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We present a massively parallel, 3D phase-field simulation framework for modeling ferroelectric materials 
based scalable logic devices. This code package, FerroX, self-consistently solves the time-dependent 
Ginzburg Landau (TDGL) equation for ferroelectric polarization, Poisson’s equation for electric potential, 
and charge equation for carrier densities in semiconductor regions. The algorithm is implemented 
using the AMReX software framework [1], which provides effective scalability on manycore and GPU-
based supercomputing architectures. We demonstrate the performance of the algorithm with excellent 
scaling results on NERSC multicore and GPU systems, with a significant (15×) speedup on the GPU 
using a node-by-node comparison. We further demonstrate the applicability of the code in simulations 
of ferroelectric domain-wall induced negative capacitance (NC) effect in Metal-Ferroelectric-Insulator-
Metal (MFIM) and Metal-Ferroelectric-Insulator-Semiconductor-Metal (MFISM) devices. The charge (Q) 
v.s. voltage (V) responses for these 3D structures clearly indicate stabilized negative capacitance with 
multidomain formation, which is corroborated by amplification of the voltage at the interface between 
the ferroelectric and dielectric layers.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
1. Introduction

Due to their switchable polarization in response to applied 
electric fields, ferroelectric materials have enabled a wide port-
folio of innovative microelectronics devices, such as ferroelectric 
capacitors (FeCaps) [2,3], ferroelectric tunnel junctions (FTJs) [4]
and ferroelectric field effect transistors (FeFET) [5–8]. The rem-
nant polarization in the ferroelectric material at zero applied elec-
tric field allows for nonvolatile retention in these devices [7]. 
The unique physics of FeFETs has been instrumental in the de-
sign of other new technologies including nonvolatile memories 
[9,10], logic-in-memory (LiM) architectures [11,12], oscillators and 
spiking neurons [13,5] and negative capacitance field effect tran-
sistors (NCFETs) [14–19]. NCFETs, in particular, are designed to 
overcome the fundamental energy consumption limit (the ‘Boltz-
mann’s Tyranny’ [20]) associated with individual semiconductor 
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components [14,21,22], allowing for the design of ultra low-power 
logic technologies. The negative capacitance manifestations have 
been experimentally observed both macroscopically [23–26] and 
locally [17]. With more groundbreaking discoveries on the way, 
we expect the field to culminate in the demonstration of highly-
integrated, CMOS-compatible, ultra-low-power, sub-10-nanometer, 
longer-retention and higher-endurance ferroelectric ecosystems.

Modeling and simulation is playing an increasing role in pro-
viding in-depth insights into the underlying physics, as well as 
in paving the road to facilitate researchers with reliable design 
tools for new microelectronic devices [27]. One of the key chal-
lenges in the modeling of devices such as FeFETs and NCFETs is the 
intrinsic multiphysics nature of the multimaterial stacks. Typical 
ferroelectric devices involve at least three coupled physical mech-
anisms: ferroelectric polarization switching, semiconductor elec-
tron transport, and classical electrostatics, each of which includes 
rich underlying physics. Therefore, accurate numerical coupling 
schemes are essential for studying and designing ferroelectric de-
vices. Current state-of-the-art modeling works have demonstrated 
some coupling of the entire system of interest. The prevalent phase 
field modeling method has been applied to study polarization dy-
 under the CC BY-NC-ND license (http://
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Fig. 1. Overview of FerroX, a GPU-enabled phase-field simulation framework. (a) Schematic of an MFISM stack. Applied voltage across the stack is controlled by specifying 
electric potentials on the top and bottom metal contacts shown in yellow. Removing the semiconductor layer reduces the structure into an MFIM stack. (b) Uniaxial atomic 
displacement along the thickness (z-direction) of the ferroelectric film and corresponding double-well energy landscape. (c) Carrier concentration in semiconductor region is 
described using Fermi-Dirac distribution function as function of potential distribution in the device. (d) A typical time-step of FerroX. We iteratively solve Poisson’s equation 
and compute ρ until self-consistency is achieved. See Section “Numerical Approach”. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)
namics in ferroelectric materials, usually stacked with dielectric 
layers as in FeFETs [28,21,29–33,27,34,19], but without considera-
tion of the charge distributions in semiconductor substrates. Others 
have also considered strain effects [27–32] and temperature ef-
fects [27,29–32,21]. Recent works have included the semiconductor 
charges, but in a two-dimensional (2D) geometrical representation 
[35,36]. However, full three-dimensional (3D) considerations of the 
structures are required to accurately capture the complex heteroge-
neous structure operations, especially in miniature designs such as 
ferroelectric finFET [37–40]. This 3D aspect sets additional require-
ments on the mesh resolution, making the simulation efficiency 
difficult to realize with complicated and coupled physical pro-
cesses. Therefore, an accurate and efficient 3D simulation tool to 
model ferroelectric-dielectric-semiconductor heterostructures, that 
is portable from laptops to manycore/GPU exascale systems, is in 
urgent demand.

In this article, we present a massively parallel, 3D phase-field 
simulation framework, named FerroX, for modeling and design 
of ferroelectric-based microelectronic devices. The overall strat-
egy couples the time-dependent Ginzburg Landau (TDGL) equation 
for ferroelectric polarization, Poisson’s equation for electric poten-
tial, and charge equation for carrier densities in semiconductor 
regions. We discretize the coupled system of partial differen-
tial equations using a finite difference approach, with an overall 
scheme that is second-order accurate in both space and time. 
Boundary condition options for various surface effects (free po-
larization, zero polarization and finite extrapolation length λ) on 
the polarization at ferroelectric-dielectric and metal-ferroelectric 
interfaces have been implemented. In order to achieve a mas-
2

sively parallel manycore/GPU implementation of our structured 
grid simulations, we leverage the DOE Exascale Computing Project 
(ECP) code framework, AMReX, developed by Zhang et al. [1]. 
We demonstrate the applicability of our code with simulations 
of ferroelectric domain-wall induced negative capacitance (NC) 
effects in Metal-Ferroelectric-Insulator-Metal (MFIM) and Metal-
Ferroelectric-Insulator-Semiconductor-Metal (MFISM) structures. 
Considering hafnium–zirconium oxide (Hf0.5Zr0.5O2, or HZO) as 
the ferroelectric material, we study the dynamics of domain walls 
and polarization switching in MFIM and MFISM stacks using our 
validated 3D code. The charge (Q) v.s. applied voltage (V) responses 
for these structures clearly indicate stabilized negative capacitance. 
We also demonstrate the performance of the algorithm with excel-
lent scaling results on NERSC multicore and GPU systems, with a 
significant (15x) speedup on the GPU using a node-by-node com-
parison [41].

2. Mathematical model and numerical approach

We begin with the description of the governing equations, dis-
cretization schemes, and numerical algorithms implemented in 
FerroX.

2.1. Governing equations

Fig. 1 shows an overview of the physical model and numerical 
approach in FerroX. Here we consider an MFISM stack comprising 
of ferroelectric (FE), dielectric (DE), and semiconductor (SC) thin 
films as shown in Fig. 1(a), which is the essential functioning block 
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in FeFETs and NCFETs. The applied voltage across the device is 
controlled by specifying the electric potentials on top and bottom 
metal contacts shown in yellow. The dynamics of polarization in 
ferroelectrics is described by the time-dependent Ginzburg–Landau 
(TDGL) equation [27,42,35,43]:

∂P(r, t)

∂t
= −�

δF

δP(r, t)
(1)

where P = (P x, P y, P z) is the electric polarization vector, r =
(x, y, z) is the spatial vector, � is the kinetic or viscosity coef-
ficient, and δF

δP(r,t) represents the driving force for the evolution 
of system. F is the total free energy of system as a function of 
P(r, t) and takes into account the contributions due to the bulk 
Landau free energy, the domain wall energy or gradient energy, 
and the electric energy of the applied electric field. Exact forms 
of these energy densities are elaborated in the “Ginzburg-Landau 
model for ferroelectrics” section in the Appendix. In ferroelectric 
materials, spontaneous displacement of atoms leads to a non-zero 
spontaneous polarization. In most FeFETs, atomic displacement is 
dominantly uniaxial along the out-of-plane direction (z-direction 
in Fig. 1(b)), therefore, in this article, we assume the polarization 
vector to present only a out-of-plane component, i.e. P x = P y = 0
and P z = P .

The distribution of electric potential in the system is obtained 
by solving Poisson’s equation under the electrostatic equilibrium 
condition, in the following form:

∇ · ε∇� = ∇ · P − ρ (2)

where ε is a spatially-varying permittivity and ρ is the total free 
charge density in the semiconductor region and can be set to zero 
for MFIM devices since a semiconductor layer is not present. On 
the other hand, for devices with a semiconductor layer, charge 
density in the semiconductor region depends on the local distri-
bution of electric potential and is computed using the following 
equation [44]:

ρ(r) = e
[
np − ne + N+

d − N−
a

]
(3)

where e is the elementary charge and np(r), ne(r), N+
d (r), and 

N−
a (r) are densities of holes, electrons, ionized donors, and accep-

tors at spatial location r. N+
d (r) and N−

a (r) are negligible if we 
consider undoped silicon as the semiconductor layer. Electron and 
hole densities at equilibrium can be estimated using Fermi-Dirac 
statistics as shown in the schematic in Fig. 1(c).

A typical time step of FerroX is shown in Fig. 1(d). We initial-
ize polarization P using a uniformly distributed random numbers 
and compute the corresponding distributions of potential (�) and 
charge density (ρ) iteratively until self-consistency is reached. At 
each time step we solve the TDGL equation to update P and use 
the updated P to compute � and ρ . Since the right-hand-side of 
the Poisson’s equation is also a function of �, we use fixed-point 
iteration, where we iteratively lag the effects of � when com-
puting the right-hand-side. The iterations are stopped when the 
average magnitude of change over all cells is less than a user-
defined tolerance. For the applications described in this paper, the 
tolerance is 1 × 10−5. The Poisson solver used in our framework 
provides second order accuracy in space. We have designed the 
temporal integrators for the TDGL equation to produce either first 
or second-order convergence in time with an option to choose ei-
ther at run time. We should note that our spatial discretization is 
second-order within each material, however, discontinuities in our 
model near interface boundaries will result in a reduction in the 
order of convergence in space (see the “Verification and Valida-
tion” section).
3

2.2. Numerical approach

In this section we describe the numerical algorithm to solve the 
system of equations governing the dynamics of the system. The 
two fundamental kernels consist of an integration of P , and the 
solution of a Poisson solve to compute �. The integration of P is 
performed using equation (A.6), which we write compactly as:

∂ P

∂t
= f (P ,�) (4)

We have implemented a first and second-order temporal inte-
grator. We utilize the Multi-Level-Multi-Grid (MLMG) geometric 
multigrid linear solver built in the AMReX library [1] to solve 
Poisson’s equation. It is a second order accurate iterative solver 
which achieves convergence by progressively minimizing the resid-
ual below an user-defined threshold. Periodic boundary conditions 
are set in the two in-plane directions, x and y, while a Dirich-
let boundary condition is used along the thickness direction (z)
of the device to control the applied voltages. The right-hand-side 
of the Poisson’s equation also depends on the charge density (ρ), 
which is non-zero only in the semiconductor region. The integrals 
in equation (A.10) and (A.11) are computed using an approximation 
to the Fermi-Dirac integral of order 1/2 [45] and then equation (3)
is used to estimate the total charge density.

The solution of the Poisson problem is not as straightforward 
for problems with a semiconductor layer, since right-hand-side of 
the Poisson solve is also a function of �. In this case, we use 
a fixed-point strategy where we iteratively lag the effects of �

when computing the right-hand-side, and iterate to convergence. 
We stop the iterations when the average magnitude of change over 
all cells is less than a user-defined tolerance. In our example, we 
use a tolerance of 10−5 and observe that the solution converges in 
typically 2 iterations.

In our algorithm, the superscript denotes the time level, i.e., 
(P , �)n denotes the solution at tn ≡ n	t . The overall numerical 
scheme proceeds as follows:

INITIALIZATION: Given P 0, compute �0 using the following:

• Step 0: Define �0,(0) = 0 and then iterate equation (5) over 
k = 0, · · · until the desired tolerance is achieved. Again, note 
that iterations are only required if there is a semiconductor 
layer where ρ depends on �.

∇ · ε∇�0,(k+1) = ∂ P 0

∂z
− ρ(�0,(k)) (5)

Then, set �0 = �0,(k+1) .

TIME-ADVANCEMENT: Given (P , �)n , compute (P , �)n+1 using 
the following steps:

Predictor

• Step 1a: Compute Pn+1,∗ = Pn + 	t f (Pn, �n).
• Step 1b: Define �n+1,∗,(0) = �n and then iterate equation (6)

over k = 0, · · · until the desired tolerance is achieved:

∇ · ε∇�n+1,∗,(k+1) = ∂ Pn+1,∗

∂z
− ρ(�n+1,∗,(k)) (6)

Then, set �n+1,∗ = �n+1,∗,(k+1) .

If only first-order accuracy in time is desired, the corrector step 
can be skipped.
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Corrector

• Step 2a: Compute Pn+1 = Pn + 	t
2 f (Pn, �n) + 	t

2 f (Pn+1,∗,
�n+1,∗).

• Step 2b: Define �n+1,(0) = �n+1,∗ and then iterate equation 
(7) over k = 0, · · · until the desired tolerance is achieved:

∇ · ε∇�n+1,(k+1) = ∂ Pn+1

∂z
− ρ(�n+1,(k)) (7)

Then, set �n+1 = �n+1,(k+1) .

2.3. Implementation

We implement our code using the AMReX software library [1], 
which is developed and supported by the DOE Exascale Comput-
ing Project Block-Structured Adaptive Mesh Refinement Co-Design 
Center. AMReX contains many features for solving partial differen-
tial equations on structured grids; here we discuss relevant fea-
tures for our present implementation, as well as future plans that 
will incorporate additional features. AMReX manages data and op-
erations on structured grids in a manner that can efficiently use 
the full range of computer architectures from laptops to many-
core/GPU supercomputing architectures. We divide the computa-
tional domain into non-overlapping grids, and each grid is assigned 
to an MPI rank. AMReX uses an MPI+X finegrained parallelization 
strategy, where X can be OpenMP (for multicore architectures), 
or CUDA (for GPU-based architectures). Each of these strategies 
are implemented with the same front-end code using specialized 
looping structures within AMReX and the portability across vari-
ous platforms is ensured by AMReX during compile-time. Each MPI 
process applies computational kernels only to the data in grids that 
they own in the form of triply-nested loops (over each spatial di-
mension). For pure MPI calculations, the loop is interpreted as a 
standard “i/j/k” loop. For MPI+OpenMP calculations, the bounds of 
the loop are further subdivided over logical tiles, and each OpenMP 
thread loops over a particular tile. For MPI+CUDA calculations, AM-
ReX performs a kernel launch and offloads each data point to CUDA 
threads that in turn perform computations. AMReX manages data 
movement by keeping data on the GPU devices as much as possi-
ble, avoiding costly communication between the host and device. 
Thus, whenever possible, data movement to/from the host/GPU 
and also between MPI ranks is limited to ghost cell data exchanges, 
which occur a small number of times per time step (excluding the 
linear solvers). In Section 4 we demonstrate the efficiency and scal-
ability of our code using pure MPI and MPI+CUDA simulations on 
NERSC systems. This analysis is realized by built-in AMReX pro-
filing tools; however more in-depth analysis is possible with an 
extensive variety of compatible profilers such as CrayPat, IPM, and 
Nsight. Data from the simulation can be efficiently written using 
a user-defined number of MPI ranks, to prevent overwhelming the 
system with simultaneous writes. Visualization can be performed 
with a number of publicly-available software packages, including 
Amrvis, VisIt, Paraview, and yt.

3. Verification and validation

3.1. Numerical convergence study

In this Section we present the numerical convergence of the 
algorithm in time and space by computing the reduction in error 
as we increase the temporal and/or spatial resolution.

Our temporal integrators are designed to produce first or 
second-order convergence in time. Our spatial discretization in 
second-order within each material, however discontinuities in our 
model near interface boundaries will result in a reduction to first-
order in space. For example, the abrupt change in the dielectric 
4

coefficients at interfaces results in order reduction of the electric 
potential from the Poisson solver. Also, the abrupt change in the 
right-hand-side of the Poisson equation from ∇ · P (in the ferro-
electric region), to zero (in the dielectric region), to the charge 
density (in the semi-conductor region) will also result in spatial 
order reduction.

The physical problem setup is as follows: the three-dimensional 
domain is 32 nm on each side. The lowest 25% of the domain is 
semiconductor material, the next 25% is dielectric, and the upper 
50% of the domain is ferroelectric. Material parameters listed in Ta-
ble 2 are utilized in all these tests. We set � = 0 on the upper and 
lower domain boundaries in z and periodic boundary conditions 
in x and y. We use the boundary condition with surface effects 
for P given by (B.1) with λ = 3 nm. The initial condition for po-
larization is a smooth Gaussian bump isolated to the ferroelectric 
region, given by

P = 0.002e
−

(
x2

2σ2
1

+ y2

2σ2
1

+ (z−z0)2

2σ2
2

)
, (8)

with σ1 = 5 nm, σ2 = 2 nm, and z0 = 24 nm.
In the first test, we measure temporal order of accuracy by per-

forming a series of simulations on a fixed grid structure, but with 
three different time steps using the first-order temporal scheme. 
Thus, the notion of “coarse”, “medium”, and “fine” simulations 
are referring to temporal resolution. In the second test, we repeat 
this procedure but use the second-order temporal scheme. For the 
first two tests, we use 1283 grid cells (0.25 nm resolution) with 
	t = 50, 25, and 12.5 fs. In the third test, we measure spatial or-
der of accuracy by performing a series of simulations using the 
same time step, but with three different spatial resolutions. For 
this third test, the notion of “coarse”, “medium”, and “fine” sim-
ulations are referring to spatial resolution and we use 	t = 25 fs 
and 643, 1283, and 2563 grid cells (0.5, 0.25, and 0.125 nm resolu-
tion). We run all simulations to a total time of t = 400 fs.

The convergence rate is defined as the base-2 log of the ratio 
of errors between the coarse-medium, Em

c , and medium-fine solu-

tions, E f
m .

Rate = log2

(
Em

c

E f
m

)
(9)

Em
c is computed as the L2 norm of the difference of the coarse and 

medium solution. For the spatial convergence test, these two so-
lutions are at different resolutions; thus we average the medium 
solution down to coarse resolution by averaging the 8 medium 
cells overlying a coarse cell. E f

m is computed in the same way, but 
with the medium and fine solutions. Formally, for the scalar po-
tential field � (and same procedure for P ) this is written as:

Em
c =

√
1

Nc

∑
i, j,k|�m − �c|2;

E f
m =

√
1

Nm

∑
i, j,k|� f − �m|2 (10)

where, �c , �m , and � f are the fields obtained from the coarse, 
medium, and fine solutions, and Nc and Nf are total number of 
grid points used for the coarse and medium simulations, respec-
tively.

In Table 1 we show convergence results for P and �. For Test 1 
we see the expected first-order convergence in time. For Test 2 we 
see the expected second-order convergence in time. For Test 3 we 
see an expected reduction to first order in the electric potential, 
and a slight reduction in order for the polarization. This is ex-
pected since there are a number of spatial discontinuities present 
in the code that should not exhibit second-order convergence, as 
described above.
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Table 1
Convergence study for an MFISM test problem using (Test 1) temporal refinement only, first-
order temporal scheme, (Test 2) temporal refinement only, second-order temporal scheme, and 
(Test 3) spatial refinement only, second-order temporal scheme.

P �

Em
c Rate E f

m Em
c Rate E f

m

Test 1 3.53 × 10−8 1.00 1.77 × 10−8 1.12 × 10−6 1.01 5.53 × 10−7

Test 2 2.31 × 10−10 2.02 5.70 × 10−11 1.79 × 10−8 2.07 4.25 × 10−9

Test 3 6.28 × 10−7 1.96 1.61 × 10−7 2.32 × 10−5 1.00 1.16 × 10−5
Table 2
Physical and numerical parameters used in the simulations.

Parameters Values Units

α −2.5 × 109 Vm/C

β 6.0 × 1010 Vm5/C3

γ 1.5 × 1011 Vm9/C5

g11 = g44 1.0 × 10−9 Vm3/C

εfe 24.0 1

εDE 10(Al2O3), 3.9(SiO2) 1

εSC 11.7 1

m∗
e 1.08 × me kg

m∗
p 0.81 × me kg

� 100.0 1/(� · m)

	x = 	y = 	z 0.5 × 10−9 m

λ 3.0 × 10−9 m

	t 4.0 × 10−13 s

3.2. Comparison with experimental results

We studied the P-E characteristics of a 10 nm HZO thin-film 
using 3D FerroX simulation and compared the results with exper-
imental measurements [46]. For this, we simulate an MFM de-
vice consisting of a 10 nm thick HZO film between two metal 
plates with an in-plane dimension of 16 nm × 16 nm. Polar-
ization is initialized as uniformly distributed random number in 
[−0.002, 0.002] in the FE and the applied voltage across the de-
vice is varied by specifying the Dirichlet boundary condition to the 
Poisson solver at the metal contacts. Physical and numerical pa-
rameters same as those shown in Table 1 of the main manuscript 
are used. The applied voltage is varied from -5.0 to 5.0 V and for 
each applied voltage, the FE polarization is allowed to evolve until 
a steady state is reached. We plot the spatially averaged polariza-
tion in the FE against the electric field to obtain the P-E character-
istics shown in Fig. 2. Simulation results are in excellent agreement 
with the experimental measurements [46], thus validating the im-
plementation of TDGL and Poisson’s equation in FerroX.

3.3. Comparison with existing 2D solvers

In this section, we study multi-domain formation in a 2D 
MFISM device using FerroX and compare our results with previ-
ous 2D work [35]. This test case serves as a verification of the 
algorithms implemented in FerroX. All the physical and numer-
ical parameters are identical to the 3D case presented in the 
main manuscript except that the y-dimension is not modeled, ig-
noring the dynamics along that direction. An applied voltage of 
V app = 0 V is used. Simulation results are shown in Fig. 3. Similar 
to the 3D case, the depolarization field, generated at the HZO-SiO2
interface, which acts opposite to the polarization and results in 
an increase in the depolarization energy is compensated by the 
formation of 180◦ domains of alternate positive and negative P
values of approximately equal size as shown in Fig. 3(a). The non-
5

Fig. 2. P-E characteristics obtained using 3D FerroX simulation of an MFM device 
with 10 nm HZO film as the FE. Spatially averaged polarization is plotted against 
the applied electric field.

homogeneity in the FE-DE interface potential manifests into a spa-
tially varying potential profile at the DE-Si interface which shows 
maxima and minima corresponding to negative and positive P val-
ues as shown in Fig. 3(b). Electron and hole density distribution 
are shown in 3(c) and (d). These results are in good agreement 
with Fig. 6(a), (b), and (c) of Saha et al. [35].

4. Code performance

FerroX is massively parallel and is performance-portable from 
laptops to manycore/GPU exascale systems, with a significant 
speedup on the NERSC GPUs compared to the NERSC CPUs on a 
node-by-node comparison [41].

We assess the performance and scalability of our code on HPC 
systems with tests on the NERSC supercomputers. We consider the 
Haswell partition on the Cori system and NERSC’s newest flagship 
supercomputer, Perlmutter. The Haswell partition consists of 2,388 
nodes; each node contains an Intel Xeon “Haswell” Processor with 
32 physical cores and 128 GB memory. Perlmutter system has 1536 
GPU accelerated compute nodes each consisting of 4 NVIDIA A100 
GPUs with 160 GB memory per node. We perform weak scaling 
tests and then compare times across different architectures using 
pure MPI runs on haswell CPUs and MPI+CUDA runs on Perlmutter 
GPUs. To summarize, we achieve near perfect scaling to several 
hundred GPUs, with a 15x speedup over CPU runs on a node-by-
node basis.

We perform the weak scaling tests with the set-up of a MFIM 
device. We consider the interface between ferroelectric and dielec-
tric in the middle of the computational domain along z (thickness) 
direction. Transverse directions of the film align with the x and 
y directions respectively. We perform two sets of simulations on 
NERSC systems described above. The first set of simulations em-
ploy the pure MPI paradigm on the Haswell partition with a maxi-
mum of 32 MPI processes per node. The second set of simulations 
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Fig. 3. 2D FerroX simulation of an MFISM stack. 5 nm thick HZO, 1 nm thick SiO2, and a 10 nm thick Si as the ferroelectric, dielectric, and semiconductor layers respectively 
using an applied voltage, Vapp = 0 V. (a) Polarization distribution showing multi-domain formation in FE (b) surface potential at FE-Si interface with and without FE (c) and 
(d) electron and hole density respectively in the semiconductor region.
Fig. 4. Weak scaling for simulations on the NERSC Cori Haswell (MPI-only) and Perl-
mutter GPU (MPI+CUDA) systems, respectively. Note that one Haswell node contains 
32 physical cores, and one Perlmutter node contains 4 GPUs. The weak scaling is 
nearly perfect for the Perlmutter simulations past the 1-node threshold up to 512 
GPUs (128 nodes), as well as for the Haswell partition simulations past the 1-node 
threshold up to 4096 CPUs (128 nodes). Also, when using 2 nodes or more, the GPU 
simulations run 15x faster than the pure MPI simulations on a node-by-node com-
parison. Details of numerical accuracy and performance tests can be found in the 
“Code Performance” section.

employ the MPI+CUDA parallelization strategy on the GPU accel-
erated compute nodes of perlmutter, which has a maximum of 
4 NVIDIA A100 GPUs per node, and we use one MPI processor 
per GPU. The baseline case for all weak scaling tests performed 
with different parallelization strategies has a computational do-
main size of 32.0nm × 32.0nm × 32.0nm uniformly discretized us-
ing 256 × 256 × 256 cells (16,777,216 total). For this base case we 
use 1/4th of a node in each simulation set, i.e. 8 MPI ranks on 
haswell partition of cori and 1 MPI rank + 1 GPU on Perlmutter 
compute node. We should note that this simulation utilizes ∼ 5.5
GB of memory which is ∼ 14% of total available memory per Perl-
mutter GPU. For the weak-scaling study, we increase the domain 
size and number of cells in each direction consistent with the 
increase in the core count to maintain a constant amount of com-
putational work per core. Weak scaling results for the two sets of 
simulations, indicating the average simulation time per time step 
as a function of the number of nodes is shown in Fig. 4. We omit 
the timing associated with initialization as this occurs only once at 
the beginning of the simulation. We performed tests on each sys-
tem up to 128 nodes, which corresponds to 4096 CPUs on haswell 
and 512 GPUs on Perlmutter. For the 1/4th node baseline runs, the 
GPU simulations performed 11x faster than the pure MPI simula-
tions on the Haswell partition. We also observe that for the 2-node 
through 128-node runs, the GPU simulations performed approxi-
mately 15x faster than the pure MPI simulations on the Haswell 
partition. Both the Haswell partition and Perlmutter GPU simula-
6

tions achieve nearly perfect scaling up to 128 nodes beyond the 
1-node threshold. This is attributed to the fact that as we increase 
the number of processors within the node, the MPI communica-
tion time keeps increasing until the node is saturated and then the 
computation-to-communication ratio remains very similar across 
all nodes for the problem sizes we consider.

In order to assess the performance of FerroX compared to ex-
isting simulation tools for ferroelectric devices, we performed a 
simulation of the MFIM stack at the parameters described in sec-
tion 5.1 using FerroX and COMSOL Multiphysics [47] on 1 CPU. 
We compare the total time for the simulation when the ferroelec-
tric reaches steady state multidomain. FerroX simulation reaches 
steady state in 0.2 ns and requires 2 minutes and 14 seconds to 
reach that physical time. Corresponding COMSOL simulation with 
similar element sizes requires 0.6 ns to reach steady with a wall 
clock time of 40 minutes. Thus, we conclude that FerroX gives 
approximately 11x speedup in simulation time over COMSOL for 
the test problem. The excellent parallel performance enables Fer-
roX to adequately address realistic ferroelectric design challenges 
with full physical and geometrical details, which were previously 
disregarded by available commercial or research grade software, 
due to the overwhelming computational complexity. To the best of 
our knowledge, currently available multidomain ferroelectric simu-
lation tools do not support computing on GPUs and aren’t capable 
of extreme scaling similar to FerroX.

5. Practical applications

5.1. Domain dynamics and NC effect in MFIM stacks

Using FerroX, we explore the dynamics of domain walls, polar-
ization switching, and the negative capacitance effect in an MFIM 
stack. The device consists of a 5-nm-thick HZO and 4-nm-thick 
Al2O3 as the ferroelectric and dielectric layers, respectively. Lateral 
dimensions along the x and y axes are 32 nanometers. We per-
form the simulations in both 2D and 3D Cartesian geometry. 2D 
simulations are performed with parameters similar to that used by 
Saha and Gupta [35], and serve as a validation case for our algo-
rithm. To realize a 2D structure, we initialize the polarization P
in the ferroelectric film to be uniform along one of the lateral di-
mensions (y) in a 3D FerroX simulation, which effectively turns off 
the contribution from gradients in P and � along the y direction, 
so the problem reduces to two dimensions in the x − z plane. In 
contrast, 3D cases are initialized with a random distribution of P
along all three dimensions, while keeping the same physical sizes 
and material properties as the 2D cases.
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Fig. 5. Polarization switching dynamics and Q − V characteristics in MFIM stack using 2D and 3D models. 5 nm thick HZO and 4 nm thick Al2O3 are used as the ferroelectric 
and dielectric layers with physical and numerical parameters as shown in Table 2. (a) and (b) polarization domains in 3D and 2D respectively, (c) V avg

F E−D E − V app, where 
V avg

F E−D E is the average potential at the FE-DE interface, and (d) Q − V characteristics. For V app = 0 V, FE is in multidomain state with approximately equal positive and 
negative domains in either case (panel labeled 0 V in (a) and (b)), however, with different domain structures in the 2D and 3D scenarios. Note that the dielectric layer in 
2D is not shown. As the applied voltage is varied, following the triangular wave profile as shown in the top inset of (d), FE transitions from multidomain to single-domain 
(either P ↓ or P ↑). This voltage sweep process is repeated multiple times, with the first sweep (“Sweep 1” in (a)) to realize the first poling of FE. Corresponding Q − V
characteristics exhibit double hysteresis. Simulations show that transition from multidomain to single domain occurs at a smaller applied voltage in 2D compared to that in 
3D.
Fig. 5 shows applied-voltage-induced polarization switching 
due to the dynamics of domain walls, as well as the negative 
capacitance effect in an MFIM stack. First, we investigate multido-
main formation in FE by considering an applied voltage V app of 0 
V across the stack. Once initialized, the polarization P in the fer-
roelectric layer evolves towards equilibrium with minimized total 
energy. During this relaxation process, the interaction between var-
ious energy terms (given in equation (A.3), (A.4) and (A.5) in the 
Method section) dictates the formation and motion of the ferro-
electric domains. In the presence of a DE layer, connected in series 
with the FE layer, the electric field seen by the FE layer is given 
by Ez,dep = −P/

[
ε0

(
εfe + εDE

tfe
)]

for zero applied voltage [48]. 
tDE

7

Here εFE(DE) and tFE(DE) are the relative permittivity and thickness 
of FE (DE), respectively; ε0 is the vacuum permittivity, and P is 
the polarization in FE. This electric field, Ez,dep, is the depolar-
ization field, which opposes the spontaneous polarization P and 
results in an increase in the depolarization energy term. This in-
crease is compensated by the formation of 180◦ soft domains of 
alternate positive and negative P values, as shown in the domain 
patterns corresponding to V app = 0 V in Fig. 5(a) and (b). Note that 
both these figures show the domains at steady state.

The Q − V characteristics of the device are shown in Fig. 5(c) 
and (d). Specifically, Fig. 5(c) shows the Q − V avg

fe relation and 
Fig. 5(d) shows the Q − V app relation. Here, the average charge 
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density Q at the FE-DE interface z = zint is calculated as Q (zint) =
1

Lx L y

∫ Lx
0

∫ L y

0 ε0εD E × Ezintdxdy where Lx and L y are lateral dimen-

sions of the film and Ezint is the electric field on the dielectric side 
of the x − y plane at z = zint. The average voltage drop across the 
FE layer, denoted as V avg

fe , is computed as V avg
fe = V app − V avg

FE/DE =
V app − 1

Lx L y

∫ Lx
0

∫ L y
0 �intdxdy, where �int is the potential on the 

x − y plane at z = zint. As the applied voltage increases from 0 V, 
indicated by the first quarter period of the triangle wave profile 
in the top inset of Fig. 5(d), regions of negative P (denoted as 
P ↓) enlarge in size and regions of positive P (denoted as P ↑) 
reduce in size due to the domain wall motion. This process can be 
observed in both the 3D and 2D structures, as shown in the 3D 
domain patterns in Fig. 5(a) (V app of 0 V, 1.5 V, 3 V and 4 V), and 
the 2D domain patterns in Fig. 5(b) (V app of 0 V, 1 V, 2 V and 
3 V). The FE layer eventually goes into a P ↓ single-domain with 
V app = V SD ∼ 3.5V for the 3D structure and V app = V SD ∼ 3.0V
for the 2D structure. Once single-domains are formed, we start de-
creasing the applied voltage and our simulations show that the FE 
layer returns to a multidomain state when V app gets to V MD ∼ 1 V. 
The double-well energy landscape induces a hysteresis loop in the 
Q − V app characteristic curve [35,49], which is seen in the first 
quadrant in Fig. 5(d). Similarly, as applied voltage V app is further 
reduced below 0 V, regions of P ↑ enlarge in size and regions of 
P ↓ reduce in size and the FE layer eventually goes into a P ↑
single-domain at V app = −V SD. The applied voltage is then in-
creased, which results in FE returning to the multidomain state, 
exhibiting the “second” hysteresis loop in the third quadrant of the 
Q − V app relation in Fig. 5(d).

The negative slope of the Q − V avg
fe curve in Fig. 5(d) indicates 

a negative capacitance Cavg
fe = dQ /dV avg

fe when the FE is in mul-
tidomain state. One can deduce from this NC property that the 
average effective permittivity has a negative z component (εz,fe). 
To quantify this effect, we define the strength of the NC effect 
as |1/(ε0εz,fe)| = |dEavg

z,fe/dQ | [35,50,21]. Based on this definition, 
it can be inferred from Fig. 5(d) that the NC effect is stronger in 
3D compared to that in 2D (since the 2D curve is steeper). The 
stronger NC effect in 3D is also revealed by the larger differential 
amplification dV avg

FE/DE/dV app shown in Fig. 5(c). Such enhancement 
of NC effect can be attributed to higher density of domain walls in 
3D. Since NC effect is induced by domain wall motion, thus it is af-
fected by the domain wall energy density, Fdw = fx,elec + f y,elec +
fx,grad + f y,grad [17], where fx,elec = ε0εx E2

x,F E , f y,elec = ε0εy E2
y,F E , 

fx,grad = 1
2 g44(d2 P/dx2), and f y,grad = 1

2 g44(d2 P/dy2). The 2D as-
sumption artificially underestimates Fdw due to the absence of the 
f y,elec and f y,grad terms, whereas the 3D setup captures the dy-
namics along all three directions leading to a higher domain wall 
energy. This increased energy in 3D is minimized at the cost of 
higher polarization to bring the FE layer in a steady-state multido-
main and results in an overall higher charge response of the MFIM 
stack (Fig. 5(d)). Due to similar reasons, the applied voltage re-
quired for the multidomain/single-domain transition is higher for 
the denser domains in 3D. It is worth noting that the 2D results 
are in excellent agreement with those reported by Saha and Gupta 
[35].

5.2. Domain dynamics and NC effect in 3D MFISM stack

Now we move our focus to a gate stack of a FeFET which 
consists of a 5 nm thick HZO, 1 nm thick SiO2, and a 10 nm 
thick Si as the ferroelectric, dielectric, and semiconductor layers 
respectively. The purpose of these simulations is to demonstrate 
the capability of 3D FerroX simulations to study heterostructures 
governed by the coupling between all three physical processes. 
The simulation setup is identical to the MFIM case discussed in 
8

the previous section with the following two exceptions: (a) the 
dielectric layer is 1 nm thick SiO2(εSiO2 = 3.9) instead of 4 nm 
thick Al2O3(εAl2O3 = 10) and (b) a 10 nm thick undoped silicon 
is used as the semiconductor layer. In this case, the electron and 
hole densities are calculated self-consistently with the evolving po-
larization, following equation (3). We refer interested readers to 
“Charge density in semiconductor region” section in the Appendix 
for more details.

The simulation results with Al2O3 as DE show reduced elec-
tron/hole density, potential, and charge compared to the SiO2 cases 
and are shown in the supplementary material. The underlying 
physics of multidomain formation in FE is the same as in the 
MFIM and is corroborated by the steady-state multidomain pat-
tern shown in Fig. 6(a). Similar to the MFIM case described in the 
previous section, inhomogeneous in-plane potential � and elec-
tric field E distributions are formed in the device with the max-
imum amplitude at the FE-DE interface, shown in Fig. 6(b) and 
(c), respectively. This inhomogeneity in the FE-DE interface po-
tential manifests into a spatially varying in-plane potential at the 
DE-Si interface Fig. 6(b). This leads to a local accumulation of elec-
trons and holes in an un-doped semiconductor, shown in Fig. 6(d) 
and 6(e) respectively, exhibiting maxima and minima which corre-
spond to negative and positive � in Fig. 6(b). For instance, with 
V app = 0 V, the minimum DE-Si interface potential is close to 
−0.2 V for MFISM compared to 0 V for the conventional MIS 
case (see supplementary materials Fig. 2(b)). Further exploration 
is needed to characterize the channel current under the effect of 
multidomain FE in FeFETs and NCFETs by including electron trans-
port model.

6. Conclusions and future work

This work presents a ferroelectric-based transistor simulation 
framework that is scalable on next-generation GPU/multicore sys-
tems. We present several 3D case studies to demonstrate the accu-
racy and capability of our methodology. Specifically, we focused on 
stacks consisting of ferroelectric materials, dielectric materials, and 
semiconductors, which is the essential functioning block in FeFETs 
and NCFETs. The investigation of polarization domain dynamics 
in response to varying applied voltage has revealed a domain-
wall induced negative capacitance effect, which is strengthened by 
denser domain patterns. The capability of this solver to scale to 
at least hundreds of GPUs allows users to comprehensively explore 
device performance, with both physical and geometrical details ad-
dressed, which was difficult to realize prior to this study. Overall, 
this work lays the groundwork for future development of exascale-
enabled device simulators, as well as adds to the growing body 
of research on phase-field modeling. Although this work has suc-
cessfully demonstrated the core functionality of the simulator, the 
generalizability of the involved physical mechanisms is subject to 
certain limitations. For instance, only out-of-plane polarization is 
considered, which leads to underestimated total free energy in the 
FE layer. Therefore, a natural progression of this work is to include 
the in-plane polarization components. Additionally, strain fields 
can contribute significantly to the polarization dynamics, which is 
associated with lattice structure changes [27–32]. Further code de-
velopment needs to be conducted to introduce strain into the total 
free energy. Other possible improvements are to include the tem-
perature dependence on the FE domain dynamics [27,29–32,21], 
and upgrade the electron transport model from the macroscopic 
Fermi-Dirac distribution function to microscopic transport mod-
els describing the evolution of the distribution function, such as 
the Boltzmann electron transport model. In the meantime, we are 
taking active efforts to complete the setup of a full-3D FeFET in-
cluding the source and drain electrodes, as well as non-planar 
transistor structures such as finFETs [37–40]. We will also develop 
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Fig. 6. MFISM stack with 5 nm thick HZO on top, followed by 1 nm thick SiO2, and a 10 nm thick Si as the ferroelectric, dielectric, and semiconductor layers, respectively. 
Vertical direction represents the thickness of the device (z). For an applied voltage, V app = 0 V (a) Polarization distribution showing multi-domain formation in FE (b) 
Potential distribution induced in the semiconductor (c) Electric field vector plot in semiconductor (d,e) electron and hole density respectively in the semiconductor region. 
(f) Q − V characteristics of the device for varying applied voltage V app.
algorithmic improvements, including accelerated schemes for self-
consistently solving the Poisson equation, and adaptive mesh re-
finement methods. Altogether, FerroX will provide an increasingly 
powerful modeling capability for the exploration and design of fer-
roelectric based transistor devices.
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Appendix A. Ginzburg-Landau model for ferroelectrics

The total free energy F of the system in the TDGL equation is 
described as

F =
∫
V

f (r)dV (A.1)

where the total energy density f (r) of the system includes the 
bulk Landau free energy ( fLand), the domain wall energy or gradi-
ent energy ( fgrad), and the electric energy of the applied electric 
field ( felec) [27,34,42,35,28]

f (r) = fLand(r) + fgrad(r) + felec(r). (A.2)

The phenomenological formalism [52] for the internal free energy 
fLand is given by the well-known Landau–Ginzburg–Devonshire 
(LGD) polynomial form as a function of the spontaneous polariza-
tion P as
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fLand = 1

2
αP 2 + 1

4
β P 4 + 1

6
γ P 6 (A.3)

where α, β , and γ are Landau free energy coefficients. For fer-
roelectrics, α must be negative and γ is positive, which gives 
rise to double-well energy landscape leading to energy minima at 
±P remnant. This implies that the material is unstable at the depoled 
state (P = 0), so its response to the external voltage is opposite to 
that of normal dielectrics, which leads to the origin of the NC ef-
fect in ferroelectric thin films [14].

In addition to the free energy component, spatial variations 
in polarization contribute to gradient energy which characterizes 
the energy from dipole–dipole interactions resulting from spatially 
inhomogeneous polarization [27,34,42,35,28]. Gradient energy den-
sity, fgrad can be expressed as

fgrad = 1

2

[
g44

(
∂ P (r)

∂x

)2

+ g44

(
∂ P (r)

∂ y

)2

+ g11

(
∂ P (r)

∂z

)2
]

(A.4)

where g11 and g44 are gradient energy coefficients.
The electrostatic energy density ( felec) is given by [27,34,42,35,

28]

felec = E · P = Ez · P (A.5)

where Ez = − d�
dz , with � as the electric potential distribution in 

the device and is obtained by solving Poisson’s equation as dis-
cussed next.

Using equations (A.1)-(A.5) in equation (1), we obtain the TDGL 
equation as shown below:

−1

�

∂ P (r, t)

∂t
= αP + β P 3 + γ P 5 − g44

∂2 P

∂x2

− g44
∂2 P

∂ y2
− g11

∂2 P

∂z2
+ d�

dz
(A.6)

A.1. Poisson’s equation for electric potential

Distribution of electric potential in these systems is obtained 
by solving Poisson’s equation under the electrostatic equilibrium 
condition, in the following form:

∇ · ε∇� = ∂ P

∂z
− ρ(�) (A.7)

where ε is a spatially-varying permittivity and ρ is the total free 
charge density in the semiconductor region and can be set to zero 
for MFIM devices because semiconductor is not present.

A.2. Charge density in semiconductor region

The total charge density in the semiconductor region can be 
calculated from carrier (electron and hole) densities using equation 
(3) which are estimated using Fermi-Dirac distribution function. 
For example, the equilibrium concentration of electrons per unit 
volume in a three-dimensional semiconductor can be estimated 
as [44]

ne(r) =
∞∫

Ec

g(E) f F D(E)dE =
∞∫

Ec

g(E)

1 + e(E−e�)/kB T
dE (A.8)

where g(E) is the density of states, f F D(E) is the Fermi-Dirac 
distribution function, kB is the Boltzmann constant, T is the tem-
perature, and Ec is energy at the edge of the conduction band. The 
density of states for electrons is given by
10
g(E) = (2m∗
e )

3/2

2π2h̄3

√
E − Ec (A.9)

where m∗
e is the effective mass of electrons and h̄ is the reduced 

Planck’s constant. Substituting equation (A.9) in equation (A.8), we 
obtain the electron density as

ne(r) = (2m∗
e )

3/2

2π2h̄3

∞∫
Ec

√
E − Ec

1 + e(E−e�)/kB T
dE. (A.10)

Density of holes can be estimated in a similar fashion and can be 
expressed as

np(r) = (2m∗
p)3/2

2π2h̄3

E v∫
−∞

√
E v − E

[
1 − 1

1 + e(E−e�)/kB T

]
dE

(A.11)

where m∗
p is the effective mass of holes and E v is the edge 

of the valence band. The Fermi-Dirac distribution approaches the 
Maxwell-Boltzmann distribution in the limit of high temperature 
and low particle density. Therefore, if we assume E − e� >> kB T
and E − e� << −kB T in the expressions for ne and np we obtain 
the simple Maxwellian distribution for the density of electrons and 
holes in the following form:

ne(r) = Nce−(Ec−e�)/kB T

np(r) = Nve−(e�−E v )/kB T (A.12)

where Nc and Nv are the effective densities of state of conduction 
and valance band respectively.

Appendix B. Polarization boundary conditions

Due to the symmetry breaking on the surface of ferroelectrics, 
polarization on surfaces is different from that inside the crystal. 
In the study of ferroelectric thin films, the surface effect can be 
included in continuum theories by setting appropriate boundary 
conditions of polarization. Such a boundary condition with sur-
face effect for polarization, P , along the thickness (z− direction) 
of the film is usually given by [35,42]

λ
dP

dz
− P = 0 (B.1)

where λ is the so-called extrapolation length, which is an artificial 
parameter introduced to describe the difference of polarizations 
between the surface and the interior of the material. The polariza-
tion is reduced at the surface when λ is positive or zero, while it 
is enhanced at the surface when λ is negative. When λ approaches 
infinity, the boundary condition becomes

dP

dz
= 0, (B.2)

the so-called free polarization boundary condition [53], which 
means that there is no difference in polarizations in the media 
between the surface and the interior. When λ equals zero, polar-
ization is completely suppressed at the surface, i.e.,

P = 0, (B.3)

which is the zero polarization boundary condition [53]. We have 
implemented all three boundary conditions for the user to spec-
ify the appropriate polarization boundary condition and specify a 
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value for λ at run time. Along the thickness of the film, bound-
ary conditions are set at the metal-ferroelectric and ferroelectric-
dielectric interfaces. We calculate dP

dz and d2 P
dz2 using either the 

values of P or dP
dz at these interfaces using a second order accurate, 

one-sided, three-point stencil. In this work we enforce periodic 
boundary conditions in the planar directions. Further implemen-
tation of boundary conditions with surface effects are our ongoing 
efforts.

Appendix C. Electrical boundary conditions

Electrical boundary conditions are needed to enforce the con-
tinuity of the normal component of the displacement vector 
throughout the computational domain and are controlled by spec-
ifying boundary conditions for the Poisson solver. We solve Pois-
son’s equation for single state variable, i.e. the potential distribu-
tion (�) in the entire computational domain. Therefore, boundary 
conditions are needed only on the surfaces of the device. We as-
sume periodic boundary conditions along the transverse directions 
x and y, and use a Dirichlet boundary condition to mimic the ap-
plied voltage V app along the thickness of the device through the 
metal contacts as �(x, y, zmin) = V 0 and �(x, y, zmax) = V 1, where 
V app = V 1 − V 0.

Appendix D. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi .org /10 .1016 /j .cpc .2023 .108757.
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