⊂ Hur passing through a point t ∈ q(E0), is at least

equal to 6. Finally, [Esyz] appears with multiplicity 2 because, as pointed out in Remark

5.16, each point of Esyz has an automorphism of order 2. �

5.24. To establish the bigness of the class KH we shall use Moriwaki’s class [Mor98]

mo := (8g + 4)λ− gδ0 −
b g
2
c∑

i=1

4i(g − i)δi ∈ CH1(Mg).

It is shown in [Mor98] that mo non-negatively intersects all complete curves in Mg whose

members are stable genus g curves with at most one node. Furthermore, the rational map

φn·mo :Mg 99K Pν defined by a linear system |n·mo| with n� 0, induces a regular morphism

on Mg. In our situation when g = 46, this implies that the pull-back ϕ∗(mo) is an effective

Q-divisor class on H, which we shall determine. In what follows, if D1 and D2 are divisors

on a normal variety X, we write D1 ≥ D2 if D1 −D2 is effective.

Proposition 5.25. The following divisor class on the Hurwitz space H

− 2

23
E0 +

523

2415
Esyz +

62

115
Eazy +

12∑
i=3

∑
µ∈Pi

93

1610
i(24− i)lcm(µ)Ei:µ

is effective.

Proof. We give a lower bound for the coefficient of Ei:µ in the expression ϕ∗(λ) of Theorem

5.21, by observing that for a partition (µ1, . . . , µ`) ` 27, the inequality 1
µ1

+· · ·+ 1
µ`
≤ 27 holds.

Using this estimate together with Theorem 5.21 ϕ∗(λ) = 33
23

[E0] + 17
46

[Esyz] + 7
23

[Eazy] + · · · ,
as well as Proposition 5.23, we write

0 ≤ 1

210
ϕ∗(mo) ≤ 372

210
ϕ∗(λ)− 46 · 12

210
[E0]− 46 · 2

210
[Esyz] =

− 2

23
[E0] +

523

2415
[Esyz] +

62

115
[Eazy] +

12∑
i=3

∑
µ∈Pi

93

1610
i(24− i)lcm(µ)[Ei:µ].

The scaling has been chosen in such a way to match the negative E0 coefficient in the

canonical class KH of (5.4). �

As a step towards determining the Kodaira dimension of Hur we establish the following:

Theorem 5.26. The canonical class of H is big.
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Proof. Recalling that b : H →M0,24, for each 0 < α < 1, using (5.4) we write the equality

KH = (1− α)b∗(κ1) + αb∗(κ1)−
12∑
i=2

∑
µ∈Pi

Ei:µ.

Since the class κ1 ∈ CH1(M0,24) is well-known to be ample, in order to establish that KH

is big, it suffices to show that for α sufficiently close to 1, the class αb∗(κ1)−∑i,µ∈Pi
[Ei:µ] is

effective. After brief inspection, this turns out to be a consequence of Proposition 5.25. �

6. The Prym-Tyurin map along boundary components of Hur

In this section we refine the analysis of the boundary divisors ofH, in particular we identify

divisors that are not contracted by the Prym-Tyurin-Kanev map.

6.1. Following 5.9, we denote by EI:L1,L2,µ the divisor of H of E6-admissible covers

t := [π : C := C1 ∪ C2 → R1 ∪q R2, p1, . . . , p24],

where R1 contains the branch points {pi}i∈I , with roots {ri}i∈I generating the lattice L1 ⊂ E6

and the corresponding reflections generating the group G := W (L1) ⊂ W (E6), whereas R2

contains the branch points {pj}j∈J , where I ∪J = {1, . . . , 24}, with roots {rj}j∈J generating

the lattice L2 ⊂ E6 and the reflections generating the group H := W (L2) ⊂ W (E6) respec-

tively. We set u :=
∏

i∈I wi, therefore u−1 =
∏

j∈J wj. As before, µ ` 27 is the partition

corresponding to the cycle type of u ∈ S27, and which describes the fibre π−1(q). Let OG

(respectively OH) denote the set of orbits of G (respectively H) on the set 27 := {1, . . . , 27}.
In particular, there is a bijection between OG (respectively OH) and the set of irreducible

components of C1 (respectively C2).

Returning to the notation of boundary divisors used in the previous section, for µ ∈ Pi
we write Ei:µ =

∑
|I|=i,L1,L2

EI:L1,L2,µ, the sum being taken over all possible sublattices L1

and L2 of E6 as above.

6.2. We describe the toric rank of the Prym-Tyurin variety associated to a general point

of EI:L1,L2,µ. The following result is expressed in terms of the graph Γ(u,OG, OH), to be

defined below (Definition 6.6), which is the dual graph of the source of an E6-admissible

cover corresponding to a general point of EI:L1,L2,µ. This graph is endowed with an endo-

morphism D : H1(Γ(u,OG, OH),Q) → H1(Γ(u,OG, OH),Q) induced by the action of the

Kanev correspondence.

Theorem 6.3. Let t ∈ EI,J :L1,L2 be a general point in a boundary divisor of H corresponding

to the above data. Then the toric rank of the Prym-Tyurin variety PT (C,D) equals the

dimension of the (−5)-eigenspace H1

(
Γ(u,OG, OH),Q

)(−5)
.
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In case both curves C1 and C2 are irreducible, the above result simplifies considerably.

Corollary 6.4. Assume that |OG| = |OH | = 1, that is, both groups G and H act transitively

on the set 27. Then the toric rank of PT (C,D) equals the dimension of invariant subspace

of u in the 6-dimensional representation E6 ⊗Q of W (E6).

Example 6.5. Table 2 gives the dimension of the invariant subspace (E6 ⊗ Q)u for the 25

conjugacy classes of W (E6), for which we use the same notation as in Table 1. The number

in the name is the order of u, even elements (products of even number of reflections) are

listed first, then the odd ones. We computed the dimensions of the invariant subspaces from

the character table by the formula dim(E6 ⊗Q)u =
∑ord(u)

n=1

χE6
(un)

ord(u)
.

1a 2a 2b 3a 3b 3c 4a 4b 5a 6a 6b 6c 6d 9a 12a

6 2 4 0 4 2 2 2 2 0 2 0 2 0 0

2c 2d 4c 4d 6e 6f 6g 8a 10a 12b

5 3 1 3 3 1 1 1 1 1

Table 2. Dimensions of (E6 ⊗Q)u for u ∈ W (E6)

The conclusions of Corollary 6.4 and Example 6.5 concerning the abelian part of PT (C,D)

agree with [LR08, p.236].

Definition 6.6. Let u ∈ W (E6) and let A = A1 t . . . t Aa and B = B1 t . . . t Bb be

two u-invariant partitions of the set 27. We define the graph Γ(u,A,B) to be the following

bipartite graph:

(1) The vertices are A1, . . . , Aa and B1, . . . , Bb respectively.

(2) The edges correspond to cycles Ck in the cyclic representation of u ∈ S27, including

cycles of length 1.

(3) For each cycle Ck, there exist unique vertices Ai and Bj containing the set ck. Then

the edge Ck joins Ai and Bj.

When both partitions A and B are trivial, that is each consists of the single set 27, we set

Γu := Γ(u, 27, 27) and Γ1 := Γ(1, 27, 27) respectively.

Example 6.7. The graph Γ1 has 2 vertices and 27 edges. One has C1(Γ1,Z) = Z27, and

H1(Γ1,Z) ' Z26 consists of elements
∑27

s=1 nses with
∑27

s=1 ns = 0. There is a natural degree

10 homomorphism D1 : C1(Γ1,Q) → C1(Γ1,Q) with eigenvalues 10, 1,−5, which induces a

homomorphism D : H1(Γ1,Q)→ H1(Γ1,Q) with (+1)-eigenspace of dimension 20 and (−5)-

eigenspace of dimension 6 respectively.
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Lemma 6.8. For u ∈ W (E6), the following statements hold:

(1) H1(Γu,Q)(−5) =
(
H1(Γ1,Q)(−5)

)u
(that is, the u-invariant subspace), and

(2) H1(Γ(u,A,B),Q)(−5) ⊂ H1(Γu,Z)(−5).

Proof. Suppose we have the following cycle decomposition u = C1 · C2 · · · · Ck ∈ S27 and let

n := ord(u) and `(Ci) denote the length of Ci. We write C1(Γu,Z) =
⊕k

i=1 ZeCi
. Then one

has an orthogonal projection

C1(Γ1,Z)� C1(Γu,Z), edge e 7→ 1

n

n−1∑
i=0

ui · e,

identifying C1(Γu,Z) with a sublattice in C1(Γ1,Q) via the injection eCi
7→ 1

`(Ci)

∑
j∈Ci

ej.

This induces a surjection from H1(Γ1,Z) to H1(Γu,Z), which clearly commutes with D, that

is, D(C1(Γu,Z)) ⊂ C1(Γu,Z). It follows that H1(Γu,Z)(−5) is the projection of H1(Γ1,Z)(−5)

to the (−5)-eigenspace in C1(Γu,Q) and that

H1(Γu,Q)(−5) =
(
H1(Γ1,Q)(−5)

)u
.

The graph Γ(u,A,B) is obtained from Γu by splitting the two vertices into a + b new

vertices. This can be obtained by inserting in place of the two vertices two trees with a and

b vertices – without changing H1 – and then removing the edges of these trees. Thus, one

has an inclusion H1(Γ(u,A,B),Z) ⊂ H1(Γu,Z), commuting with D, which gives an inclusion

H1(Γ(u,A,B),Z)(−5) ⊂ H1(Γu,Z)(−5). �

Lemma 6.9. The (−5)-eigenspace H1(Γ(u,A,B),Q)(−5) is a subspace of the u-invariant

subspace (E6 ⊗Q)u in the standard 6-dimensional W (E6)-representation.

Proof. Indeed, H1(Γ1,Q)(−5) = E6 ⊗Q, therefore (H1(Γ1,Q)u)(−5) = (E6 ⊗Q)u. �

Proof of Theorem 6.3. For any E6-admissible cover π : C1 ∪C2 → R1 ∪R2 with a correspon-

dence D, the toric part of PT (C,D) is the torus with character lattice H1(Γ,Z)(−5), where

Γ is the dual graph of C. So we only need to show that Γ = Γ(u,OG, OH). But that is clear,

for the edges of Γ are the nodes of C, that is, the cycles in u ∈ S27. �

6.10. In order to illustrate Theorem 6.3 in concrete situations, we classify all root sublattices

of E6. Recall that with the notation of Section 2, the standard roots in the E6 Dynkin

diagram are r2 = α12, . . . , r6 = α56, and r1 = α123. In the extended Dynkin diagram Ẽ6

there is an additional root r0 = −αmax, so that 3r4 + 2r1 + 2r3 + 2r5 + r2 + r6 + r0 = 0.

Lemma 6.11. The following is the complete list of root sublattices L ⊂ E6:

(1) If dim(L) = 6, then L is either E6, or isomorphic to A5A1, or A3
2.
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(2) If dim(L) = 5, then L is isomorphic to A5, D5, A4A1, A3A
2
1, or A2

2A1.

(3) If dim(L) = 4, then L is isomorphic to A4, D4, A2
2, A3A1, A2A

2
1, or A4

1.

(4) If dim(L) = 3, then L is isomorphic to A3, A2A1, or A3
1.

(5) If dim(L) = 2, then L is isomorphic to A2, or A2
1.

(6) If dim(L) = 1, then L is isomorphic to A1.

Furthermore, all the above sublattices (and the associated subgroups) can be obtained by

removing vertices from the extended E6 diagram Ẽ6:

r2• r3• r4• r5• r6•

•r1

?r0 .

If the root lattices L,L′ corresponding to reflections subgroups G and G′ of W (E6) are isomor-

phic, then they differ by an automorphism of the E6 lattice, and the corresponding subgroups

G and G′ are conjugate in W (E6).

Proof. We first note that there is a natural bijection between root sublattices L of E6 and

subgroups G generated by reflections of W (E6). One has Aut(E6) = W (E6) ⊕ Z2, with Z2

acting on E6 by multiplication by ±1. Any automorphism of E6 induces an automorphism of

W (E6), and the kernel of φ : Aut(E6)→ AutW (E6) is Z2. Finally, by [Fra01, Section 2.3]),

all automorphisms of W (E6) are inner, so that AutW (E6) = W (E6) and φ is surjective.

Thus, the proof reduces to showing that all root sublattices of E6 are of the above types,

and that if L,L′ are isomorphic as abstract root lattices, then they differ by an element of

Aut(E6). The statement that all such root sublattices correspond to proper subdiagrams of

the extended Dynkin diagram Ẽ6 is an a posteriori observation.

The standard method for finding all root sublattices of a given root lattice is described

in [BdS49, Dyn52]. A modern treatment can be found in [DL11, Theorem 1]. The method

is to repeatedly apply the following two procedures to Dynkin diagrams Γ, starting from

Γ = E6: (1) remove a node, and/or (2) replace one of the connected components Γs of Γ by

an extended Dynkin diagram Γ̃s and remove a node from it. Applying the above method

repeatedly, we obtain all the lattices listed above. The fact that isomorphic root sublattices

differ by an automorphism of E6 is a case by case computation. This can also be found in

[Osh06, Table 10.2]. �

6.12. Table 3 lists the orbits for one choice of roots (the other choices being similar) for

each type of lattice. The last column describes the degrees of the maps from the irreducible
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components of C1 to R1. We keep the Schläfli notation ai, bi, cij for the elements of the set

27, which is being identified with the set of lines of a cubic surface. The smooth (possibly

disconnected) curve C1 is a 27-sheeted cover of R1 = P1, with branch points {pi}i∈I , the

local monodromy over pi being given by the reflection wi, and with a branch point q, with

local monodromy u−1, where u = Πi∈Iwi.

We apply Theorem 6.3 to compute the toric ranks associated to the divisors

EL :=
∑
|I|=22

EI;L,A1,(127) ⊂ H.

Since dim(L) ≥ 5, using Lemma 6.11, we have the following possibilities:

L ∈ {E6, A5A1, A
3
2, A5, D5, A4A1, A3A

2
1, A

2
2A1}.

Proposition 6.13. The toric rank of each boundary divisor EL with L 6= E6 is equal to

zero. The toric rank of EE6 is equal to 1.

Proof. Note that there are |OH | = 21 vertices on the right, of which 15 vertices are ends and

thus can be removed without changing the homology of the graph. The remaining 6 vertices

each have degree 2. Contracting unnecessary edges, we reduce the calculation to a graph

with |OG| vertices and 6 edges. The 6 edges correspond to the 6 transpositions appearing in

the decomposition of w23 = w24 ∈ S27.

Assume |OG| = 1, which, by Table 3, is the case if and only if L = E6. Then H1(Γ,Z) =⊕6
i=1 Zei and D(ei) = −∑j 6=i ej. Therefore H1(Γ,Q)(−5) is 1-dimensional and generated by

the element e1 + · · ·+ e6. The other cases follow similarly by direct calculation. �

Remark 6.14. For more details concerning the calculation of the toric rank in the case

L = D5, see (7.2).

6.15. Although the divisor theory of Hur is quite complicated, we now show that most of

these divisors are contracted under the Prym-Tyurin map. We first establish the following:

Theorem 6.16. Assume that the image of a component B of EI:L1,L2 under the map PT

has codimension 1 in Ã6. Then {|I|, |Ic|} = {2, 22}.

6.17. Before proving the above theorem, we need a few preliminaries. Fix a general point[
π : C = C1 ∪C2 → R1 ∪R2

]
∈ B, where C1 and C2 are smooth (possibly reducible) curves.

As in (3.1), the generalized Jacobian JC is an extension of the Jacobian JC1 × JC2 of the

normalization C1 t C2 by a torus:

0 −→ H1(Γ,C∗) −→ JC −→ JC1 × JC2 −→ 0
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Sublattice Roots Orbits Degrees

E6 r1, . . . , r6 {ai, bi, cij} 27

A5A1 r0, r2, . . . , r6 {ai, bi}, {cij} 15, 12

A3
2 ri, i 6= 4 {ai, bi, cij | 1 ≤ i, j ≤ 3}, {ai, bi, cij | 4 ≤ i, j ≤ 6}, 93

{cij | 1 ≤ i ≤ 3, 4 ≤ j ≤ 6}
D5 r1, . . . , r5 {a6}, {ai, b6, cij | 1 ≤ i, j ≤ 5}, {bi, ci6 | 1 ≤ i ≤ 5} 1, 10, 16

A5 r2, . . . , r6 {ai}, {bi}, {cij} 62, 15

A4A1 r0, r2, . . . , r5 {ai, cij | 1 ≤ i, j ≤ 4}, {bi, c56 | 1 ≤ i ≤ 4} 2, 5, 102

{a5, a6}, {bj , cij | 1 ≤ i ≤ 4, 5 ≤ j ≤ 6}
A3A

2
1 r0, r2, r3, r4, r6 {a1, bi, cij , c56 | 2 ≤ i, j ≤ 4}, {b1}, {ai, cij | 2 ≤ i, j ≤ 4} 82, 6, 4, 1

{a5, a6, c15, c16}, {bj , cij | 2 ≤ i ≤ 4, 5 ≤ j ≤ 6}
A2

2A1 ri, i 6= 0, 4 {ai, cij | 1 ≤ i, j ≤ 3}, {bi, cij | 4 ≤ i, j ≤ 6}, {a4, a5, a6} 9, 62, 32

{b1, b2, b3}, {cij | 1 ≤ i ≤ 3, 4 ≤ j ≤ 6}
A4 r2, . . . , r5 {ai, cij | 1 ≤ i, j ≤ 4}, {bi, c56 | 1 ≤ i ≤ 4}, {a5}, {a6} 10, 53, 12

{b5, ci6 | 1 ≤ i ≤ 4}, {b6, ci5 | 1 ≤ i ≤ 4}
D4 r1, r3, r4, r5 {a1, cij , b6 | 2 ≤ i, j ≤ 5}, {ai, c1i | 2 ≤ i ≤ 5}, {a6} 83, 13

{b1}, {bi, ci6 | 2 ≤ i ≤ 5}, {c16}
A2

2 r2, r3, r5, r6 {a1, a2, a3}, {b1, b2, b3}, {a4, a5, a6}, {b4, b5, b6} 9, 36

{c12, c13, c23}, {c45, c46, c56}, {cij | 1 ≤ i ≤ 3, 4 ≤ j ≤ 6}
A3A1 r2, r3, r4, r6 {c56}, {a5, a6}, {b5, b6}, {a1, . . . , a4}, {b1, . . . , b4} 8, 6, 42, 22, 1

{cij | 1 ≤ i, j ≤ 4}, {cij | 1 ≤ i ≤ 4, 5 ≤ j ≤ 6}
A2A

2
1 r1, r2, r3, r5 {a6}, {b6, c45}, {b1, b2, b3}, {c16, c26, c36}, {b5, b6, c64, c65} 62, 4, 32, 22, 1

{a4, a5}, {ai, cij | 1 ≤ i, j ≤ 3}, {cij | 1 ≤ i ≤ 3, 4 ≤ j ≤ 5}
A4

1 r0, r2, r4, r6 {a6}, {b1}, {a1, b6, c23, c45}, {a2, a3, c12, c13}, {a4, a5, c14, c15} 46, 13

{b2, b3, c26, c36}, {b4, b5, c46, c56}, {c24, c34, c25, c35}, {c16}
A3 r2, r3, r4 {c12, c13, c14, c23, c24, c34}, {c15, c25, c35, c45}, {c16, c26, c36, c46} 6, 44, 15

{a1, a2, a3, a4}, {b1, b2, b3, b4}, {ai}, {bi}, 5 ≤ i ≤ 6, {c56}
A2A1 r1, r2, r3 {b1, b2, b3}, {c14, c24, c34}, {c15, c25, c35}, {a1, a2, a3, c12, c13, c23} 6, 34, 23, 13

{c16, c26, c36}, {bj , ckl}, {j, k, l} = {4, 5, 6}, {ai}, 4 ≤ i ≤ 6

A3
1 r2, r4, r5 {c13, c14, c23, c24}, {c15, c16, c25, c26}, {c35, c36, c45, c46} 43, 26, 13

{ai, ai+1}, {bi, bi+1}, {cii+1}, i = 1, 3, 5

A2 r2, r3 {a1, a2, a3}, {b1, b2, b3}, {c12, c13, c23}, {c14, c24, c34} 36, 19

{c15, c25, c35}, {c16, c26, c36}, {ai}, {bi}, {cij}, 4 ≤ i, j ≤ 6

A2
1 r2, r4 {c13, c23, c14, c24}, {c56}, {ai, ai+1}, {bi, bi+1}, 4, 28, 17

{cij , ci+1j}, {aj}, {bj}, {cii+1}, i = 1, 3, j = 5, 6

A1 r0 {ai, bi}, {cij}, 1 ≤ i, j ≤ 6 26, 115

Table 3. Sublattices and Orbits
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where Γ is the dual graph of C. In particular, H1(Γ,C∗) ∼= GkC
m , where kC is the toric rank

of JC. The correspondence D induces correspondences Di ⊂ Ci × Ci and endomorphisms

Di : JCi → JCi. Since D acts in the fibers of π, the induced endomorphisms JCi → JC3−i

are zero, for i = 1, 2. Define Pi := Im(Di − 1) ⊂ JCi. The above facts can be summarized

as follows:

Lemma 6.18. The abelian part of the Prym-Tyurin variety

P := PT (C,D) := Im{D − 1 : JC → JC}

is isogenous to P1 × P2.

Proof of Theorem 6.16. Without loss of generality, we may assume that i := |I| ≥ 12. If the

image of B has codimension 1 inside Ã6, then for a general point of B, the toric rank kP of

the corresponding Prym-Tyurin variety P is either 0 or 1.

Suppose first that kP = 0. Then P ∼= P1×P2. If both P1 and P2 have positive dimension,

then P belongs to a subvariety of A6 parametrizing products and each such subvariety has

codimension greater than 1. So one of the Pi is zero. The parameter space of P1 has

dimension at most i− 2, that of P2 has dimension at most 22− i. Since the parameter space

of P is 20-dimensional and i ≥ 12, we have P2 = 0, and dim(P1) = 6. We deduce i = 22.

Now assume kP = 1. In this case the image of B is the boundary divisor D̃6 of Ã6 and

the product P1×P2 is a general abelian variety of dimension 5. Once again, one of the Pi is

zero. The assumption i ≥ 12 implies P2 = 0, hence dim(P1) = 5. The parameter space of P1

is 15 dimensional, which implies i ≥ 17. Let {p1, . . . , p`} = C1 ∩ C2 be the set of the nodes

of C, which also label the edges of Γ. For each i, let p′i and p′′i be the points of C1 and C2

respectively that we identify to obtain pi on C. Choose the orientation of Γ in such a way

that each edge pi is oriented from C1 to C2. The extension

0 −→ H1(Γ,C∗) −→ JC −→ JC1 × JC2 −→ 0

is given by the map φ : H1(Γ,Z)→ JC1×JC2 sending the edge pi to p′′i − p′i. The extension

0 −→ Gm = (D − 1)H1(Γ,C∗) −→ P −→ P1 × P2 −→ 0

is therefore given by the map φP : (D − 1)H1(Γ,Z) → P1 × P2 obtained by composing the

restriction of φ to (D − 1)H1(Γ,Z) ⊂ H1(Γ,Z) with (D − 1) and dividing by 6, for the

restriction of the polarization of JC to P is 6 times a principal polarization. Since P2 = 0,

the class of the extension is therefore the projection of φP (D−1)H1(Γ,Z) to P1. Equivalently,

we can project φ(D − 1) first to JC1 and then compose with (D1 − 1) on JC1.

This means that the extension class of P does not depend on C2 (up to a finite set).

Therefore the moduli of C2 does not produce positive moduli for the extension class of P . It
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follows that the cover C1 → R1 depends on 20 moduli, hence R1 contains at least 22 branch

points, therefore i = 22. �

The following result shows that the boundary divisors have many fewer irreducible com-

ponents than one would a priori expect. Recall that in 5.12 and 5.13 we have introduced the

divisors Eazy :=
∑
|I|=22EI:L1,A2,(36,19) and Esyz :=

∑
|I|=22EI:L1,A2

1,(2
10,17) respectively.

Theorem 6.19. Assume that |I| = 22 and L2 = A2 or A2
1. Then EI:L1,L2 is empty unless

L1 = E6. In other words, for a general E6-admissible cover

[
π : C = C1 ∪ C2 → R1 ∪q R2, p1, . . . , p24

]
∈ Eazy or Esyz,

the curve C1 is irreducible with monodromy W (E6) over R1.

Proof. Consider first the azygetic case L2 = A2. Then, as we saw in 5.12, the curve C2 has

15 components, each of which intersects C1 in exactly one point. Therefore, no component

of C2 can connect two components of C1 and C1 is irreducible.

In the syzygetic case, as we saw in 5.13, the curve C2 has 16 components. Of the compo-

nents of C2, only the 4-sheeted cover (denoted by Z in 5.13) intersects C1 in two points. All

other components of C2 intersect C1 in exactly one point. It follows that C1 has at most two

irreducible components. Looking now at Table 3, we see that there are only two possibilities

for the lattice L1, namely L1 = E6 or L1 = A5A1.

We now eliminate the possibility L1 = A5A1 in the syzygetic case. It is a consequence of

Lemma 6.11 that the A5 summand of L1 is the orthogonal complement of the A1 summand.

Hence the lattice L1 and the group G1 generated by the reflections w1, . . . , w22 are determined

by the A1 sublattice. Since all reflections are conjugate, we can assume that the A1 summand

is generated by the reflection w0 in the root r0 (see 6.12). Since 〈G1, w23〉 = 〈G1, w24〉 =

W (E6), the reflections w23, w24 do not belong to G1. Therefore the pairs (w0, w23), (w0, w24)

are azygetic.

After a permutation of the indices {1, . . . , 6}, we can assume that w23 is the reflection in

the root α123 and w24 is the reflection in the root α145 (see, e.g., [Dol12, Section 9.1]). The

composition w23 ·w24 ∈ S27, contains the double transposition (a1, b6)(c23, c45) which acts on

the 4-sheeted cover Z. However, w23 ·w24 also contains the transposition (a2, c13) which acts

on a degree 2 component of C2, i.e., the points corresponding to a2 and c13 come together

over the node. Looking at the orbits of C1 in Table 3 in the A5A1 case, we see that the

points a2 and c13 belong to two different components of C1 and cannot come together over

the node, which is a contradiction. �
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We now consider the components of the divisor E0 introduced in 5.11. Recall that

EL :=
∑
|I|=22

EI;L,A1,(127) ⊂ H.

Theorem 6.20. For L ( E6 the divisor EL is contracted by PT .

Proof. Let [π : C := C1 ∪ C2 → R1 ∪q R2] be a general element of a component B of EL

with L ( E6. By Proposition 6.13, the toric rank of P := PT (C,D) is 0. As in the proof

of Theorem 6.16 and with the notation there, we have P = P1 × P2 = P1 = PT (C1, D1)

because all the components of C2 are rational. Furthemore, since C1 → R1 is not ramified

at q, the isomorphism class of C1 and hence also of P1 is independent of the choice of the

point q. It follows that P = P1 depends on at most 19 = dim(M0,22) parameters, hence B

is contracted by PT . �

We summarize the results of this section as follows:

Corollary 6.21. The only boundary divisors of H that are not contracted under the Prym-

Tyurin map are EE6, Esyz and Eazy. The divisor EE6 maps onto the boundary divisor of A6,

whereas Esyz and Eazy map onto divisors not supported on the boundary of A6.

7. Ordinary Prym varieties regarded as Prym-Tyurin-Kanev varieties

The aim of this section is to illustrate how 6-dimensional Prym varieties appear as Prym-

Tyurin varieties of type E6 and thus prove Theorem 0.4. The Prym moduli space R7 has

codimension 3 inside A6, where we identify R7 with the image of the generically injective

Prym map P : R7 → A6. We shall show that the boundary divisor DD5 of Hur is an

irreducible component of PT−1(R7) and we shall explicitly describe the 2-dimensional fibres

of the restriction PTDD5
: DD5 → R7.

7.1. Consider an admissible cover [π : C = C1 ∪ C2 → R1 ∪ R2] in the divisor DD5 of Hur.

Such a cover can be described as follows. The cover C1 → R1 has D5-monodromy generated

by the roots r1, . . . , r5, and it is ramified at 22 distinct points. The local monodromy at each

branch point is given by one of the reflections wi ∈ W (D5) associated to ri, choosing the

ordering such that
∏22

i=1 wi = 1. The cover C2 → R2 has A1-monodromy generated by the

root r0, and is branched at 2 points. Both covers are unramified at the point q ∈ R1 ∩ R2.

As listed in Table 3, we have the following irreducible components and orbits for C1:

F1 : {b1, b2, b3, b4, b5, c16, c26, c36, c46, c56}
F2 : {a1, a2, a3, a4, a5, c12, c13, c14, c15, c23, c24, c25, c34, c35, c45, b6}
F0 : {a6},
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and the following irreducible components and orbits for C2:

1 ≤ i ≤ 6 Hi : {ai, bi}
7 ≤ i ≤ 21 Hi : {ck(i)`(i)}, for some choice of integers k(i) < `(i), between 1 and 6.

One computes that the three components F1, F2 and F0 of C1 have genera 13, 29 and 0,

and map onto R1 with degree 10, 16 and 1 respectively. The components of C2 are all

rational with H1, . . . , H6 mapping 2 : 1 to R2 and H7, . . . , H21 mapping isomorphically. The

description of the orbits given above also specifies the points of intersection Fi and Hj. For

instance, H6 intersects F2 at a point corresponding to b6 and it intersects F0 at a point

corresponding to a6.

7.2. In order to compute the toric rank of the Prym-Tyurin variety P := (D − 1)(JC1), we

apply the correspondence D to the homology group H1(Γ,Z), where Γ denotes the dual graph

of the stable curve F1∪F2 (see Section 6 for the notation). The graph Γ consists of 2 vertices

joined by 5 edges: e1 := (b5, b6), e2 := (c16, c15), e3 := (c26, c25), e4 := (c36, c35), e5 := (c46, c45)

and H1(Γ,Z) =
⊕4

i=1 Z (ei − ei+1) (see 3.2). One computes

D(∂(e1 − e2)) = D(b6 − b5)−D(c15 − c16) = b6 − b5 − (c15 − c16) = ∂(e1 − e2).

By Remark 2.6, D commutes with ∂, hence D(e1 − e2) = (e1 − e2). Similarly, one checks

that D(ei − ei+1) = (ei − ei+1), for i = 1, . . . , 4, hence (D − 1)H1(Γ,Z) = 0. Therefore, the

Prym-Tyurin variety P := (D − 1)(JC1) has toric rank 0 and it is contained in JC1, since

JC2 = {0}.

7.3. As is apparent from the description of the orbits, the correspondence D restricts to a

fixed-point-free involution ι : F1 → F1, a correspondence D2 of valence 5 on F2, a correspon-

dence D12 : F1 → F2 and its transpose D21 : F2 → F1 of degree 8 over F1 and of degree 5

over F2.

The variety P is the image of the following endomorphism of JC1 = JF1 × JF2:(
ι− 1 D21

D12 D2 − 1

)
.

7.4. Let f : F1 → Y be the induced unramified double cover on the curve Y := F1/〈ι〉
of genus 7. Note that the degree 10 map π1 : F1 → R1 factors through a degree 5 map

h : Y → R1. The image Q1 := (ι − 1)JF1 ⊂ JF1 is the ordinary Prym variety P (F1, ι)

associated to the double cover [f : F1 → Y ] ∈ R7.

7.5. The relationship between the curves F1 and F2 (or between the tower F1
f→ Y

h→ R1

and the map π2 : F2 → R1) is an instance of the pentagonal construction ([Don92, Section
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5.17]). This is the n = 5 case of the n-gonal construction, see [Don92, Section 2] or [ILS09a,

Section 1], which applies to covers F1
f→ Y

h→ R1 whose Galois group is the Weyl group

W (Dn). The idea is to consider the following curve inside the symmetric product F
(n)
1 :

h∗F1 :=
{
G ∈ F (n)

1 : Nmf (G) = h−1(t), for some t ∈ R1

}
.

The induced map h∗F1 → R1 is of degree 2n = 32 and one can check that above a branch

point t ∈ R1 there are exactly 2n−2 = 8 simple ramification points in h∗F1.

Proposition 7.6. h∗F1 is the union of two isomorphic components h∗F1 = X0 t X1, with

X0 ' X1 being smooth curves of genus 1 + 2n−3(n+ g(Y )− 5) = 29.

Proof. The splitting is explained in [Don92, Section 2.2] and [ILS09a, Section 1]. The smooth-

ness is proved in [ILS09a, Lemma 1.1]. The genus calculation follows from the Hurwitz

formula. �

We can distinguish the components by looking at the parity of the number of common

points in two divisors in the same fiber of h∗F1 → R1. We say that two divisors G1, G2 ∈ h∗F1

are equivalent if Nmf (G1) = Nmf (G2) and they share an even number of points of F1.

We specialize to the case at hand, when n = 5. Let X = X0 be the component of h∗F1

whose fiber over a point t ∈ R1 can be identified with the class of the divisor c16 + · · ·+ c56.

The proof of the following result is immediate.

Proposition 7.7. The map ψ : F2 → X given by x 7→ D21(x) ∈ h∗F1 is an isomorphism.

Remark 7.8. Under the above identification, the restriction D2 of the Kanev (incidence)

correspondence coincides with the correspondence D defined in [ILS09a, Section 2]. Also,

the restriction D21 of the Kanev correspondence coincides with the correspondence S defined

in [IL12, Section 2]. It follows from [ILS09a, Corollary 6.2] that the image Q2 of the ordinary

Prym variety Q1 in JF2 by D21 is the eigen-abelian variety of D2 for the eigenvalue −n+2 =

−3. It also follows from [ILS09a, Section 6.6] and [Kan87, Theorem 3.1] that in this case Q2

is a Prym-Tyurin variety of dimension 6 and exponent 4 = −(−3)+1 for the correspondence

D2. The restriction ρ of the correspondence D−1 to Q1 ⊂ JF1 gives the sequence of isogenies

of principally polarized abelian varieties

Q1
ρ−→ P −→ Q2

x1 7−→ ((ι− 1)x1, D12x1) 7−→ D12x1.

Along the boundary divisor DD5 , two of the 24 branch points collide, which leads to the

following:
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Proposition 7.9. The map ρ factors through multiplication by 2 to induce an isomorphism

Q1 := P (F1, ι) ' P and a surjection Q1 → Q2 := P (F2, D2) whose kernel is a maximal

isotropic subgroup H (for The Weil pairing) of the group of points of order 2 in Q1.

Proof. For an abelian variety A and n ∈ Z, we denote by nA : A → A the morphism

given by multiplication by n. It follows from [IL12, Corollary 2.3] that D21 ◦ D12 = 8Q1 .

A straightforward generalization of the proof of [IL12, Proposition 3.3] implies that D12 =

ϕ ◦ 2Q1 for an isogeny ϕ : Q1 → Q2 such that ϕ∗ΘQ2 = ΘQ1 , where ΘQi
is the polarization

of Qi. Therefore we have ϕ ◦ϕt = 2Q2 . It follows that the kernel of ϕ is a maximal isotropic

subgroup H of the group of points of order 2 in Q1. Since the restriction of ι − 1 to Q1 is

−2Q1 , its kernel is the subgroup of points of order 2. Therefore ρ = ψ ◦ 2Q1 , where now

ψ : Q1 → P is injective hence an isomorphism. �

8. The Weyl-Petri realization of the Hodge eigenbundles

Here we show that, at least over an open dense subset of Hur, the Hodge eigenbundles

E(+1) and E(−5) admit a Petri-like incarnation, which makes them amenable to intersection-

theoretic calculations.

8.1. For a smooth E6-cover [π : C → P1] ∈ Hur, set L := π∗(OP1(1)) ∈ W 1
27(C) and let

µ(L) : H0(C,L)⊗H0(C,KC ⊗ L∨)→ H0(C,KC)

be the Petri map given by multiplication of global sections. We write π∗(OC) = OP1 ⊕ V ∨,
where V is a rank 26 vector bundle on P1. Then µ(L) is injective if and only if the splitting

type of V is as balanced as possible, which in this case means that V = OP1(2)⊕6⊕OP1(3)⊕20.

We assume that h0(C,L) = 2, hence by Riemann-Roch h0(C,KC⊗L∨) = 20. If, as expected,

for a general choice of the pair [C,L] ∈ Hur, the map µ(L) is injective, then Im µ(L) is a

codimension 6 subspace of H0(C,KC). Remarkably enough, this turns out to be precisely the

(+1)-eigenspace of H0(C,KC). In Section 10, using a degeneration argument, we establish

that a general covering from Hur is Petri general:

Theorem 8.2. For a general point [C,L] ∈ Hur, the multiplication map µ(L) is injective.

We have the following description of the Hodge eigenbundles.

Theorem 8.3. Let [C,L] ∈ Hur be an element corresponding to a nodal curve of genus 46

and a base point free line bundle L ∈ W 1
46(C), such that h0(C,L) = 2 and the Petri map

µ(L) is injective. One has the following canonical identifications:

(i) H0(C,KC)(+1) = H0(C,L)⊗H0(C,KC ⊗ L∨).
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(ii) H0(C,KC)(−5) =

(
H0(C,L⊗2)

S2H0(C,L)

)∨
⊗

2∧
H0(C,L).

Proof. Let L be an E6-pencil on C. Consider a general divisor Γ ∈ |L| and the exact sequence

(8.1) 0 −→ OC ·s−→ L −→ OΓ(Γ) −→ 0

induced by a section s ∈ H0(C,L) with div(s) = Γ, and its cohomology sequence

(8.2) 0 −→ H0(C,OC) −→ H0(C,L) −→ H0(OΓ(Γ))
α−→ H1(C,OC) −→ H1(C,L) −→ 0.

There is an action of W (E6) on H0(OΓ(Γ)) compatible with the trivial action on H0(C,L),

because L is the pull-back from P1. We identify the space H0(OΓ(Γ)) with the vector

space generated by the 27 lines on a smooth cubic surface; each line is represented by

a point of Γ and the incidence correspondence of lines is the Kanev correspondence D.

Therefore the representation of W (E6) on H0(OΓ(Γ)) splits into the sum of three irreducible

representations: the trivial 1-dimensional one, the 6-dimensional one which coincides with

the representation on the primitive cohomology of a cubic surface and the 20-dimensional

one, which coincides with the one on the space of rational equivalences on a cubic surface,

see for instance [AV12].

The Kanev correspondence D induces an endomorphism on H0(OΓ(Γ)) compatible with

the endomorphism D∨ ∈ End
(
H1(C,OC)

)
via the cohomology sequence (8.2). On a cubic

surface, the action of the incidence correspondence on the primitive cohomology is equal

to multiplication by −5 and its action on the space of rational equivalences is the identity.

Therefore this is also how the action on H0(OΓ(Γ)) can be described. It follows that the

image α
(
H0(OΓ(Γ))

)
contains the (−5)-eigenspace, that is, we have an inclusion

(
H0(C,KC)(−5)

)∨ ⊆ ( H0(C,KC)

H0(C,L)⊗H0(C,KC ⊗ L∨)

)∨
.

When the Petri map µ(L) is injective, the two spaces appearing in this inclusion have the

same dimension and the inclusion becomes an equality, which establishes the first claim.

To prove the second claim, we start by observing that the Base Point Free Pencil Trick

yields the sequence 0 → ∧2H0(C,L) ⊗ L∨ → H0(C,L) ⊗ OC → L → 0. After tensoring

with L and taking cohomology, we arrive at the following exact sequence

0 −→ H0(C,L⊗2)

Sym2H0(C,L)
−→

2∧
H0(C,L)⊗H1(C,OC)

u−→ H0(C,L)⊗H1(C,L) −→ 0.

To describe the map u in this sequence, let us choose a basis s1, s2 ∈ H0(C,L). Then,

u(s1 ∧ s2 ⊗ f) = s1 ⊗ (s2 · f)− s2 ⊗ (s1 · f) ∈ H0(C,L)⊗H1(C,L).
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It follows via Serre duality, that Ker(u) consists of all linear maps v : H0(C,KC) → C
vanishing on H0(C,L)⊗H0(C,KC ⊗ L∨) ⊂ H0(C,KC), which proves the claim. �

Remark 8.4. In the case of an arbitrary E6-admissible cover [π : C → R] ∈ Hur, the

proof above yields the inclusion H0(C,OC(Γ)) ⊗ H0(C, ωC(−Γ)) ⊆ H0(C, ωC)(+1), where

Γ = π−1(p), with p ∈ Rreg being an arbitrary smooth point.

The identifications provided by Theorem 8.3 extend to isomorphisms of vector bundles

over a partial compactification of Hur which we shall introduce now. This allows us to

express to Hodge classes λ(+1) and λ(−5) in terms of certain tautological classes and define

the Petri map globally at the level of the moduli stack.

8.5. Let M̃46 be the open subvariety of M46 parametrizing irreducible curves and denote

by G1
27 → M̃46 the stack parametrizing pairs [C,L], where [C] ∈ M̃46 (in particular C is a

stable curve) and L is a torsion free sheaf of degree 27 on C with h0(C,L) ≥ 2. Note that G1
27

is a locally closed substack of the universal Picard stack of degree 27 over M̃46. Let GE6 be

the locus of pairs [C,L] ∈ G1
27, where L is locally free and base point free with h0(C,L) = 2

and the monodromy of the pencil |L| is equal to W (E6). We denote by σ : GE6 → M̃46 the

projection map given by σ([C,L]) := [C].

8.6. One has a birational isomorphism β : Hur 99K GE6 ⊂ G1
27 which can be extended over

each boundary divisor of Hur as follows. Let t := [π : C = C1 ∪ C2 → R1 ∪q R2] ∈ Di:µ be

a general point, where we recall that Ci := π−1(Ri) and precisely i branch points specialize

to the component R1. We assign to t the point
[
st(C), st(f ∗OR1∪R2(1, 0))

]
∈ GE6 , where

st is the map assigning to a nodal curve X its stable model st(X) and to a line bundle L

on X the line bundle st(L) on st(C) obtained by adding base points to each destabilizing

component of X which is contracted. Geometrically, for the general point of each boundary

divisor, the map β : Hur 99K GE6 contracts the curve C2. We still denote by Dazy, Dsyz and

DE6 the images under β of the boundary divisors denoted by the same symbols on Hur.

Remark 8.7. In light of the results in Section 6, note that the partial compactification GE6

differs from Hur only along boundary divisors that are contracted under the map PT . In

order to study the geometry of A6, it makes thus no difference whether we work with Hur

or we restrict to GE6 .

8.8. It is important to understand the effect of β along br−1(B̃2). If t ∈ Dazy is a general

point, then C1 is smooth and L := π∗C1
(OR1(1)) ∈ W 1

27(C1) has 6 triple ramification points

over the branch point q ∈ R1. Then β(t) = [C1, L] ∈ GE6 . If, on the other hand, t is a general

point of Dsyz, then retaining the notation of Remark 5.16, C1 is a smooth curve of genus 45,
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meeting the smooth rational component Z in two points u, v ∈ π−1(q). Then β(t) = [C ′, L],

where C ′ := C1/u ∼ v is an irreducible 1-nodal curve of genus 46 and L ∈ W 1
27(C ′) is the

pencil inducing the map π. Finally, if t ∈ DE6 , then β(t) = [C ′, L], where C ′ is a 6-nodal

curve obtained from C1 by identifying the six pairs of points in π−1(q) lying also over the 6

components of C2 which map 2 : 1 onto R2.

We record the formula λ = 33
46

[D0] + 7
46

[Dazy] + 17
92

[Dsyz] + · · · ∈ CH1(GE6) for the Hodge

class at the level of GE6 . The factor of 1
2

in front of [Dsyz] compared to (5.6) is explained by

the fact that the general point of Dsyz ⊂ Hur has an automorphism of order 2, whereas its

image under β is automorphism free.

8.9. At the level of GE6 one can introduce several tautological classes along the lines of

[Far09]. We denote by f : CE6 → GE6 the universal genus 46 curve and choose a universal line

bundle L ∈ Pic(CE6) satisfying the property L|f−1([C,L]) = L ∈ W 1
27(C), for each [C,L] ∈ GE6 .

We then define the following tautological classes:

A := f∗
(
c2

1(L)
)
, B := f∗

(
c1(L) · c1(ωf )

)
, κ := f∗

(
c2

1(ωf )
)
∈ CH1(GE6).

Via Grauert’s theorem, we observe that V := f∗L is a locally free sheaf of rank two on GE6 .

Similarly, the sheaf

V2 := f∗(L⊗2)

is a vector bundle of rank 9 over GE6 . Globalizing at the level of moduli the multiplication

map of global sections Sym2H0(C,L)→ H0(C,L⊗2), we define the rank 6 vector bundle E2

over GE6 via the following exact sequence:

0 −→ Sym2(V) −→ V2 −→ E2 −→ 0.

8.10. The choice of L is not unique; replacing L by L′ := L ⊗ f ∗(α), where α ∈ Pic(GE6)

and denoting the corresponding tautological classes by A′,B′ ∈ CH1(GE6) respectively, we

find the relations

A′ = A + 2d · α and B′ = B + (2g − 2) · α.
It follows that B′ − 5

3
A′ = B− 5

3
A, that is, the class

(8.3) γ := B− 5

3
A ∈ CH1(GE6)

is well-defined and independent of the choice of a Poincaré bundle L. We now describe in a

series of calculations the Chern classes of the vector bundles we have just introduced.

Proposition 8.11. The following relations hold in CH1(GE6):

c1(V2) = λ−B + 2A and c1

(
R1f∗(ωf ⊗ L∨)

)
= λ+

A

2
− B

2
− c1(V).
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Proof. We apply Grothendieck-Riemann-Roch to f : CE6 → GE6 and write

c1(V2) = f∗

[(
1 + 2c1(L) + 2c2

1(L)
)
·
(

1− c1(ωf )

2
+
c2

1(Ω1
f ) + c2(Ω1

f )

12

)]
2
.

Now use Mumford’s formula f∗
(
c2

1(Ω1
f )+c2(Ω1

f )
)

= 12λ, see [HM82] p. 49, and conclude. �

8.12. Theorem 8.2 (to be proved in Section 10) shows that the Petri map µ(L) is injective

for a general point of [C,L] ∈ GE6 . However, we cannot rule out the (unlikely) possibility

that µ(L) is not injective along a divisor N on GE6 . We denote by n := [N] ∈ CH1(GE6).

This (possibly zero) class is effective. Globalizing Theorem 8.3, we obtain isomorphisms of

vector bundles over GE6 −N:

E(+1) = R1f∗
(
ωf ⊗ L∨

)
⊗ V and E(−5) = E∨2 ⊗ det(V).

Extending this to GE6 , there exists an injection of vector bundles R1f∗
(
ωf ⊗ L∨

)
↪→ E(+1),

with the quotient being a sheaf supported on N and on possibly other higher codimension

cycles.

Proposition 8.13. The following formulas hold at the level of GE6:

λ(+1) = 2λ− γ + n and λ(−5) = −λ+ γ − n.

Proof. We have that λ(+1) = c1

(
R1f∗

(
ωf ⊗ L∨

))
− [N] ∈ CH1(GE6) and the rest is a

consequence of Theorem 8.3 coupled with Proposition 8.11. �

Proposition 8.14. We have that A = 27c1(V) ∈ CH1(GE6).

Proof. Recall that GE6 has been defined as a locus of pairs [C,L] such that L is a base point

free pencil. In particular, the image under f of the codimension 2 locus in CE6 where the

morphism of vector bundles f ∗(V)→ L is not surjective is empty, hence by Porteous’ formula

0 = f∗

(
c2(f ∗V)− c1(f ∗V) · c1(L) + c2

1(L)
)

= −27c1(V) + A.

�

Essential in all the ensuing calculations is the following result expressing the divisor Dazy

in terms of Hodge eigenbundles and showing that its class is quite positive:

Theorem 8.15. The following relation holds:

[Dazy] = 5λ+ λ(−5) − 3[DE6 ]−
5

6
[Dsyz] + n ∈ CH1(GE6).
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Proof. The idea is to represent Dazy as the push-forward of the codimension two locus in the

universal curve CE6 of the locus of pairs [C,L, p] such that h0(C,L(−3p)) ≥ 1. We form the

fibre product of the universal curve CE6 together with its projections:

CE6

π1←−−− CE6 ×GE6
CE6

π2−−−→ CE6
.

For each k ≥ 1, we consider the locally free jet bundle Jk(L) defined, e.g. in [Est96], as a

locally free replacement of the sheaf of principal parts Pkf (L) := (π2)∗

(
π∗1(L)⊗ I(k+1)∆

)
on

CE6 . Note that Pkf (L) is not locally free along the codimension two locus in CE6 where f is

not smooth. To remedy this problem, we consider their wronskian locally free replacements

Jkf (L), which are related by the following commutative diagram for each k ≥ 1:

0 // Ωk
f ⊗ L //

��

Pkf (L)

��

// Pk−1
f (L)

��

// 0

0 // ω⊗kf ⊗ L // Jkf (L) // Jk−1
f (L) // 0

Here Ωk
f denotes the OGE6

-module Ik∆/I(k+1)∆. The first vertical row here is induced by

the canonical map Ωk
f → ω⊗kf , relating the sheaf of relative Kähler differentials to the rel-

ative dualizing sheaf of the family f . The sheaves Pkf (L) and Jkf (L) differ only along the

codimension two singular locus of f . Furthermore, for each integer k ≥ 0 there is a vector

bundle morphism νk : f ∗(V) → Jkf (L), which for points [C,L, p] ∈ GE6 such that p ∈ Creg,

is just the evaluation morphism H0(C,L) → H0(L|(k+1)p). We specialize now to the case

k = 2 and consider the codimension two locus Z ⊂ CE6 where ν2 : f ∗(V) → J2
f (L) is not

injective. Then, at least over the locus of smooth curves, Dazy is the set-theoretic image of

Z. A simple local analysis shows that the morphism ν2 is simply degenerate for each point

[C,L, p], where p ∈ Csing. Taking into account that a general point of Dazy corresponds to a

pencil with six triple points aligned over one branch point, and that the stable model of a

general element of the divisor Dsyz corresponds to a curve with one node, whereas that of a

general point of DE6 to a curve with six nodes and so on, we obtain the formula:

6[Dazy] = f∗c2

(
J2
f (L)

f ∗(V)

)
− 6[DE6 ]− 3[Dsyz] ∈ CH1(GE6).

The fact that Dsyz appears with multiplicity 3 is a result of the following local computation.

We choose a family F : X → B of curves of genus 46 over a smooth 1-dimensional basis B,

such that X is smooth, and there is a point b0 ∈ B such that Xb := F−1(b) is smooth for

b ∈ B \ {b0}, whereas Xb0 has a unique node N ∈ X. Assume also that L ∈ Pic(X) is a

line bundle such that Lb := L|Xb
is a pencil with E6-monodromy on Xb for each b ∈ B, and

furthermore [Xb0 , Lb0 ] ∈ Dsyz. Choose a local parameter t ∈ OB,b0 and x, y ∈ OX,N , such that
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xy = t represents the local equation of X around the point N . Then ωF is locally generated

by the meromorphic differential τ = dx
x

= −dy
y

. We choose two sections s1, s2 ∈ H0(X,L),

where s1 does not vanish at N and s2 vanishes with order 2 at N along both branches of

Xb0 . Then we have the relation s2,N = (x2 + y2)s1,N between the germs of the two sections

s1 and s2 at N . We compute

d(s2) = 2xdy + 2ydy = 2(x2 − y2)τ, and d(x2 − y2) = 2(x2 + y2)τ.

In local coordinates, the map H0
(
Xb0 , Lb0

)
→ H0

(
Xb0 , Lb0|3N

)
is then given by the 2 × 2

minors of the following matrix:(
1 0 0

x2 + y2 x2 − y2 x2 + y2

)
.

This completes the proof that [Dsyz] appears with multiplicity 3 in the degeneracy locus.

We compute: c1(J2
f (L)) = 3c1(L) + 3c1(ωf ) and c2(J2

f (L)) = 3c2
1(L) + 6c1(L) · c1(ωf ) +

2c2
1(ωf ), hence

f∗c2

(
J2
f (L)

f ∗(V)

)
= 3A + 6B− 3(d+ 2g − 2)c1(V) + 2κ1 = 6γ + 2κ1.

Furthermore, κ1 = 12λ − 6[DE6 ] − [Dsyz] − · · · , hence after applying Proposition 8.13, we

obtain the claimed formula. �

We can also express the divisors Dsyz and Dazy in terms of the Hodge eigenclasses.

Proposition 8.16. The following formulas hold in CH1(GE6):

[Dazy] =
25

16
λ+

51

16
λ(−5) +

3

4
[DE6 ] +

51

16
n and [Dsyz] =

33

8
λ− 21

8
λ(−5) − 9

2
[DE6 ]−

21

8
n.

Proof. Combine Theorem 8.15 with the expression of the Hodge class λ in terms of the

boundary divisor classes on GE6 . �

Corollary 8.17. One has that [Dsyz] ≤ 33
8
λ− 21

8
λ(−5) − 9

2
[DE6 ].

We are now in a position to determine the class of the ramification divisor of the Prym-

Tyurin map in terms of the classes already introduced. Recall that D̃6 := Ã6 \ A6 is the

irreducible boundary divisor of the partial compactification of the moduli space of ppav of

dimension 6 and λ1 ∈ CH1(Ã6) denotes the Hodge class. Note that KÃ6
= 7λ1 − [D̃6], see

[Mum83].

Theorem 8.18. The ramification divisor of the map PT : GE6 99K A6 is given by[
Ram(PT )

]
=

73

32
λ− 221

32
λ(−5) − 9

8
[DE6 ] +

3

32
n.
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Proof. The general point of DE6 corresponds to a semi-abelian variety of torus rank 1,

whereas for all the other boundary divisors in br∗(B̃2) the corresponding torus rank is zero.

Moreover PT ∗(D̃6) = DE6 . Via the Hurwitz formula, we obtain that[
Ram(PT )

]
= KGE6

− PT ∗
(
7λ1 − [D̃6]

)
= KGE6

− 7λ(−5) + [DE6 ].

Recall that the canonical class KHur has been expressed in terms of boundary divisors on

Hur. Using Theorem 8.15, we can pass to a new basis in CH1(GE6) involving the Hodge

eigenbundles and one boundary divisor, namely DE6 . After simple manipulations we obtain

(8.4) KGE6
=

73

32
λ+

3

32
λ(−5) − 17

8
[DE6 ] +

3

32
n,

which then leads to the claimed formula. �

We can now complete the proof of Theorem 0.2.

Theorem 8.19. The canonical class of the partial compactification GE6 of Hur is big. It

follows that there exists a divisor E on Hur with PT∗(E) = 0, such that KHur + E is big.

Proof. The varieties GE6 and Hur differ in codimension one only along boundary divisors

that are collapsed under the Prym-Tyurin map. Showing that KGE6
is big implies therefore

the second half of the claim, and thus Theorem 0.2. Using Theorems 5.18 (note the caveat

about the already mentioned factor 1/2 in front of the coefficient of [Dsyz] when passing from

Hur to GE6), coupled with Theorem 6.19, we write:

KGE6
= −25

46
[DE6 ]+

19

46
[Dsyz]+

17

46
[Dazy] ≥ −25

46
[DE6 ]+

19

46
[Dsyz]+

17

46

(25

16
λ+

51

16
λ(−5)+

3

4
[DE6 ]

)
=

867

736
λ(−5) +

425

736
λ− 49

184
[DE6 ].

Putting together Proposition 5.23 together with the fact that λ(−5) is big, the conclusion

follows by comparing the ratio of the λ and [DE6 ]-coefficients of the last expression. �

9. The ramification divisor of the Prym-Tyurin map

The aim of this section is to describe the differential of the Prym-Tyurin map PT and

prove Theorem 0.3. As in the previous section, we fix a smooth E6-cover π : C → P1 with

branch divisor B := p1 + · · ·+ p24 and denote L := π∗(OP1(1)).

Via the étale map br : Hur→M0,24/S24, we identify the cotangent space T∨[C,π](Hur) with

H0(P1, K⊗2
P1 (B)). The cotangent space T∨[P (C,f)](A6) is identified with Sym2H0(C,K⊗2

C )(−5).

Definition 9.1. Let R and A be the ramification and antiramification divisors of π:

π∗(B) = 2R + A, KC = π∗(KP1) +R, 2KC + A = π∗(2KP1 +B).
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Definition 9.2. Let tr : π∗OC(−A) → OP1 be the trace map on regular functions. For

an open affine subset U ⊂ P1, a regular function ϕ ∈ Γ(U,OC(−A)), and a point y ∈ U ,

one has tr(ϕ)(y) =
∑

x∈f−1(y) ϕ(x), counted with multiplicities. Note that tr is a surjective

homomorphism of sheaves. Let π∗OC(2KC)→ OP1

(
2KP1 +B

)
be the induced trace map at

the level of quadratic differentials. We denote the corresponding map on global sections by

Tr : H0(C,K⊗2
C )→ H0(P1, K⊗2

P1 (B)).

Theorem 9.3. The codifferential (dPT )∨[C,π] : T∨[PT (C,π)]

(
A6

)
→ T∨[C,π]

(
Hur

)
is given by the

following composition of maps:

Sym2H0(KC)(−5) ↪→ Sym2H0(KC)
mul−−→ H0(K⊗2

C )
Tr−→ H0(K⊗2

P1 (p1 + · · ·+ p24)).

Proof. The second map is the codifferential of the Torelli mapM46 → A46. The first map is

the codifferential of the map between the moduli spaces of ppav’s of dimension 46 together

with an endomorphism D having eigenvalues (+1) and (−5) respectively to A6. The third

map is the codifferential of the map Hur→M46. �

9.4. We now analyze the differential dPT at a point [C, π] ∈ Hur in detail. For each of

the 24 branch points pi ∈ P1, let {rij}6
j=1 ⊂ C be the ramification points lying over pi. The

formal neighborhoods of the points rij are naturally identified, so that we can choose a single

local parameter x and write any quadratic differential γ ∈ H0(C,K⊗2
C ) as

γ = ϕij(x) · (dx)⊗2 near rij ∈ C.

Choose a local parameter y at the point pi, so that π is given locally by the map y = x2. We

can use the same local parameter at the remaining 15 antiramification points {qik}15
k=1 over

pi at which π is unramified, and write γ = ψik(y) · (dy)⊗2 near qik ∈ C, for k = 1, . . . , 15.

Lemma 9.5. The kernel of the trace map Tr : H0(C,K⊗2
C ) → H0

(
P1, K⊗2

P1 (B)
)

consists of

quadratic differentials γ such that

6∑
j=1

ϕij(rij) = 0, for i = 1, . . . , 24.

Proof. From y = x2, we get dy = 2x dx and (dx)⊗2 = (dy)⊗2/4y. We have that

Tr(γ) =

(
1

4y

6∑
j=1

(
ϕij(x) + ϕij(−x)

)
+

15∑
k=1

ψik(y)

)
· (dy)⊗2 near pi.

Suppose Tr(γ) = 0. Then the leading coefficient 1
2

∑6
j=1 ϕij(rij) is zero. Conversely, assume

that the 24 expressions are zero. Then Tr(γ) ∈ H0(P1, K⊗2
P1 ) = 0. �
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In order to understand the condition in Lemma 9.5, we recall the action of the endomor-

phism D : H0(C,KC) → H0(C,KC) induced by the Kanev correspondence in local coordi-

nates at the points p ∈ C and q ∈ π−1(p) (see also Theorem 8.3 and Remark 8.4).

9.6. The unramified case. Suppose that π is unramified at p, thus Γ := π−1(p) =
∑27

s=1 qs.

Since π is étale, we can use the same local parameter y at p, as well as at each qs ∈ C. Let

α ∈ H0(C,KC). In a formal neighborhood of each point qs, we write locally α = αs(y)dy.

Assume p = [0 : 1] ∈ P1. One has
∑27

s=1 Resqs(α · x0x1 ) = 0, so
∑27

s=1 αs(qs) = 0. The

action of the correspondence on αs’s is described by an endomorphism of a 26-dimensional

space Ô26 =
{∑27

s=1 αs = 0
}
⊂ Ô27, where Ô = ÔP1,p. This endomorphism is given by

the same integral (26× 26)-matrix as the action of D on H0(OΓ(Γ))/H0(C,L), see also the

proof of Theorem 8.3. Thus, D has two eigenvalues (+1) and (−5) with the eigenspaces of

dimensions 20 and 6 respectively. Choose a basis {vm}6
m=1 in the (−5)-eigenspace of Z26.

Then an element α(−5) ∈ H0(C,KC)(−5) can be locally written uniquely as

α(−5) =
6∑

m=1

δmvm ∈ Ô27, for some δm ∈ Ô.

9.7. The ramified case. Suppose π is branched at p and π−1(p) consists of ramification

points r1, . . . , r6 and 15 antiramification points qk. The points ri correspond to the ordered

pairs (ai, bi) of sheets coming together. On the sheets, the correspondence is defined by

ai 7→
∑
j 6=i

(bj + cij) and bi 7→
∑
j 6=i

(aj + cij), for i = 1, . . . , 6.

As above, we use a local coordinate y for p ∈ P1 and the 15 points qk ∈ C, and a local

coordinate x for the ramification points ri, with y = x2. Thus, we write locally

α = αri(x)dx near ri, and α = αqk(y)dy near qk.

The local involution x 7→ −x splits the differential form into the odd and even parts:

αri(x)dx = αodd
ri

(x2)dx+ αev
ri

(x2)xdx,

αri(−x)d(−x) = −αodd
ri

(x2)dx+ αev
ri

(x2)xdx.

The even part can be written in terms of y as 1
2
αev
ri

(y)dy. The odd parts have no such

interpretation and we claim that they do not mix with the 15 sheets on which π is étale:

Lemma 9.8. The correspondence D induces an endomorphism on the 6-dimensional Ôy-
module of odd parts 〈αodd

ri
dx〉. It is given by a matrix which has 0 on the main diagonal and

(−1) elsewhere. The (−5) eigenspace is 1-dimensional with the generator (1, . . . , 1), and for
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every element α ∈ H0(C,KC)(−5) one has

(αodd
r1
, . . . , αodd

r6
) = (φ, . . . , φ), for some φ(y) independent of i = 1, . . . , 6.

Proof. This case is obtained by taking a limit of the unramified case. We work in complex-

analytic topology. A ramification point r ∈ C is a limit of two points qai , qbi ∈ C on the

sheets ai and bi respectively. The local parameters x, x′ at qai , qbi are identified as x′ = −x.

One has y = x2 = (x′)2 and we look at the limit x tends to 0. From dx′ = −dx it follows

that

αqai (x)dx = αodd
ri

(x2)dx+ αev
ri

(x2)xdx,

αqbi (x)dx = −αodd
ri

(x2)dx+ αev
ri

(x2)xdx.

Under the correspondence between the 27 sheets, the αodd contributions from ai and bi to

the 5 sheets cij (j 6= i) cancel out. Conversely, the terms αcij contribute to αev but not to

αodd at the point ri.

It follows that the homomorphism D sends the Ô6 block of the odd parts αodd
ri

to itself.

The matrix of this linear map is the same as the matrix of an endomorphism of Z6 with the

basis of vectors ai − bi, that is, ai − bi 7→ −
∑

j 6=i(aj − bj). It is easy to see that this linear

map has eigenvalues (+1) and (−5) and that the (−5)-eigenspace is one-dimensional and is

generated by the vector (1, . . . , 1). The statement now follows. �

Corollary 9.9. Let β ∈ Sym2H0(C,KC)(−5) and let γ = mul(β) be its image in H0(C,K⊗2
C ).

Then in the notation of Lemma 9.5, one has ϕij(rij) = ϕij′(rij′), for all i = 1, . . . , 24 and all

1 ≤ j, j′ ≤ 6.

Proof. Let α, α′ ∈ H0(C,KC)(−5). Then in the notation of Lemma 9.8, one has

mul(α⊗α′)(rij) = αodd
rij

(rij)·(α′)odd
rij

(rij) = φ(0)φ′(0), which is independent of j = 1, . . . , 6. �

Lemma 9.8 also has consequences for the geometry of the Abel-Prym-Tyurin canonical

curve ϕ(−5) = ϕH0(C,KC)(−5) : C → P5. In stark contrast with the case of ordinary Prym-

canonical curves, the map ϕ(−5) is far from being an embedding.

Proposition 9.10. For an E6-cover π : C → P1, we have ϕ(−5)(ri1) = · · · = ϕ(−5)(ri6), for

each i = 1, . . . , 24.

Proof. This is a consequence of Lemma 9.8: the condition that α ∈ H0(C,KC)(−5) van-

ishes along the divisor ri1 + · · · + ri6 is expressed by a single condition φ(0) = 0, therefore

dim
∣∣H0(C,KC)(−5)(−∑6

j=1 rij)
∣∣ = 4. �

Finally we are in a position to describe the ramification divisor of the map PT .
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Proof of Theorem 0.3. Using (9.5) and (9.9), it follows that the map PT is ramified at a

point [C, π] ∈ Hur, if and only if there exists 0 6= β ∈ Sym2H0(C,KC)(−5) such that

mul(β) ∈ H0(C, 2KC −R) = H0(C,KC − 2L) = Ker(µ(L)),

where the last equality follows from the Base Point Free Pencil Trick applied to the Petri

map µ(L). If now µ(L) is injective, it follows that mul(β) = 0, which finishes the proof. �

10. Brill-Noether type divisors on Hur and degenerations of E6-covers

Determining the Kodaira dimension of A6 is a long-standing open question. As pointed

out in Corollary 5.6, to conclude that A6 is of general type, it suffices to show that the class

7λ(−5)− [DE6 ] is big on the partial compactification GE6 of Hur introduced in Section 8. This

could be achieved by constructing effective divisors which are close to being extremal in the

effective cone of GE6 and computing their classes (see [FL10] for an instance on how this

is carried out for Rg). We have computed in Proposition 8.16 the classes of the effective

divisors Dazy and Dsyz. In order to estimate the positivity of these classes and the sharpness

of Corollary 8.17, we need an upper bound on the total Hodge class λ in terms of λ(−5) and

[DE6 ]. To that end, we introduce a series of virtual effective divisors on GE6 , compute their

classes, and give a sufficient condition for A6 to be of general type.

We start with an E6-cover [π : C → P1] ∈ Hur and set, as before, L := π∗(OP1(1)).

Observe that the line bundle η := 3KC − 10L has degree zero, whereas deg(2KC − 5L) = 45.

Proposition 10.1. If D : JC → JC denotes as usual the Kanev endomorphism, then

D(3KC − 10L) = 3KC − 10L.

Proof. By direct calculation, one verifies that D(L) = 10L and D(KC) = KC + 30L. �

10.2. For each n ∈ Z, we define the locus

Dn :=
{

[C,L] ∈ GE6 : H0
(
C, (3n+ 2)KC − (10n+ 5)L

)
6= 0
}
.

Note that points in Dn are characterized by the condition n · η ∈ Θ2KC−5L ⊂ JC. In

particular, Dn is a virtual divisor on GE6 .

Theorem 10.3. For each n ≥ 0, the virtual class of Dn is given by the following formula:

[Dn] = −λ−
(

3n+ 2

2

)
κ1 +

15

2
(2n+ 1)2 · γ ∈ CH1(GE6).

Proof. We reinterpret the defining property of points in Dn via the Base Point Free Pencil

Trick, as saying that the multiplication map

µn(L) : H0(C,L)⊗H0
(
C, (3n+ 2)KC − (10n+ 4)L

)
−→ H0

(
C, (3n+ 2)KC − (10n+ 3)L

)
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is not bijective. Note, h0((3n+2)KC−(10n+4)L) = 27 and h0((3n+2)KC−(10n+3)L) = 54.

The map µn(L) can be globalized to a morphism of vector bundles over GE6

µn : f∗L ⊗ f∗
(
ω
⊗(3n+2)
f ⊗ L⊗(−(10n+4))

)
−→ f∗

(
ω
⊗(3n+2)
f ⊗ L⊗(−(10n+3))

)
,

where, as in the previous section, L is a universal pencil with W (E6)-monodromy over the

universal curve f : CE6 → GE6 that ultimately plays no role in the class formula for Dn.

Clearly, Dn is the degeneracy locus of µn.

Since R1f∗L⊗f∗
(
ω
⊗(3n+2)
f ⊗L⊗(−(10n+4))

)
= 0 and R1f∗

(
ω
⊗(3n+2)
f ⊗L⊗(−(10n+3))

)
= 0, the

Chern classes of the sheaves appearing in the definition of the morphism µn can be computed

via an easy GRR calculation. For instance, we obtain that

c1

(
f∗
(
ω
⊗(3n+2)
f ⊗ L⊗(−(10n+4))

))
= λ+

(
3n+ 2

2

)
κ1 + 2(5n+ 2)2A− 2(5n+ 2)(6n+ 3)B,

and after routine manipulations we obtained the claimed formula. �

10.4. For each n ≥ 0 such that Dn is an actual divisor on GE6 , using Theorem 10.3, we

obtain the following lower bound for the total Hodge class:

(48n2 + 48n+ 11)λ ≤ 15(2n+ 1)2λ(−5) + 6(3n+ 1)(3n+ 2)[DE6 ] + (3n+ 1)(3n+ 2)[Dsyz].

and

λ ≤ 3(97n2 + 97n+ 26)

87n2 + 87n+ 22
λ(−5) +

3(36n2 + 36n+ 8)

87n2 + 87n+ 22
[DE6 ].

In particular, for n = 0, Theorem 10.8 yields the following upper bound for λ:

Corollary 10.5. On GE6, the following divisor class is effective:

39

11
λ(−5) +

12

11
[DE6 ] +

39

11
n− λ ≥ 0.

A consequence of this bound is a sufficient condition for A6 to be of general type. Recall

that ϕ̃ : GE6 → M̃46 is the map given by ϕ̃([C,L]) = [C].

Proposition 10.6. Assume that there exists an effective divisor D ∈ Eff(M46) having slope

s(D) < 198
41

and not containing the image ϕ̃(GE6). Then A6 is of general type.

Proof. By assumption, there exists an effective Q-divisor D ≡ sλ − δ0 ∈ CH1(M̃46) with

s < 198
41

, such that ϕ̃∗([D]) = sλ− 6[DE6 ]− [Dsyz] is effective on GE6 . Using Proposition 8.17

and Corollary 10.5, it follows that the class(39s

12
− 12

)
λ(−5) −

(
6− 12

11
s
)

[DE6 ] ∈ CH1(GE6)

is effective. The slope of the λ(−5) and [DE6 ]-coefficients of this class is lower than 7 = s(KA6
),

precisely when s < 198
41

. Since λ(−5) is a big class, this finishes the proof. �
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Remark 10.7. The known effective divisors of smallest slope onMg are the Koszul divisors

constructed in [Far09]. Determining the minimal slope of an effective divisor on Mg is a

long standing open problem.

We now address the issue whether the classes computed in Theorem 10.3 are effective. In

particular, this also confirms the upper bound for λ from Corollary 10.5.

Theorem 10.8. For a general E6-curve [C,L] ∈ GE6, we have that

H0(C, 2KC − 5L) = 0,

that is, D0 is an effective divisor on GE6.

Proof. The proof of Theorem 10.8 involves a degeneration similar to the one used to establish

the dominance of the map PT (in fact a simpler one). We start with a cover πt : Ct → P1

ramified in 24 points such that the local monodromy elements are reflections wi in 12 pairs of

roots r1, . . . , r12 generating the lattice E6. We consider a degeneration in which the 12 pairs

of roots with the same label come together. The degenerate cover π : C → P1 is ramified

in 12 points q1, . . . , q12 ∈ P1. Over each point qi there are 6 simple ramification points. The

curve C is nodal with 12× 6 = 72 ordinary double points.

Lemma 10.9. The curve C has 27 irreducible components isomorphic to P1 and the restric-

tion of π to each of them is an isomorphism.

Proof. The dual graph of C is connected and has |V | ≤ 27 vertices and |E| = 6 × 12 = 72

edges. If gi are the genera of the normalizations of the irreducible components of C, one has

46 = pa(C) = |E| − |V | + 1 +
∑
gi = 73 − |V |, which implies that |V | = 27 (and of course

all gi = 0). �

Remark 10.10. Note that the cover π is not admissible in the sense of [ACV03]. The

corresponding admissible cover is obtained by replacing each point qi ∈ P1 by an inserted P1

with two additional marked points pi, pi+12, and modifying the curve C accordingly.

Notation 10.11. The 27 irreducible components {Xs ' P1}27
s=1 of C are in bijection with

the lines {`s}27
s=1 on a cubic surface. Let Γ be the dual graph of C. For each root ri with

i = 1, . . . , 12, there are 6 pairs of lines (aij, bij) such that ri · aij = 1, bij = aij + ri, hence

ri · bij = −1. To each pair we associate an edge (aij, bij) of Γ directed from the vertex aij

to the vertex bij. We also fix 12 ramification points qi ∈ P1 \ {0,∞} = C∗ and denote by

{psi}ns
i=1 the nodes of C lying on Xs. Clearly, π(psi) ∈ {q1, . . . , q12}, for all s and i.
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Lemma 10.12. The space H0(C, ωC) is naturally identified with

H1(Γ,C) = Ker
{ 12⊕
i=1

6⊕
j=1

C(aij, bij)→
27⊕
s=1

C`s
}
.

To an edge (aij, bij) over a root ri one associates a differential form ωij equal to dz
z−qi on Xaij ,

to − dz
z−qi on Xbij and 0 on Xs, for s 6= aij, bij. Then H0(C, ωC) is the subspace of

27⊕
s=1

H0
(
Xs, KXs

( ns∑
i=1

psi
))

of the forms ω =
∑
cijωij, such that for 1 ≤ s ≤ 27 the sum of residues of ω on Xs is zero.

Equivalently, for each 1 ≤ s ≤ 27, one considers a space of forms

ωs =
∑

s∈{aij ,bij}

ci
dz

z − qi
, such that

∑
i

ci = 0.

Then a form ω ∈ H0(C, ωC) is equivalent to a collection of log forms {ωs}27
s=1 satisfying the

72 conditions Resqi(ωaij) + Resqi(ωbij) = 0, for each edge (aij, bij) of Γ.

Proof. This follows by putting together two well known facts:

(1) Let C be a nodal curve with normalization ν : C̃ → C and nodes pi ∈ C such that

ν−1(pi) = {p+
i , p

−
i }. Then H0(C, ωC) is identified with the space of sections

ω̃ ∈ H0
(
C̃,KC̃(

∑
(p+
i + p−i ))

)
satisfying Resp+i (ω̃) + Resp−i (ω̃) = 0.

(2) A section of H0
(
P1, KP1(

∑
i qi)
)

is a linear combination
∑

i ci
dz
z−qi , with

∑
i ci = 0. �

In practice, assume that H0(Xs, ωC|Xs) is identified with the space of fractions

Ps(x)∏ns

i=1(x− π(psi))
dx,

where Ps(x) is a polynomial of degree ns − 2. Then H0(C, ωC) ⊆ ⊕27
s=1H

0(Xs, ωC|Xs) is

characterized by the condition that for every node of psj = ps′j′ ∈ C joining components Xs

and Xs′ , the sum of the residues

Ress :=
Ps(π(psj))∏

i 6=j
(
π(psj)− π(psi)

)
and Ress′ respectively is 0.

Similarly, if H0(Xs, ω
⊗2
C|Xs

) is identified with the space of fractions

Ps(x)∏ns

i=1(x− π(psi))2
(dx)⊗2,
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where deg Ps(x) = 2(ns − 2), then H0(C, ω⊗2
C ) ⊆⊕27

s=1H
0(Xs, ω

⊗2
C|Xs

) is the subspace char-

acterized by the condition that for every node psj = ps′j′ ∈ C joining components Xs and

Xs′ , the difference of the residues

Ress :=
Ps(qj)∏

i 6=j
(
π(psj)− π(psi)

)2

and Ress′ respectively is 0.

To describe H0(C, 2ωC − 5L), we take the subspace in the above space of sections that

vanish at ∞ with multiplicity at least 5. This means that instead of polynomials of degree

2(ns−2) one should consider polynomials of degree 2(ns−2)−5. Determining h0 reduces to a

linear algebra computation. The unknowns are the coefficients of the polynomials {Ps(x)}27
s=1

and the equations are the residue anti-matching, respectively matching, conditions. The

initial input is:

(1) 12 points qi ∈ P1 \ {0,∞} = C∗, and

(2) 12 roots ri generating the lattice E6.

For H0(C, ωC), there are
∑27

s=1(ns − 1) = 117 unknowns and 72 equations. The matrix

has rank 71, and the space of solutions has dimension 46 = g. For H0(C, ω⊗2
C ) there are∑27

s=1(2ns − 3) = 207 unknowns and 72 equations. The matrix has full rank 72, and the

space of solutions has dimension 135 = 3g − 3.

In order to have H0(C, 2ωC − 5L) = 0, at least ns ≥ 4 nodes must lie on each irreducible

component Xs. Otherwise, deg(Ps) = 2(ns−2)−5 ≤ −2 and the system has more unknowns

than equations. It is allowed to have deg(Ps) = −1; this case gives deg(Ps)+1 = 2ns−8 = 0

unknowns, which fits the formula. Assuming each ns ≥ 4 one has
∑27

s=1(2ns − 8) = 72

unknowns and 72 equations, so the expected dimension is 0. This situation is achieved for

the following choice of ramification points and roots:

(1) qi = i ∈ C, for i = 1, . . . , 12.

(2) r1 = α135, r2 = α12, r3 = α23, r4 = α34, r5 = α45, r6 = α56, r7 = α16, r8 = α456,

r9 = α123, r10 = α346, r11 = α234, r12 = α156, using the standard notation for roots in

Z1,6, that is, αij = fi − fj and αijk = f0 − fi − fj − fk.

A Mathematica notebook with an explicit computation can be found at [Web15]. Note that

r1, . . . , r6 generate E6, so the cover π : C → P1 is connected. This completes the proof of

Theorem 10.8. �

10.13. A Petri theorem at the level of the E6-Hurwitz space. We now move on to

prove Theorem 8.2 and show that a Petri-like theorem holds generically on Hur. Using the
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same framework and notation, we study the Petri map

µ(L) : H0(C,L)⊗H0(C, ωC ⊗ L∨)→ H0(C, ωC)

for a 72-nodal curve C corresponding to a cover π : C → P1 as above.

Lemma 10.14. Let H0(P1,O(1)) = 〈x0, x1〉 ⊂ H0(C,L). Then the subspace

H0(C, ωC ⊗ L∨)⊗ 〈x0〉 ⊂ H0(C, ωC ⊗ L∨)⊗H0(C,L) ⊂ H0(C, ωC)

consists of elements {ωs}27
s=1 as above, satisfying for each 1 ≤ s ≤ 27 the additional condition∑

ciqi = 0. Similarly, the subspace H0(C, ωC ⊗L∨)⊗〈x1〉 ⊆ H0(C, ωC) consists of elements

{ωs}27
s=1 as above, satisfying for 1 ≤ s ≤ 27 an additional condition

∑
ci
qi

= 0.

Proof. We identify H0(C, ωC ⊗L∨) with H0(C, ωC(−π∗∞)), hence H0(C, ωC ⊗L∨)⊗〈x0〉 is

the space of forms {ωs}27
s=1 such that for each s = 1, . . . , 27, they satisfy the equality

0 = Res∞
(
ωs ·

x1

x0

)
= −

∑
Resqi

(
ωs ·

x1

x0

)
= −

∑
ciqi.

�

To prove Theorem 8.2, it is sufficient to find one degeneration π : C → P1 such that

(1) h0(C,L) = 2.

(2) The linear subspaces H0(C, ωC⊗L∨)⊗〈x0〉, H0(C, ωC⊗L∨)⊗〈x1〉 and H0(C, ωC)(−5)

generate the vector space H0(C, ωC).

We obtain a system of linear equations in the 72 variables

xij = Resqi(ωaij) = −Resqi(ωbij), for i = 1, . . . , 12 and j = 1, . . . , 6.

For each of the spaces H0(C0, ωC ⊗ L∨) ⊗ 〈x0〉, respectively H0(C, ωC ⊗ L∨) ⊗ 〈x1〉, we

get 2 × 27 equations. By Lemma 9.8, H0(C, ωC)(−5) is the subspace of H0(C, ωC) of forms

{ωs}27
s=1 satisfying for each 1 ≤ i ≤ 12 the condition xij = xij′ for all 1 ≤ j, j′ ≤ 6. This

gives a system of 27 + 12× 5 equations.

Lemma 10.15. The above conditions are satisfied for the following choices of roots and

ramification points:

(1) r1 = α135, r2 = α12, r3 = α23, r4 = α34, r5 = α45, r6 = α56, r7 = αmax, r8 = α124,

r9 = α234, r10 = α35, r11 = α13, r12 = α36.

(2) qi = i, for i = 1, . . . , 12.

Proof. This is now a straightforward linear algebra computation, which we performed in

Mathematica. It can be found at [Web15]. �
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