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This paper investigates the transport of drugs delivered by direct injection into the12

cerebrospinal fluid (CSF) that fills the intrathecal space surrounding the spinal cord.13

Because of the small drug diffusivity, the dispersion of neutrally buoyant drugs has14

been shown in previous work to rely mainly on the mean Lagrangian flow associated15

with the CSF oscillatory motion. Attention is given here to effects of buoyancy, arising16

when the drug density differs from the CSF density. For the typical density differences17

found in applications, the associated Richardson number is shown to be of order unity,18

so that the Lagrangian drift includes a buoyancy-induced component that depends on19

the spatial distribution of the drug, resulting in a slowly evolving cycle-averaged flow20

problem that can be analyzed with two-time scale methods. The asymptotic analysis21

leads to a nonlinear integro-differential equation for the spatiotemporal solute evolution22

that describes accurately drug dispersion at a fraction of the cost involved in direct23

numerical simulations of the oscillatory flow. The model equation is used to predict drug24

dispersion of positively and negatively buoyant drugs in an anatomically correct spinal25

canal, with separate attention given to drug delivery via bolus injection and constant26

infusion.27

Key words:28

1. Introduction29

The subarachnoid space (SAS) surrounding the spinal cord is filled with cerebrospinal30

fluid (CSF), a colorless Newtonian fluid whose density ρ and kinematic viscosity ν are very31

similar to those of water. The CSF moves in response to the cyclic pressure variations32

induced by the blood pulsations in the cranial cavity and to the abdominal pressure33

variations associated with the respiratory cycle (Linninger et al. 2016; Kelley & Thomas34

2023). CSF motion plays a fundamental role in the physiological function of CSF as a35

vehicle for the transport of hormones, nutrients, and neuroendocrine substances (Greitz36

et al. 1993; Greitz & Hannerz 1996; Pollay 2010) and also facilitates the dispersion of37

† Email address for correspondence: jalaminosquesada@ucsd.edu
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Figure 1. The spinal canal, including (a) a schematic showing the typical intrathecal
injection location, (b) sagittal T2-weighted MR image of the spine in a subject in the supine
position, including cross-sectional views at three different locations, (c) transversely stretched
three-dimensional view of the spinal canal obtained after Gaussian smoothing the MR images,
with an indication of the bounding surfaces and the dimensionless coordinate system used in the
model derivation, and (d) streamlines of the Lagrangian flow projected onto the dimensionless
plane x− s (see § 6).

drugs delivered by direct injection into the SAS (Hettiarachchi et al. 2011a). This medical38

procedure, known as intrathecal drug delivery (ITDD), has been used since the early39

1980s to bypass the blood-brain barrier, facilitating the administration of analgesics,40

chemotherapy and enzymes to the central nervous system (Onofrio et al. 1981; Greene41

1985; Patel et al. 2012; Calias et al. 2012; Lynch 2014; Lee et al. 2017; Remeš et al. 2013;42

Bottros & Christo 2014; Tangen et al. 2019; Fowler et al. 2020; De Andres et al. 2022).43

Standard ITDD protocols involve either the continuous pumping of the drug through a44

small catheter or the administration of a finite dose at selected times (Bottros & Christo45

2014; Fowler et al. 2020; De Andres et al. 2022), with drug delivery commonly taking46

place in the lumbar region, as shown in the schematic of figure 1(a). Analgesic delivery47

via ITDD usually targets sites along the spinal cord close to the injection location, so48

that reduced drug dispersion is desired, while for other patients there is interest in rapid49

dispersion towards the cranial cavity, that being the case of intrathecal chemotherapy50

for brain tumors.51

Although ITDD is used with satisfactory results, efforts to optimize the delivery52

protocol are hindered by the lack of an accurate methodology for predicting drug-53

delivery rates to targeted locations, which sometimes results in unexpected over-dosing54

and under-dosing complications (Buchser et al. 2004; Wallace & Yaksh 2012) that cannot55

be explained by existing pharmacokinetics knowledge (Kamran &Wright 2001; Pardridge56

2011). The development of predictive models necessitates improved understanding of the57

interacting convective and diffusive mechanisms controlling the transport of the drug.58

The present paper, complementing previous computational (Myers 1996; Kuttler et al.59
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2010; Hsu et al. 2012; Tangen et al. 2015; Haga et al. 2017; Tangen et al. 2017; Khani et al.60

2018; Gutiérrez-Montes et al. 2021; Khani et al. 2022), experimental (Hettiarachchi et al.61

2011b; Khani et al. 2022; Seiner et al. 2022; Moral-Pulido et al. 2023; Ayansiji et al. 2023),62

and theoretical (Sánchez et al. 2018; Lawrence et al. 2019) efforts, seeks to contribute to63

the needed understanding by analyzing effects of buoyancy, which are known by clinicians64

to play an important role in the dispersion rate of ITDD drugs for patients in an upright65

or sitting position (Wildsmith et al. 1981; Chambers et al. 1981; Greene 1985; Hocking &66

Wildsmith 2004; De Andres et al. 2022). Asymptotic methods based on the disparity of67

length and time scales present in the problem will be used to derive a reduced transport68

equation for the drug, enabling accurate predictions of drug dispersion at a fraction of69

the computational cost associated with direct numerical simulations.70

The rest of the paper is organized as follows. After reviewing in § 2 the main features of71

the flow in the spinal canal, the problem of solute dispersion in the presence of buoyancy72

forces will be formulated in § 3. The asymptotic development leading to the reduced73

transport equation describing drug dispersion is presented next in § 4. The simplified74

model will be used in § 5 to compute dispersion of positively and negatively buoyant75

solutes in geometrically simple models of the spinal canal. The results will be validated76

by comparisons with direct numerical simulations, similar to those performed earlier in77

connection with neutrally buoyant solutes (Gutiérrez-Montes et al. 2021). Computations78

accounting for anatomically correct spinal canals are presented next, with separate79

consideration given to drug delivery via bolus injection (§ 6) and constant infusion (§ 7),80

the latter analysis involving a localized solute source with a rescaled effective Richardson81

number. Finally, concluding remarks are given in § 8.82

2. Flow and transport in the spinal canal83

The SAS surrounding the spinal chord can be described in the first approximation as84

a thin annular channel of characteristic width hc ∼ 0.1− 0.4 cm much smaller than the85

characteristic spinal-chord perimeter ℓc ∼ 2−3 cm, which in turn is much smaller than the86

spine length L ∼ 60 cm, so that the canal dimensions satisfy the inequalities L ≫ ℓc ≫ hc.87

The CSF moves along the canal with an oscillatory velocity that is synchronized with88

the cardiac and respiratory cycles. The CSF oscillatory flow is more pronounced near the89

canal entrance, where the characteristic velocities uc are on the order of a few cm s−1,90

but become progressively smaller on approaching the closed end of the canal, as revealed91

by in vivo magnetic-resonance measurements (Haughton & Mardal 2014; Coenen et al.92

2019; Aktas et al. 2019; Sincomb et al. 2022). The following analysis specifically focuses93

on the flow induced by the cardiac cycle, corresponding to angular frequencies ω ≃ 2π94

s−1 and characteristic stroke lengths Ls = uc/ω ∼ 1 cm much smaller than the canal95

length L.96

The motion in the spinal canal is viscous, in that the characteristic viscous time across97

the canal h2
c/ν based on the CSF kinematic viscosity ν ≃ 0.7×10−3 cm2/s is comparable98

to–although somewhat larger than–the characteristic flow-oscillation time ω−1, resulting99

in order-unity values 3 <∼ α <∼ 12 of the Womersley number α = (h2
cω/ν)

1/2. By way100

of contrast, effects of inertia associated with convective acceleration are very limited,101

as measured by the relevant Strouhal number ωL/uc = L/Ls ≫ 1, the inverse of102

which defines an asymptotically small parameter ε ∼ Ls/L ≃ 0.02 − 0.04. Thus, in103

the first approximation the motion in the slender spinal canal is given by a balance104

between the pressure gradient, the local acceleration and the viscous forces. The resulting105

linear unsteady lubrication problem can be solved to give closed-form expressions for106

the leading-order oscillatory velocity (Sánchez et al. 2018; Lawrence et al. 2019), whose107
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time-averaged value is identically zero. Corrections to this solution can be obtained108

by extending the asymptotic analysis to higher orders in ε ≪ 1 (Sánchez et al. 2018;109

Lawrence et al. 2019). The first-order velocity corrections, of order εuc, exhibit non-110

zero time-averaged values. This steady-streaming velocity, first identified in the seminal111

computational work of Kuttler et al. (2010), is partly due to the effect of convective112

acceleration and partly due to the canal compliance (see, e.g. Bhosale et al. 2022a,b;113

Cui et al. 2024, for recent analyses of steady-streaming flows stemming from boundary114

compliance). The associated residence times for the bulk flow in the canal L/(εuc) =115

ε−2ω−1 ∼ 30 min are of the order of those observed in in vivo experiments employing116

radioactive tracers to mark the displacement of the CSF particles (Di Chiro 1964; Greitz117

& Hannerz 1996).118

As shown by Lawrence et al. (2019), the disparity between the short time ω−1 char-119

acterizing the oscillatory velocity fluctuations and the residence time ε−2ω−1 associated120

with the bulk motion can be used in deriving a simplified transport equation for the drug.121

The analysis revealed that shear-enhanced diffusion (Watson 1983), which is potentially122

important for solutes with order-unity values of the Schmidt number S = ν/κ, is entirely123

negligible for the large Schmidt numbers S ≫ 1 corresponding to the small molecular124

diffusivities κ of typical ITDD drugs (e.g. for methotrexate κ = 5.26 × 10−10 m2/s,125

yielding S ≃ 1330 for ν = 0.7× 10−6 m2/s). The evolution of the drug concentration in126

the long time scale ε−2ω−1 was found to be governed by a transport equation involving127

molecular diffusion across the width of the canal and convective transport driven by128

the time-averaged Lagrangian motion resulting from the combined effects of steady129

streaming and Stokes drift. The use of this simplified equation effectively circumvents the130

need to describe the small concentration fluctuations occurring in the short time scale131

ω−1, thereby drastically reducing computational times. The accuracy and limitations of132

this time-averaged description have been recently tested by means of comparisons with133

results of direct numerical simulations spanning hundreds of oscillation cycles (Gutiérrez-134

Montes et al. 2021), as needed to generate significant dispersion of the solute. The135

comparisons clearly demonstrate the accuracy of the time-averaged description, which is136

seen to provide excellent fidelity at a fraction of the computational cost involved in the137

direct numerical simulations. The present investigation extends our previous analyses of138

flow and transport in the spinal canal by accounting for the effects of the small density139

differences between the drug and the CSF. The mathematical development parallels that140

employed recently in our analysis of buoyant Lagrangian drift in a vertical wavy-walled141

channel (Alaminos-Quesada et al. 2022).142

3. Problem description143

3.1. The Richardson number144

As can be seen in Table 1, the drug density ρd of common intrathecal drug solutions145

is very close to that of the CSF (ρ = 1.00059 g/cm3 at 37o C) (Lui et al. 1998; Nicol146

& Holdcroft 1992; Hejtmanek et al. 2011; Lynch 2014; McLeod 2004). The drug density147

can be modified by adding different diluents such as saline, glucose and dextrose. Even148

though the resulting relative differences are very small (i.e. 10−4 . |ρ − ρd|/ρ . 10−2),149

the associated buoyancy forces affect in a fundamental way the dispersion of the drug.150

Thus, it has been seen that for hyperbaric (i.e. dense) drugs, the transport of the151

drug is restricted when the patient is seated for some time before moving to a supine152

position (Mitchell et al. 1988; Povey et al. 1989; Veering et al. 2001; Loubert et al. 2011).153

Conversely, when a hypobaric (light) drug is injected, faster cephalic dispersion occurs in154
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Drug ρd (g/cm3) ρ−ρd
ρ

Riε=0.04 Riε=0.02

Fentanyl (50 µg/mL) 0.99320 7.386 ×10−3 1.963 7.765
Droperidol (2.5 mg/mL) 0.99440 6.186 ×10−3 1.601 6.405
Midazolam (1 mg/mL) 0.99970 0.889 ×10−3 0.230 0.921
Lidocaine (20 mg/mL) 0.99990 0.690 ×10−3 0.178 0.714
Epinephrine (1 mg/mL) 1.00050 0.090 ×10−3 0.0236 0.093
Bupivacaine (10 mg/mL) 1.00072 -0.130 ×10−3 -0.033 -0.135

Lidocaine CO2 (20 mg/mL) 1.00100 -0.410 ×10−3 -0.106 -0.424
Morphine (10 mg/mL) 1.00157 -0.979 ×10−3 -0.254 -1.014

Meperidine (100 mg/mL) 1.00830 -7.206 ×10−3 -1.994 -7.98

Table 1. A few common intrathecal drugs, their densities (Lui et al. 1998; Nicol & Holdcroft
1992; Hejtmanek et al. 2011), and associated Richardson numbers Ri = [g(ρ − ρd)]/(ρε

2ω2L),
the latter evaluated with g = 9.81 m/s2, L = 0.6 m and ρ = 1.00059 g/cm3 for two different
values of the reduced stroke length ε.

a seated injection position than in a lateral injection position (Richardson et al. 1996).155

As expected, the density of the drug is inconsequential when injection occurs in the156

lateral position (Hallworth et al. 2005) or when the solution density matches that of CSF157

(Wildsmith et al. 1981).158

To anticipate how the presence of buoyancy forces modifies drug dispersion for patients159

in sitting or upright position, it is useful to compare the characteristic value of the160

buoyancy-induced acceleration g(ρ−ρd)/ρ with the characteristic value of the convective161

acceleration along the canal u2
c/L, their ratio defining the relevant Richardson number162

Ri =
g(ρ− ρd)/ρ

u2
c/L

=
g(ρ− ρd)/ρ

ε2ω2L
. (3.1)

Typical values of this number are evaluated in Table 1 for a few common intrathecal drugs163

and two different values of the reduced stroke length ε. As can be seen, values of Ri of164

order unity characterize most situations of practical interest, so that in ITDD processes165

buoyancy acceleration can be anticipated to be comparable to convective acceleration.166

As previously discussed, the motion of CSF at leading order is given by an unsteady167

lubrication balance involving the local acceleration and the viscous and pressure forces,168

with convective acceleration introducing small corrections of order ε, responsible for the169

steady-streaming motion. This leading-order balance is not altered in the relevant limit170

Ri ∼ 1 that applies to intrathecal drugs, in which the associated buoyancy-induced171

velocities are comparable to the steady-streaming velocities (and therefore a factor ε172

smaller than the pulsating velocities).173

3.2. The model problem174

The problem is formulated in dimensionless form using the scales and notation em-175

ployed in the previous buoyancy-free analysis of Lawrence et al. (2019), which can be176

consulted for details of the derivation. Attention is focused on the motion driven by the177

periodic intracranial pressure fluctuations associated with the arterial blood flow, to be178

described for simplicity with the simple sinusoidal function (∆p)c cos(ωt
′), where (∆p)c179

is the fluctuation amplitude and ω ≃ 2π s−1 is the angular frequency of the cardiac cycle,180

with t′ representing the time. The spinal SAS is modelled as an annular canal bounded181

internally by the pia mater, surrounding the spinal chord, and externally by the dura182
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membrane. The canal is compliant because of the presence of fatty tissue and venous183

blood. The displacement of the dura membrane at a given location is assumed to be184

equal to the product of the local pressure fluctuation and a compliance factor γ′ that185

may vary along the canal. Its mean value γ′

c can be used to estimate the characteristic186

value of the dura displacement γ′

c(∆p)c, which is much smaller than the canal width,187

with the ratio188

ε =
γ′

c(∆p)c
hc

∼ Ls

L
(3.2)

defining the small asymptotic parameter representing the dimensionless stroke length.189

As indicated in figure 1(c), the problem is described in terms of curvilinear coordinates,190

including the longitudinal distance to the canal entrance x (scaled with L), the transverse191

distance from the spinal chord y (scaled with the characteristic canal width hc), and the192

azimuthal distance s (scaled with the local spinal-chord perimeter, so that 0 6 s 6 1).193

The corresponding streamwise, transverse, and azimuthal velocity components (u, v, w)194

are scaled with their characteristic values uc = εωL, vc = εωhc, and wc = εωℓc, the195

last two of which follow from continuity. The geometry of the canal is defined by the196

dimensionless unperturbed canal width h̄(x, s) (scaled with hc) and spinal-cord perimeter197

ℓ(x) (scaled with ℓc). The linear elastic equation for the canal takes the form198

h′ = γ(cos t+ k2p′), (3.3)

where h′ is the dura-membrane displacement (scaled with εhc), t = ωt′ is the di-199

mensionless time, p′(x, t) is the streamwise pressure variation (scaled with ρucωL),200

k = Lω/[(hc/γ
′

c)/ρ]
1/2 is a dimensionless elastic wavenumber, and γ(x) = γ′/γ′

c is a201

dimensionless function describing the streamwise variation of the canal compliance.202

3.3. Dimensionless formulation203

In the thin-film approximation that applies in the limit L ≫ ℓc ≫ hc, the continuity,204

momentum, and solute conservation equations take the simplified form205

1

ℓ

∂

∂x
(ℓu) +

∂v

∂y
+

1

ℓ

∂w

∂s
= 0, (3.4)

∂u

∂t
+ ε

[

u
∂u

∂x
+ v

∂u

∂y
+

w

ℓ

∂u

∂s

]

= −∂p′

∂x
+

1

α2

∂2u

∂y2
− εRi c, (3.5)

∂w

∂t
+ ε

[

u

ℓ

∂

∂x
(ℓw) + v

∂w

∂y
+

w

ℓ

∂w

∂s

]

= −1

ℓ

∂p̂

∂s
+

1

α2

∂2w

∂y2
, (3.6)

∂c

∂t
+ ε

(

u
∂c

∂x
+ v

∂c

∂y
+

w

ℓ

∂c

∂s

)

=
ε2

α2σ

∂2c

∂y2
, (3.7)

where c is the drug concentration and p̂ is an auxiliary function describing the azimuthal206

pressure variations. The problem has been formulated using the Boussinesq approxima-207

tion, as is appropriate for |ρ−ρd| ≪ ρ. Since the spinal curvature is relatively small, for the208

case of a sitting patient considered here the streamwise coordinate x is practically aligned209

with the vertical direction, so that the component of the buoyancy force acting in the az-210

imuthal direction is small, and has been correspondingly neglected in writing (3.6). With211

the definition (3.1), the Richardson number Ri measuring the buoyancy force in (3.5)212

is positive/negative when the drug is lighter/heavier than the CSF, buoyancy driving213

the drug upwards/downwards, in the negative/positive x direction. Following Lawrence214

et al. (2019), the diffusion term in (3.7) has been written in terms of the reduced Schmidt215

number σ = ε2S, assumed to be of order unity, as is consistent with the values S ∼ 2000216

and ε ∼ 0.02− 0.04 that characterize drug dispersion in the spinal canal.217
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The velocity satisfies the non-slip condition u = v = w = 0 at y = 0 and u =218

v − ∂h′/∂t = w = 0 at y = h. Although drug uptake by the spinal nerve as well as219

through the dura membrane could be incorporated in the model by accounting for nonzero220

diffusive fluxes at the boundary, for simplicity the following analysis is restricted to non-221

permeable bounding surfaces, for which the boundary condition for the concentration222

reduces to ∂c/∂η = 0 at y = 0, h. The pressure drop is negligible at the entrance of the223

canal, resulting in the condition p′ = 0 at x = 0. The requirement that the axial volume224

flux
∫ 1

0

(

∫ h

0
udy

)

ds must vanish at the closed end x = 1 completes the set of boundary225

conditions needed to determine the flow in the canal.226

Besides the Richardson number Ri defined in (3.1) and the compliance parameter227

ε ≪ 1 defined in (3.2), the set of governing parameters includes the Womersley number228

α = hc/(ν/ω)
1/2, the dimensionless elastic wavenumber k = Lω/[(hc/γ

′

c)/ρ]
1/2, and the229

rescaled Schmidt number σ = Sε2. The problem is to be solved in the limit ε ≪ 1 with230

α ∼ 1 and k ∼ 1, as is appropriate for describing CSF flow in the spinal canal, for solutes231

with σ = Sε2 ∼ 1 and Ri ∼ 1, the distinguished limit of interest in intrathecal drug232

dispersion.233

4. Solute transport in the presence of buoyancy234

Following our previous analyses (Sánchez et al. 2018; Lawrence et al. 2019; Alaminos-235

Quesada et al. 2022), the problem defined above is solved by expressing the different236

variables as expansions in powers of ε (e.g. u = u0+εu1+· · · ) and solving sequentially the237

equations that arise when collecting terms at different orders in ε. In the development,238

it is convenient to replace the transverse coordinate y by its normalized counterpart239

η = y/h, with 0 6 η 6 1. The velocity field depends on the solute concentration through240

the buoyancy term appearing in (3.5), although the dependence is weak, since ε ≪ 1. The241

distribution of c can be anticipated to vary over times of the order of the residence time242

associated with the bulk motion ε−2ω−1, inducing slow changes in the velocity, to be243

described below by introducing the long time scale τ = ε2t as an additional independent244

variable. In this two-time scale formalism, all variables are assumed to be 2π periodic245

in the short time scale t, slow changes in time being described by the additional time246

variable τ , which is formally introduced in the equations by replacing the original time247

derivatives by ∂/∂t+ ε2∂/∂τ .248

4.1. Leading-order solution249

At leading order in the limit ε ≪ 1 the problem reduces to the integration of250

1

ℓ

∂

∂x
(ℓu0) −

η

h̄

∂h̄

∂x

∂u0

∂η
+

1

h̄

∂v0
∂η

+
1

ℓ

∂w0

∂s
− η

h̄

1

ℓ

∂h̄

∂s

∂w0

∂η
= 0, (4.1)

∂u0

∂t
= −∂p′0

∂x
+

1

α2h̄2

∂2u0

∂η2
, (4.2)

∂w0

∂t
= −1

ℓ

∂p̂0
∂s

+
1

α2h̄2

∂2w0

∂η2
, (4.3)

∂c0
∂t

= 0 (4.4)

supplemented with h′

0 = γ(cos t+ k2p′0), the leading-order form of (3.3), with boundary251

conditions u0 = v0 = w0 = ∂c0/∂η = 0 at η = 0 and u0 = v0−∂h′

0/∂t = w0 = ∂c0/∂η = 0252

at η = 1, p′0 = 0 at x = 0, and
∫ 1

0

(

h̄
∫ 1

0
u0dη

)

ds = 0 at x = 1. As indicated by (4.4),253
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at leading order the solute concentration varies only in the long time scale τ , variations254

with the short time scale t affecting only higher-order corrections of relative order ε and255

smaller. As shown previously (Sánchez et al. 2018), the solution to the periodic linear256

lubrication problem (4.1)–(4.3) can be written as257

u0 = Re
(

ieitU
)

, v0 = Re
(

ieitV
)

, w0 = Re
(

ieitW
)

,

(4.5)

p′0 = Re
(

eitP ′
)

, p̂0 = Re
(

eitP̂
)

, h′

0 = Re
(

eitH ′
)

,

where the complex functions U(x, η, s), V (x, η, s), W (x, η, s), P ′(x), P̂ (x, s), and H ′(x, s)258

are given in an Appendix for completeness. The leading-order solution (4.5), identical to259

that found in our earlier analyses (Sánchez et al. 2018; Lawrence et al. 2019), is buoyancy-260

free, and therefore independent of the long-time scale τ . Buoyancy will be seen to enter261

at the following order to modify the bulk motion.262

4.2. Time-averaged Eulerian velocity263

While the above harmonic functions (4.5) have zero mean values over an oscillation264

period, i.e. 〈u0〉 = 0 with 〈·〉 =
∫ t+2π

t ·dt/(2π), the velocity corrections (u1, v1, w1)265

contain nonzero cycle-averaged components (〈u1〉, 〈v1〉, 〈w1〉) that satisfy the quasi-steady266

conservation equations267

F =
1

ℓ

∂

∂x
(ℓh̄〈u1〉) +

1

ℓ

∂

∂s
(h̄〈w1〉)−

∂

∂η

(

η
∂h̄

∂x
〈u1〉+

η

ℓ

∂h̄

∂s
〈w1〉

)

+
∂〈v1〉
∂η

, (4.6)

Fx = −∂〈p′1〉
∂x

+
1

h̄2α2

∂2〈u1〉
∂η2

− Ri c0, (4.7)

Fs = −1

ℓ

∂〈p̂1〉
∂s

+
1

h̄2α2

∂2〈w1〉
∂η2

, (4.8)

obtained by taking the time average of the equations that emerge when collecting terms268

of order ε in (3.4)–(3.6). The functions F , Fx, and Fs appearing on the left-hand side269

of the above equations carry the combined effects of convective acceleration and canal270

deformation on the mean Eulerian motion. These functions involve time averages of271

products of the harmonic functions (4.5), with expressions given in the appendix.272

The velocity must satisfy the homogeneous boundary conditions 〈u1〉 = 〈v1〉 = 〈w1〉 =273

0 at η = (0, 1) and
∫ 1

0

(

h̄
∫ 1

0
〈u1〉dη

)

ds = 0 at x = 1. Note that the condition 〈v1〉 = 0274

at η = 1 follows at this order from the general condition v = ∂h′/∂t written in the275

two-time-scale formalism in the form v = ∂h′/∂t+ ε2∂h′/∂τ , so that 〈v〉 = ε2∂〈h′〉/∂τ .276

Observation of (4.6)–(4.8) reveals that the mean Eulerian motion has two different277

driving mechanisms, namely, the buoyancy force −Ri c0 appearing on the right-hand-side278

of (4.7), which varies slowly in the long-time scale τ , and the steady functions F , Fx, and279

Fs, associated with convective acceleration and canal deformation. Since the problem is280

linear, the two distinct driving mechanisms can be quantified separately by expressing281

the mean Eulerian velocity (〈u1〉, 〈v1〉, 〈w1〉) = (uSS+uB, vSS+vB, wSS+wB) as the sum of282

the steady-streaming velocity (uSS, vSS, wSS) and the buoyancy-induced drift (uB, vB, wB).283

The former was obtained in our previous analyses (Sánchez et al. 2018; Lawrence et al.284

2019) by integration of the problem arising with Ri = 0, yielding the solution given in285

the appendix, while the latter, the new contribution arising when the drug density differs286

from the CSF density (i.e. when Ri 6= 0), can be obtained by integration of the reduced287

problem corresponding to F = Fx = Fs = 0. The resulting solution, involving integrals288
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of the leading-order solute concentration c0, can be cast in the form289

uB

α2Ri h̄2
= 3η(1− η)

∫ 1

0
h̄3Cds

∫ 1

0
h̄3ds

+ η

∫ η

0

c0dη̃ −
∫ η

0

c0η̃dη̃ − η

∫ 1

0

c0(1− η)dη, (4.9)

wB

α2Ri h̄2
=

3η(1− η)

h̄3

∂

∂x

[

ℓ

(

∫ s

0

h̄3Cds̃−
∫ 1

0
h̄3Cds

∫ 1

0
h̄3ds

∫ s

0

h̄3ds̃

)]

, (4.10)

vB

α2Ri
=

η2

ℓ

(

η − 3

2

)

∂

∂x

(

ℓh̄3C
)

− 1

ℓ

∂

∂x

(

ℓh̄3fB

)

+ η
∂h̄

∂x

uB

α2Ri
+

η

ℓ

∂h̄

∂s

wB

α2Ri
,(4.11)

where290

C =

∫ 1

0

c0η(1− η)dη (4.12)

and291

fB =
1

2

∫ η

0

c0η̃
2dη̃ +

(

η2

2
− η

)
∫ η

0

c0η̃dη̃ − η2

2

∫ 1

η

c0(1 − η̃)dη̃, (4.13)

with tildes used to denote dummy integration variables.292

4.3. The integro-differential transport equation293

As shown by Lawrence et al. (2019), the transport equation that determines the slow294

spatiotemporal evolution of c0(x, η, s, τ), given by295

∂c0
∂τ

+ uL

∂c0
∂x

+

[

vL

h̄
− η

h̄

(

uL

∂h̄

∂x
+

wL

ℓ

∂h̄

∂s

)]

∂c0
∂η

+
wL

ℓ

∂c0
∂s

=
1

α2σh̄2

∂2c0
∂η2

, (4.14)

can be obtained by analyzing terms of order ε2 in (3.7). The convective transport in the296

long time scale is found to be driven by the mean Lagrangian velocity297







uL = uSS + uB + uSD

vL = vSS + vB + vSD

wL = wSS + wB + wSD

. (4.15)

given by the sum of the cycle-averaged Eulerian velocity (〈u1〉, 〈v1〉, 〈w1〉) =298

(uSS + uB, vSS + vB, wSS + wB) and the Stokes drift (uSD, vSD, wSD), the latter being a299

purely kinematic contribution resulting from the spatial non-uniformity of the pulsatile300

flow (Lawrence et al. 2019). The steady-streaming and Stokes-drift contributions to the301

time-averaged Lagrangian motion, constant and independent of the drug concentration,302

were identified in our previous analysis (Lawrence et al. 2019), with corresponding303

expressions given in an appendix. The slowly varying buoyancy-induced velocity304

(uB, vB, wB) is a new contribution coupling the bulk motion with the drug concentration.305

Since the expressions for (uB, vB, wB), given in (4.9)–(4.11), contain spatial integrals306

of the solute concentration c0, the transport equation (4.14), which is a linear partial307

differential equation in the buoyancy-free case Ri = 0 analyzed earlier (Lawrence et al.308

2019), adopts for Ri 6= 0 a nonlinear integro-differential character that complicates the309

description.310

The transport equation (4.14), supplemented with (4.9)–(4.11) for the evaluation311

of the slowly varying buoyancy-induced velocity (uB, vB, wB) and with the expressions312

given in the appendix for the time-independent velocity components (uSS, vSS, wSS) and313

(uSD, vSD, wSD), can be integrated with boundary conditions ∂c0/∂η = 0 at η = (0, 1)314

to determine the evolution of the solute. An additional condition must be prescribed315

at points across the entrance section x = 0 where there exists inflow (i.e. positive316



10 Alaminos-Quesada et al.

values of uL). In the following integrations, it is assumed that the drug concentration317

of the incoming fluid particles is identically zero, as is consistent with drug delivery in318

the lumbar region. Bolus injection can be described by using as initial condition the319

solute distribution c0 = ci(x, η, s) existing at the end of the short injection phase. The320

description of continuous drug infusion is somewhat more complicated, in that it requires321

consideration of a localized solute source at the delivery location, a case to be addressed322

separately in § 7.323

Although the reduced Schmidt number σ = Sε2 can be expected to take order-unity324

values for the drugs typically used in applications (e.g. σ = 0.532−2.128 when evaluated325

with ε = 0.02 − 0.04 for methotrexate), it is instructive to investigate simplifications326

arising for extreme values of this parameter. For example, for σ ≫ 1 the transverse-327

diffusion term is (4.14) becomes negligible, with the result that the solute particles are328

transported by the mean Lagrangian velocity while maintaining its initial concentration.329

Numerical methods specifically tailored to describe Lagrangian-particle dispersion can be330

instrumental to speed up the associated computations (Guan et al. 2023). In the opposite331

limit σ ≪ 1, diffusion rapidly uniformizes the composition in the transverse direction, so332

that the concentration becomes independent of η. The simplified equation applying in333

this limit can be derived by integrating (4.14) in η with boundary conditions ∂c0/∂η = 0334

at η = (0, 1) to yield335

∂c0
∂τ

+ ūL

∂c0
∂x

+
w̄L

ℓ

∂c0
∂s

= 0, (4.16)

where ūL =
∫ 1

0
uLdη and w̄L =

∫ 1

0
wLdη are the width-averaged values of the longitudinal336

and azimuthal components of the mean Lagrangian velocity. It will be of interest in future337

work to assess the predictive capability of the above simple equation.338

It is worth noting that, unlike direct numerical simulations (DNS) of drug delivery,339

which need to account for the small cumulative concentration changes that occur over340

subsequent cardiac cycles, the reduced description (4.14) targets directly the solute341

evolution in the long time scale ε−2ω−1 that characterizes drug dispersion along the342

canal. Since the number of cardiac cycles required to achieve significant drug dispersion343

scales with ε−2, DNS computations accounting for realistic values of ε ∼ 0.02−0.04 must344

in general consider hundreds of cycles, resulting in computational times that are orders345

of magnitude larger than those involved in integrating (4.14).346

5. Validation of the reduced model347

For buoyancy-free systems (i.e. Ri = 0) the mean Lagrangian velocity reduces to348

(uL, vL, wL) = (uSS + uSD, vSS + vSD, wSS + wSD), independent of the solute concentration,349

with the result that the associated transport equation (4.14) becomes a linear partial350

differential equation with time-independent coefficients. The accuracy of the resulting351

simplified description was tested previously (Gutiérrez-Montes et al. 2021) by comparing352

the model predictions with results of DNS computations involving integrations of the353

complete Navier-Stokes equations. The previous comparisons are extended here to cases354

with Ri 6= 0, for which (4.14) displays its complicated nonlinear integro-differential355

character. As in the previous paper, results are given below for two different geometrical356

configurations with constant perimeter ℓ = 1, namely, a constant-eccentricity annular357

canal bounded by parallel cylindrical surfaces, yielding a canal width h̄(s) = 1 −358

0.5 cos(2πs), and a variable-eccentricity configuration with canal width h̄(x, s) = 1 −359

0.5 cos(2πs) cos(2πx). The latter geometry is selected as a simplified model to mimic360

changes in the position of the spinal cord relative to the dura mater existing along the361
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human spinal canal, which are depicted in figure 1(b) and 1(c). As one traverses the spine362

caudally, the spinal cord, which is closer to the posterior side of the canal in the cervical363

region, moves closer to the anterior side in the thoracic region, eventually returning to364

the posterior side in the lumbar region. These changes in the spinal canal eccentricity are365

known to produce changes in the direction of the longitudinal mean Lagrangian velocity366

(Coenen et al. 2019), leading to the recirculating pattern of bulk CSF flow shown in367

figure 1(d).368

The validation addresses the temporal evolution of the solute following the release of369

a finite dose, with the initial solute concentration described by the truncated Gaussian370

distribution371

ci = min

{

1,
3

2
exp

[

−16

(

x− x0

δ

)2
]}

, (5.1)

which represents a band of solute with characteristic width δ centered at x0 and having372

a saturated core flanked by thin layers across which the concentration decays to zero.373

The values δ = 0.2 and x0 = 0.65 are selected in the sample computations shown below.374

The numerical scheme for the integration of (4.14) utilizes a second-order centered375

finite-difference approximation for the spatial discretization of the viscous terms and an376

upwind scheme for the nonlinear terms. A second-order explicit Runge-Kutta scheme377

is used for time marching, with the integral expressions (4.9)–(4.11) evaluated with a378

simple trapezoidal rule. A detailed account of the numerical scheme employed in the379

accompanying DNS computations can be found in Gutiérrez-Montes et al. (2021). The380

DNS computations were performed for a dimensionless stroke length ε = 0.02, so that381

every unit in the long-time scale τ corresponds to (2πε)−2 ≃ 400 oscillatory cycles in the382

DNS computations. The resulting concentration, which includes short-time fluctuations383

associated with the oscillatory flow, is cycled-averaged to give 〈c〉 =
∫ t+2π

t
c dt/(2π), to384

be compared with the associated model prediction c0.385

Results are shown in figures 2 (constant eccentricity) and 3 (variable eccentricity) for386

a canal with α = 3, k = 0.5, γ = 1, and σ = 0.4. To illustrate effects of buoyancy387

on drug dispersion, in addition to the buoyancy-neutral case Ri = 0 the computations388

consider both a heavy solute with ρd > ρ (Ri = −1) and a light solute ρd < ρ (Ri = 1).389

The figures display three-dimensional views of the entire canal showing isosurfaces of390

solute concentration c0 for several values of τ . The quantitative comparisons between391

the model and the DNS include distributions of width-averaged concentrations
∫ 1

0
c0dη392

and
∫ 1

0
〈c〉dη as well as corresponding axial distributions of concentration per unit length393

of canal, computed according to C0 =
∫ 1

0
h̄
∫ 1

0
c0dηds and 〈C〉 =

∫ 1

0
h̄
∫ 1

0
〈c〉dηds, with394

the dotted curves representing the initial distribution Ci =
∫ 1

0
h̄
∫ 1

0
cidηds. For reference,395

the left-side contour panels showing
∫ 1

0
c0dη include the streamlines corresponding to396

the width-averaged Lagrangian drift velocity (
∫ 1

0
uLdη,

∫ 1

0
wLdη), which evolve in time397

under the action of buoyancy when Ri 6= 1. The upper panel in each figure represents398

the fraction of the drug bolus that remains in the canal at time τ , as computed with the399

reduced-transport model according to χ =
∫ 1

0
C0dx/

∫ 1

0
Cidx.400

Observation of the panels displaying streamlines reveals that the solute moves predom-401

inantly following the width-averaged flow, thereby highlighting the important role of the402

Lagrangian drift in the dispersion of the drug. For a non-buoyant solute in a constant-403

eccentricity canal, investigated in figure 2(c), the mean Lagrangian flow exhibits a simple404

circulating pattern, in which the fluid enters along the wide part of the canal (s = 0.5)405

and leaves along the narrow part (s = 0), the motion being slower near the closed end406
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Figure 2. The temporal evolution of the solute concentration in a constant-eccentricity canal
with ℓ = 1, h̄(s) = 1 − 0.5 cos(2πs), α = 3, k = 0.5, γ = 1, and σ = 0.4 as obtained from
the reduced transport equation (4.14) and from DNS computations for three different values of
Ri = −1 (b), Ri = 0 (c) and Ri = 1 (d), with the upper panel (a) showing the temporal
evolution of the total amount of solute contained in the canal (normalized with its initial

value) predicted with the reduced model, as computed from χ =
∫

1

0
C0dx/

∫
1

0
Cidx. The plots

include three-dimensional isosurfaces of solute concentration c0, distributions of width-averaged

concentrations
∫

1

0
c0dη and

∫
1

0
〈c〉dη and corresponding axial distributions of concentration per

unit length of canal C0 =
∫

1

0
h̄
∫

1

0
c0dηds (solid curves) and 〈C〉 =

∫
1

0
h̄
∫

1

0
〈c〉dηds (dashed

curves), with the dotted curves representing the initial distribution Ci =
∫

1

0
h̄
∫

1

0
cidηds. The

streamlines shown in the plots of
∫

1

0
c0dη, corresponding to the width-averaged Lagrangian drift

velocity (
∫

1

0
uLdη,

∫
1

0
wLdη), are plotted using a constant spacing equal to 0.01 for the associated

width-averaged stream function.
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Figure 3. Same as figure 2 but for a variable eccentricity canal with
h̄(x, s) = 1− 0.5 cos(2πs) cos(2πx).

x = 1. As seen in figures 2(b) and 2(d) the presence of buoyancy alters the flow, with407

associated streamlines evolving in time as the spatial distribution of the solute changes.408

Buoyancy promotes rapid ascension of the light solute along the narrow part of the canal,409

that being the behavior displayed in figure 2(d). Conversely, heavy solutes tend to sink410

to the bottom, progression towards the canal entrance being limited to a thin solute411

filament stretching along the narrow section s = 0, as seen in figure 2(b). While the412
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overall agreement between the model and the DNS is generally satisfactory, a notable413

deviation arises at x = 1 in the heavy-solute results. Here, the model predicts a zero414

concentration for all times, whereas the DNS yields a concentration that increases over415

time. These disparities stem from the effect of axial diffusion (not present in the model),416

which, though negligible elsewhere, becomes significant in this terminal region as the417

velocity diminishes to zero.418

Buoyancy effects are clearly visible in the axial distributions of concentration per unit419

length of canal C0 and 〈C〉 and also in the curves representing in figure 2(a) the fraction χ420

of the initial bolus that remains inside the canal at time τ . The results indicate that at the421

longest time computed (τ = 3) most of the light solute (91%) has abandoned the canal,422

while about 82% of the heavy solute remains inside. This behavior is consistent with423

previous clinical observations pertaining to hyperbaric and hypobaric drugs (Mitchell424

et al. 1988; Povey et al. 1989; Richardson et al. 1996; Veering et al. 2001; Loubert et al.425

2011).426

For the variable-eccentricity canal shown in figure 3, the streamline patterns of the427

mean Lagrangian motion feature multiple recirculating regions. The flow direction is428

reversed between contiguous recirculating cells, as can be inferred by the maps of429

solute concentration. The solute, carried by the fluid particles, encircles the recirculating430

regions, thereby hindering the solute progression towards the canal entrance. The plots431

at τ = 1 show most of the light solute accumulating at the interface separating near432

x = 0.25 the two top recirculating regions (see figure 3(d)), while the heavy solute433

accumulates around x = 0.75, above the nearly stagnant bottom recirculating region, as434

shown in figure 3(b). As indicated by the comparison of figures 2(a) and 3(a) the rate at435

which the solute reaches the canal entrance is significantly lower for canals with variable436

eccentricity, in accordance with previous results (Coenen et al. 2019; Gutiérrez-Montes437

et al. 2021).438

The agreement between the model and the DNS results is very satisfactory, quantitative439

departures remaining consistently small regardless of the value of Ri . The degree of440

agreement is particularly remarkable in connection with the dashed and solid curves441

representing the longitudinal distribution of the solute at different instants of time. In442

view of the comparisons shown in figures 2 and 3, it can be concluded that the reduced443

model provides a sufficiently accurate description for most purposes while requiring444

computational times that are a fraction of those involved in the DNS computations.445

For instance, to generate the results corresponding to each value of Ri in figures 2 and 3,446

the computations using the reduced model were completed in about 10 minutes using a447

laptop computer, whereas the DNS computations took about a week on a 24-core cluster.448

6. Dispersion of a drug bolus449

The reduced transport equation (4.14) can be used to generate predictions of drug450

dispersion based on subject-specific canal boundaries and dimensions, with the model451

parameters determined using magnetic resonance imaging (MRI) measurements, as ex-452

plained in Coenen et al. (2019). The sample computations shown below use measurements453

corresponding to a 25-year old woman (subject 1 in Coenen et al. (2019)), with relevant454

anatomical and Lagrangian-flow details shown in figure 1(b− d). High-resolution images455

of the entire spine were segmented to extract the 3D position of the pia and dura456

mater, with the cauda equina (the group of roots branching off at the end of the spinal457

cord in the lumbar region) represented as an extension of the spinal cord with cross-458

sectional area tapering down to the end of spinal canal. The resulting canal anatomy is459

shown in figure 1(c), with the transverse dimension scaled by a factor three to facilitate460
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visualization. A Gaussian filter was used to generate smooth distributions of perimeter461

and canal width, their mean values ℓc = 21.8 mm and hc = 3.6 mm employed to462

scale the geometrical functions ℓ(x) and h̄(x, s) used in the model, with the longitudinal463

distance x being scaled with the total canal length L = 59 cm. As explained in Coenen464

et al. (2019), the compliance of the canal was determined by comparing predictions465

of oscillatory flow rate with phase-contrast MRI measurements, yielding the function466

γ′(x) = 14.3[0.8+ 0.3 tanh(4x− 0.2)] m/MPa with mean value γ′

c = 14.107 m/MPa. For467

this subject, the associated values of the Womersley number and elastic wave number468

were found to be α = hc/(ν/ω)
1/2 = 10.8 and k = Lω/[(hc/γ

′

c)/ρ]
1/2 = 0.73, respectively.469

As discussed earlier in connection with figures 2 and 3, the solute moves predominantly470

following the Lagrangian drift. Before computing drug dispersion, it is therefore of interest471

to investigate the structure of the mean Lagrangian flow in the absence of buoyancy472

forces for the anatomically correct canal shown in figure 1(c). To that end, streamlines473

corresponding to the width-averaged velocity (
∫ 1

0
uLdη,

∫ 1

0
wLdη) with (uL, wL) = (uSS +474

uSD, wSS+wSD) are plotted in figure 1(d). The resulting flow pattern comprises three main475

recirculating regions that occupy approximately the cervical, thoracic and lumbar regions476

along with smaller recirculating regions distributed along the posterior midline (s = 0).477

The streamlines plotted correspond to evenly spaced values of the associated stream478

function, so that the physical distance between contiguous streamlines is a measure of479

the local flow velocity. As is clear from the plot, the fluid is nearly stagnant in the lumbar480

region, where drug delivery usually takes place, suggesting that neutrally buoyant or481

heavy drugs will tend to remain near the injection site. The extent to which buoyancy482

promotes the dispersion of light drugs is to be evaluated in figure 4(c).483

To mimic an intrathecal injection via the L3/L4 posterior intervertebral space, the484

description of drug dispersion utilizes as initial condition the Gaussian solute distribution485

ci = exp

{

−
[

(

x− x0

δx

)2

+

(

η − η0
δη

)2

+

(

s− s0
δs

)2
]}

(6.1)

with (x0, η0, s0) = (0.8, 0.5, 0) and (δx, δη, δs) = (1/16, 500, 2/7). The reduced Schmidt486

number is selected to be σ = ε2S = 1, corresponding to a drug Schmidt number in the487

range 625 < S < 2500 for ε = 0.02− 0.04. Buoyancy effects are investigated for Ri = 1488

and Ri = −1, taken as representative of Midazolam and Morphine. Their temporal489

evolution is compared in figure 4 with results corresponding to a neutrally buoyant drug.490

To facilitate visualization, besides three-dimensional distributions of drug concentration491

c0, the figure shows two-dimensional maps of width-averaged concentration
∫ 1

0
c0dη at492

selected times, with particular attention given to the short-time evolution. For the three493

cases considered, corresponding videos are available as supplementary material, showing494

the evolution of the drug up to τ = 5.495

The plots in figure 4(b) reveal that, since the mean Lagrangian motion exhibits low496

velocities in the lumbar region, in the absence of buoyancy the initial drug evolution497

is very slow, with changes in the solute-concentration distribution remaining virtually498

inappreciable for τ 6 0.1. For longer times, the drug spreads following the lumbar499

recirculating vortices, with the result that the drug concentrates in an elongated region500

about the s = 0 axis. For the longest time shown in the figure (τ = 3) only a small501

amount of drug has moved into the thoracic region.502

Buoyancy fundamentally alters this dispersion pattern, as seen in figure 4(a) and 4(c).503

For the localized drug distribution considered in the computations, a fast buoyancy-driven504

vortex is formed upon injection, as revealed by the closely spaced streamlines shown in the505

two-dimensional plots for τ = 0.01 and τ = 0.04, rapidly spreading the drug around the506
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Figure 4. Drug dispersion following delivery of a finite dose via the L3-L4 intervertebral space
as predicted for σ = 1 and three different values of the Richardson number Ri = −1 (a), Ri = 0
(b), and Ri = 1 (c) by integration of the reduced transport equation (4.14) subject to the

initial condition (6.1). The plots include distributions of width-averaged concentrations
∫

1

0
c0dη

at τ = (0.01, 0.04, 1, 3) along with three-dimensional isosurfaces of solute concentration c0 at
intermediate times τ = (0.02, 0.1, 2).
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spinal cord from the initial injection site. The associated recirculatory motion is directed507

upwards/downwards along the s = 0 axis for a light/heavy drug, thereby promoting drug508

dispersion towards the cranial cavity/sacrum region. The progression rate, very rapid for509

short times, when the buoyancy-induced velocities are larger as a result of the existing510

high solute concentrations, slows down for longer times, with the heavy drug adopting511

a stratified distribution that slowly sinks towards the bottom end of the canal, while512

the light drug continues to evolve upwards, spreading through the thoracic and cervical513

region and eventually reaching the cranial cavity. The behavior revealed in the figure is514

therefore consistent with clinical observations regarding intrathecal injections in a seated515

position (Wildsmith et al. 1981; Mitchell et al. 1988; Povey et al. 1989; Richardson et al.516

1996; Veering et al. 2001).517

7. The description of continuous drug infusion518

ITDD medication is often released by continuous infusion with use of a percutaneous519

catheter connected to an external pump or a totally implanted system. The delivery520

rates are usually small, with maximum values Q̇ . 1 mL/h (De Andres et al. 2022).521

Since drug dispersion is driven by the mean Lagrangian motion, it can be anticipated522

that the total volume of drug released in times of order of the characteristic bulk-flow523

residence time ε−2ω−1, given by Q̇ε−2ω−1 will be spread over the entire volume of the524

canal Lℓchc ∼ 40− 60 mL, resulting in characteristic drug concentrations of order525

cc =
Q̇ε−2ω−1

Lℓchc
(7.1)

with cc <∼ 0.01. As a result, in describing continuous drug infusion it is appropriate to526

use an order-unity rescaled concentration ϕ = c/cc. Also, since the density differences527

associated with the presence of the drug can be expected to be of order cc(ρ − ρd), the528

Richardson number (3.1), which was defined assuming solute concentrations of order529

unity, must be replaced with530

Ri∗ =
g(ρ− ρd)cc/ρ

ε2ω2L
, (7.2)

so that the buoyancy acceleration term −εRi c in (3.5) becomes −εRi∗ϕ.531

Drug injection will be modeled using a localized volume source. To evaluate the532

contribution of the source to the mass and momentum balance, we must compare the533

characteristic value of the velocity induced by the source Q̇/(ℓchc), obtained by dividing534

the volumetric injection rate Q̇ by the characteristic canal cross section ℓchc, with the535

characteristic bulk-flow velocity ε2ωL, the ratio of both quantities reducing simply to536

[Q̇/(ℓchc)]/(ε
2ωL) = cc ≪ 1, as can be seen from (7.1). Since drug infusion induces537

negligibly small velocities, the presence of the localized source can be neglected in the538

first approximation when writing the continuity and momentum balance equations (3.4)–539

(3.6), but not in the solute conservation equation (3.7), which takes the form540

∂ϕ

∂t
+ ε

(

u
∂ϕ

∂x
+ v

∂ϕ

∂y
+

w

ℓ

∂ϕ

∂s

)

=
ε2

α2σ

∂2ϕ

∂y2
+ ε2q, (7.3)

where the dimensionless function q(x, η, s) represents the delivery rate per unit volume,541

scaled with Q̇/(Lℓchc), so that
∫ 1

0
ℓ
∫ 1

0
h̄
∫ 1

0
qdηdsdx = 1. The asymptotic analysis, which542

parallels that leading to (4.14), provides in this case the reduced transport equation543

∂ϕ0

∂τ
+ uL

∂ϕ0

∂x
+

[

vL

h̄
− η

h̄

(

uL

∂h̄

∂x
+

wL

ℓ

∂h̄

∂s

)]

∂ϕ0

∂η
+

wL

ℓ

∂ϕ0

∂s
=

1

α2σh̄2

∂2ϕ0

∂η2
+ q (7.4)
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for the leading-order representation ϕ0 of the reduced solute concentration ϕ = ϕ0+εϕ1+544

· · · , with the buoyancy-driven component (uB, vB, wB) of the Lagrangian drift velocity545

(uL, vL, wL) evaluated from (4.9)–(4.11) with Ri and c0 replaced by Ri∗ and ϕ0.546

To represent injection in the posterior intrathecal region through the L3-L4 interver-547

tebral space, the sample computations shown in figure 5 consider a localized source with548

a normalized Gaussian distribution q(x, η, s) = qo/(
∫ 1

0
ℓ
∫ 1

0
h̄
∫ 1

0
qodηdsdx) centered at549

(x0, η0, s0) = (0.8, 0.5, 0), where the function qo is the exponential distribution found550

on the right hand side of (6.1) with (δx, δη, δs) = (1/18, 1/5, 1/13). For the three551

cases considered, corresponding videos are available as supplementary material. The552

integrations, initiated with a zero drug concentration everywhere in the canal, describe553

transient drug infusion for three different reduced Richardson numbers Ri∗ = ccRi ,554

with the values Ri∗ = −0.1 and Ri∗ = 0.1 being comparable to, although somewhat555

larger than, those expected in connection with the dispersion of Meperidine and Fentanyl556

(see table 1). As in figure 4, figure 5 shows three-dimensional distributions of drug557

concentration ϕ0 along with two-dimensional maps of width-averaged concentration558

∫ 1

0
ϕ0dη. Note that, for each plot, the scale of the colour contours has been adjusted559

to accommodate the increasing concentration, which is found to be significantly larger560

for non-buoyant drugs.561

As can be seen in the plots of figure 5(b), the neutrally buoyant drug accumulates near562

the injection location while spreading longitudinally along the posterior axis s = 0 at a563

small rate determined by the existing mean Lagrangian velocity. In contrast, the heavy564

drug with Ri∗ = −0.1, shown in figure 5(a), immediately begins to sink upon injection,565

driving a recirculatory motion that promotes simultaneous azimuthal spreading. At τ =566

0.2 the drug has already reached the sacral end of the canal, where it accumulates, forming567

a stratified distribution that is continuously stirred by the persistent buoyancy-driven568

recirculatory flow. Up to the longest time considered (τ = 2), the heavy drug is confined569

to the lumbar region, with the result that the mean Lagrangian motion remains virtually570

unperturbed in the thoracic and cervical regions. On the other hand, infusion of light571

drugs, considered in figure 5(c), leads to the development of a plume. The light fluid rises572

until it reaches the boundary separating the lumbar and thoracic recirculating regions,573

forming a front at x ≃ 0.6, corresponding approximately to the T11-T12 intervertebral574

space. At that level, the drug spreads azimuthally to reach the anterior side, where it575

continues to flow upwards into the thoracic region, thereby resuming its progression576

towards the cranial cavity.577

In analyzing the transient results of figure 5 one should bear in mind that, while578

the present computation assumes impermeable surfaces, leading to continuous drug579

accumulation, in ITDD processes drug uptake by the spinal nerve as well as through580

the dura membrane would eventually balance the infusion rate, leading to a steady drug581

distribution along the spine. For heavy drugs, the results shown in 5(a) suggest that582

the combined effects of buoyancy forces and drug uptake may limit drug dispersion to583

the lumbar and sacral regions. On the other hand, the results in figure 5(c) indicate584

that the ability of light drugs to reach the cranial cavity will depend on the competi-585

tion of buoyancy-enhanced drug dispersion and drug absorption, whose quantification586

necessitates of an extended reduced model accounting for pharmacokinetic effects.587

8. Conclusions588

Asymptotic and numerical methods have been used to quantify, for the first time,589

effects of buoyancy on the dispersion of drugs delivered in the spinal intrathecal space.590
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Figure 5. Drug dispersion corresponding to continuous drug infusion via the L3-L4
intervertebral space as predicted for σ = 1 and three different values of the rescaled Richardson
number Ri∗ = −0.1 (a), Ri∗ = 0 (b), and Ri∗ = 0.1 (c) by integration of the reduced
transport equation (7.4) with a localized solute source centered at (x0, η0, s0) = (0.8, 0.5, 0). The

plots include distributions of width-averaged concentrations
∫

1

0
ϕ0dη at τ = (0.02, 0.1, 0.5, 2)

along with three-dimensional isosurfaces of solute concentration ϕ0 at intermediate times
τ = (0.05, 0.2, 1).
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A two-time scale asymptotic analysis, similar to that employed in a recent investigation591

pertaining to a wavy-walled planar channel (Alaminos-Quesada et al. 2022), leads to a592

simplified transport description targeting the relevant long time scale characterizing drug593

dispersion.594

Since the buoyancy-driven component of the mean Lagrangian velocity driving the595

convective transport depends on spatial integrals of the solute concentration, as described596

in (4.9)–(4.11), the resulting solute transport equation, given in (4.14), displays an597

integro-differential character. The accuracy of the model is tested in computations of598

buoyancy-modulated solute dispersion in constant-eccentricity and variable-eccentricity599

annular canals. The model predictions are shown in figures 2 and 3 to be in excellent600

quantitative agreement with DNS results for positively, neutrally and negatively buoyant601

solutes, with the computational cost associated with integrations of the reduced transport602

equation typically being three to four orders of magnitude smaller than those involved603

in the DNS computations. It is worth mentioning that the two-time scale methodology604

developed here can find application in analyzing buoyancy-modulated secondary motion605

in other applications involving small density differences, including those related to active606

particles (Guan et al. 2023).607

The reduced model can be combined with MRI anatomical measurements to derive608

subject-specific predictions of drug dispersion, following the methodology outlined by609

Coenen et al. (2019). Sample computations are given for the transient solute evolution610

associated with the release of a finite dose and with the continuous infusion of a small611

constant rate. Buoyancy forces alter the mean Lagrangian motion, promoting upward612

(cranial)/downward (caudal) transport of light/heavy solutes. The comparisons presented613

in figures 4 and 5 clearly underline the important role of the small drug-to-CSF density614

differences 10−4 . |ρ− ρd|/ρ . 10−2, confirming previous clinical observations (Mitchell615

et al. 1988; Povey et al. 1989; Richardson et al. 1996; Veering et al. 2001; Loubert et al.616

2011).617

Future refinements of the transport description should account for additional effects,618

including respiration-induced flow, which is known to prevail in the lumbar region (Aktas619

et al. 2019; Gutiérrez-Montes et al. 2022), thereby possibly promoting drug dispersion620

near the injection site. Also important is the effect of the different microanatomical621

features that populate the spinal canal, such as denticulate ligaments, nerve roots and622

trabeculae (Stockman 2006; Gupta et al. 2008; Pahlavian et al. 2014; Tangen et al.623

2015; Haga et al. 2017; Khani et al. 2018; Ayansiji et al. 2023). For instance, the624

recent experiments of Ayansiji et al. (2023) have shown that the presence of nerve625

roots significantly promotes tracer dispersion. The effect of trabeculae, which form a626

continuous weblike structure stretching across the spinal canal (Mortazavi et al. 2018),627

can be modeled by adding a distributed Brinkman flow-resistance term to the momentum628

equation, as done earlier (Gupta et al. 2008; Tangen et al. 2015; Sincomb et al. 2022).629

Nerve roots and ligaments, on the other hand, are arranged in quasi-periodic rows aligned630

along the canal. Their discrete nature may potentially hinder their integration in models631

based on a slowly varying geometry. Fundamental understanding acquired in connection632

with oscillatory flows in wavy channels (Guibert et al. 2010; Alaminos-Quesada et al.633

2022, 2023a) and obstacle arrays (House et al. 2014; Bhosale et al. 2020; Alaminos-634

Quesada et al. 2023b) can be instrumental to aid these future modelling efforts. In635

this connection, it is worth mentioning the approximate transport equation recently636

proposed by Linninger et al. (2023), which incorporates a longitudinal diffusion term with637

an experimentally fitted diffusivity as a computationally inexpensive means to provide638

quantification of drug dispersion in the presence of nerve roots.639

Additional in vitro experiments, similar to those carried out recently (Moral-Pulido640
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et al. 2023; Ayansiji et al. 2023), could be useful in guiding further model refinements.641

Besides consideration of effects of nerve roots, addressed in the recent work of Ayan-642

siji et al. (2023), these future efforts should specifically consider the quantification of643

buoyancy-induced flow, with the densities of the working fluids representing the drug and644

the CSF selected to match the Richardson numbers found in ITDD applications. These645

experiments will be challenging, because the required density differences are extremely646

small, so that additional care will be needed to avoid density departures stemming from647

temperature differences.648

Incorporation of pharmokinetic effects, such as tissue uptake and drug clearance by649

the blood, which are central to ITDD (Segal & Brunnemann 1989; Sarntinoranont et al.650

2003; Kuttler et al. 2010; Linninger et al. 2023), will be necessary to improve the651

predictive capability of the model in connection with clinical applications. Many drugs652

have characteristic absorption times on the order of the spinal residence time, so that a653

non-negligible fraction of the solute deposited in the lumbar region is absorbed along the654

canal before reaching the cranial cavity. For heavy drugs delivered in an upright position,655

the case depicted in figures 4(a) and 5(a), the combined effects of buoyancy forces and656

tissue uptake can be expected to result in drug confinement in the lumbar region, which657

can be beneficial for analgesic administration. In contrast, buoyancy can promote the658

dispersion of light drugs towards the cranial cavity, as seen in 4(c) and 5(c), thereby659

limiting uptake rates along the spine and enabling drug delivery to distant intracranial660

locations.661
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Appendix A. Buoyancy-free velocity description669

The solution for the velocity field in the spinal canal in the absence of buoyancy forces670

was given in our previous publications (Sánchez et al. 2018; Lawrence et al. 2019). A671

summary of the relevant formulae, needed to quantify the steady-streaming and Stokes-672

drift velocities appearing in the convective terms in (4.14), is given in this appendix.673

The solution to the leading-order problem (4.1)–(4.4) is given by the harmonic func-674

tions (4.5), which are repeated here for convenience675

u0 = Re
(

ieitU
)

, v0 = Re
(

ieitV
)

, w0 = Re
(

ieitW
)

,

p′0 = Re
(

eitP ′
)

, p̂0 = Re
(

eitP̂
)

, h′

0 = Re
(

eitH ′
)

. (A 1)

The complex functions describing the spatial variations of the velocity components can
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be written as

U =
dP ′

dx
G, (A 2)

W =
1

ℓ

∂P̂

∂s
G, (A 3)

V = −1

ℓ

∂

∂x

(

ℓ
dP ′

dx
h̄

∫ η

0

Gdη

)

− 1

ℓ

∂

∂s

(

1

ℓ

∂P̂

∂s
h̄

∫ η

0

Gdη

)

+

[

∂h̄

∂x

dP ′

dx
+

1

ℓ2
∂h̄

∂s

∂P̂

∂s

]

ηG, (A 4)

in terms of the auxiliary functions676

G = 1− cosh[Λ(2η − 1)]

coshΛ
and

∫ η

0

Gdη̃ = η − sinh[Λ(2η − 1)] + sinhΛ

2Λ coshΛ
, (A 5)

where677

Λ(x, s) =
αh̄

2

1 + i√
2
. (A 6)

As in the main text, tildes are used throughout the appendix to denote dummy integration678

variables. The axial pressure variation is obtained from the boundary-value problem679

1

ℓ

d

dx

[

ℓ

(
∫ 1

0

qds

)

dP ′

dx

]

+ (k2P ′ + 1)

∫ 1

0

γds = 0;

{

P ′ = 0 at x = 0
dP ′

dx = 0 at x = 1
, (A 7)

involving the volume-flux function
∫ 1

0
qds, with680

q(x, s) = h̄

∫ 1

0

Gdη = h̄

(

1− tanhΛ

Λ

)

. (A 8)

The function P ′(x) can be used in681

H ′ = γ(1 + k2P ′) (A 9)

to evaluate the canal deformation and in682

1

ℓ

∂P̂

∂s
= −1

q

[

∂

∂x

(

ℓ

∫ s

0

qds̃
dP ′

dx

)

+ ℓ(k2P ′ + 1)

∫ s

0

γds

]

(A 10)

to evaluate the azimuthal pressure gradient, thereby completing the solution at leading683

order.684

The steady streaming velocity components (uSS, vSS, wSS) are obtained by integration685

of (4.6)–(4.8) with Ri = 0. The functions686

F = −1

ℓ

∂

∂x
(ℓ〈h′

0u0〉) +
∂

∂η

(

η〈u0

∂h′

0

∂x
〉
)

− 1

ℓ

∂

∂s
(〈h′

0w0〉), (A 11)

687

Fx =
1

ℓ

∂

∂x
(ℓ〈u2

0〉) +
1

h̄

∂

∂η
〈u0v0〉+

1

ℓ

∂

∂s
〈u0w0〉

− η

h̄

∂

∂η
〈∂h

′

0

∂t
u0〉 −

∂h̄

∂x

η

h̄

∂

∂η
〈u2

0〉 −
1

ℓ

∂h̄

∂s

η

h̄

∂

∂η
〈u0w0〉+

2

h̄3α2

∂2

∂η2
〈h′

0u0〉, (A 12)
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and688

Fs =
∂

∂x
〈u0w0〉+ 2

〈u0w0〉
ℓ

∂ℓ

∂x
+

1

h̄

∂

∂η
〈v0w0〉+

1

ℓ

∂

∂s
〈w2

0〉 −
η

h̄

∂

∂η
〈∂h

′

0

∂t
w0〉

− ∂h̄

∂x

η

h̄

∂

∂η
〈u0w0〉 −

1

ℓ

∂h̄

∂s

η

h̄

∂

∂η
〈w2

0〉+
2

h̄3α2

∂2

∂η2
〈h′

0w0〉. (A 13)

appearing on the left-hand side of (4.6)–(4.8) involve time averages of products of
the leading-order functions (A 1) that can be evaluated with use of the identity
〈

Re
(

eiτf1
)

Re
(

eiτf2
)〉

= Re(f1f
∗

2 )/2, which applies to any pair of time-independent
complex functions f1 and f2, with the asterisk ∗ denoting complex conjugates. The
solution for the steady-streaming velocity can be expressed in the form

uSS

h̄2α2
= −dp′

SS

dx

(1− η)η

2
+ η

∫ η

0

Fxdη̃ −
∫ η

0

Fxη̃dη̃ − η

∫ 1

0

Fx(1− η)dη (A 14)

wSS

h̄2α2
= −1

ℓ

∂p̂SS

∂s

(1− η)η

2
+ η

∫ η

0

Fsdη̃ −
∫ η

0

Fsη̃dη̃ − η

∫ 1

0

Fs(1 − η)dη, (A 15)

vSS = −1

ℓ

∂

∂x

(

ℓh̄

∫ η

0

uSSdη̃

)

− 1

ℓ

∂

∂s

(

h̄

∫ η

0

wSSdη̃

)

+ η

[

∂h̄

∂x
uSS +

1

ℓ

∂h̄

∂s
wSS

]

+ η〈u0

∂h′

0

∂x
〉 − 1

ℓ

∫ η

0

[

∂

∂x
(ℓ〈h′

0u0〉) +
∂

∂s
〈h′

0w0〉
]

dη̃ (A 16)

in terms of the axial and azimuthal pressure gradients689

dp′
SS

dx
=

12
∫ 1

0
h̄3ds

∫ 1

0

(

1

α2

∫ 1

0

〈h′

0u0〉dη − h̄3

2

∫ 1

0

Fxη(1 − η)dη

)

ds (A 17)

690

1

ℓ

∂p̂SS

∂s
=

12

h̄3

∂

∂x

[

ℓ

∫ s

0

(

1

α2

∫ 1

0

〈h′

0u0〉dη − h̄3

2

∫ 1

0

Fxη(1− η)dη − h̄3

12

dp′
SS

dx

)

ds̃

]

+
12

h̄3

(

1

α2

∫ 1

0

〈h′

0w0〉dη − h̄3

2

∫ 1

0

Fsη(1 − η)dη

)

, (A 18)

which complete the determination of the steady-streaming velocity. On the other hand,691

the Stokes-drift velocity components, which provide an additional contribution to the692

time-averaged Lagrangian drift driving convective transport in the slow time scale, can693

be expressed in the form694

uSD =
1

h̄

{

〈u0h
′

0〉+
1

ℓ

∂

∂s

(

h̄

〈

u0

∫

w0dt

〉)}

+
1

h̄

∂

∂η

〈

u0

[
∫

v0dt− η

(

h′

0 +
1

ℓ

∂h̄

∂s

∫

w0dt

)]〉

, (A 19)

vSD =
1

ℓ

∂

∂x

(

ℓ

〈

v0

∫

u0dt

〉)

+
1

ℓ

∂

∂s

〈

v0

∫

w0dt

〉

− η

h̄

∂

∂η

〈

v0

(

h′

0 +
∂h̄

∂x

∫

u0dt+
1

ℓ

∂h̄

∂s

∫

w0dt

)〉

, (A 20)

wSD =
1

h̄

[

〈w0h
′

0〉+
∂

∂x

(

h̄

〈

w0

∫

u0dt

〉)]

+
1

h̄

∂

∂η

〈

w0

[
∫

v0dt− η

(

h′

0 +
∂h̄

∂x

∫

u0dt

)]〉

, (A 21)
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where the different time averages can be evaluated with use of the expressions (A 1)695

and associated antiderivatives
∫

u0dt = Re
(

eitU
)

,
∫

v0dt = Re
(

eitV
)

, and
∫

w0dt =696

Re
(

eitW
)

.697
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