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Abstract of the Dissertation

Analysis Strategies for Planned Missing Data in

Health Sciences and Education Research

by

Lauren Allison Harrell

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2015

Professor Thomas R. Belin, Chair

In health and educational research, planned-missing-data designs have been

used to reduce the number of variables collected on participants, thus reducing

respondent burden and the number of resources necessary for study. The pur-

pose of this dissertation research is to develop and improve analysis strategies for

planned-missing-data designs, with specific applications to partial mouth record-

ing protocols in oral health studies and balanced incomplete block designs in

large-scale educational survey assessments. For the oral-health examination, mul-

tidimensional item response theory models (MIRT) are investigated in addition

to multiple imputation strategies from hierarchical normal models to recover in-

formation on periodontal disease status when data are collected on only half of

the mouth. Using data from the National Assessment of Educational Progress

(NAEP), complex MIRT models are investigated to improve the estimation of

population ability characteristics as well as to explore the potential for other

components of academic to be measured from the same data.
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CHAPTER 1

Problem Statement

The purpose of the dissertation research presented here is to combine recent anal-

ysis methodologies in novel ways in order to combat the challenges posed by

planned-missing-data designs in health and education research. The goal is to

improve the methodologies such that planned-missing-data designs can be more

readily applied without a critical loss of information for statistical inference.

Response burden is a problem confronting researchers interested in the complex

relationships affecting outcomes in human subjects research, particularly when ad-

dressing vulnerable or low-income subjects. Response burden can induce failure

to complete questionnaires and potential loss of research participants to follow-up

in longitudinal studies. When data are incomplete, failure to account for rela-

tionships between variables can result in bias and loss of precision. While many

statistical methods have been developed in response to missing data, there are

strong scientific reasons to take steps in the study design to circumvent the re-

duction in participants. Edwards et al. [ERC02] showed that with mailed health

surveys, shorter questionnaires roughly doubled the probability of response.

One tool for alleviating subject burden in educational statistics is the idea

planned missing data, where an individual’s test, survey, or examination includes

only a sample of items or variables of interest. The National Assessment of Edu-

cational Progress (NAEP) has been administering examinations with incomplete

block or matrix sampling design strategies since 1969 to appraise the knowledge

of students in the United States in specific subject areas including mathematics,

1



writing, reading, geography, history, and science. The NAEP analysis model, in

use since 1984, has undergone limited updates.

Planned-missing-data designs have become increasingly prevalent in recent

years, particularly in longitudinal and psychological settings [PR10, GTC01].

There has been some exploration of the concept in health-related research, but

there is considerable potential for expanding the scope of this idea by integrat-

ing it with modern statistical analysis techniques [RG95]. As will be discussed

in further detail in Chapter 4, until 2009, the National Health and Nutrition

Examination Study (NHANES) used partial-mouth examinations instead of full-

mouth sampling in the periodontal examination due to patient time constraints,

pain associated with exam probes, and cost. Full-mouth examinations were then

implemented due to the underestimation of periodontal disease prevalence by

partial-mouth recording protocols [EDW12]. For any study utilizing periodon-

tal examinations, the time and cost, as well as pain to the study participants, has

not gone away. It is hypothesized that analysis strategies can be developed to

improve estimates of periodontal disease prevalence using half-mouth data.

The methodology for estimating population quantities from large-scale educa-

tional assessments was developed nearly 25 years ago using the available software

[Mis91, MJM92b]. As many advancements have been made in computing and ed-

ucational measurement, the existing framework for large-scale assessments, which

was designed during a time when data storage was at a premium and processor

speeds were low, should be re-evaluated in order to estimate a greater range of

possible cognitive abilities.
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CHAPTER 2

Background/Literature review

The background and context for the research are split into five major sections.

Section 2.1 introduces the primary two datasets utilized in this research. In Section

2.2, a brief overview of item response theory models is presented, which will be

applicable to both datasets. The large-scale educational assessment framework,

with the generation and use of plausible values, is summarized in Section 2.3.

The use of propensity scores to select a representative control sample of non-

methamphetamine users is detailed in Section 2.4. Finally, the overall structure

of the dissertation is described in Section 2.5.

2.1 Description of the datasets

The research presented in this dissertation is applied to two different datasets

that each have planned-missing-data designs. Section 2.1, which describes these

two data sources, is broken into two components. First, some preliminary back-

ground on the National Assessment of Educational Progress is discussed in Section

2.1.1. Then, the study of the oral health consequences of methamphetamine use

is described in Section 2.1.2.

2.1.1 National Assessment of Educational Progress

In educational assessment, interest focuses on the ability of the student or re-

spondent in a given subject area. Ability, however, can be conceptualized as an
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individual’s capacity to respond to any of an infinite number of potential chal-

lenges, and as such, cannot be measured directly. Therefore it makes sense to

consider ability to be be considered a latent, or unobserved, variable. Mislevy,

Johnson and Muraki (1992) detailed the analysis methods used in NAEP since

1984 which implement the balanced-incomplete-block-design approach to assess

proficiency. Until 1984, the matrix design strategy involved booklets with alter-

nating taped instructions to specify the subset of questions being administered in

different testing sessions [NAE11]. The booklet for an individual session was the

same, with different taped instructions for test-takers at a classroom level, but

booklets between sessions shared no common response. In 1984, the design strat-

egy switched to a balanced-incomplete-block design, in which dissimilar blocks of

items appear in different booklets. Each booklet also contains a set of common

items, and blocks are balanced such that the length of the exams is reasonable.

For the purposes of this research, data from 2011 NAEP Science Assessment

will be considered. The NAEP assessment data are collected on a complex sample

of 4th, 8th, and 12th graders, sampled within districts and schools. The Science

assessment framework has three primary content domains, namely Life Sciences,

Earth Sciences, and Physical Sciences, in addition to scientific practice and cog-

nitive demands.

2.1.2 Oral Consequences of Methamphetamine Use

In a study of 574 methamphetamine users from the Los Angeles metropolitan

area, data were collected on the lifetime history of methamphetamine use as well

as on oral health outcomes from both self-reported and examination measures.

The two oral-health examinations given were the DMFS, which indicates each

tooth surface as decayed, missing, filled, or sound (i.e. intact, reflecting no ap-

parent problems), and the periodontal examination, which measures gum disease

through probing four sites per tooth, checking for bleeding, and quantifying re-
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cession, pocket depth, and attachment loss. While bleeding is a dichotomous

outcome, pocket depth is an ordinal variable that can take on integer values be-

tween 0 and 12 mm, and attachment loss may range between -4 and 15 mm, with

negative values referring to a scenario when gum tissue appears above a target

level associated with ideal attachment.

Subjects in this study were randomized to receive either a full-mouth peri-

odontal exam, where all the teeth are probed, or one of two half-mouth exams

where either the upper-right and lower-left quadrants or the upper-left and lower-

right quadrants are observed. Diagrams of the quadrants of the mouth sampled

are depicted in Figure 2.1. The four probe sites, mesiobuccal (M), buccal (B),

distal-facial (D), and distal-lingual (DL), are marked in blue.

2.2 Item Response Theory Models

Item response theory models describe the relationship of categorical test items

with a continuous latent trait, such as ability. Let θ be the parameter (or a

vector of parameters) that summarizes a test-taker’s ability in a given subject

area(s). The values of θ are unobserved directly and are therefore considered

latent variables. These ability parameters can be estimated through the answers

a test-taker provides to each of the test items (and perhaps additional background

characteristics). In item response theory, the probability of a given response to

an item is modeled as a function of the ability parameter(s) θ.

2.2.1 Two Parameter Logistic Model

The two parameter logistic model (2PL), one of the more commonly used item

response models, relates the latent ability to dichotomous items. The probability

of a correct response is modeled as a function of two parameters, the slope and
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location:

P (yj = 1|θ, aj, bj) = 1/(1 + exp[aj(θ − bj)])

≡ Pj(θ).

The location parameter, bj, is also known as the difficulty parameter and can be

interpreted as the value of θ at which the probability of a correct response is 0.5.

The slope parameter, aj, relates the strength of the relationship between the item

and the ability. The slope can also be interpreted as the value of the slope at bj.

2.2.2 Three Parameter Logistic Model

The three parameter logistic model (3PL) is used in instances where there is

a binary correct versus incorrect answer. Usually used for individual items on

multiple choice exams, this model predicts the probability of a correct response

on a question based on θ, the student’s proficiency in the given subject area,

and three other item-specific parameters quantifying sensitivity to proficiency,

difficulty, and probability of random correct response. Let j be the index of a

given question. The 3PL used in NAEP is characterized as follows:

P (xj = 1|θ, aj, bj, cj) = cj + (1− cj)/(1 + exp[−1.7aj(θ − bj)])

≡ Pj(θ), (2.1)

where

• xj indicates a correct response (1 if correct, 0 if incorrect)

• aj is the slope for the item j, which describes the relationship between

proficiency and probability of correct response for the given question j (aj >
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0)

• bj characterizes the general difficulty of the question

• cj is the probability of a correct response from students of low proficiency

(0 ≤ cj < 1)

In multiple choice questions on NAEP, cj was originally estimated by using

the reciprocal of the number of possible answers [MJM92a]. For example, if a stu-

dent is presented with five possible answers, cj wwould be estimated by 1
5
, which

is the probability of a correct response given a completely random guess. Unit

scale can be chosen arbitrarily to ensure linearity for Equation (2.1). Now, cj can

be estimated by specifying a prior distribution on cj, such as Beta(1,4) for a five

possible answers.

2.2.3 Graded Response Model

Introduced by Samejima [Sam69], the graded response model is used to estimate

the probability of response for items with i ordered categories. In cognitive as-

sessments, the graded response model is often used for test items in which partial

credit may be given. Let item j have K graded categories. The cumulative prob-

abilities of response are

P (xj ≥ 0|θ) = 1.0

P (xj ≥ 1|θ) =
1

1 + exp[−cj,1 + ajθ]

...

P (xj ≥ K − 1|θ) =
1

1 + exp[−cj,K−1 + ajθ]

P (xj ≥ K|θ) = 0,
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where aj is the slope parameter for item j and cj,k are the item intercepts for the

k = 0, ..., K − 1 levels.

2.3 Large Scale Assessment Conceptual Framework

Plausible value methodology has long been the gold standard in large-scale ed-

ucational assessments. Plausible values were introduced as a device to better

approximate the population distribution of abilities, treating the values of the

student ability parameters as missing data. Rather than a single point estimate

of student-level proficiency, however, multiple estimates are imputed from a pos-

terior distribution that includes the student’s item responses and background

characteristics [Mis91, MJM92b].

Let X = (x1, , xN) be the matrix of demographic covariates, where xi is a

vector of demographic characteristics for individual i. Let yi = (yi1, , yiD) be the

individual outcomes on the D proficiency domains, comprised of item responses

yid with typical element ylid denoting item l within domain d. Of interest is esti-

mating the unobserved proficiency in D domains, and the vector of these latent

variables for student i is represented by θi=(θi1, , θiD). In this framework, students

are considered independent of one another, and responses to different questions

by an individual student are also assumed independent. This framework does not

allow or consider conditional dependence between items across different domains,

and item responses are theorized to only depend on the proficiency domain of

which it was designed to measure [TG97].

Appealing to the idea of using conditional independence assumptions to rep-

resent salient features of measured outcomes in line with de Finetti’s Theorem,

it does simplify the construction of the probability distribution for student i’s re-

sponses yi, conditional on his or her proficiency vector θi to
∏D

d=1[fd(yid|θid)]. The

probability model of an observed response pattern for content domain d for stu-
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dent i depends on the scoring or response format of the question. Dichotomously

scored items are often represented using the classical two parameter logistic model

or three parameter logistic model. For multiple-categorical items, more complex

IRT models such as the graded response model [Sam69] or the generalized partial

credit model [Mur92] may be used.

Let βd represent the vector of all the item parameters that relate to the pro-

ficiency domain d such that β = (β1, , βD). The latent proficiency vector θi, is

assumed to be conditionally normally distributed with mean vector Γxi and co-

variance matrix Σ, where Γ represents a matrix of unknown regression parameters

[TG97]. Let φ(θi; Γxi,Σ) represent the conditional normal density function of the

latent proficiency vector. The likelihood function of the parameters β, , and Σ is

constructed as

L(β,Γ,Σ|θ,X, Y ) ∝
N∏
i=1

φ(θi; Γxi,Σ)
D∏
d=1

fd(yidθid; βd),

where Y = (y1, , yN) and θ = (θ1, , θN), which is proportional to the posterior

distribution of the latent proficiency vector f(θ|X, Y, β,Γ,Σ).

The posterior distribution is used to draw the plausible values in four major

steps. First, the item parameters (βd) are estimated separately for each profi-

ciency domain. Note that this does not involve simultaneous estimation of the

item parameters for the multivariate proficiency vector θi. Second, treating the

estimated item parameters as if they are known, Γ and Σ are estimated using the

observed item response data in an Expectation-Maximization (EM) algorithm

[DLR77, BA81] by fixing the item parameters to their estimates from step one.

In step three, the posterior distribution of β, Γ, and Σ is then approximated

from these regression parameter and error covariance matrix estimates based on

a large-sample normal approximation centered on the posterior mode emerging

from the EM algorithm. And finally, for each of the generated regression param-

eter sets and covariance matrices, a value of θi for each student is drawn from a
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normal distribution with mean Γxi and covariance matrix Σ. This final step of

generating imputations is generally repeated 5 times to produce 5 plausible values

per student [TG97].

The existing plausible values framework produces data sets that are relatively

user-friendly for secondary analysis, but generation of the plausible values is te-

dious and computationally intensive. The current framework defines the pro-

ficiency domains a priori and fails to account for any conditional dependence

between items on different proficiency exams. The current formulation does not

allow for investigators to explore alternative parameterizations of the latent pro-

ficiency space. Consider as a concrete example the case of NAEP science and

mathematics assessments. There are a number of items related to data analysis

and statistics on both the science and mathematics sections in the 8th and 12th

grade NAEP exams. The existing plausible values assume that these questions are

independent, conditional on only the examinees proficiency on the exam subject

in which the question is presented, even though there may be residual dependence

between the items, especially since the items on both sections relate to a mean-

ingful domain that may be labeled data analysis and statistics. If an investigator

would like to measure proficiency in data analysis and statistics using items from

both science and mathematics assessments, the items would have to be recali-

brated and then the plausible values imputation would have to be redone.

The plausible values estimates in this framework are also potentially biased

from not accounting for local dependence and other confounding effects [Yen84].

For instance, there may be several questions (forming a testlet) following the same

reading passage, and a student’s responses to those questions can be expected to

be more related to one another than to other items due to the effect of the com-

mon stimulus above and beyond what can be attributed to reading proficiency

[Cai10, CSH11]. However the current models do not control for testlet-level de-

pendence. The current operational framework simply combines correlated items
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into a single graded item. The multilevel nature of the data, such as the vari-

ability among students within a school or among schools within a district, is

another source of potential bias in the imputation. Thomas [Tho00] highlighted

the sensitivity of the imputation model to assumptions such as homogeneous vari-

ance across subpopulations and noted that computational intensity was a limiting

factor in expanding the existing models. The proposed model could resolve the

potential biases existing in the current plausible value imputation methods by

accounting for the multilevel data structure, a multivariate domain framework,

sub-population level variability, as well as nuisance local dependence.

Recent research has been conducted indicating the feasibility of certain multi-

dimensional models in large scale assessments, such as the bifactor model, where

there is one general domain and several subdomains [RJD14a], or a simple struc-

ture where all the subdomains are estimated simultaneously and allowed to co-

vary [SD05]. A stochastic approximation to the latent regression simultaneous

with item parameter estimation, similar to what is being proposed here, was in-

vestigated by von Davier and Sinharay [DS10], with the results compared to the

existing software for estimation used in NAEP. The resulting software, SGROUP,

improved the estimates of the posterior standard deviations. While this approach

was applied using simple multidimensional IRT models, such as simultaneous esti-

mation of mathematics subscales, it was not applied to more complex, structured

MIRT models. Nor has the impact on plausible value imputation been explored.

2.3.1 Summary of Plausible Values Imputation

When interested in population characteristics, consistent estimates can be ob-

tained by maximizing the likelihood only using population parameters and the

data. A statistic t(θ, Y ) can be computed to estimate a population characteristic

of interest, T , where Y are the responses of all sampled students to the back-

ground questions. The variance of t(θ, Y ) around T can be estimated using a
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jackknife or bootstrap estimate U(θ, Y ). As θ is a latent, unobserved, variable, it

can be treated as missing, and can be approximated given observed responses to

questions X and background variables Y [MJM92a]:

t ∗ (X, Y ) = E[t(θ, Y )|X, Y ]

=

∫
t(θ, Y )p(θ|X, Y )dθ (2.2)

When closed-form solutions cannot be obtained, Monte Carlo integration can

be used to approximate by drawing randomly from p(θ|xi, yi). Thus the value of

θ can be considered an imputation for a given subject i by randomly selecting

from the conditional distribution of θ given the examinee’s responses. If multiple

random draws are performed for each student, estimates of uncertainty due to the

missingness of θ can also be obtained [MJM92a, LR02].

To compute the conditional distribution of plausible values for θ, conditional in-

dependence on the background characteristics is assumed such that

p(θ|xi, yi) ∝ P (xi|θ)p(θ|yi) (2.3)

The algorithms for estimating the posterior distribution of θ given the data in

NAEP have been evolving since 1985, and the literature includes many discussions

after Mislevy, Johnson, and Muraki’s paper in 1992 on the appropriate model

for plausible values imputation. The imputation methods in Mislevy, Johnson,

and Muraki focus only on drawing values of the parameter from the posterior

distribution of the observed data. Thus there is no imputation considered for the

missing data due to questions not presented to each subject. Thomas and Gan

[TG97] provided improvements on the multiple imputation methods such that

multiple imputation is extended to the item level to generate complete imputed

datasets.
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2.3.2 Analysis based on Multiple Imputation

Given a number of imputations, M , for the individual θ from the conditional

distribution p(θi|xi, yi), inferences on the population quantity of interest T can

be based on the scalar statistic t(θ, Y ) using multiple imputation analysis proce-

dures. Let m = 1, ..,M denote the imputation number. From each set of θ̂m, one

can evaluate t yielding t̂m. The sampling variance Um can be computed using a

multiple weight jackknife approach. The estimate of t is given in Equation (2.4)

[MJM92a]. The procedure for making inferences on T from t is consistent with

the procedure specified by Little and Rubin (2002), which accounts for variability

within and between imputations.

t∗ =
M∑
m=1

t̂m/M (2.4)

The average sampling variance is given in Equation (2.5), which is an estimate of

the uncertainty about t due to sampling.

U∗ =
M∑
m=1

Um/M (2.5)

The variance due to uncertainty from the unobserved θ is given in Equation (2.6).

BM =
M∑
m=1

(t̂m − t∗)2/(M − 1) (2.6)

The estimate of the total variance of t∗ is specified in Equation (2.7).

V = U∗ +

(
1 +

1

M

)
BM (2.7)

At the time Mislevy, Johnson, and Muraki published their report on NAEP scal-

ing procedures, U∗ was approximated by the jackknife variance of only the first
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set U1 due to the computational intensity. However, now the publicly available

AM Beta software can handle the full set of 62 replicate weights.

The statistic (t∗ − T )/V 1/2 is approximately t distributed with v degrees of free-

dom, where v is given in Equation (2.8), where fM = (1 + M−1)Bm/V is the

proportion of the total variance due to the missingness of θ.

v =
1

f 2
M

M − 1
+

(1− fM)2

d

(2.8)

2.4 Using propensity scores to select a demographically

representative control group

In the study of oral consequences of methamphetamine use, recruitment efforts

focused on obtaining a local sample of methamphetamine users, so that a local

control group was not measured. It would be impossible, as well as unethical,

to randomize participants to use methamphetamine or not in order to estimate

the effect of methamphetamine on oral health outcomes. The study was de-

signed, however, to take many of the same measurements as the National Health

and Nutrition Examination Study (NHANES) such that data from the general

United States population could be utilized as a control sample. The study par-

ticipants from the full NHANES database are demographically different than the

group of Los Angeles methamphetamine users. If one were to do a comparison of

outcomes between the full samples from both studies, the “treatment effect” of

methamphetamine could not be isolated due to the presence of many potentially

confounding variables. Thus propensity score matching is used to select a sample

of individuals from the NHANES subject pool who are demographically similar

to the MA users.

Table 2.1 displays the proportion of each sample of eligible subjects observed

to have various levels of several demographic characteristics. The MA users are
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more likely to be male, born in the United States, African-American, single, and

to smoke cigarettes than the subjects sampled from the general population. For

the purposes of comparison on oral health outcomes, the eligible pool of NHANES

was narrowed by requiring that subjects have both the full caries examination as

well as a completed periodontal examination. Subjects fail to complete the peri-

odontal examination for many reasons, but the most common reasons are lack of

any teeth and severe pain.

Propensity scores are defined as an estimate of the probability of unit being

assigned to a treatment given a set of covariates [RR83]. In practice, propensity

scores can be estimated through the use of logistic regression, and a unit i’s esti-

mated propensity score is simply the resulting p̂i estimated from the fitted model.

In order to estimate the average treatment effect without bias from confouding

covariates, subjects from the MA and NHANES can be matched on their values

of propensity scores [RR85], or the assessment can build on subclassification into

groups based on the ranking of propensity scores [RR84].

For this analysis, the logistic regression model predicting the probability of be-

ing from the MA sample included the following variables: age, gender, ethnicity

(white, African-American, non-white Hispanic, or other race), education (No high

school diploma, high school graduate or GED, some college or associates degree,

or bachelors degree or higher), marital status (married/living as married versus

never married, divorced, separated), and cigarette smoking status (non-smoker,

former smoker, or current smoker). The model also included all two way inter-

actions for which sufficient groupings existed in the MA sample. While smoking

status could be viewed as a post-treatment concomitant variable (we have no way

of knowing whether cigarette smoking started before of after first MA use), it is

here used as a proxy for any other potentially confounding demographic charac-

teristics not measured by the study.

Once propensity scores were estimated using the logistic regression model, the
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an appropriate number of subgroups and number of NHANES subjects to include

was investigated. The goal is to classify study participants into subgroups in

which the covariates are balanced based on the values of the propensity scores.

For increased power, we would like to maximize the number of subjects included

from the NHANES study. First, observations which were lower than the two

minimum propensity scores from the MA sample and higher than the two largest

propensity scores from the MA sample were discarded. This was done to ensure

that all selected observations from the NHANES study fall within the reasonable

range of propensity scores of the MA sample. Next, matching procedures were

conducted using the Matchit package in R, pairing m NHANES subjects to each

subject from the MA study (without replacement) for m = 1, ...5. Figure 2.2

displays the distribution of propensity scores used for each matching ratio. For

each matched set and the set of all eligible NHANES subjects, all observations

were ranked by propensity score and assigned to groups based on the quantile of

the propensity score distributions for each of 4, 5 or 6 groups. Finally, balance

between the covariates was checked.

For the purposes of this analysis, we defined balance using a regression model

(logistic or linear) predicting the demographic characteristic by the categorized

propensity score group and an indicator of being from the MA study. If the indi-

cator for MA was a significant predictor of the characteristic after adjusting for

the group, the covariate was determined to be out of balance. Table 2.2 displays

the number of covariates out of balance for each matching ratio and the number

of groups.

Because the goal is to maximize the number of NHANES subjects included in

the analysis while still maintaining balance of covariates within each propensity

score grouping, the optimal matching ratio appears to be five NHANES subjects

to each MA subject. Five quantiles of propensity scores appeared to provide suffi-

cient number of groups under this matching ratio. Table 2.3 contains the number
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of subjects from each of the NHANES and MA studies within each propensity

score group.

The procedure described here was also applied to select a cohort from the

NHANES 2011-2012 sample with distributions of background characteristics sim-

ilar to the MA users. During that study year, the protocol for the periodontal

examination consisted of full-mouth examinations with 6 sites per tooth, allowing

for comparable definitions for periodontal disease between the two samples. The

propensity-score-matching procedure yielded a sample of 1090 NHANES 2011-

2012 subjects and four propensity-score subgroups.

2.5 Overview of the Dissertation

The rest of the dissertation is organized as follows. An improved method for ana-

lyzing the complex large-scale educational assessment data is presented in Chapter

3. Characterization of the underestimation of periodontal disease when using par-

tial mouth data is presented in Chapter 4. In addition, Chapter 4 introduces

multiple imputation from hierarchical normal models as a potential solution for

underestimation when data are missing by design. Chapters 5 and 6 introduce

item response theory models for oral health data, modeling periodontal disease

and caries disease respectively. Ideas for the future extensions of the research are

listed in Chapter 7.
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Figure 2.1: The three sampling mechanisms for the periodontal examination
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Meth Users NHANES
n=551 n=9327
Yes Yes

Male 446 (80.9%) 4472 (47.9%)
Born in the US 464 (84.2%) 6975 (74.8%)

Born in Mexico 47 (8.5%) 1414 (15.2%)
Born outside of US or Mexico 40 (7.3%) 936 (10.0%)
White 103 (18.7%) 4200 (45.0%)
Black/African American 234 (42.5%) 1914 (20.5%)
Non-white Hispanic 176 (31.9%) 2848 (30.5%)
Other Race 38 (6.9%) 365 (3.91%)
Graduated High School or GED 391 (71.0%) 8559 (65.1%)
Some college/associates degree 155 (28.1%) 2604 (27.9%)
Bachelors degree or higher 39 (7.1%) 1852 (19.9%)
Married or living as married 39 (7.1%) 7650 (60.4%)
Former smoker 53 (9.6%) 2824 (23.0%)
Current smoker 377 (68.4%) 3067 (25.0%)

Table 2.1: Demographic Characteristics of MA and NHANES samples with both
the caries and periodontal exams completed (Boldface font reflects p < 0.05 on χ2

test of independence)

N Groups = 4 N Groups = 5 N Groups = 6
1:1 Matching 0 0 0
2:1 Matching 1 1 0
3:1 Matching 2 1 1
4:1 Matching 0 0 0
5:1 Matching 3 0 0
All NHANES
within P-score
range

5 6 5

Table 2.2: Number of covariates out of balance after adjusting for propensity score
subgroup by matching ration and number of subgroups

Group 1 Group 2 Group 3 Group 4 Group 5 Total
Propensity
Score Range

0.001-0.027 0.027-0.054 0.054-0.114 0.114-0.268 0.268-0.971

NHANES 630 632 628 532 333 2755
Meth 31 29 34 129 328 551
Total 661 661 662 661 661 3306

Table 2.3: Resulting number of subjects in each subgroup
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Figure 2.2: Distributions of propensity scores used for each matching ratio
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CHAPTER 3

Multidimensional Plausible Value Imputation

via the Metropolis-Hastings Robbins-Monro

Algorithm

The National Assessment of Educational Progress (NAEP) and similar large-scale

educational assessments currently use a multistage estimation process which cal-

ibrates test items separate from the latent regression on to background ques-

tionnaire responses. In this paper, we present an application of the Metropolis-

Hastings Robbins-Monro algorithm to not only extend the item calibration to

complex, multidimensional models but also allow for the conditioning regression

of background characteristics to be included in the item calibration process. The

resulting MCMC chain and estimated posterior distributions can be used to draw

plausible values for the latent traits. A simulation study is conducted to demon-

strate the method when data are generated under a two-tier model for the item

response data with latent characteristics. The data generating model is compared

to alternatives, including the simple three primary domain model calibrated in

practice. The method is applied to the 2011 NAEP Science assessment through

calibrating the data generating model assumed by the framework.

3.1 Background

The purpose of this research is to introduce a method to calibrate item parameters

for complex multidimensional models simultaneously with performing a latent re-
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gression of the ability parameters onto the matrix of background characteristics,

and the extensions of this method to large-scale educational assessments such as

the National Assessment of Educational Progress (NAEP). The goal is to demon-

strate the use of these models for flexible recalibration of NAEP items as well as

evaluating the applicability of multidimensional IRT models to large-scale educa-

tional assessments with planned-missing-data designs for the cognitive items.

3.1.1 Motivating Example: 2011 NAEP Science Assessment

We use the 2011 National Assessment of Educational Progress (NAEP) framework

as a motivating example for our research. Three primary content domains are

assessed (Life Sciences, Earth and Space Sciences, and Physical Sciences), and it

is on these three areas that subscale scores are produced. In the 2011 Science

Assessment, items are also calibrated onto a general science domain (separately

from the calibration onto each content domain) [NAE12]. In the development of

this assessment, guiding framework for test items specified that test item involve

the use of one of the four following scientific practices:

1. Identifying science principles,

2. Using science principles,

3. Using scientific inquiry, and

4. Using technological design.

In addition, each item is designed to measure one of four cognitive demands:

1. Declarative knowledge (”Knowing that”)

2. Schematic knowledge (”Knowing why”)
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3. Procedural knowledge (”Knowing How”)

4. Strategic knowledge (”Knowing when and where to apply knowledge”) .

Thus, if we follow the measurement model that is assumed by the 2011 NAEP

Science Framework, the test items are assumed to correspond to one content do-

main, one scientific practice domain, and one cognitive demand. The potential

data-generating model that can approximate this student response process is ac-

tually fairly complex. In operational practice, items are calibrated onto only one

content domain in essentially a unidimensional IRT model, as well as all together

in a unidimensional science scale, and plausible values are generated for only these

content domains and a general science domain. The framework implies a consid-

erably more complex data generating model than the IRT models calibrated in

practice.

3.1.2 Plausible Value Methodology

Plausible value methodology has long been the gold standard in large-scale ed-

ucational assessments. Plausible values were introduced as a device to better

approximate the population distribution of abilities, treating the values of the

student ability parameters as missing data. Rather than a single point estimate

of student-level proficiency, however, multiple estimates are “imputed” from a

posterior distribution that includes the student’s item responses and background

characteristics [Mis91, MJM92b].

In traditional educational assessment, interest focuses on the ability of the

student or respondent in a given subject area. Ability, however, cannot be mea-

sured directly, and therefore can be considered a latent, or unobserved, variable.

Mislevy, Johnson and Muraki [MJM92b] described in detail the analysis methods

used in NAEP since 1984, which implement the balanced incomplete block design

approach to assess proficiency. By treating the student scores as missing data,
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population quantities and variances are adjusted to reflect the limited amount of

information on the individual students.

3.1.3 Characterizing the NAEP framework

To characterize the NAEP framework, we start with some notation. Let X =

(x1, ..., xN) be the matrix of demographic covariates, where xi is a vector of de-

mographic characteristics for individual i. Let yi = (yi1, ..., yiD) be the individual

outcomes on the D proficiency domains, comprised of item responses yid with

typical element ylid denoting item l within domain d. Of interest is estimating

the unobserved proficiency in D domains, and the vector of these latent variables

for student i is represented by θi=(θi1, ..., θiD). In this framework, students are

considered independent of one another, and responses to different questions by

an individual student are also assumed independent. It should be noted that the

assumption of independence between students is not made in producing the plau-

sible values from the operational framework. In fact, the students are sampled

within schools, and schools are sampled from primary sampling units (be it states,

regions, or districts). The analysis using plausible values incorporates jack-knife

variance estimation to estimate the variability at the primary cluster level, but

the item parameter estimation of the cognitive test items do not fully adjust the

complex sampling design. As will be discussed in further detail, this framework

does not allow or consider conditional dependence between items across different

domains, and item responses are theorized to only depend on the proficiency do-

main of which it was designed to measure [TG97].

While the underlying conditional independence assumptions may be untenable,

it does simplify the construction of the probability distribution for student i’s re-

sponses yi, conditional on his or her proficiency vector θi to
∏D

d=1[fd(yid|θid)]. The

probability model of an observed response pattern for content domain d for stu-
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dent i depends on the scoring or response format of the question. Dichotomously

scored items are often represented using the classical two parameter logistic model

or three parameter logistic model. For multiple-categorical items, more complex

IRT models such as the graded response model [Sam69] or the generalized partial

credit model [Mur92] may be used.

3.1.4 Likelihood functions

Let βd represent the vector of all the item parameters that relate to the profi-

ciency domain d such that β = (β1, . . . , βd, . . . , βD). The latent proficiency vector

θi, is assumed to be conditionally normally distributed with mean vector Γxi and

covariance matrix Σ, where Γ represents a matrix of unknown regression param-

eters [TG97]. Let φ(θi; Γxi,Σ) represent the conditional normal density function

of the latent proficiency vector. The (complete data) likelihood function of the

parameters β, Γ, and Σ is constructed as

L(β,Γ,Σ|θ, Y,X) ∝
N∏
i=1

φ(θi; Γxi,Σ)
D∏
d=1

fd(yid|θid; βd), (3.1)

where Y = (y1, ..., yN) and θ = (θ1, ..., θN). The complete data likelihood is pro-

portional to the posterior distribution of the latent proficiency vector f(θ|Y,X, β,Γ,Σ).

By contrast, the observed data likelihood function can be represented by

L(β,Γ,Σ|Y,X) =
N∏
i=1

[∫ n∏
j=1

f(yij|θ, β)Φ(dθ|Γxi,Σ)

]
. (3.2)

The observed data likelihood (Equation 3.2) requires the integration of the product

of the item response function and prior across items over the latent distribution of

θ. On the other hand, the complete data likelihood function (Equation 3.1 affords

considerable simplifications. It can be separated into the product of two products:
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one product of all item response functions for subject i and one product of all

of the priors for each subject. The numerical integrations required can make the

observed data likelihood burdensome to compute, let alone optimize, under more

complex multidimensional models.

3.1.5 Approximating the posterior distribution and drawing plausible

values

The posterior distribution is used to draw the plausible values in four major steps.

First, the item parameters (βd) are estimated separately for each proficiency do-

main. Note that this does not involve simultaneous estimation of the item parame-

ters for the multivariate proficiency vector θi. Second, treating the estimated item

parameters as if they are known, Γ and Σ are estimated using the observed item

response data in an Expectation-Maximization (EM) algorithm [DLR77, BA81]

by fixing the item parameters to their estimates from step one. In step three,

the posterior distribution of β, Γ, and Σ is then approximated from these regres-

sion parameter and error covariance matrix estimates. And finally, for each of

the generated regression parameter sets and covariance matrices, a value of θi for

each student is drawn from a normal distribution with mean Γxi and covariance

matrix Σ. This final step of generating imputations is generally repeated 5 times

to produce 5 plausible values per student [TG97].

3.1.6 Potential drawbacks of existing methodology

The existing plausible values frameworks produce data sets that are relatively user

friendly for secondary analysis, but generation of the plausible values is tedious

and computationally intensive. The current framework defines the proficiency

domains a priori, and fails to account for any conditional dependence between
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items on different proficiency exams. The current formulation does not allow

for investigators to explore alternative parameterizations of the latent proficiency

space, such as data generating model of the NAEP Science Framework, for exam-

ple. The plausible values estimates in this framework are potentially biased from

not accounting for local dependence and other confounding effects [Yen84]. For

instance, there may be several questions (forming a testlet) following the same

reading passage, and a student’s responses to those questions are routinely more

related due to the effect of the common stimulus above and beyond what can be

attributed to reading proficiency [Cai10, CSH11]. However the current models do

not control for testlet-level dependence. The multilevel nature of the data, such

as the variability within a school within a district, is another source of potential

bias in the imputation.

Additional bias is introduced when the plausible values are used as predictors

in a model. A recent article showed that inference in which latent domains are

independent predictors can be biased if the set of background covariates does not

contain the outcome of interest [SJT14]. Thomas [Tho00] highlighted the sensitiv-

ity of the imputation model to assumptions such as homogeneous variance across

subpopulations and noted that computational intensity was a limiting factor in

expanding the existing models. The proposed model could resolve the potential bi-

ases existing in the current plausible value imputation methods by accounting for

the multilevel data structure, a multivariate domain framework, sub-population

level variability, as well as nuisance local dependence.

Recent research has been conducted indicating the feasibility of certain multi-

dimensional models in large scale assessments, such as the bifactor model, where

there is one general domain and several subdomains [RJD14a], or a simple struc-

ture where all the subdomains are estimated simultaneously and allowed to covary

[SD05]. Trifactor models [BHB13, RJD14b] have also been proposed for account-
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ing for residual correlations within subdomains, particularly for large-scale assess-

ments. It should be noted that in Rijmen, et al., the method applied quadrature-

based estimation. A stochastic approximation to the latent regression parameters

was investigated by von Davier et al.[DS10], the results compared were to the

existing software for estimation used in NAEP. The resulting software, SGROUP,

solved some of the problems with the posterior standard deviations. While this

approach was applied using simple multidimensional IRT models, such as simul-

taneous estimation of mathematics subscales, it was not applied to more complex,

structured MIRT models. Nor has the impact on plausible value imputation been

explored.

There have been other methods proposed for analyzing data from the NAEP

framework that also include simultaneous calibration and regression. Scott and

Ip [SI02] introduced an MCMC procedure to estimate both the regression and

IRT parameters simultaneously while introducing random effects for item clus-

ters, which improved estimates of the standard errors for subgroup means. Cohen

and Jiang [CJ99] observed that the assumptions about the population distribution

in the calibration of the measurement model are different than the assumptions

in the estimation of population of characteristics. Their method interprets the

observed categorical item responses as categorizations of some continuous, unob-

served normal variable and uses a Monte Carlo EM variant for estimation. Similar

to other past work, neither of these methods address the issue of multidimension-

ality within the cognitive assessment.

3.2 Methods

3.2.1 Metropolis-Hastings Robbins-Monro Algorithm

The Metropolis-Hastings Robbins-Monro Algorithm was introduced by [Cai08] to

combat the issue of dimensionality that has made multidimensional IRT unfeasible
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for realistically complex assessment situations. The MH-RM is a data augmented

Robbins-Monro type stochastic approximation algorithm driven by random impu-

tations produced by a Metropolis-Hastings sampler. It can be seen as an extension

of the Stochastic Approximation EM algorithm. The guiding insight is that the

practice of maximum marginal likelihood estimation in latent variable modeling

is similar to the engineering application of the Robbins-Monro method for the

identification and control of a dynamical system with observational noise. Find-

ing the MLE amounts to finding the root of the likelihood equations, but because

of missing data (latent variables), the marginal log-likelihood itself is difficult to

evaluate directly. In contrast, the complete data log-likelihood takes a much sim-

pler form. Therefore, we use Monte Carlo methods to impute just enough missing

data so that the complete data log-likelihood can be optimized easily. Due to the

purposefully injected Monte Carlo error, the ascent directions will be noisy. This

is where the Robbins-Monro method plays an important role. It filters out the

noise so that item parameter estimates converge with probability 1 to the MLE.

Cycle j+1 of the MH-RM algorithm for multidimensional IRT with covariates

consists of the following three steps:

1. Imputation. The complete data are formed by imputing values for θ(t+1).

Using the latest iteration of estimates of item parameters, β(t), and latent

regression parameters, Γ(t), from the previous cycle t, random samples of

the individual latent traits θ(t+1) are imputed using the Metropolis-Hastings

sampler from a Markov chain having the posterior of the individual latent

traits π(θ|Y,X, β(t),Γ(t),Σ(t)) as the unique invariant distribution. We then

have the complete data formed as (θ(t+1), Y,X).

2. Approximation. Based on the imputed data, the complete data log-

likelihood and its derivatives are evaluated so that the ascent directions

for the item and latent density parameters can be determined later. For in-

stance, the complete data score function for the item parameters is approxi-
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mated as st+1 = dL(β(t)|θ(t+1), Y,X)/dβ, and the complete data information

matrix for the item parameters is Ht+1 = −(d2L(β(t)|θ(t+1), Y,X))/(dβdβ′).

3. Robbins-Monro Update. Robbins-Monro stochastic approximation fil-

ters are applied when updating the estimates of item and latent density

parameters. Let εt be a vector of non-negative gain constants such that

εt ∈ (0, 1] and
∑∞

t=0 εt =∞,
∑∞

t=0 ε
2
t <∞. The Robbins-Monro filter will be

applied to obtain a recursive stochastic approximation of the conditional ex-

pectation of the complete data information matrix: It+1 = It+εt(Ht+1−It).

The Robbins-Monro filter is applied again when updating the new parame-

ter estimates: β(t+1) = β(t) + εt(It+1)
−1st+1. The iterations are started from

some initial values β(0) and terminated when the estimates stabilize. Cai

[Cai08] showed that the sequence of parameters converges with probability

1 to a local maximum of the observed data likelihood L(β,Γ,Σ|Y,X).

3.2.2 Two Implementation Notes

In practical terms, implementation of the MH-RM algorithm for the model de-

scribed here requires two sets of analytical results. First, the derivatives of the

complete data likelihood with respect to the item parameters and the latent re-

gression parameters must be derived. Fortunately, these are standard statistical

results. For the item parameters, Cai [Cai08] provided analytical derivatives for

major item response models useful for large-scale assessments. For the regression

part, upon “observing” the imputed θ scores, the latent regression model becomes

a multivariate linear regression, whose derivatives are straightforward results in

standard multivariate analysis texts, e.g., Mardia et al.’s classic book [MKB79].

Second, one must be able to impute the θ values in order to run the MH-RM

iterations. To do this, a random walk Metropolis algorithm is used. For each

student, let θci be the current value of θ. Let θpi = θci + e be a proposal value,
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where e is an independent draw from a multivariate normal with zero means and

covariance matrix equal to a scalar multiple of the identity matrix. Acceptance or

rejection of the proposal is determined by evaluating and comparing the complete

data likelihood function in Equation (3.1) at the proposal and current values. The

proposal is accepted if the likelihood ratio of proposal vs. current values exceeds 1,

or if accepted by rejection sampling with the said likelihood ratio as the acceptance

ratio. The Metropolis sampler should be tuned on a case-by-case basis to achieve

optimal acceptance rates for high quality sampling of the posterior.

3.3 Simulation Study

The simulation study was designed to generate science assessment data under

complex model assumptions. The structure applied most closely resembles a two-

tier model [Cai10], in which items correspond to one of three general domains

(content), which are correlated, and one subdomain (science practice). Within a

content domain, the model resembles a bifactor model, where the subdomains are

independent of one another after adjusting for the general domain. The structure

for the generated data can be seen in Table 3.1. In total, parameters were gen-

erated for 150 possible dichotomous items following a 2PL model for consistency

of estimation. Location parameters were generated from a standard N(0,1) distri-

bution, while slope parameters for the primary content domains were drawn from

a truncated normal(1.5,0.3) with a minimum slope of 0.4. The slope parameters

for the secondary practice domains were drawn from a truncated N(0.8,0.2) with

a minimum slope of 0.4. Thirty regression parameters for each of the primary

domains were generated from N(0,2) with a correlation between domains of 0.7.

All latent domains had the same variance, 1, but only the primary domains were

allowed to correlate at 0.8, reflecting the correlations between subdomains found

in practice.
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Parameter (prm) files were generated in R and read into flexMIRT 2.0 [HC13].

From there, a dataset of 9000 was generated using these parameters. This dataset

was read back into R to impose a balanced incomplete block design in which in-

dividual responses to all but two blocks of 15 questions were set to missing. This

procedure produces data that is structurally similar to a NAEP Science or Math-

ematics Assessment. Finally, item calibrations were conducted on the resulting

data under the following different models:

1. the data generating model, with three content domains (correlated), three

practice domains (uncorrelated), and covariate on the full set of data with

no missing responses as a reference

2. the data generating model, with three content domains (correlated), three

practice domains (uncorrelated), and covariates

3. the data generating model, with three content domains (correlated), three

practice domains (uncorrelated), and covariates with beta priors on all items

4. three content domains (correlated), three practice domains (uncorrelated),

and no covariates

5. three content domains (correlated) with covariates, and

6. three content domains (correlated) with no covariates.

3.3.1 Evaluation of Models

Most of the proposed models can be shown to be nested within each other. For

these models, we can use a likelihood ratio test to evaluate improved fit when

freeing additional parameters. Additionally, we can compare the expected a poste-

riori, EAP, scores between the data generating model and any possible alternative

models to gain a general sense of how scores may be biased under each model spec-

ification.
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3.3.2 Results

3.3.2.1 IRT Parameter Recovery

The overall mean relative bias (bias/true value) of the content (primary) slope and

location parameters as well as the average estimate of the coefficient for variation

(CV) for each fitted model are presented in Table 3.4. We use the estimate of the

coefficient of variation (RMSE/|λ|) for each item to standardize the estimate of

the error for averages across all items to be compared. The distributions of bias for

the slope and content parameters can be viewed in Figures 3.3 and 3.3 respectively.

Not surprisingly, the model which produced the least amount of bias in the

content slope parameters was the two-tier data-generating model with covariates

as calibrated on the full set of data rather than on the balanced-incomplete-block

data (Model 1). However, of all the models calibrated on the BIB data, the model

in which only the three content domains were estimated with covariates produced

the least amount of bias in the slope parameters (Model 5). The average dis-

crimination parameter bias for this model was slightly lower than the two-tier

(data-generating) model with covariates. Due to the sparseness of the data (and

the small sample size relative to what would be observed in practice), there is

likely not enough information to compute the two-tier model with lower bias, and

the lack of information is likely inflating the discrimination parameters.

The model with the greatest amount of bias in the slope parameters, on aver-

age, is the two-tier model without covariates incorporated (Model 4). The second

poorest-performing model appears to be the model that is closest to the one esti-

mated in practice: three content domains with no covariates incorporated (Model

6). The discrimination parameters in this model have the largest amount of bias

relative as compared with any of the other models. When the covariates are not
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included in the model, the additional information that the covariates provide is no

longer incorporated. It should be noted that the inflation of the slope parameters

for all models would likely be reduced with a greater number of observations. In

this simulation, there were only 9000 observations per simulation. In practice,

the test items are calibrated on over 100,000 study participants, increasing the

amount of information about the response patterns.

The slope parameters, in general, have very little bias regardless of the model

used. Model 1, the two-tier model with covariates on the full set of data, has

very little bias with the exception of one outlier. The average bias of the location

parameters is positive for the two-tier models on the BIB data (Models 2, 3, & 4),

but the average bias is slightly negative for the location parameters in the one-tier

model without covariates (Model 6). The one-tier model with covariates produces

zero bias, on average.

3.3.2.2 Regression and Correlation Parameter Recovery

The average relative bias of the regression parameters is close to 50% for all mod-

els considered, including the two-tier model calibrated on the full set of data (see

Table 3.4). Regression parameter estimates were not computed for models 4 and

6, because covariates were not included in the item calibration. Underestimation

in the regression parameters is not unexpected at this stage. For calibration using

MH-RM, only single imputation of θ is used at each iteration. However, any anal-

ysis of the data will be combining the information across multiple imputations

from the posterior distribution.

The correlation between each of the content domains was 0.7 under the gen-
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erating model. All 6 of the models considered allowed for correlation between the

content domains during calibration, and thus the correlations estimated can be

checked for bias (Table 3.5). All of the models produced little bias. Surprisingly,

the highest degree bias of the correlations was found in the full data two-tier model

(Model 1). The correlations between the first and second domains were slightly

underestimated in all of the models on the BIB data (Models 2-6). The bias of

the estimates of correlation between domains 1 and 3 were very small, ranging

from 0.001 to 0.063 in the BIB data models, with the lowest biases being found

in the models with covariates (2, 3, and 4), and a similar pattern was seen with

the correlation estimates between dimensions 2 and 3.

3.3.2.3 Model Fit

All of the models are essentially various constrained versions of the two-tier model

with covariates. We can compare the fit of Models 4, 5, and 6 to Model 2 through

the likelihood ratio test. Table 3.3 displays the average -2 log likelihood, AIC,

and BIC for each of these models across each simulation. On average, the two-tier

data-generating model with covariates (Model 2) had the lowest values of each

fit criteria. When examining these values by criteria, there are several instances

in which the one-tier model with covariates (Model 5) produces lower values of

-2log likelihood than Model 2. Given the sparse nature of the data and the limited

information about each pattern, it is possible for the model with fewer dimensions

to fit the data better. The poorest fitting model is still the one-tier model with

no covariates, but the one-tier model with covariates has a much closer deviance

to the two-tier model with covariates than any other model.
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3.3.2.4 Comparing Expected A Posteriori Scores Between Models

In large-scale assessments with balanced-incomplete-block or other sparse test

designs, single point estimates are not used for individual students. However,

we can examine the expected a posteriori (or EAP) scores produced under each

model to examine the consistency under each model. The EAP scores for each

of the three primary content domains estimated from the first simulated dataset

under Models 2, 4, 5, and 6 are plotted Figures 3.5-3.7. It can be seen that

the EAP scores between Model 2 (the two-tier model with covariates) and Model

4 (the one-tier model with covariates) are the most similar (ρ = 0.99, R2 =

0.97). The relationships between all other models follow a similar pattern: as

expected a posteriori estimates move away from the mean, the relationship between

the estimates from different models becomes weaker. There is greater dispersion

towards the tail ends of the distribution of θ.

3.3.2.5 Number of imputations under complex models

The simulated datasets and estimated model parameters can be used examine

the number of imputations that may be necessary to estimate the relationship be-

tween a content subscale and one of the background characteristics under complex

models. While the operational framework for NAEP has switched from using 5

plausible value imputations to 20 for the most recent examinations, it is prudent

to examine if the number of imputations should be increased under more complex

latent structures.

Using the first simulated BIB dataset and the parameter estimates generated

under the two-tier model with covariates (Model 2) as an example, the following

number of plausible values were generated for the data: 2, 3, 5, 10, 15, 20, 25,

30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, and 250. For each imputation,
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a regression was performed of each of the three content subscales onto the first

covariate, x1. The results were combined and analyzed across imputations using

proc mianalyze in SAS. The estimates of the fraction of missing information for

each number of imputations are plotted in Figure 3.8. The estimate of the fraction

of missing information can be used as a monitoring tool to determine convergence

based on the number of imputations; the number of imputations necessary can

be determined when the estimate of the fraction of missing information stabilizes.

For each of the content domains, the fraction of missing information estimates

start to stabilize after just 5 imputations, but continues to fluctuate upwards

until 40 imputations. Not surprisingly, the relative efficiency of the imputations

approaches 0.99 right after 5 imputations.

3.4 Two-tier Calibration of the 2011 NAEP Science As-

sessment

We used the item and background questionnaire responses from the 2011 NAEP

Science Assessment to demonstrate the application of the methodology in practice.

The data was comprised of individual item responses from 124170 eighth-grade

students. The 2011 NAEP Science Assessment contained 10 booklets (eleven in-

cluding one bilingual booklet), of which each student received two for a total of

38 combinations of booklets. The number of items in each booklet ranged from

14 to 18 items.

3.4.1 Calibration of Models

The primary goal of applying the MH-RM estimation procedure to the 2011 NAEP

Science assessment is to demonstrate how the method can be used in practice for

both simple and complex IRT models. Beyond that, we can test if two-tier models
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(as seen in Figure 3.11) assumed by the data-generating framework fit the data

better than the operational model without covariates and only content domains.

The item response functions chosen for the items in this calibration are the same

as specified in the NAEP documentation. The majority of the items are modeled

as 3PL, with several 2PL and graded items. Some of the items scored as graded

with more than two categories are actually summed combinations of individual

test items found to have high residual dependence, which is how the current op-

erational NAEP handles items grouped in testlets with residual dependence. We

assumed a Beta(1,4) prior distribution on the guessing parameter for the 3PL

models, as most multiple-choice questions had five possible answers.

The number of items corresponding to each domain varied. Forty-four of the 144

questions pertained to Physical Sciences, while 59 and 41 pertained to Earth and

Space Sciences and Life Sciences respectively. A plurality of items (59) asked

students to identify scientific principles, and 52 questions involved using scientific

principles. The use of scientific inquiry was measured in 23 items, and only 5

items pertained to the use of technological design.

For the purposes of demonstration, we only selected a handful of background

characteristics to include in the regression model. If this method would be ap-

plied in an operational setting, we would want to include some set of principal

components or other independent combinations of all necessary background char-

acteristics. In this example, we selected 11 dichotomous variables to serve as the

background characteristics in the model. The background variables are all binary

indicators of the following traits: female, English Language Learner, classification

of having a disability, eligible for free lunch, eligible for reduced-cost lunch, pub-

lic school (versus private), and self-identified ethnicity (Black/African American,

Asian American, Hispanic or Latino, American Indian, or Other).
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3.4.2 Results

3.4.2.1 Model Fit

We calibrated six models to the data, which are shown graphically in Figures 3.2

and 3.11:

• Three primary content domains, uncorrelated, no covariates,

• Three primary content domains, uncorrelated, with 11 covariates,

• Three primary content domains, correlated, with 11 covariates,

• Two-Tier with 3 content and 4 practice domains, uncorrelated, with no

covariates,

• Two-Tier with 3 content and 4 practice domains, uncorrelated, with 11

covariates on the 3 content domains, and

• Two-Tier with 3 content and 4 practice domains, correlated, with 11 covari-

ates on the 3 content domains.

Some models failed to pass the second-order test (evaluating whether the solution

is a maximum), specifically the two-tier model in which the primary domains are

correlated as depicted in Figure 3.1. In addition, a one-tier model with three cor-

related content domains also failed to pass the second-order test. The fit indexes

for each of these models is printed in Table 3.6. We can compare the models

without the correlated content domains using the likelihood ratio test (we do not

compare the models that did not converge to a maximum likelihood solution).

The two-tier model with covariates fit the data significantly better (p¡0.00001 for

each likelihood ratio test) than each of the competing nested models: the two-tier

without covariates, the one-tier without covariates, and the one-tier with covari-

ates. The one-tier model without covariates or correlation between the content
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domains is essentially the model calibrated in practice, and the results show that

even the same model with covariates provides a better fit than the operational

model.

3.4.2.2 Item Parameters

In the simulation study, slope parameter estimates were typically much larger than

the generating parameters. However, when complex models are calibrated from

the 2011 NAEP Science Assessment, the item parameters do not deviate much

from the item parameters calibrated in operation. In Figure 3.12, 3PL item pa-

rameters are compared between the two-tier model with and without correlated

content domains when covariates are included in the calibration. Assumptions

about the orthogonality of the content domains does not appear to impact the

location parameters; the estimates of the location parameters are nearly identical

between the two models. The estimates of the guessing parameters vary slightly.

The slope parameters for the primary contents are consistently higher for the two-

tier model in which the content domains are correlated, while the practice domain

slopes are consistently higher in the model without correlated primary domains.

When the primary content domains are constrained to be independent, it is likely

that some additional information that would be captured by the correlations is

incorporated into the secondary practice domains.

In Figures 3.13 and 3.14, the 3PL item parameters each of these two-tier mod-

els is compared to the operational item parameters given in the NAEP technical

documentation. The guessing parameters appear to be consistent regardless of

the model used. For both two-tier models, the location parameters estimated are

slightly larger than the location parameters calibrated in practice. The differences

in these parameters could reflect differences in the latent ability distribution used

to calibrate the items. The content slope parameters in the two-tier model with

correlated content domains are generally higher than the values calibrated in op-
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eration, but this trend does not exist when the content domains are constrained

to be orthogonal.

The content slope parameters calibrated from both two-tier models with co-

variates do not diverge much from the parameters calibrated in the operational

setting with no covariates, and all estimated slope parameters values are less than

3. This result is distinct from the results of the simulation study where slope pa-

rameters were consistently estimated at values above 3 or 4 for any given model.

3.4.2.3 Evaluating the number of imputations

For each content domain under the two-tier (uncorrelated) model with covariates,

2, 3, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 150, and 200 plausible values

were generated. The regression of each content domain onto the dichotomous vari-

able indicating whether a student is female was conducted for each imputation,

and the results were combined using PROC MIANALYZE in SAS 9.4.

The relative efficiency of the estimates for each number of imputations is pre-

sented in Figure 3.16. For each of the content domains, the relative efficiency (to

an infinite number of imputations) reaches close to 99% by 30 imputations. The

estimates of the fraction of missing information for the regression slope for female

(i.e. the difference between males and females) by the number of imputations

are plotted in Figure 3.15. For Physical Sciences as well as Life Sciences, the

estimates appear to converge by 100 imputations. However, for Earth and Space

Sciences, the estimate of the fraction of missing information decreases until 100

imputations and increases until 200 imputations. More imputations than 200 may

be necessary for the convergence for this domain.
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3.5 Concluding remarks and extensions

We have demonstrated here a novel method for simultaneously estimating the la-

tent regression parameters while calibrating the cognitive assessment items. This

procedure allows for more information to be incorporated from the set of back-

ground characteristics while calibrating the items, which may improve the esti-

mates of the item parameters, especially when the amount of cognitive information

on individual test-takers is limited.

The results of the simulation study showed that with a limited sample size

and balanced-incomplete-block designs, the two-tier model with covariates does

not necessarily fit better nor produce less bias than the one-tier model with co-

variates which only loads items onto the primary cognitive domains. However, in

practice with a much larger sample size (as seen in the actual data analysis of the

2011 NAEP Science assessment), the more complex model assumed by the data-

generating framework does improve the overall model fit. Based on the simulation

study, even with the limited amount of information from a small sample size and

BIB design, the models with covariates improve the estimation of the parameters

as well as providing a better relative fit than calibrating the IRT models without

covariates.

In practice with actual large-scale assessment data, some models were found

to have difficulty converging to a maximum-likelihood solution. While some two-

tier models were able to be estimated, models correlated domains with covariates

failed to pass the second-order test. It is possible that changing the starting values

may help, or the issue could be found with the way the complete data information

matrix is estimated. Future research is necessary to improve the procedure for

these models.
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Optimizing the latent regression step is a popular area of research. While

we present simple linear models in this paper, this method can be generalized

to incorporate other models for the background characteristics. The method as

described here assumes that the matrix of background characteristics has no miss-

ing values, which would be consistent with using principle components or factor

scores based on the background characteristics as the independent variables in

the regression. However, incorporating more complex latent regression models or

background characteristics with missing observations should be a subject of con-

tinuing research.

The potential applications of this method extend beyond generation of plau-

sible values. While we regressed only the content domains onto the background

characteristics in this paper, we could also draw plausible values and inference for

the scientific practice domains using this methodology. This method provides a

means of estimating item parameters with the model containing covariates, and

thus can be used to generate the plausible values through traditional methods

involving a second latent conditioning step if deemed necessary. This procedure

enables the secondary analyst to examine alternative scale formations from large-

scale assessments and use different combinations of background characteristics to

produce plausible values.

3.6 Figures
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Figure 3.1: Two-Tier Model with Correlated Primary Content Domains

Figure 3.2: Model with correlated content domains (One Tier)
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Figure 3.3: Distribution of Average Relative Bias of Content Slopes for 150 Items
between Models
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Figure 3.5: Distribution of EAP scores for content domain 1
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Figure 3.6: Distribution of EAP scores for content domain 2
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Figure 3.7: Distribution of EAP scores for content domain 3
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Figure 3.9: Relative efficiency (to theoretical infinite imputations) of regression
of content subscale onto X1 from simulated data by the number of imputations
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Figure 3.10: One-tier models calibrated on the 2011 NAEP Science Assessment
Data

Figure 3.11: Two-tier models calibrated on the 2011 NAEP Science Assessment
Data
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versus two-tier covariate model without correlated content domains
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3.7 Tables

Table 3.1: The structure of slopes for the simulation of the NAEP Science Assess-
ment

Item Content 1 Content 2 Content 3 Practice 1 Practice 2 Practice 3
1 λ1,1 0 0 λ1,4 0 0
2 λ2,1 0 0 0 λ2,5 0
3 λ3,1 0 0 0 0 λ3,6
4 0 λ4,2 0 λ4,4 0 0
5 0 λ5,2 0 0 λ5,5 0
6 0 λ6,2 0 0 0 λ6,6
7 0 0 λ7,3 λ7,4 0 0
8 0 0 λ8,3 0 λ8,5 0
9 0 0 λ9,3 0 0 λ9,6

Table 3.2: The structure of slopes for the calibration of the NAEP Science As-
sessment

Item Content 1 Content 2 Content 3 Practice 1 Practice 2 Practice 3 Practice 4
1 λ1,1 0 0 λ1,4 0 0 0
2 λ2,1 0 0 0 λ2,5 0 0
3 λ3,1 0 0 0 0 λ3,6 0
4 λ4,1 0 0 0 0 0 λ4,7

5 0 λ5,2 0 λ5,4 0 0 0
6 0 λ6,2 0 0 λ6,5 0 0
7 0 λ7,2 0 0 0 λ7,6 0
8 0 λ8,2 0 0 0 0 λ8,7

9 0 0 λ9,3 λ9,4 0 0 0
10 0 0 λ10,3 0 λ10,5 0 0
11 0 0 λ11,3 0 0 λ11,6 0
12 0 0 λ12,3 0 0 0 λ12,7

Table 3.3: Average fit indexes across 50 simulations of BIB data for Models 2, 4,
5, & 6

Model Content
Domains

Practice
Domains

Covariates BIB
data

-2LL AIC BIC

Model 2 3 3 Yes Yes 90916.1318 92002.1318 95860.1361
Model 4 3 3 No Yes 130999.5066 131905.5066 135124.0629
Model 5 3 0 Yes Yes 91836.1777 92622.1777 95414.4347
Model 6 3 0 No Yes 131646.1988 132252.1988 134405.0077
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Table 3.4: Fitted models to simulated data: overall bias (standardized) & RMSE

Content
Do-
mains

Practice
Do-
mains

CovariatesBIB
data

Location
Parame-
ters

Slope
Parame-
ters

Regression

Mean
Rel
Bias

CV Mean
Rel
Bias

CV Mean
Rel
Bias

CV

Model 1 3 3 Yes No 0.067 0.073 0.80 0.81 -0.47 0.53
Model 2 3 3 Yes Yes 0.158 0.297 1.53 1.61 -0.54 0.71
Model 3 3 3 Yes Yes 0.135 0.267 1.44 1.50 -0.54 0.71
Model 4 3 3 No Yes 0.039 0.342 6.87 7.05 NA NA
Model 5 3 0 Yes Yes 0.008 0.021 1.27 1.30 -0.55 0.72
Model 6 3 0 No Yes -

0.073
0.266 5.98 6.04 NA NA
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Table 3.5: Bias and RMSEA of correlation estimates between simulated scientific
content domains across 50 simulations

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Corr True

Value
Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1 & 2 0.7 0.089 0.089 -0.027 0.032 -0.024 0.029 -0.034 0.035 -0.027 0.032 -0.032 0.033
1 & 3 0.7 0.100 0.100 0.001 0.015 0.003 0.015 0.063 0.063 0.003 0.015 0.063 0.064
2 & 3 0.7 0.095 0.096 0.005 0.017 0.007 0.017 0.055 0.056 0.005 0.017 0.055 0.056

Table 3.6: Model Fit Statistics for 2011 NAEP Science Assessment

Model Two
Tier

Covariates Correlated
Primary
Domains

Runtime
(in
hours)

Free Pa-
rameters

Deviance AIC BIC Passed
Second
Order

1 No No No 11.3 465 5489169.4 5490099.4 5494623.6 Yes
2 No Yes No 17.1 501 5714670.5 5715672.5 5720537.3 No
3 No Yes Yes 19.1 498 5298138.5 5299134.5 5303970.2 Yes
4 Yes No No 23.7 604 5466576.4 5467784.4 5473660.9 Yes
5 Yes Yes No 40.46 637 5281953.6 5283227.6 5289412.9 Yes
6 Yes Yes Yes 43.3 640 5691043.0 5692323.0 5698537.5 No
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CHAPTER 4

Periodontal Disease Classification and Issues

with Partial Mouth Recording

4.1 Underestimation of partial mouth periodontal exami-

nations

Periodontal examinations are conducted in dental epidemiological studies for surveil-

lance and detection and to estimate the prevalence of periodontal disease in a

given population. The typical exam involves probing the teeth at up to six sites

per tooth, measuring attachment loss, pocket depth, and recession (in mm) in

addition to indicators of bleeding on probing. Partial-mouth recording proto-

cols can refer to a number of possible study designs. A full-mouth periodontal

examination typically is conducted on six sites per tooth on all teeth excluding

the third-molars. Half-mouth periodontal examinations refer to sampling only

half of the teeth, commonly by diagonal quadrants. Partial-mouth examinations

may also incorporate fewer measurements per tooth, with some studies such as

NHANES 1999-2000 probing only two sites per tooth, with other examinations

recording 3 or 4.

Half-mouth periodontal examinations have been implemented in a number of

studies as a means of reducing costs and patient burden, but there is conflicting

research on the underestimation of prevalence of periodontal disease that occurs

when only half-mouth data are used. Some studies show little differences in the

estimates of prevalence from data on two quadrants [Hun87, DEK02], while other
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studies have shown that sensitivity is decreased when using partial recording pro-

tocols [SKA05]. In an unpublished thesis, Maitra [Mai12] showed that there is

a high degree of association between sites using circular statistics and argued

that the findings suggest a sub-sample of teeth should be sufficient for estimat-

ing periodontal disease status. A literature review of 12 studies with 32 partial

mouth protocols found that half-mouth six-site protocols or full-mouth three-site

(mesiobuccal, midbuccal, and distolingual) sampling had the greatest sensitivity

of disease prevalence and lowest relative bias for severity [TGD13].

The National Health and Nutrition Examination Study (NHANES) currently

uses the full-mouth, six-site periodontal examination after previously using the

half-mouth data [EDW12]. A convenience sample of 454 adults was given a

full-mouth periodontal examination to measure the “true” periodontal prevalence

rate and the results were compared to the partial-mouth recording protocols of

NHANES III and NHANES 2001-2004. The partial-mouth recording protocols

were found to underestimate of the prevalence of periodontal disease by as much

as 50% or greater, depending on how periodontitis was defined [ETW10].

Periodontal disease is often defined as having at least one site where measured

attachment loss or pocket depth is greater than or equal to 4mm. However, the

definitions of periodontal disease vary in the literature and has been defined on

ranges of attachment loss between ≥ 2 to 6 mm or on pocket depths above 3 to 6

mm [SEM09]. In the study of the oral consequences of methamphetamine use, the

stages of periodontal disease are classified by the CDC-AAP criteria [EDW12]:

• Severe periodontitis is classified by the presence of two or more interprox-

imal sites (sites that neighbor an adjacent tooth) on different teeth with

attachment loss ≥ 6 mm and one or more interproximal sites with pocket

depth ≥ 5.

• Moderate periodontitis is characterized by two or more interproximal sites

on different teeth with attachment loss ≥ 4 or two or more interproximal
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sites (on different teeth) with pocket depth ≥ 5.

• Mild periodontitis is categorized by two or more interproximal sites with

attachment loss ≥ 3 and two or interproximal sites with pocket depth ≥ 4

or one site with pocket depth ≥ 5 on different teeth.

These definitions/categorizations of periodontal disease are made without respect

to the sampling design, but may be sensitive to designs in which the full-mouth

data are not observed. Some alternative approaches that have been proposed by

others will be discussed Section 4.2.

4.2 Existing methods for dealing with partial mouth data

A recent data analysis was conducted using the full-mouth, six-site periodontal

examination from NHANES 2009-2010 by Tran et al. [TGD14]. In this analysis,

the authors applied various partial mouth recording protocols and estimated the

prevalence of periodontal disease and associated measures and found that par-

tial mouth recording protocols, particularly half-mouth designs, underestimated

prevalence as compared with the full mouth data. The authors proposed a ”half-

reduced” estimate of disease status, which essentially reduces the required number

of sites with extreme pocket depth or attachment loss by half for each threshold

diagnosis of periodontal disease. The half-reduced criteria is as follows:

• Severe periodontitis is classified by the presence of one or more interproximal

sites with attachment loss ≥ 6 mm and one or more interproximal sites with

pocket depth ≥ 5 on a different tooth or ≥ 6 on the same site.

• Moderate periodontitis is characterized by one or more interproximal sites

on different teeth with attachment loss 4 or one or more interproximal sites

(on different teeth) with pocket depth ≥ 5.
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• Mild periodontitis is categorized by one or more interproximal sites with

attachment loss ≥ 3 and one or more interproximal sites with pocket depth

≥ 4 or one site with pocket depth ≥ 5.

The half-reduced disease status is akin to doubling the number of observed

sites with extreme pocket depth or attachment loss or imputing what is observed

on one half of the mouth for the other half. Thus this method assumes that each

half of the mouth is exchangeable with the other, which might not be true given

the evidence from the χ2 tests, and can possibly overestimate the prevalence of

disease.

Reich et al. [RB10] modeled the missing data from a full-mouth periodontal

examination (i.e. teeth not present in the subject) using a latent spatial process

model modeling binary and continuous outcomes on site level data. Their model

found that incorporating information about the missingness of the teeth produced

more reliable estimates of the periodontal disease status. However, these methods

were designed to account for missing periodontal observations due to teeth being

unrecordable or not present. In this study, we do not seek to predict observations

on teeth that do not exist: rather the goal is to account for what would have been

observed under a full-mouth examination.

4.3 Unadjusted prevalence of periodontal disease among

methamphetamine users and a matched cohort of non-

using subjects from NHANES

The proportion of observed teeth meeting attachment loss thresholds for both the

MA users and the matched 2011 NHANES subjects can be seen in Figure 4.3,

while the proportions for each pocket depth threshold can be seen in Figure 4.4,

and alternative representations can be seen in Figures 4.1 and 4.2. Almost all of
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the observed and present teeth from MA users meet attachment loss thresholds of

≥ 2, even on anterior teeth (teeth 6-11 and 22-27). The most severe attachment

loss threshold of ≥ 6 happens more frequently among MA users than NHANES

subjects, particularly on the maxillary first and second molars (teeth 2, 3, 14, and

15), occurring in approximately 20% of each maxillary molar observed among MA

users as opposed to less than 10% of maxillary molars in NHANES subjects. In

addition, attachment loss between 4 mm and 6mm is also more prevalent in MA

users maxillary molars, occurring in approximately 40% of first and second maxil-

lary molars, as compared with 20% among NHANES observed teeth. Mandibular

molars (teeth 18, 19, 30, and 31) have lower rates of attachment loss ≥ 6 mm

among observed teeth for MA users, but have equally high rates of attachment

loss between 4 and 6 mm. The mandibular anterior teeth (teeth 23-28) appear to

have relatively high rates of both the mid and extreme levels of attachment loss

for MA users.

While instances of the maximum pocket depth meeting the highest threshold

of ≥ 7 are less common, they occur slightly more frequently on the right second

molars (teeth 2 and 18). The lower anterior teeth (22-27), particularly mandibular

canines (teeth 22 and 27), are more likely to have pocket depths ≥ 3. Metham-

phetamine users are have higher frequencies of pocket depth for each tooth than

the observed NHANES subjects.

4.3.1 Prevalence among methamphetamine users

Using the CDC-AAP definitions, of the 546 methamphetamine users with peri-

odontal data, 116 (22.3%) are classified as having severe periodontitis and 292

(53.5%) have moderate periodontitis. Only 35 (6.2%) have mild periodontitis,

and 104 (19.1%) have no periodontal disease.

When comparing outcomes from subjects randomized to half-mouth examina-

tions to those randomized full-mouth examinations, there is a higher prevalence
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of severe periodontal disease within the full-mouth group compared to all in the

half-mouth group. Table 4.1 shows the frequency of each periodontal disease clas-

sification by randomization to either full or half-mouth examinations. Over 27%

of the subjects full-mouth were classified as having severe periodontitis compared

to 17% of those randomized to the half-mouth exam. Subjects randomized to the

half-mouth examination had higher rates of classification to mild disease (7.9%) or

no disease (25.6%) compared with those who received the full-mouth exam (3.9%

with mild disease and 10.0% no disease). Half-mouth examinees also had lower

rates of moderate periodontal disease classification (49.5%) than the full-mouth

participants (59.0%).

Two half-mouth sampling designs were conducted: upper right and lower left

(teeth 1-8 and 17-24) and upper left and lower right (teeth 9-16 and 25-32). Ta-

ble 4.2 displays the frequencies of periodontal disease status further stratified by

half-mouth sampling design. It can be seen that subjects randomized to the upper

right/lower left quadrants have slightly higher rates of classification to both severe

and moderate periodontal disease (18.8% and 52.8% respectively) than the sub-

jects randomized to the upper left/lower right exam (15.1% and 46.1%). When a

logistic regression analysis is conducted to predict the probability of having severe

periodontal disease by randomization to full mouth, upper left/lower right, or up-

per right/lower left, the full-mouth exam had slightly higher rates of classification

of servere periodontitis as compared to those randomized to the upper left/lower

right (parameter estimate: -0.33, SE: 0.17, p(χ2) = 0.05). However, those ran-

domized to the upper right/lower left examination did not have significantly lower

rates of classification of severe periodontitis as compared to those who received

the full-mouth exam.

These results indicate that there may be a selection effect in the sampling of

the sites for the periodontal examination. This would make logical sense when
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considering it only takes two sites of a given threshold (on separate teeth) to qual-

ify as having periodontal disease. If a subject only has two sites with attachment

loss greater than 6 mm, and those two particular sites are located on the same

quadrant (or on the quadrants diagonal from each other), these would be observed

under the full-mouth examination and one of the half-mouth examinations, but

not the other half-mouth examination. These results confirm what has been seen

in other studies in which disease prevalence is underestimated when using partial

mouth protocols. However, because there exist data on the full-mouth examina-

tion for some subjects, it may be possible to model the data on the unobserved

quadrants.

4.3.2 Prevalence among NHANES 2011-2012 subjects

Using the procedure detailed in the background section, 1090 subjects were se-

lected from the 2011-2012 NHANES study. All subjects received full mouth,

six-site periodontal examinations. We estimate the prevalence of periodontal dis-

ease under the same four-site procedure used on the methamphetamine users.

In addition, we also apply each of the four-site, half-mouth sampling designs to

determine the bias of each procedure, knowing the full sample frequencies of pe-

riodontal disease.

The number and percentage of the 1090 NHANES subjects classified as hav-

ing periodontal disease are displayed in Table 4.3. It can be seen that the UR-LL

design would underestimate the overall prevalence of periodontal disease by an ab-

solute 12.6% (relative bias of 28.0%), and the UL-LR design would underestimate

the prevalence by 18.7% (relative bias of 41.3%). The pattern of underestima-

tion is similar to that found in the methamphetamine-using sample: although

both half-mouth sampling designs underestimate the prevalence of periodontal

disease, detection of periodontal disease is more likely in upper-right/lower-left
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examinations than in upper-left, lower right exams.

4.4 A note on missingness mechanisms

In this study, there are two types of missing data. Using the terminology defined

by Rubin [Rub76], data from the half-mouth examinations on the quadrants of

teeth unobserved can be considered missing completely at random (MCAR), and

data on teeth that are not present in an individual’s mouth, which may be missing

not at random (MNAR) or missing at random (MAR). For the purposes of this

analysis, we assume that the data from the teeth missing in the subject are MAR.

While it is important not to be too cavalier about this assumption, which can be

violated in practice, it is also valuable to view the MAR assumption as a start-

ing point for analysis that often would be reasonable to consider as a candidate

assumption.

4.5 Multiple Imputation of Periodontal Examination Data

An alternative way of conducting an analysis on partial mouth data is to borrow

information from what is known from full mouth data. Given one half mouth

of the data, and if some information is known about the relationship across the

population between the observed and the unobserved teeth, we might be able to

better predict what would have been observed on the other half of the mouth.

There is some precedent for imputing oral health data for improved estimates

of population prevalence of dental diseases related to caries. Pahel et al. [PPS11]

imputed the number of carious teeth in children using a zero-inflated poisson

model. Schuller and van Buuren [SB14] examined multiple imputation methods

under different assumptions of the missing data mechanism for Decayed, Missing,
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or Filled (DMF) surface and teeth indexes incorporating socioeconomic status

(SES) information. In that study, DMF scores were treated as continuous vari-

ables and were imputed using chained equations (MICE) [VBG06].

The individual site measurements of the periodontal examination can be thought

of having a hierarchical structure, in which sites are located within teeth, and teeth

are located within an individual subject. The assumption of nesting within teeth

may be relaxed with alternative coding of the data to incorporate tooth effects as

well as site measurement type effects.

The imputations were generated using the R package PAN, which is designed

to impute multivariate repeated measures data using a Gibbs sampler as described

in Schafer (1997). The underlying model used by PAN is

yi = Xiβ + Zibi + εi (4.1)

for i = 1, ...,m, where

• i indexes the study participant,

• m is the total number of subjects,

• ni is the number of measurements (observed and unobserved) on the ith

subject

• yi represents the (ni × r) matrix of incomplete multivariate outcome data

for subject i,

• Xi is the (ni × p) matrix of p fixed covariates,

• Zi is the (ni × q) matrix of q random covariates,

• β is the (p× r) matrix of coefficients common to the population,
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• bi is the (q × r matrix of subject specific coefficients, and

• εi is the (ni × r) matrix of residual errors.

The model index i refers to the study participant, and the outcome yi is a ma-

trix of outcomes for r different types of measurements on ni possible locations in

the mouth. The random covariates for this study, Zi, will just be a column of

1’s to indicate a random intercept model. For modeling the periodontal disease

status, we include dummy variables to uniquely identify each site and tooth as

fixed effects. Thus in the sample of methamphetamine users where four sites per

tooth were recorded, there are three dummy variables to indicate site type (B,

M, or DL versus D), six dummy variables to indicate tooth type (with incisors

as reference), one dummy variable indicating mandibular tooth, and one vari-

able to indicate the right side of the mouth. In addition, we also include effects

such as methamphetamine used, age, and other variables that may be relevant to

periodontal disease status and subsequent analyses.

4.5.1 Post-Imputation Processing and Analysis

First, the imputed values of attachment loss and pocket depth were rounded to

the nearest integer. Next, to avoid imputing nonsensical values where there would

have been no measurement (i.e. the tooth is not present or cannot be measured),

imputed values on missing teeth were set to missing again. The purpose of the

multiple imputation is to capture the disease status for partial-mouth data as

compared to what would have been observed had the full mouth been recorded.

Thus imputing values for teeth that would not have been observed even under the

full-mouth sampling scheme is to be avoided.

The CDC-AAP definitions of mild, moderate, and severe periodontitis were

then applied to the imputed datasets. Using the computed status variables, the

SAS functions PROC UNIVARIATE and PROC MIANALYZE were used to gen-
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erate overall estimates and standard errors for prevalence of each periodontal

disease classification.

4.5.2 Results from Analysis for MA Users

The resulting prevalence estimates, standard errors, fraction of missing informa-

tion (FMI), and relative efficiency (of using 5 imputations relative to an infinite

number of imputations) are presented in Table 4.4. The percentage of subjects

classified as having no periodontal disease decreases from an original estimate of

19.1% to 5.5% after imputing values for the unobserved (but present) teeth. The

rates of mild periodontal disease also decrease from 6.2% to 2.0%. Prevalence of

moderate periodontal disease increases to 65.8% from 53.5%, and the estimated

percent of subjects with severe periodontal disease goes from 21.3% to 26.7%.

With each of these prevalence estimates, the relative efficiency is over 95%, while

the fraction of missing information varies between 0.068 to 0.21 (higher for no

or mild periodontal disease). With the highest fraction of missing information at

0.21, five imputations appears to be sufficient.

4.6 Multiple Imputation Analysis for NHANES subjects

Because we observe the full-mouth examination on the NHANES subjects, an

opportunity is presented in which we can test our imputation procedure to see if

we can replicate what would is observed for the full-mouth examination. In this

case, we randomly assigned the 1090 NHANES subjects to a full, upper-left and

lower-right, or upper-right and lower-left examination with the same probabilities

as observed in the proportion of MA subjects. The first application of this ran-

domization resulted in 473 subjects with the full mouth examination, 328 with

upper-right and lower-left, and 289 with upper-left, lower-right. If assigned to a
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half-mouth examination, all observations on the ”unobserved” teeth were set to

missing. The multiple imputations were generated and analyzed using the same

procedure as with the MA subjects, with the exception of the background charac-

teristics on the individual participants. Two imputation models were considered:

one without any background variables, and one which included age, gender, eth-

nicity, and smoking status.

4.7 Results: Multiple Imputation Analysis for NHANES

subjects

Table 4.5 displays the original (no missing-by-design), missing-by-design, and

multiply-imputed prevalence estimates for the NHANES subjects where some

subjects have been randomized to the half-mouth examinations under the model

without personal covariates. It can be seen that when the planned-missingness is

imposed on the NHANES sample in the proportions assigned to the MA subjects,

the prevalence of any periodontal disease decreases by 7.8%. The rates of mild

periodontal disease remain approximately the same, although 0.8% lower, and the

rates of both moderate and severe periodontal disease status are reduced by 4.2%

and 2.7% respectively.

While the point estimate obtained for prevalence any disease status using the

multiple imputation without covariates procedure is greater than the original value

by 3.5%, the 95% interval does contain the target value. The estimates of percent-

ages with mild periodontal disease and severe periodontal disease are still slightly

lower (by 0.7% and 2.0% respectively), but the estimate of prevalence of moderate

periodontal disease is an additional 5.3% larger. These results indicate that the

procedure increases the likelihood of detecting moderate periodontal disease.

The randomization and multiple imputation procedure was repeated on the
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NHANES data five times to show what would happen when different subjects

are randomized. The resulting estimates from the randomization and imputation

(with background characteristics) for each of these five trials can be seen in Table

4.6. We still see a slight overestimation of moderate periodontal disease in ad-

dition to lower estimates of severe periodontal disease prevalence. However, the

95% confidence interval for the estimated proportion of the sample having no pe-

riodontal disease does cover the true value in each trial, indicating that the rate of

any periodontal disease (mild, moderate, or severe) is only slightly overestimated.

4.8 Conclusions

The rates of periodontal disease using the CDC definitions can be underestimated

when planned-missing-data designs are used without any adjustment for the de-

sign. Presented here is an alternative to simply changing the definition; we show

how multiple imputation can be used to impute values for the unobserved (but

present) measurements. The procedure enables us to replace the missing-by-design

values with plausible values given a hierarchical normal model for the data, and

the analysis also allows for the standard errors to be adjusted for the missing

observations.
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Attachment Loss Thresholds by Tooth and MA Use
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Figure 4.1: Proportion of each observed tooth meeting given attachment loss
thresholds

Pocket Depth Thresholds by Tooth Number and MA Use
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Figure 4.2: Proportion of each observed tooth meeting given pocket depth thresh-
olds
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Maxillary Right
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Figure 4.3: Proportion of each observed tooth meeting given attachment loss
thresholds
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Figure 4.4: Proportion of each observed tooth meeting given pocket depth thresh-
olds

Periodontal disease status Full-Mouth Exam Half-Mouth Exam
No periodontal disease 23 (10.4%) 81 (25.6%)
Mild periodontal disease 9 (3.9%) 25 (7.8%)
Moderate periodontal disease 135 (59.9%) 157 (49.5%)
Severe periodontal disease 62 (27.1%) 54 (17.0%)

Table 4.1: Periodontal disease classifications by half-mouth versus full-mouth ex-
ams. χ2 = 28.6 on 3 df, p < 0.0001
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Periodontal disease
status

Full-Mouth Exam Half-Mouth Exam Half-Mouth Exam

Upper Left/Lower
Right

Upper Right/Lower
Left

No periodontal dis-
ease

23 (10.0%) 46 (30.3%) 35 (21.2%)

Mild periodontal
disease

9 (3.9%) 13 (8.6%) 12 (7.3%)

Moderate peri-
odontal disease

135 (59.0%) 70 (46.1%) 87 (52.7%)

Severe periodontal
disease

62 (27.1%) 23 (15.1%) 31 (18.8%)

Table 4.2: Periodontal disease classifications by randomization. χ2 = 33.4 on 6
df, p < 0.0001

Periodontal disease
status

Full-Mouth Exam Half-Mouth Exam
UR-LL

Half-Mouth Exam
UL-LR

No periodontal dis-
ease

494 (45.3%) 632 (58.0%) 698 (64.0%)

Mild periodontal
disease

32 (2.9%) 25 (2.3%) 29 (2.7%)

Moderate peri-
odontal disease

409 (37.5%) 331 (30.4%) 293 (26.9%)

Severe periodontal
disease

155 (14.2%) 102 (9.4%) 70 (6.4%)

Table 4.3: Periodontal disease classifications of NHANES 2011-2012 subjects un-
der four-site, full-mouth and half-mouth criteria, McNemar χ2 < 0.0001 for all 3
two-way comparisons

Original Multiple Imputation Analysis
Disease
status

Prevalence
Estimate

Prevalence
Estimate
(SE)

95% Interval FMI RE

None 19.1% 5.5% (1.1%) (3.4,7.7) 0.21 0.96
Mild 6.2% 2.0% (0.66%) (0.74, 3.3) 0.17 0.97
Moderate 53.5% 65.8% (2.2%) (61.4,70.1) 0.16 0.97
Severe 21.3% 26.7% (1.9%) (22.8,30.5) 0.068 0.99

Table 4.4: Periodontal disease classifications after imputation for MA Users
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Original Missing by
Design

Multiple Imputation Analysis

Disease sta-
tus

Prevalence
Estimate

Prevalence
Estimate

Prevalence Esti-
mate (SE)

95% Interval FMI RE

None 45.3% 53.1% 41.8% (1.9%) (37.8%,45.8%) 0.45 0.92
Mild 2.9% 2.1% 2.2 % (0.45%) (1.3%,3.0%) 0.041 0.99
Moderate 37.5% 33.3% 43.8% (1.9%) (39.8%,47.8%) 0.45 0.92
Severe 14.2% 11.5% 12.2% (1.0%) (10.2%,14.2%) 0.032 0.99

Table 4.5: NHANES Periodontal disease classifications after imputation - without
background characteristics

Original Missing by
Design

Multiple Imputation Analysis

Disease sta-
tus

Prevalence
Estimate

Prevalence
Estimate

Prevalence Esti-
mate (SE)

95% Interval FMI RE

Trial 1
None 45.3% 53.1% 41.5% (1.5%) (38.5%,44.5%) 0.06 0.99
Mild 2.9% 2.1% 2.4 % (0.63%) (1.0%,3.6%) 0.52 0.91
Moderate 37.5% 33.3% 43.7% (1.6%) (40.4%,47.0%) 0.18 0.97
Severe 14.2% 11.5% 12.4% (1.0%) (10.4%,14.5%) 0.05 0.99

Trial 2
None 45.3% 53.1% 42.4 (1.9%) (38.4%,46.4%) 0.45 0.92
Mild 2.9% 2.2% 2.4% (0.48%) (1.5%,3.4%) 0.08 0.98
Moderate 37.5% 33.7% 43.6% (1.9%) (39.5%,47.6%) 0.45 0.92
Severe 14.2% 11.0% 11.7% (0.98%) (9.7%,13.6%) 0.02 0.99

Trial 3
None 45.3% 52.4% 42.8 (1.7%) (39.6%,46.1%) 0.20 0.96
Mild 2.9% 2.8% 2.6% (0.53%) (1.5%,3.6%) 0.20 0.96
Moderate 37.5% 33.9% 43.1% (1.7%) (39.6%,46.6%) 0.28 0.95
Severe 14.2% 10.8% 11.4% (0.99%) (9.5%,13.4%) 0.05 0.99

Trial 4
None 45.3% 52.5% 43.3 (1.6%) (40.2%,46.4%) 0.09 0.98
Mild 2.9% 2.8% 2.6% (0.56%) (1.5%,3.7%) 0.29 0.95
Moderate 37.5% 33.9% 42.2% (1.6%) (39.2%,45.3%) 0.08 0.98
Severe 14.2% 10.8% 11.8% (1.0%) (9.8%,13.8%) 0.06 0.99

Trial 5
None 45.3% 52.5% 42.4 (1.6%) (39.1%,45.7%) 0.19 0.96
Mild 2.9% 2.5% 2.6% (0.52%) (1.6%,3.6%) 0.13 0.97
Moderate 37.5% 34.1% 43.2% (1.7%) (39.9%,46.5%) 0.13 0.97
Severe 14.2% 11.0% 11.8% (1.0%) (9.8%,13.8%) 0.058 0.99

Table 4.6: NHANES Periodontal disease classifications after imputation with char-
acteristics - Five Trials
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Original Missing by
Design

Multiple Imputation Analysis

Disease sta-
tus

Prevalence
Estimate

Prevalence
Estimate

Prevalence Esti-
mate (SE)

95% Interval FMI RE

Trial 1
None 45.3% 53.1% 39.5% (1.6%) (36.4%,42.5%) 0.10 0.98
Mild 2.9% 2.1% 3.1 % (0.61%) (2.0%,4.4%) 0.25 0.95
Moderate 37.5% 33.3% 41.8% (1.7%) (38.5%,45.1%) 0.20 0.96
Severe 14.2% 11.5% 15.5% (1.1%) (13.2%,17.7%) 0.09 0.98

Table 4.7: NHANES Periodontal disease classifications after imputation with char-
acteristics on Trial 1

Table 4.8: Coding of each site in the periodontal examination

Site B M DL T2 T3 T4 T5 T6 T7 Maxillary Right

2D 0 0 0 1 0 0 0 0 0 1 1
2B 1 0 0 1 0 0 0 0 0 1 1
2M 0 1 0 1 0 0 0 0 0 1 1
2DL 0 0 1 1 0 0 0 0 0 1 1
3D 0 0 0 0 1 0 0 0 0 1 1
3B 1 0 0 0 1 0 0 0 0 1 1
3M 0 1 0 0 1 0 0 0 0 1 1
3DL 0 0 1 0 1 0 0 0 0 1 1
4D 0 0 0 0 0 1 0 0 0 1 1
4B 1 0 0 0 0 1 0 0 0 1 1
4M 0 1 0 0 0 1 0 0 0 1 1
4DL 0 0 1 0 0 0 0 0 0 1 1
5D 0 0 0 0 0 0 1 0 0 1 1
5B 1 0 0 0 0 0 1 0 0 1 1
5M 0 1 0 0 0 0 1 0 0 1 1
5DL 0 0 1 0 0 0 1 0 0 1 1
6D 0 0 0 0 0 0 0 1 0 1 1
6B 1 0 0 0 0 0 0 1 0 1 1
6M 0 1 0 0 0 0 0 1 0 1 1
6DL 0 0 1 0 0 0 0 1 0 1 1
7D 0 0 0 0 0 0 0 0 1 1 1
7B 1 0 0 0 0 0 0 0 1 1 1
7M 0 1 0 0 0 0 0 0 1 1 1
7DL 0 0 1 0 0 0 0 0 1 1 1
8D 0 0 0 0 0 0 0 0 0 1 1
8B 1 0 0 0 0 0 0 0 0 1 1
8M 0 1 0 0 0 0 0 0 0 1 1
8DL 0 0 1 0 0 0 0 0 0 1 1
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CHAPTER 5

Item Response Theory Modeling of the Decayed,

Missing, and Filled Index of Oral Health

5.1 The Use of the DMF Index in Epidemiology of Oral

Health

In this section we discuss IRT models of the Decayed, Missing, and Filled index.

The Decayed, Missing, and Filled (DMF) index is one of the most commonly used

metrics for evaluating extent of caries disease in oral health epidemiology. There

are two most common forms of DMF indices, the DMFT, which sums the number

of decayed, missing, or filled teeth in the mouth, and the DMFS, which counts

the number of decayed, missing, or filled surfaces (where there are 4-5 surfaces

per tooth). There has been some debate as to how to count the surfaces and the

contribution of each type.

While the DMF status of each surface and tooth is observed in the metham-

phetamine study as well as NHANES, we propose using these models to indicate

which teeth and statuses may be making the greatest contribution to the total

scores. In addition, the item response functions for each tooth may be useful in

selecting teeth that are most indicative of methamphetamine use. The resulting

IRT calibrations may be used as a basis for future use of planned-missing-data-

designs. The DMFT and DMFS as basic summed scores fail to account for the

patterns within the data. Decayed, missing, and filled teeth provide equal con-

tributions to the overall measure, even though it can be argued that decayed or
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missing teeth are more extreme manifestations of caries than filled teeth. In addi-

tion, one decayed, missing, or filled anterior tooth provides the same contribution

to the DMFT as a similar condition on a molar, but anterior caries are far less

common.

The goal of this research is to provide an alternative means of scoring the

caries examination to account for differences in caries type and teeth and deter-

mine which patterns produce the highest DMFT scores. Item response theory

models are proposed to analyze the data and account for information from differ-

ent teeth and caries type.

5.2 Motivating Study

5.3 Methods

The motivation behind the use of item response theory (IRT) models stems from

viewing the DMFT measurements as individual categorical measurements of an

overall disease status. Each tooth can be considered rated on a nominal scale,

where the categories are normal, decayed, missing, or filled. While normal would

be the lowest category on an ordinal scale, followed by filled, determining the

order for missing versus decayed may be more complicated. The summed score of

DMFT is one way of measuring the overall caries extent, but in an IRT context,

we would consider the disease status to be a latent trait, denoted θ.
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5.3.1 Item Response Theory

5.3.1.1 Two Parameter Logistic Model

The two parameter logistic (2PL) item response model is common model used for

binary measurements. This model is represented by

Pj(θ) ≡ P (xj = 1|θ, aj, cj) = 1/(1 + exp[−aj(θ − cj)]),

where

• aj is the slope parameter for item j, which characterizes the relationship

between the latent domain and the probability of a correct response, and

• cj is the location parameter that is generally indicative of the difficulty of

the item.

5.3.1.2 Graded Response Model

The Graded Response Model was developed by Samejima (1969) for ordinal or

scale items. Let item j have K graded categories. The cumulative probabilities

of response are

P (xj ≥ 0|θ) = 1.0

P (xj ≥ 1|θ) =
1

1 + exp[−cj,1 + ajθ]

...

P (xj ≥ K − 1|θ) =
1

1 + exp[−cj,K−1 + ajθ]

P (xj ≥ K|θ) = 0,

where aj is the slope parameter for item j and cj,k are the item intercepts for the

k = 0, ..., K − 1 levels.
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5.3.1.3 Nominal Model

The Nominal Response Model (Bock 1972) is used when there is no ordering

between the categories of an item.

P (xj = k|θ) =
eajk(θ−bjk)∑L
l=1 e

ajl(θ−bjl)

5.3.2 Modeling the DMFT

The individual items in the DMFT each show the status of the tooth as decayed,

missing, filled, or normal. The different item response models considered for the

tooth status along with the coding of each response are displayed in Table 5.1.

The most simple model for the data would be the two parameter logistic model,

in which decayed, missing, and filled statuses are treated equally as compared to

being a sound tooth. The coding of the tooth status into binary data is equiva-

lent to how the summed DMFT treats the possible tooth statuses, and thus the

scores resulting from this model will likely be the closest to the DMFT obtained

by summing the number of decayed, missing, or filled teeth.

In the most complex item response model, we consider the nominal model, in

which no ordering between decayed, missing, or filled is assumed. The nominal

model enables us to look at how the probability of being either decayed, missing,

or filled on a given tooth is ranked given the overall disease status. We would ex-

pect that for a given tooth, lower disease statuses would have a higher probability

of being filled and those with higher disease statuses would be categorized into

either decayed or missing. However the ranking between decayed and missing

would give us insights as to which categorization is more indicative of extreme

caries experience for a given tooth.
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Coding of Teeth
Model Number of Categories Normal Filled Decayed Missing
2PL 2 0 1 1 1
Graded 4 0 1 2 3
Graded 3 0 1 2 2
Nominal 4 0 1 2 3

Table 5.1: Possible mechanisms for coding decayed, missing, or filled teeth

The other two models for the data considered are graded response models.

First, decayed and missing teeth are treated as equal responses, for a graded re-

sponse model with three categories. A graded response model with four categories

is also fit to the data in which the missing tooth status is considered the most

extreme manifestation of caries experience, followed by decayed, and then filled.

5.3.3 IRT Calibration

The process by which item parameters are estimated is called calibration. A

number of methods have been developed to estimate the item parameters. Most

frequently applied is the Bock-Aitkin EM algorithm [BA81], which evaluates the

likelihood at specified quadrature nodes across the distribution of θ. While this

approach also allows for more comprehensive model fit indexes to be produced, it

can be quite slow for multidimensional IRT models. An alternative approach when

considering multidimensional IRT models would be to use the Metropolis-Hastings

Robbins-Monro (MH-RM) algorithm [Cai08], which uses stochastic simulation to

approximate the posterior distribution. Item response models are calibrated to

the combined set of MA users and NHANES subjects, as well as separately to

detect differences in item parameter estimates.

5.3.4 Scoring based on IRT

There are a number of potential methods for generating scores based on the item

response models. First, expected a posteriori (EAP) scores can be computed by
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taking the expected value of the posterior distribution of the latent trait for each

individual given the item responses [BM82]. Alternatively, maximum a posteriori

(MAP) scores can be computed from the maximum value of the person-posterior.

The approach set forth by [MJM92b] is to impute multiple plausible values from

the posterior distribution and treat the latent abilities as missing data. The

plausible values approach should only be considered when individual scores are

not of interest, rather the interest of inference is on population-level contrasts,

such as the difference in average scores between two groups.

5.3.5 Differential item functioning

Differential item functioning (DIF) is the phenomenon where the item parameters

(such as the slope or location parameter in a 2PL model) take on different values

for different groups [TSW93]. As an example in education research, girls may re-

spond differently to a given question regarding a passage about football than boys,

resulting in different item slopes to be estimated between the two groups (akin to

an interaction in a regression model). Differential item functioning occurs when,

for the same value of the latent variable or vector, there are different expected

probabilities of response between groups. One specific aim of the oral health study

is to characterize the patterns and relationships of oral health outcomes by whether

or not a person uses methamphetamine. It may be possible to identify specific

sites in the mouth on which methamphetamine users are more likely to experience

bleeding or high attachment loss as compared with non-methamphetamine users

with the same overall disease status by assessing differential item functioning.

In practice, to test for DIF, we can specify groups during the model calibration

step. Item parameters are then estimated for each group and compared for differ-

ences. To determine which teeth have different behaviors between the MA users

and NHANES participants for the same overall caries disease status, DIF testing

can be done by defining the groups as either MA or NHANES. The drawback
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of using only two groups, however, is that there may be other confounding vari-

ables related to DIF, as the NHANES and MA samples have different population

characteristics. As described previously, we have used a propensity score model

to select subjects from the NHANES study that are demographically similar to

those from the MA study. Five propensity score subgroups were defined where co-

variates are balanced within each subgroup. Instead of using only two groups, we

can then define 10 groups: MA and NHANES within each propensity subgroup.

We can then test, within a propensity score subgroup, for DIF between the MA

and NHANES, which may indicate which sites are more indicative of periodontal

disease between the two groups. The results of the DIF analysis may not only

allow us to identify sites that are indicative of MA use, but also to identify sites

in which a partial mouth recording protocol should not ignore.

While testing for differential item functioning under various constraints is an

active area of research in the literature in educational measurement, we adopt a

straightforward approach by Thissen et al. [TSW93]. Items are calibrated sepa-

rately for each group, and then Wald χ2 statistics are used to test for differences

in item parameters between the two groups.

5.4 Results

Attempts at doing separate calibrations by propensity-score subgroup failed to

converge to a maximum likelihood solution, likely due to the small number of

participants from the MA sample in the lower-propensity-score groups. However,

many models calibrated MA users only, NHANES subjects only, and all combined

converged to maximum likelihood solutions.
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5.4.1 Comparing EAP Scores

Figure 5.2 displays the plot of the 2PL EAP scores versus the DMFT summed

score. The relationship between the two scores is very close, with curvature at

the tails indicating that the 2PL scores are more distinct at the tails as opposed

to the summed scores. The Nominal EAP scores are plotted against the summed

scores in Figure 5.3. The dispersion of Nominal EAP scores is much greater at

each summed score than the 2PL model. Logically, this makes sense. The 2PL

model for the data assumes that decayed, missing, and filled are scored equally on

a binary scale, so the 2PL EAPs at each summed score will likely be more closely

related. In the nominal model, decayed, missing, and filled categorizations are give

different contributions to the EAP score, and the information and discrimination

of each category will vary by tooth. Thus it is not surprising that the Nominal

EAP scores have greater dispersion as the summed DMFT index increases.

To compare the EAP scores between the methamphetamine users and NHANES

subjects, there had to be constraints placed on the model. Using the NHANES

subjects as a reference with a prior on the scaled score of a standard normal

distribution, the mean of the MA subjects when calibrated with the NHANES

subjects was allowed to vary relative to the NHANES mean. The boxplots of the

2PL EAP scores are displayed in Figure 5.4. The NHANES subjects have a mean

EAP of 0, while the MA users have a slightly higher mean score. Similarly, the

MA subjects have a slightly higher mean Nominal EAP as compared with the

NHANES subjects (as seen in Figure 5.5).

5.4.2 Differential Item Functioning

The test statistics for DIF in the 2PL model are shown in Figure 5.7. For all teeth,

there is some significant degree of overall differential item functioning (Total X2),

where p-values are all below 0.003. When examining DIF specifically in the slopes,
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not all teeth had different discrimination parameters between MA and NHANES.

The teeth with significantly different (at α = 0.05) slopes were 4, 5, 6, 8, 9, 11, 12,

13, 14, 15, 18, 20, 21, 23, 24, 25, 26, 27, and 30. The teeth without significantly

different slope parameters were 2, 3, 7, 10, 19, 22, 28, 29, and 31. There does

not appear to be a clear pattern other than the majority of the teeth without

different slopes appear to be on the right side. All of the teeth can be seen to

have significantly different location parameters for MA users as compared with

NHANES subjects. The difference in the location parameters can be thought of as

the difference in the score at which 50% of the population would have a decayed,

missing, or filled tooth for that particular tooth. The MA users have significantly

lower location parameters for each tooth, and thus the DMF score at which 50%

of the MA users would have a particular tooth be decayed, missing, or filled is

significantly lower than the NHANES sample.

The DIF statistics for the Nominal model can be found in Figure 5.8. Similarly

to the 2PL models, all teeth have significantly different overall item response

models between MA and NHANES subjects. The location parameters appear

to be the prominent source of distinctions between the study arms. While slope

parameters and category parameters have some significant differences, the location

parameters are all significantly different.

5.4.3 Item Information and Selection for Planned-Missingness

The item information of each tooth at specific values (under a 2PL model) of the

latent domain are printed in Figure 5.9 for the combined MA-NHANES sample. At

the tail ends of the distribution, but particularly for the lower end at θ = −2.8 or

-2.4, none of the tooth provide much information. The anterior teeth are the least

likely to be informative at the lower end of the distribution, but the most likely

to be informative at the higher disease statuses. Conversely decayed, missing, or

filled molars are the most informative teeth at the lower tails of the distribution,
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but are the least informative for higher disease status. These trends indicate

that for little to no progression of disease, anterior teeth are the least likely to

have any caries, while molars are more likely to be decayed missing or filled for

those who have very little disease progression. However, for determining extreme

caries disease, the presence of decayed, missing, or filled status on anterior teeth

is less likely unless the disease progression is advanced. Similar item information

patterns are found when using the nominal model (Figure 5.10). Anterior teeth

provide little information at the lower ends of the distribution of latent disease

status.

Selecting sets of teeth for planned-missing-data study designs would follow a

similar process using either the nominal or 2PL model. To adequately cover the

distribution of the latent disease, a mixture of both anterior and posterior teeth

would need to be included. The half-mouth sampling by diagonal quadrants (as

done in the periodontal examination) would satisfy this criteria.
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Figure 5.1: Percent of Decayed, Missing, and Filled surfaces among metham-
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Figure 5.2: 2PL EAP Scale Scores vs. DMFT Summed Score
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Figure 5.3: Nominal Scale Scores vs. DMFT Summed Score

90



0 1

-1
0

1
2

MA User 1 = Yes

D
M

FT
 2

P
L 

S
ca

le
d 

S
co

re

Figure 5.4: Boxplot of 2PL Scale Scores
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Figure 5.5: Boxplot of Nominal Scale Scores
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Figure 5.6: Example Item Characteristic Curves for Nominal Model
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Figure 5.7: DIF Testing in 2PL Model

Figure 5.8: DIF Testing in Nominal Model
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Figure 5.9: Item Information for 2PL Model

Figure 5.10: Item Information for Nominal Model
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CHAPTER 6

IRT models for Periodontal Examination Data

6.1 Motivation

When addressing issues of estimation arising when data are missing by design,

defining what we are estimating is a crucial piece in the analysis strategy. Peri-

odontal disease categorizations have been defined through CDC definitions which

count the number of sites with certain thresholds. However, periodontal disease

status or progression can be thought of as an unobserved, or latent, trait that is

measured and defined by taking a number of measurements on a specific number

of locations on the mouth. Another way of solving the underestimation problem

is to find alternative ways of defining the measurement model.

In this research, item response theory models are proposed as a method for

estimating the underlying disease status given the repeated measurements of the

periodontal examination. In the next chapter, we will also discuss the extension

of these models for scoring the caries examination and identifying teeth with sur-

face conditions that may indicate methamphetamine use. In item response theory

estimation, the model parameters are estimated given the observed data, even

when number of items observed on each individual may vary. Using the estimated

item parameters and observed data, we can approximate the posterior distribu-

tions of the individual disease status. Scores for the latent domain of interest, or

disease status, can be estimated using some function of the posterior, commonly
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the expected a posteriori or the maximum a posteriori. With planned-missing-

data designs in which the inference is on a population rather than the individual,

the individual posteriors may have wide variances. Thus instead of single point

scores, multiple imputations from the posterior, or plausible values, can be used

instead of point estimates.

6.2 Methods

Clinical attachment loss measurements were classified using the graded response

model with five categories: 0 mm to 1 mm = 0, 2mm to 3 mm = 1, 4 mm to 5

mm = 2, 6+ mm = 3. For models to investigate the specific relationship between

sites within teeth and the overall disease status, site level measurements were

used. Other models defined items as the maximum attachment loss for the tooth,

motivated by the traditional definitions of periodontal disease that require two or

more sites at a given threshold from different teeth (thereby only incorporating

information about the maximum attachment loss per tooth).

6.3 Calibration of IRT Models for MA Users Only

Item calibration and scoring was conducted using the software flexMIRT 2.0.

The Metropolis-Hastings Robbins-Monro (MH-RM) algorithm was used for esti-

mation of item parameters as well as generation of multiple imputations of the

latent traits. The bifactor models were compared to the unidimensional models

using likelihood ratio tests (the unidimensional models are nested within a given

bifactor model, with the additional factor parameters constrained to zero). Resid-

ual dependence between items was tested in unidimensional models using LD χ2
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statistics with quadrature-based item calibration; however, current versions of the

software using MH-RM for high dimensional models do not provide LD χ2 statis-

tics.

IRT models assume that given the value of the latent domains or vectors

θ, that items are conditionally dependent. In this study that assumption may

not be valid. While the periodontal disease status represents the primary latent

domain, other factorizations are considered to account for residual dependence

due to mouth location. In this analysis, bifactor models were calibrated for:

• Quadrants

• Clusters of teeth

• Tooth type

• Tooth type and location (mandibular/maxillary, left/right)

One specific aim of the study of methamphetamine users is to determine the

relationship between methamphetamine use and oral health outcomes on a pop-

ulation scale. As such, individual disease status is not the target of inference,

rather the estimation of regression coefficients and contrasts. The distribution of

the latent disease status was assumed to follow a standard normal distribution

for some models. However, a latent regression model to incorporate potential co-

variates in generating multiple imputations of the latent traits may be necessary

to reduce bias in the population contrasts. Following the methodology developed

by Mislevy et al. (1992) for large-scale educational assessments, the distribu-

tion of disease status can be assumed to have a conditionally normal distribution

with E(θi) = γxi, where γ represents the regression slopes onto background char-

acteristics, denoted by x. The Metropolis-Hastings Robbins-Monro (MH-RM)

algorithm was used for estimation of item parameters as well as generation of
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multiple imputations of the latent traits. The MH-RM algorithm was adapted to

incorporate covariates in the imputation step, thereby simultaneously estimating

the latent regression parameters with the item parameters (Cai and Harrell, 2014,

in progress).

6.3.1 Results for Methamphetamine Users

Unidimensional IRT models on either the maximum attachment loss of the four

sites on each of 28 teeth or on all of the 112 site measurements showed strong

associations between each measurement and the latent disease progression (Fig-

ures 3 & 5). The item slopes, or factor loadings, onto the general dimension for

periodontal disease progression were positive and significantly different than zero

in each of the models calibrated, including the bifactor models. However, tests

of local dependence indicate that a single latent domain fails to account for all

covariance between measurements. Bifactor models appeared to account for ad-

ditional dependence, but more data would be necessary to address more complex

structures. Table 1 includes summary information for several of the models cali-

brated on the data.

The unidimensional model using site measurements provides the highest marginal

reliability for pattern scores, but the reliability is still high for the unidimensional

model using maximum attachment loss per tooth. Reliability slightly decreases

when regression covariates are included. When covariates were introduced in the

conditioning model, the estimates for the slope parameters were consistently lower

(Figure 4). Of the 8 background characteristics included, only two had significant

associations with periodontal disease status.
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6.4 Calibration of IRT models for both MA users and

NHANES subjects

When calibrating models for two different groups, considerations should be made

to as to whether the model is expected to behave differently for each group.

When trying to arrive at comparable estimates of the latent periodontal disease

to compare MA users with the non-using cohort selected from NHANES, ideally we

would estimate the item parameters on the combined sample from both groups.

However, if we want to examine the differences in the relationship between a

tooth’s attachment loss and periodontal disease between the two samples, we

calibrate the IRT models separately and test for differential item functioning.

6.4.1 Differential Item Functioning between MA users and NHANES

subjects

Differential item functioning was first examined by having both groups have equal

means and dispersion of the latent disease status. Similar to the results seen in

Chapter 5, all 28 teeth have significant differential item functioning. As seen in

Figure 6.7, the major source of variation in the item parameters tends to be the

location parameters. DIF between slope parameters vary; for molars, the slope

parameters are not significantly different. However, for anterior teeth, the discrim-

ination is significantly different between MA users and NHANES subjects. In fact,

the slope parameters tend to be higher on the anterior teeth for the NHANES sub-

jects than the MA users, signifying that the anterior teeth are more discriminating

among the non-MA users. The location parameters are significantly different for

all 28 teeth, and upon examination, it appears that the locations for each category

of the graded model are lower for the MA users. This occurs because a higher

proportion of MA users have more severe attachment loss at each tooth.

We can allow the means to differ by freeing the mean parameter for one group,
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in this case NHANES. We recalibrate the model to compare the item parameters

between the two groups with different means to check again for differential item

functioning. The estimate of the mean periodontal disease status for NHANES

subjects is -0.27, which is lower than the zero-valued fixed mean for the MA users.

Not all teeth exhibited differential item functioning when the NHANES mean was

freely estimated, as seen in Figure 6.8. The item response functions for tooth

5 and tooth 12 are not significantly different between the two groups. The re-

maining teeth are all significantly different between users and non-users, but it

is not always the location parameter driving the difference in the item response

function (although it usually is). For tooth number 11, the slope parameters are

significantly different, but not the location parameters.

6.5 Concluding remarks

Item response theory models can be used as an alternative metric for inference

about periodontal disease, particularly when partial-mouth-recording protocols

are used and not all sites are observed. There do appear to be significant differ-

ences in the latent disease and the relationship between each site and the disease

status between MA-using subjects and a matched non-using cohort.
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Figure 6.1: A unidimensional IRT model for tooth level data.

Figure 6.2: Item characteristic curve for the unidimensional graded response
model for K = 5 levels counting the number of sites on Tooth 30 which have
attachment loss ≥ 4mm.

Figure 6.3: A bifactor model with four secondary factors (one factor for each
quadrant) and one general factor
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Figure 6.4: A bifactor model with seven secondary factors (one factor for each
tooth type) and one general factor
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Figure 6.5: Item slopes for the unidimensional model with 28 items (28 maximum
attachment loss per tooth)
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Figure 6.6: Item slopes for the unidimensional model with 112 items (categorized
attachment loss on each site)
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Figure 6.7: Test statistics for differential item functioning for each tooth when
latent means for both groups are equal
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Figure 6.8: Test statistics for differential item functioning for each tooth when
latent mean for NHANES subjects is freely estimated
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Tooth Overall Perio Disease Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4
2 λ12 λ22 0 0 0
3 λ13 λ23 0 0 0
4 λ14 λ24 0 0 0
5 λ15 λ25 0 0 0
6 λ16 λ26 0 0 0
7 λ17 λ27 0 0 0
8 λ18 λ28 0 0 0
9 λ19 0 λ39 0 0
10 λ110 0 λ310 0 0
11 λ111 0 λ311 0 0
12 λ112 0 λ312 0 0
13 λ113 0 λ313 0 0
14 λ114 0 λ314 0 0
15 λ115 0 λ315 0 0
18 λ118 0 0 λ418 0
19 λ119 0 0 λ419 0
20 λ120 0 0 λ420 0
21 λ121 0 0 λ421 0
22 λ122 0 0 λ422 0
23 λ123 0 0 λ423 0
24 λ124 0 0 λ424 0
25 λ125 0 0 0 λ525

26 λ126 0 0 0 λ526

27 λ127 0 0 0 λ527

28 λ128 0 0 0 λ528

29 λ129 0 0 0 λ529

30 λ130 0 0 0 λ530

31 λ131 0 0 0 λ531

Table 6.1: A bifactor model on tooth-level data with one general periodontal
disease domain and four quadrant subdomains
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CHAPTER 7

Future Research & Discussion

7.1 Future Research in Planned Missing Data in Oral Health

The work presented here is only the beginning in terms of analyzing planned

missing data in oral health research. This section discusses ideas for how to

expand this research.

7.1.1 Multiple Imputation from Hierarchical Spatial Models

In Chapter 4, multiple imputation analyses were performed using two-level hierar-

chical normal models for attachment loss and pocket depth, where measurement

sites were nested within people. However, this hierarchical model did not account

for the spatial structure inherent in the data. Reich et. al [RB10] pursued work

characterizing the spatial processes involved in the periodontal examination, but

these models could potentially be used to impute values of attachment loss and

pocket depth for the unobserved teeth in planned-missing-data designs.

7.1.2 Spatial Models for the DMFT Index

In Chapter 6, we present IRT models for the DMF index. The DMF observations

are categorical, but may also have a similar hierarchical/spatial pattern as the

periodontal examination. An idea for future research could involve characterizing

the spatial processes between surfaces in the DMF index.
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7.2 Future Research involving IRT and Education Research

7.2.1 Approximating the Missing Information Matrix in MH-RM us-

ing Multiple Imputation

Failure of complex IRT models to converge to a maximum likelihood estimate was

one issue found when estimating based on data with a high number of missing

observations. In many instances, models failed to pass the second order test

(negative second derivatives of the likelihood). This is likely the result of how the

complete data information matrix is estimated in practice, which is by taking the

sum of the observed and missing information matrices. However, in the case with

a high number of missing observations, the estimated missing data information

matrix can be negative. Here, we propose using the between-imputation variance

to approximate the missing information matrix.

In the MH-RM algorithm, we impute values for the latent domain in the first

step of each cycle. In practice, generally only one value of θ is imputed, but

multiple imputations of θ can be drawn during this step. If we take multiple

imputations of θ, we can approximate the matrix of missing data information by

utilizing the between-imputation matrix and the total variance matrix.

7.2.2 Cognitive Diagnostic Models

Cognitive diagnostic models are similar to item response models except the latent

proficiency domain is a binary variable rather than continuous. The use of cogni-

tive diagnostic models and their application to the periodontal examination data

as well as the NAEP framework may be explored in the future.
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7.2.3 Incorporation of weighting for complex sample design from NAEP

It should be noted that the complex sampling design from NAEP will not be

addressed in this research with the design weights. Typically, the sampling weights

are incorporated in secondary analyses in estimation of population contrasts, and

the level two weights for clusters are used for jack-knife variance estimates.

7.2.4 Prediction of statistical proficiency from NAEP Data

The statistical proficiency domain estimated in this disseration research could be

quite valuable in surveying the existing skills of students in the United States and

what factors are related to higher proficiency of data analysis. Using data from the

High School Transcript Study, the association between particular courses, such as

AP Biology, Statistics, or Calculus, and achievement levels could be useful towards

crafting education policy for improvement of statistical learning. Contrasts on

subpopulations may highlight where policy efforts should be targeted.

7.2.5 Sample size for planned-missing-data designs

Not addressed here are the sample sizes needed for a given planned-missing-data

design. Future research could address through simulation the sample sizes nec-

essary for an examination with a given number of items and proposed missing

design under specific analysis models.

7.2.6 Longitudinal planned missingness

The models in this research are geared towards designs with a one-time observation

of a study participant. However, in studies involving interventions with follow-ups,

it may be desirable to limit the information collected at a given timepoint. Future

extensions of this work would be to adapt the procedures to handle measurements
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missing by design across time points.

110



CHAPTER 8

Appendix A - Simulated IRT and Regression

Parameter Bias Tables
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Table 8.1: Regression Parameters and Bias

Model 1 Model 2 Model 3 Model 5
Item True Value Bias Rel

Bias
RMSE Bias Rel

Bias
RMSE Bias Rel

Bias
RMSE Bias Rel

Bias
RMSE

1 0.52 -0.22 -0.41 0.22 -0.28 -0.54 0.28 -0.28 -0.54 0.28 -0.29 -0.55 0.29
2 -0.47 0.20 -0.42 0.20 0.26 -0.55 0.26 0.26 -0.55 0.26 0.26 -0.56 0.26
3 -1.63 0.71 -0.44 0.71 0.94 -0.58 0.94 0.93 -0.57 0.93 0.96 -0.58 0.96
4 -2.31 1.02 -0.44 1.02 1.34 -0.58 1.34 1.33 -0.58 1.33 1.36 -0.59 1.36
5 0.97 -0.42 -0.43 0.42 -0.55 -0.57 0.55 -0.55 -0.56 0.55 -0.56 -0.58 0.56
6 -0.36 0.15 -0.41 0.15 0.19 -0.54 0.19 0.19 -0.53 0.19 0.20 -0.54 0.20
7 0.19 -0.09 -0.48 0.09 -0.12 -0.63 0.12 -0.12 -0.63 0.12 -0.12 -0.64 0.12
8 1.59 -0.69 -0.43 0.69 -0.90 -0.57 0.90 -0.89 -0.56 0.89 -0.91 -0.57 0.91
9 0.85 -0.39 -0.46 0.39 -0.52 -0.61 0.52 -0.52 -0.61 0.52 -0.53 -0.62 0.53
10 -0.96 0.42 -0.43 0.42 0.55 -0.57 0.55 0.54 -0.56 0.54 0.55 -0.58 0.55
11 -0.30 0.12 -0.41 0.12 0.16 -0.54 0.16 0.16 -0.53 0.16 0.16 -0.54 0.16
12 -1.74 0.76 -0.44 0.76 1.00 -0.58 1.00 1.00 -0.57 1.00 1.02 -0.59 1.02
13 -0.20 0.09 -0.44 0.09 0.11 -0.56 0.11 0.11 -0.56 0.11 0.11 -0.57 0.12
14 0.26 -0.10 -0.38 0.10 -0.13 -0.50 0.13 -0.12 -0.49 0.13 -0.13 -0.50 0.13
15 2.40 -1.06 -0.44 1.06 -1.40 -0.58 1.40 -1.38 -0.58 1.39 -1.42 -0.59 1.42
16 2.13 -0.94 -0.44 0.94 -1.23 -0.58 1.23 -1.22 -0.57 1.22 -1.25 -0.59 1.25
17 0.07 -0.01 -0.23 0.02 -0.02 -0.24 0.02 -0.02 -0.24 0.02 -0.01 -0.23 0.02
18 0.09 -0.04 -0.47 0.04 -0.05 -0.61 0.05 -0.05 -0.60 0.05 -0.05 -0.62 0.06
19 0.24 -0.10 -0.41 0.10 -0.13 -0.54 0.13 -0.13 -0.54 0.13 -0.13 -0.55 0.14
20 2.24 -0.96 -0.43 0.96 -1.26 -0.56 1.26 -1.25 -0.56 1.25 -1.28 -0.57 1.28
21 0.54 -0.23 -0.42 0.23 -0.30 -0.56 0.30 -0.30 -0.56 0.30 -0.31 -0.57 0.31
22 0.62 -0.26 -0.43 0.26 -0.35 -0.56 0.35 -0.34 -0.56 0.34 -0.35 -0.57 0.35
23 -1.04 0.46 -0.44 0.46 0.61 -0.59 0.61 0.60 -0.58 0.60 0.62 -0.60 0.62
24 0.92 -0.41 -0.44 0.41 -0.54 -0.59 0.54 -0.53 -0.58 0.53 -0.55 -0.60 0.55
25 -1.54 0.68 -0.44 0.68 0.89 -0.58 0.89 0.89 -0.57 0.89 0.91 -0.59 0.91
26 0.53 -0.23 -0.44 0.23 -0.30 -0.58 0.30 -0.30 -0.57 0.30 -0.31 -0.58 0.31
27 -2.73 1.18 -0.43 1.18 1.55 -0.57 1.55 1.54 -0.56 1.54 1.57 -0.58 1.57
28 1.12 -0.49 -0.44 0.49 -0.65 -0.58 0.65 -0.64 -0.58 0.64 -0.66 -0.59 0.66
29 2.16 -0.93 -0.43 0.93 -1.22 -0.56 1.22 -1.21 -0.56 1.21 -1.24 -0.57 1.24
30 0.38 -0.17 -0.45 0.17 -0.23 -0.60 0.23 -0.23 -0.59 0.23 -0.23 -0.61 0.23
31 1.29 -0.55 -0.43 0.55 -0.74 -0.57 0.74 -0.73 -0.57 0.73 -0.75 -0.58 0.75
32 -0.72 0.31 -0.43 0.31 0.40 -0.56 0.41 0.40 -0.56 0.40 0.41 -0.57 0.41
33 -1.62 0.69 -0.43 0.69 0.93 -0.57 0.93 0.92 -0.57 0.92 0.94 -0.58 0.94
34 -0.75 0.32 -0.42 0.32 0.42 -0.56 0.42 0.42 -0.55 0.42 0.42 -0.56 0.42
35 1.00 -0.43 -0.43 0.43 -0.56 -0.56 0.56 -0.56 -0.56 0.56 -0.57 -0.57 0.57
36 -1.12 0.48 -0.43 0.48 0.64 -0.57 0.64 0.63 -0.57 0.63 0.65 -0.58 0.65
37 -1.43 0.63 -0.44 0.63 0.84 -0.59 0.84 0.83 -0.58 0.83 0.85 -0.60 0.85
38 0.50 -0.19 -0.39 0.19 -0.25 -0.50 0.25 -0.25 -0.49 0.25 -0.25 -0.50 0.25
39 -1.53 0.67 -0.44 0.67 0.89 -0.59 0.90 0.89 -0.58 0.89 0.91 -0.60 0.91
40 -0.83 0.35 -0.43 0.35 0.47 -0.56 0.47 0.46 -0.56 0.46 0.47 -0.57 0.47
41 -1.27 0.55 -0.43 0.55 0.73 -0.58 0.73 0.73 -0.57 0.73 0.74 -0.59 0.74
42 0.01 -0.02 -2.95 0.03 -0.04 -4.50 0.04 -0.04 -4.56 0.04 -0.04 -4.80 0.04
43 -0.21 0.09 -0.43 0.09 0.12 -0.58 0.12 0.12 -0.58 0.12 0.12 -0.59 0.12
44 1.90 -0.82 -0.43 0.82 -1.10 -0.58 1.10 -1.09 -0.58 1.09 -1.12 -0.59 1.12
45 0.53 -0.21 -0.40 0.21 -0.29 -0.54 0.29 -0.28 -0.53 0.28 -0.29 -0.54 0.29
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Table 8.2: Regression Parameters and Bias (Continued)

Model 1 Model 2 Model 3 Model 5
Item True Value Bias Rel

Bias
RMSE Bias Rel

Bias
RMSE Bias Rel

Bias
RMSE Bias Rel

Bias
RMSE

46 1.33 -0.57 -0.43 0.57 -0.76 -0.57 0.76 -0.75 -0.56 0.75 -0.77 -0.58 0.77
47 1.69 -0.74 -0.43 0.74 -0.98 -0.58 0.98 -0.98 -0.58 0.98 -1.00 -0.59 1.00
48 -0.25 0.11 -0.44 0.11 0.14 -0.59 0.15 0.14 -0.59 0.14 0.15 -0.60 0.15
49 0.42 -0.18 -0.42 0.18 -0.24 -0.56 0.24 -0.23 -0.56 0.23 -0.24 -0.57 0.24
50 3.32 -1.42 -0.43 1.42 -1.90 -0.57 1.90 -1.88 -0.57 1.88 -1.93 -0.58 1.93
51 1.61 -0.70 -0.43 0.70 -0.93 -0.58 0.93 -0.93 -0.58 0.93 -0.95 -0.59 0.95
52 0.57 -0.24 -0.42 0.24 -0.31 -0.56 0.31 -0.31 -0.55 0.31 -0.32 -0.56 0.32
53 -0.09 0.03 -0.37 0.04 0.05 -0.49 0.05 0.04 -0.49 0.05 0.05 -0.50 0.05
54 -0.24 0.11 -0.46 0.11 0.15 -0.63 0.15 0.15 -0.63 0.15 0.16 -0.64 0.16
55 -0.71 0.30 -0.42 0.30 0.40 -0.56 0.40 0.39 -0.55 0.39 0.40 -0.57 0.40
56 0.76 -0.33 -0.43 0.33 -0.44 -0.58 0.44 -0.43 -0.58 0.43 -0.45 -0.59 0.45
57 -3.03 1.29 -0.43 1.29 1.72 -0.57 1.72 1.71 -0.56 1.71 1.75 -0.58 1.75
58 0.06 -0.02 -0.28 0.02 -0.02 -0.34 0.02 -0.02 -0.33 0.02 -0.02 -0.34 0.02
59 2.77 -1.18 -0.43 1.18 -1.57 -0.57 1.57 -1.56 -0.56 1.56 -1.59 -0.58 1.59
60 -0.26 0.12 -0.45 0.12 0.15 -0.58 0.15 0.15 -0.58 0.15 0.15 -0.59 0.15
61 1.55 -0.75 -0.49 0.75 -0.95 -0.62 0.95 -0.95 -0.61 0.95 -0.97 -0.62 0.97
62 -1.18 0.57 -0.48 0.57 0.73 -0.61 0.73 0.72 -0.61 0.72 0.74 -0.62 0.74
63 -0.81 0.38 -0.47 0.38 0.48 -0.59 0.48 0.48 -0.58 0.48 0.48 -0.59 0.48
64 -0.71 0.33 -0.47 0.33 0.42 -0.59 0.42 0.41 -0.58 0.41 0.42 -0.59 0.42
65 1.52 -0.74 -0.48 0.74 -0.93 -0.61 0.93 -0.93 -0.61 0.93 -0.95 -0.62 0.95
66 -1.10 0.53 -0.48 0.53 0.67 -0.61 0.67 0.67 -0.61 0.67 0.68 -0.62 0.68
67 0.38 -0.20 -0.51 0.20 -0.25 -0.66 0.25 -0.25 -0.66 0.25 -0.26 -0.68 0.26
68 3.56 -1.74 -0.49 1.74 -2.21 -0.62 2.21 -2.19 -0.62 2.19 -2.24 -0.63 2.24
69 -0.78 0.38 -0.49 0.38 0.48 -0.62 0.48 0.47 -0.61 0.47 0.49 -0.63 0.49
70 -1.07 0.52 -0.48 0.52 0.65 -0.61 0.65 0.65 -0.61 0.65 0.66 -0.62 0.66
71 -0.65 0.31 -0.48 0.31 0.39 -0.61 0.39 0.39 -0.60 0.39 0.39 -0.61 0.40
72 -1.93 0.93 -0.49 0.93 1.19 -0.62 1.19 1.18 -0.61 1.18 1.21 -0.63 1.21
73 -0.23 0.11 -0.49 0.11 0.14 -0.62 0.14 0.14 -0.62 0.14 0.14 -0.63 0.14
74 0.46 -0.21 -0.46 0.21 -0.26 -0.57 0.26 -0.26 -0.57 0.26 -0.26 -0.58 0.26
75 0.57 -0.26 -0.46 0.26 -0.33 -0.58 0.33 -0.33 -0.57 0.33 -0.33 -0.58 0.33
76 0.73 -0.34 -0.47 0.34 -0.42 -0.58 0.42 -0.42 -0.58 0.42 -0.43 -0.59 0.43
77 0.93 -0.44 -0.48 0.44 -0.56 -0.61 0.56 -0.56 -0.60 0.56 -0.57 -0.61 0.57
78 0.10 -0.05 -0.50 0.05 -0.06 -0.64 0.06 -0.06 -0.63 0.06 -0.06 -0.65 0.06
79 0.67 -0.32 -0.48 0.32 -0.41 -0.61 0.41 -0.40 -0.61 0.40 -0.41 -0.62 0.41
80 3.18 -1.53 -0.48 1.53 -1.94 -0.61 1.94 -1.92 -0.61 1.92 -1.96 -0.62 1.96
81 -0.18 0.10 -0.57 0.10 0.13 -0.75 0.13 0.13 -0.75 0.13 0.14 -0.77 0.14
82 1.34 -0.66 -0.49 0.66 -0.83 -0.62 0.83 -0.83 -0.62 0.83 -0.84 -0.63 0.85
83 -0.08 0.03 -0.39 0.03 0.03 -0.46 0.04 0.03 -0.46 0.04 0.03 -0.45 0.04
84 0.31 -0.15 -0.48 0.15 -0.19 -0.60 0.19 -0.19 -0.60 0.19 -0.19 -0.61 0.19
85 -0.73 0.34 -0.47 0.34 0.43 -0.60 0.43 0.43 -0.59 0.43 0.44 -0.60 0.44
86 0.00 0.01 3.49 0.01 0.01 6.44 0.02 0.01 6.52 0.02 0.01 6.97 0.02
87 -2.83 1.36 -0.48 1.36 1.71 -0.61 1.71 1.70 -0.60 1.70 1.74 -0.61 1.74
88 0.63 -0.30 -0.48 0.30 -0.38 -0.61 0.38 -0.38 -0.60 0.38 -0.38 -0.61 0.39
89 3.75 -1.81 -0.48 1.81 -2.30 -0.61 2.30 -2.28 -0.61 2.28 -2.33 -0.62 2.33
90 -0.22 0.11 -0.50 0.11 0.14 -0.63 0.14 0.14 -0.63 0.14 0.14 -0.64 0.14
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Table 8.3: 2PL Content Slope Parameters and Bias

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Item True Value Bias Rel

Bias
Bias Rel

Bias
Bias Rel

Bias
Bias Rel

Bias
Bias Rel

Bias
Bias Rel

Bias
1 1.078 0.82 0.76 1.54 1.43 1.49 1.38 6.86 6.36 1.18 1.09 5.73 5.31
2 1.317 0.97 0.74 1.74 1.32 1.66 1.26 8.65 6.57 1.65 1.25 8.10 6.15
3 1.993 1.81 0.91 3.48 1.75 3.19 1.60 15.71 7.88 3.02 1.52 13.42 6.73
4 1.039 0.80 0.77 1.54 1.48 1.45 1.39 6.68 6.43 1.14 1.10 5.60 5.39
5 1.418 1.07 0.75 2.43 1.71 2.13 1.50 10.75 7.58 1.62 1.14 8.18 5.77
6 1.758 1.60 0.91 3.13 1.78 2.92 1.66 13.46 7.66 2.55 1.45 11.47 6.52
7 1.388 1.06 0.77 2.01 1.45 1.89 1.36 8.98 6.47 1.74 1.25 8.00 5.76
8 2.003 1.51 0.76 3.04 1.52 2.81 1.40 14.13 7.05 2.86 1.43 13.47 6.72
9 1.334 1.23 0.93 2.24 1.68 2.11 1.58 9.74 7.30 1.81 1.36 8.42 6.31
10 1.589 1.18 0.74 2.28 1.43 2.06 1.30 10.71 6.74 1.94 1.22 9.60 6.04
11 1.533 1.20 0.78 2.32 1.52 2.14 1.39 10.90 7.11 1.82 1.19 8.58 5.60
12 2.159 1.64 0.76 3.40 1.57 3.04 1.41 15.90 7.36 2.55 1.18 12.69 5.88
13 1.35 1.24 0.92 2.78 2.06 2.43 1.80 11.04 8.18 1.70 1.26 7.93 5.87
14 2.105 1.63 0.78 3.43 1.63 3.13 1.49 14.96 7.11 2.84 1.35 12.81 6.08
15 1.431 1.07 0.74 1.93 1.35 1.79 1.25 9.36 6.54 1.65 1.15 8.39 5.86
16 1.45 1.31 0.91 2.27 1.56 2.20 1.52 10.34 7.13 2.02 1.39 9.32 6.42
17 1.561 1.21 0.77 2.05 1.31 1.97 1.26 9.49 6.08 1.75 1.12 8.40 5.38
18 0.813 0.60 0.73 1.05 1.29 1.02 1.26 5.19 6.38 1.01 1.24 4.98 6.13
19 1.681 1.56 0.93 2.59 1.54 2.46 1.47 11.86 7.06 2.17 1.29 10.21 6.07
20 1.215 0.90 0.74 1.59 1.31 1.54 1.26 7.82 6.44 1.46 1.20 7.34 6.04
21 1.365 1.06 0.78 1.77 1.30 1.72 1.26 8.40 6.16 1.61 1.18 7.62 5.58
22 1.334 0.99 0.74 1.71 1.28 1.65 1.24 8.51 6.38 1.62 1.22 8.01 6.00
23 1.647 1.53 0.93 2.94 1.78 2.77 1.68 11.92 7.24 2.01 1.22 9.50 5.77
24 1.768 1.36 0.77 2.46 1.39 2.35 1.33 11.33 6.41 1.97 1.12 9.54 5.40
25 1.619 1.22 0.76 2.11 1.30 2.03 1.26 10.48 6.47 1.92 1.19 9.53 5.89
26 1.395 1.28 0.92 2.06 1.47 1.98 1.42 9.58 6.87 1.75 1.26 8.33 5.97
27 1.35 1.04 0.77 1.89 1.40 1.79 1.32 8.30 6.15 1.57 1.16 7.35 5.44
28 1.887 1.41 0.75 2.40 1.27 2.28 1.21 11.94 6.33 2.20 1.16 11.09 5.88
29 1.414 1.29 0.91 2.12 1.50 2.05 1.45 9.80 6.93 1.95 1.38 9.02 6.38
30 2.067 1.57 0.76 2.86 1.38 2.74 1.32 13.62 6.59 2.84 1.37 13.37 6.47
31 1.463 1.11 0.76 1.96 1.34 1.89 1.29 8.94 6.11 1.85 1.27 8.43 5.77
32 1.356 1.01 0.75 1.96 1.44 1.85 1.36 9.17 6.76 1.45 1.07 7.52 5.54
33 2.081 1.96 0.94 3.60 1.73 3.40 1.64 16.02 7.70 3.26 1.57 14.33 6.88
34 1.185 0.89 0.75 1.57 1.33 1.52 1.28 7.30 6.16 1.44 1.22 6.78 5.72
35 0.94 0.71 0.75 1.27 1.35 1.23 1.31 6.16 6.55 1.09 1.16 5.49 5.84
36 0.848 0.77 0.91 1.36 1.60 1.31 1.55 6.05 7.14 1.21 1.43 5.51 6.50
37 1.215 0.92 0.76 1.62 1.34 1.58 1.30 7.55 6.21 1.43 1.18 6.77 5.57
38 1.647 1.21 0.73 2.20 1.34 2.11 1.28 10.82 6.57 1.97 1.20 9.85 5.98
39 1.527 1.39 0.91 2.28 1.49 2.19 1.44 10.45 6.84 2.19 1.43 9.87 6.47
40 1.58 1.18 0.75 2.20 1.39 2.11 1.33 10.48 6.64 2.03 1.29 9.76 6.18
41 1.576 1.19 0.75 2.21 1.40 2.12 1.35 9.78 6.20 1.78 1.13 8.49 5.39
42 1.318 0.98 0.75 1.72 1.30 1.67 1.27 8.54 6.48 1.48 1.12 7.51 5.70
43 1.747 1.62 0.92 2.75 1.58 2.68 1.53 12.35 7.07 2.43 1.39 10.97 6.28
44 1.79 1.38 0.77 2.48 1.39 2.38 1.33 11.36 6.35 2.17 1.21 10.17 5.68
45 1.12 0.83 0.74 1.56 1.39 1.50 1.34 7.46 6.66 1.27 1.14 6.34 5.66
46 1.702 1.55 0.91 2.78 1.63 2.64 1.55 12.42 7.30 2.52 1.48 11.17 6.57
47 1.484 1.16 0.78 2.00 1.35 1.94 1.31 9.19 6.19 1.52 1.02 7.60 5.12
48 1.462 1.10 0.75 2.04 1.39 1.97 1.35 9.64 6.59 2.01 1.38 9.48 6.49
49 1.212 1.09 0.90 1.86 1.53 1.80 1.49 8.41 6.94 1.72 1.42 7.75 6.39
50 1.589 1.17 0.74 2.14 1.35 2.05 1.29 10.39 6.54 2.04 1.28 9.90 6.23
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Table 8.4: 2PL Content Slope Parameters and Bias (continued)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Item True Value Bias Rel

Bias
Bias Rel

Bias
Bias Rel

Bias
Bias Rel

Bias
Bias Rel

Bias
Bias Rel

Bias
51 1.773 1.35 0.76 2.46 1.39 2.34 1.32 11.18 6.31 2.12 1.20 9.75 5.50
52 1.177 0.88 0.75 1.58 1.34 1.55 1.31 7.48 6.36 1.35 1.14 6.54 5.55
53 1.677 1.53 0.91 2.64 1.57 2.48 1.48 11.61 6.92 2.05 1.22 9.74 5.81
54 1.48 1.13 0.77 1.87 1.26 1.81 1.22 8.94 6.04 1.77 1.20 8.33 5.63
55 1.419 1.06 0.75 2.00 1.41 1.94 1.37 9.65 6.80 1.53 1.08 7.77 5.48
56 1.035 0.94 0.91 1.67 1.62 1.61 1.55 7.31 7.06 1.35 1.31 6.27 6.06
57 1.712 1.32 0.77 2.43 1.42 2.33 1.36 10.89 6.36 2.37 1.38 10.55 6.16
58 1.599 1.20 0.75 2.20 1.38 2.12 1.32 10.61 6.63 2.12 1.32 10.08 6.31
59 1.581 1.49 0.94 2.90 1.84 2.71 1.71 12.05 7.62 2.14 1.35 9.78 6.19
60 1.107 0.82 0.74 1.44 1.30 1.40 1.26 7.11 6.43 1.26 1.14 6.43 5.81
61 0.859 0.65 0.76 1.20 1.40 1.16 1.35 5.40 6.29 0.90 1.05 4.39 5.11
62 0.949 0.71 0.75 1.27 1.33 1.23 1.29 6.15 6.48 1.21 1.28 5.78 6.09
63 1.312 1.22 0.93 2.10 1.60 2.03 1.55 9.36 7.13 1.97 1.51 8.64 6.58
64 1.564 1.20 0.77 2.28 1.46 2.15 1.37 10.31 6.59 1.78 1.14 8.44 5.39
65 1.727 1.28 0.74 2.41 1.39 2.25 1.30 11.31 6.55 1.78 1.03 9.15 5.30
66 1.144 1.05 0.92 1.79 1.56 1.73 1.51 8.04 7.03 1.62 1.42 7.29 6.37
67 1.562 1.18 0.75 2.23 1.43 2.14 1.37 9.83 6.30 1.54 0.98 7.69 4.92
68 0.878 0.65 0.74 1.17 1.33 1.13 1.29 5.71 6.51 1.07 1.22 5.30 6.04
69 1.434 1.30 0.91 2.35 1.64 2.26 1.57 10.20 7.11 1.84 1.28 8.47 5.91
70 1.135 0.85 0.75 1.59 1.40 1.53 1.35 7.71 6.80 1.35 1.19 6.74 5.94
71 1.615 1.24 0.77 2.14 1.33 2.06 1.27 9.91 6.13 1.87 1.16 8.72 5.40
72 1.111 0.82 0.74 1.54 1.39 1.48 1.34 7.37 6.64 1.27 1.14 6.38 5.74
73 1.889 1.75 0.92 3.44 1.82 3.21 1.70 14.34 7.59 2.60 1.38 11.62 6.15
74 1.441 1.11 0.77 2.08 1.44 1.98 1.38 9.37 6.50 1.67 1.16 7.93 5.50
75 1.079 0.80 0.74 1.40 1.30 1.36 1.26 6.95 6.44 1.30 1.20 6.39 5.92
76 1.349 1.24 0.92 2.29 1.70 2.18 1.61 10.21 7.57 1.99 1.47 8.90 6.60
77 1.473 1.12 0.76 2.20 1.49 2.11 1.43 9.51 6.46 1.95 1.32 8.53 5.79
78 1.192 0.88 0.74 1.59 1.33 1.54 1.29 7.86 6.59 1.49 1.25 7.40 6.21
79 1.336 1.24 0.93 2.27 1.70 2.10 1.57 9.49 7.11 1.73 1.30 8.10 6.07
80 1.375 1.01 0.74 1.91 1.39 1.82 1.32 9.38 6.82 1.72 1.25 8.53 6.20
81 0.75 0.58 0.77 1.02 1.37 0.98 1.31 4.51 6.02 0.71 0.95 3.61 4.81
82 1.399 1.05 0.75 1.95 1.39 1.86 1.33 9.46 6.76 1.58 1.13 7.99 5.71
83 1.444 1.31 0.91 2.36 1.63 2.23 1.54 10.48 7.26 2.06 1.43 9.30 6.44
84 1.098 0.84 0.76 1.77 1.62 1.69 1.54 7.32 6.67 1.27 1.15 5.68 5.17
85 1.61 1.17 0.73 2.39 1.48 2.27 1.41 11.07 6.88 1.77 1.10 8.97 5.57
86 1.742 1.61 0.92 2.81 1.61 2.65 1.52 12.33 7.08 2.37 1.36 10.83 6.22
87 1.565 1.20 0.77 2.34 1.50 2.24 1.43 9.82 6.27 2.03 1.29 8.73 5.58
88 1.678 1.24 0.74 2.26 1.34 2.16 1.29 10.81 6.44 2.24 1.34 10.69 6.37
89 1.527 1.40 0.92 2.50 1.64 2.41 1.58 11.27 7.38 2.32 1.52 10.27 6.73
90 1.969 1.48 0.75 3.03 1.54 2.89 1.47 13.91 7.07 2.81 1.43 13.10 6.65
91 1.201 0.92 0.77 1.62 1.34 1.57 1.31 7.39 6.16 1.49 1.24 6.78 5.64
92 1.254 0.93 0.74 1.84 1.47 1.74 1.38 8.51 6.79 1.60 1.27 7.64 6.09
93 1.15 1.05 0.91 1.93 1.68 1.86 1.62 8.57 7.45 1.66 1.45 7.57 6.59
94 1.527 1.17 0.77 2.13 1.39 2.04 1.34 9.51 6.23 1.97 1.29 8.69 5.69
95 1.229 0.91 0.74 1.63 1.33 1.54 1.26 7.89 6.42 1.20 0.98 6.41 5.21
96 1.561 1.46 0.93 2.60 1.66 2.48 1.59 11.55 7.40 2.39 1.53 10.53 6.74
97 1.141 0.86 0.75 1.68 1.47 1.58 1.39 7.07 6.20 1.29 1.13 6.02 5.27
98 1.064 0.82 0.77 1.56 1.46 1.48 1.39 7.29 6.85 1.48 1.39 6.92 6.51
99 1.698 1.54 0.91 2.94 1.73 2.74 1.62 12.61 7.43 2.51 1.48 11.10 6.54
100 1.592 1.19 0.75 2.43 1.52 2.27 1.42 11.11 6.98 2.18 1.37 10.17 6.39
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Table 8.5: 2PL Content Slope Parameters and Bias (continued)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Item True Value Bias Rel

Bias
Bias Rel

Bias
Bias Rel

Bias
Bias Rel

Bias
Bias Rel

Bias
Bias Rel

Bias
101 0.882 0.68 0.77 1.25 1.41 1.20 1.36 5.67 6.43 1.00 1.14 4.74 5.37
102 0.991 0.73 0.73 1.40 1.41 1.35 1.36 6.62 6.68 1.25 1.26 6.04 6.10
103 1.813 1.61 0.89 2.77 1.53 2.62 1.45 12.89 7.11 2.53 1.40 11.44 6.31
104 1.297 1.00 0.77 1.88 1.45 1.83 1.41 8.38 6.46 1.74 1.34 7.68 5.93
105 0.88 0.65 0.74 1.22 1.39 1.18 1.34 5.65 6.42 0.90 1.03 4.72 5.36
106 2.337 2.17 0.93 4.46 1.91 4.02 1.72 18.94 8.11 3.87 1.66 16.46 7.05
107 1.854 1.46 0.79 2.77 1.49 2.49 1.34 12.08 6.52 2.33 1.25 10.55 5.69
108 1.663 1.24 0.75 2.45 1.48 2.35 1.41 12.11 7.28 2.19 1.32 10.74 6.46
109 1.296 1.18 0.91 2.11 1.62 2.02 1.56 9.56 7.38 1.92 1.48 8.69 6.70
110 1.385 1.05 0.76 1.97 1.42 1.88 1.36 9.38 6.77 1.86 1.35 9.02 6.51
111 1.238 0.95 0.77 1.84 1.49 1.70 1.37 7.86 6.35 1.28 1.03 6.29 5.08
112 1.987 1.47 0.74 2.88 1.45 2.72 1.37 13.99 7.04 2.25 1.13 11.30 5.68
113 1.793 1.62 0.90 3.54 1.98 3.20 1.79 14.68 8.19 2.51 1.40 11.41 6.36
114 1.597 1.21 0.76 2.79 1.75 2.52 1.58 11.30 7.08 1.80 1.13 8.24 5.16
115 1.966 1.46 0.74 2.82 1.44 2.62 1.33 13.74 6.99 2.13 1.08 10.99 5.59
116 1.577 1.40 0.89 2.77 1.76 2.53 1.61 12.34 7.83 2.19 1.39 10.15 6.44
117 1.724 1.34 0.78 2.73 1.59 2.52 1.46 11.46 6.65 2.33 1.35 10.31 5.98
118 1.343 1.01 0.76 1.95 1.45 1.85 1.38 9.28 6.91 1.63 1.21 8.23 6.12
119 1.416 1.31 0.92 2.44 1.72 2.27 1.60 10.27 7.25 1.61 1.14 7.88 5.56
120 1.558 1.17 0.75 2.13 1.36 2.02 1.30 10.28 6.60 2.04 1.31 9.96 6.39
121 1.109 0.85 0.76 1.67 1.51 1.60 1.44 7.41 6.68 1.38 1.24 6.28 5.66
122 1.417 1.05 0.74 2.17 1.53 1.98 1.40 10.17 7.18 1.71 1.21 8.51 6.00
123 1.544 1.44 0.93 3.07 1.99 2.86 1.85 12.87 8.33 2.43 1.57 10.37 6.72
124 1.037 0.79 0.76 1.60 1.54 1.55 1.49 6.86 6.62 1.37 1.32 6.19 5.97
125 1.249 0.94 0.75 2.05 1.64 1.93 1.54 9.07 7.26 1.49 1.19 7.42 5.94
126 1.66 1.51 0.91 3.37 2.03 2.91 1.75 13.30 8.01 2.38 1.43 10.33 6.22
127 1.067 0.81 0.76 1.65 1.54 1.57 1.48 6.96 6.52 1.22 1.14 5.74 5.38
128 1.774 1.34 0.75 2.78 1.57 2.58 1.45 12.51 7.05 2.43 1.37 11.45 6.46
129 1.641 1.48 0.90 3.13 1.91 2.82 1.72 13.17 8.03 2.26 1.37 10.02 6.11
130 1.762 1.33 0.75 2.54 1.44 2.40 1.36 11.99 6.81 1.92 1.09 9.85 5.59
131 1.066 0.82 0.77 1.56 1.46 1.50 1.40 6.85 6.42 1.42 1.33 6.30 5.91
132 1.132 0.85 0.75 1.68 1.48 1.57 1.39 7.51 6.63 1.28 1.13 6.43 5.68
133 1.493 1.35 0.90 2.82 1.89 2.60 1.74 11.46 7.67 2.22 1.49 9.65 6.46
134 1.614 1.25 0.78 2.76 1.71 2.65 1.64 11.22 6.95 2.34 1.45 9.65 5.98
135 1.546 1.17 0.76 2.29 1.48 2.05 1.33 10.74 6.95 1.92 1.24 9.34 6.04
136 1.649 1.48 0.90 3.27 1.98 2.72 1.65 13.21 8.01 2.36 1.43 10.67 6.47
137 1.714 1.34 0.78 3.51 2.05 3.10 1.81 12.03 7.02 2.61 1.52 10.72 6.25
138 1.394 1.05 0.75 2.08 1.49 1.96 1.41 9.84 7.06 1.75 1.25 8.45 6.06
139 1.438 1.31 0.91 2.53 1.76 2.37 1.65 10.45 7.27 2.09 1.46 9.26 6.44
140 1.199 0.89 0.75 1.88 1.57 1.77 1.47 7.86 6.55 1.68 1.40 7.80 6.50
141 1.072 0.81 0.75 1.76 1.64 1.64 1.53 7.46 6.96 1.25 1.17 5.81 5.42
142 0.902 0.66 0.74 1.33 1.47 1.26 1.40 5.89 6.53 1.10 1.21 5.10 5.65
143 1.611 1.47 0.91 3.05 1.89 2.61 1.62 12.16 7.55 1.94 1.21 9.08 5.64
144 1.071 0.82 0.77 1.85 1.72 1.66 1.55 7.14 6.67 1.29 1.21 5.89 5.50
145 1.395 1.03 0.74 2.50 1.79 2.18 1.56 12.21 8.76 1.64 1.18 8.07 5.78
146 1.9 1.69 0.89 3.30 1.74 2.97 1.56 15.27 8.04 2.59 1.36 11.80 6.21
147 1.279 0.95 0.75 2.00 1.56 1.90 1.49 8.32 6.51 1.89 1.47 8.14 6.36
148 1.726 1.28 0.74 2.74 1.59 2.53 1.47 11.83 6.85 2.31 1.34 11.02 6.38
149 1.487 1.38 0.93 3.20 2.15 2.86 1.92 11.37 7.65 2.29 1.54 9.80 6.59
150 2.609 2.00 0.77 5.65 2.17 4.51 1.73 19.11 7.33 4.66 1.79 18.69 7.16
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