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Speaking Rationally:
Uniform Information Density as an Optimal Strategy for Language Production

Austin F. Frank (afrank@bcs.rochester.edu)
T. Florian Jaeger (fjaeger@bcs.rochester.edu)

Brain and Cognitive Sciences, University of Rochester
Meliora Hall, Box 270268

Rochester, NY 14620

Abstract

We provide evidence for a rational account of language pro-
duction, Uniform Information Density (UID, Jaeger, 2006;
Levy & Jaeger, 2007). Under the assumption that communi-
cation can usefully be understood as information transmission
over a capacity-limited noisy channel, an optimal strategy in
language production is to maintain a uniform rate of informa-
tion transmission close to the channel capacity. This theory
predicts that speakers will make strategic use of the flexibility
allowed by their languages. Speakers should plan their utter-
ances so that elements with high information are lengthened,
and elements with low information are shortened, making the
amount of information transmitted per time more uniform (and
hence closer to the optimum). In three corpus studies, we show
that American English speakers’ use of contractions (“you are”
→ “you’re”) follows the predictions of UID. We then explore
further implications of UID for production planning. Key-
words: language production; utterance planning; information
theory; morphological reduction; contractions

Introduction
Speakers face a large number of choices in the process of go-
ing from thought to utterance. Concepts must be mapped to
words, words must be arranged into larger linguistic struc-
tures, and the articulatory system must be recruited to turn
these mental representations into perceptible actions. More-
over, all of this must be accomplished in such a way that
the intended recipient of the message will be able to under-
stand it. Faced with this complex task, it seems that speakers
should have developed highly efficient strategies for solving
the problem of converting thoughts into a serialized stream of
articulatory gestures.

Rational approaches to cognition seek to define the opti-
mal performance that could be achieved for a particular task
(Chater, Tenenbaum, & Yuille, 2006). This is an example of
what Marr called the computational level of analysis (Marr,
1982). Language production, however, is often studied at the
algorithmic level, in terms of a series of hypothesized cog-
nitive processing systems (e.g., Dell, 1986; Levelt, 1989).
Availability-Based Production (ABP) is an example of this
approach to production theories. (Ferreira & Dell, 2000).
Under ABP, speakers’ utterance planning strategies are, to a
large extent, shaped by limitations on the production system’s
ability to retrieve and integrate upcoming material in the ut-
terance. Algorithmic level theories like ABP help to clarify
how speakers execute an utterance. Computational level the-
ories play a complementary role, attempting to explain why
the system uses the processes and mechanisms it does.

This paper explores the issue of a rational language pro-
duction system. As noted above, a rational system performs
optimally with respect to some particular goal. Typically, op-
timal solutions involve the balancing of multiple constraints.
For language production, there are at least two pressures that
speakers have to balance to achieve efficient communication.
On the one hand, speakers want to successfully convey a mes-
sage (where by message, we do not mean the literal message,
but whatever set of directly or indirectly intended effects the
speaker wants to achieve). On the other hand, speakers need
to produce language efficiently. Pressure for efficient com-
munication may come from several sources, such as limited
attentional or memory resources, or other interlocutors who
are competing for the ground (i.e. a speaker may be inter-
rupted if information is conveyed too inefficiently). A rational
production system, then, is one which maximizes the likeli-
hood of efficient and successful communication, taking into
account the limitations imposed by the speaker, listener, and
environment.

Previous work has shown that one strategy for language
production, Uniform Information Density (UID, Jaeger,
2006; Levy & Jaeger, 2007; building on Aylett & Turk, 2004;
Genzel & Charniak, 2002), has several properties that are
consistent with the goal of optimizing successful communi-
cation. Language use is seen as transmission of information
over a bandwidth-limited noisy channel (Shannon, 1948). A
unit’s Shannon information is determined by its probability
(I(u) =− log p(u)). Under these assumptions, it follows from
information theory that speakers would optimize the chance
of successfully transmitting their message by transmitting a
uniform amount of information per transmission (or per time,
assuming continuous transmission) close to the Shannon ca-
pacity of the channel. UID holds that speakers are indeed ap-
proximating optimal production by aiming to produce utter-
ances with uniform information density (within the bounds
defined by grammar). Thus UID predicts that the choices
speakers have to make when they encode an intended mes-
sage into an utterance are at least partially determined by in-
formation density: if one way to convey a message leads to
more uniform information density than another way to convey
the same message, the variant with a more uniform distribu-
tion of information should be preferred (Jaeger, 2006; Levy
& Jaeger, 2007).

Indeed, speakers’ productions have been shown to be con-
sistent with a UID strategy at several levels of linguistic repre-
sentation. Speakers modulate their speech rate so that words
with high information content are spread out over a longer
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period of time (Aylett & Turk, 2004; Bell et al., 2003) and
they produce highly informative phonemes more slowly and
with more articulatory detail (van Son & van Santen, 2005).
Speakers are also more likely to produce optional function
words (such as optional “that”, which in certain types of En-
glish complement or relative clauses can be omitted) when
the words following them would otherwise be high in infor-
mation content, thereby avoiding spikes in the rate of infor-
mation transmission (Jaeger, 2006; Levy & Jaeger, 2007).

We present three corpus studies on speakers’ choices in the
use of morphosyntactic contractions in spontaneous Amer-
ican English speech. Specifically, we investigate speakers’
choices between (a) full and reduced BE (e.g. “I am” vs.
“I’m”), (b) full and reduced HAVE (e.g. “you have” vs.
“you’ve”), and (c) full and reduced NOT (e.g. “did not” vs.
“didn’t”). If UID is a general computational strategy that
drives language production at all levels of linguistic repre-
sentation, speakers should prefer a full form whenever the
content conveyed by the form is unexpected in its context.
Low probability content is high information content. Us-
ing a full form spreads this information over a longer time,
thereby avoiding a peak in information density. The evidence
we present provides further support that speakers employ a
UID strategy. The converging evidence for UID across levels
of linguistic representation illustrates the power of computa-
tional level theories, but it also raises the question of how a
general computational principle like UID relates to the cog-
nitive mechanisms that traditional psycholinguistic (algorith-
mic) models of language production have identified. We ad-
dress this question in the final part of this paper.

Methods

Corpus and data set

We use the Paraphrase Stanford-Edinburgh LINK SWITCH-
BOARD corpus (Bresnan et al., 2002; Calhoun, Nissim,
Steedman, & Brenier, 2005). The corpus is part of SWITCH-
BOARD, and consists of over 830,000 words in 642 tele-
phone dialogues between two speakers each (roughly gender-
balanced; age range from 20 to 68, x̄ = 38) on a variety of
topics (selected by participants from a pre-determined list).
The corpus combines and aligns numerous annotations for
SWITCHBOARD (Calhoun et al., 2005), including annota-
tion of disfluencies (Taylor, Marcus, & Santorini, 2003), part-
of-speech, syntactic, and grammatical function (Marcus, San-
torini, Marcinkiewicz, & Taylor, 1999), and time-aligned or-
thographic transcriptions.

These annotations make it possible to define syntactic
searches to automatically extract only those instances of BE,
HAVE, and NOT that can be morphologically reduced,1 while
at the same time extracting syntactic, lexical, phonological,
and phonetic information about these words and the con-
texts they occur in (including speech rate information). We
used TGrep2 (Rohde, 2005) to extract all morphologically
reducible cases of BE, HAVE, and NOT from the corpus.

1We use uppercase to refer to all and only reducible forms of
a particular lemma. For BE, this includes “am”, “are”, “is”, “’m”,
“’re”, and “’s”. For HAVE, “have”, “has”, “had”, “’ve”, “’s”, and
“’d”. For NOT, “not” and “n’t”.

Exclusion criteria Not all extracted cases were used in
the analysis, for reasons described next. A summary of the
amount and composition of the excluded material is presented
in Table 1. The first section of the table shows the size of the
total data unprocessed data set, and the proportion of utter-
ances that used the full form. The second section of the ta-
ble shows four different criteria for excluding data. For each
source of exclusions, we report the number of cases excluded
from the original data set, and the percentage of the excluded
cases that occurred in the full form.

Since UID makes predictions about speakers’ choices, we
are only interested in cases where speakers actually have a
choice between two different realizations of the target lem-
mas BE, HAVE, and NOT. For example, NOT cannot be re-
duced if it follows a reduced auxiliary (*“she’sn’t”) or if there
is no reduced form (“you aren’t”, but *“I amn’t”). Only aux-
iliary HAVE, but not possessive or modal have is morpho-
logically reducible (*“I’ve a car” and *“I’ve to leave now”).
These are all examples of cases where the variation of inter-
est is not available to speakers. We also excluded cases of BE
and HAVE that preceded NOT, because in those cases speak-
ers often have two choices (e.g. “we are not/we’re not/we
aren’t”). We leave these cases for future study.

Possible inaccuracies in estimating speaking rate led to fur-
ther exclusions. Short utterances or target words appearing
in certain positions of a prosodic phrase can interfere with
our estimate of speaking rate. To have reasonably consistent
speaking rate estimates, we require that the target element
occur in an utterance that has at least five times as many syl-
lables as the element itself, that it not occur in the two initial
or final syllables of the utterance, and that the target element
does not occur immediately after or before a prosodic break
(operationalized as any pause of at least 500 ms). We also ex-
clude cases where the target element was the first or last word
in the utterance.

The presence of a filled pause (e.g. “um”, “uh”, “you
know”) immediately before a reducible element strongly fa-
vors a full form (“It uh is”, but ¿‘It uh ’s”). We exclude cases
immediately following a disfluency, on the grounds that the
target could not actually have been contracted in that situa-
tion. After excluding all cases with preceding disfluencies,
we were left with relatively few cases of following disfluen-
cies. Rather than modeling the effect of disfluent contexts on
contraction we therefore decided to limit the current study to
fluent contexts.

Finally, when using a corpus to calculate estimates of
the probability of an event, the amount of data available
can be a limitation. In this case, the events of interest are
collocations—sets of neighboring words. Collocation infor-
mation allows us to estimate the probability of a word ap-
pearing in a particular context. When a particular group of
words is observed only once in the corpus, it is hard to know
whether that count accurately reflects its true rate of occur-
rence in the language. One convention for dealing with this
issue in natural language processing applications is to exclude
low-count data. We exclude all utterances where the relevant
two-word collocations (i.e. bigrams) occur fewer than five
times (a standard cut-off, Jurafsky & Martin, 2007, Ch. 4).
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Table 1: Exclusion criteria and remaining data

BE HAVE NOT
Total 20,113 36.70% 4,607 43.54% 10,399 26.92%
Criteria Excl. % Full Excl. % Full Excl. % Full
Irreducible context 17 100% 37 100% 26 100%
More than two options 1494 35.21% 465 97.53% 2458 66.48%
Bad rates 5,026 29.94% 951 35.12% 2,501 24.23%
Disfluency before target 531 100% 10 90% 140 100%
Disfluency after target 1169 49.53% 142 50.70% 274 40.51
Low counts 3,981 66.84% 820 72.32% 1,457 51.41%
Used for analyses 9,379 30.92% 2,411 32.39% 5,034 9.95%

Models
We attempt to determine the extent to which speakers’ ut-
terances are consistent with a UID strategy by building sta-
tistical models of the influences on speaker choice. Our de-
pendent variable is a binary distinction between the use of
a morphologically full or reduced form. Separate models
were developed for the three target lemmas BE, HAVE, and
NOT. In addition to measures of the information content of
the reducible target lemmas, we include several controls in
the models that are expected to affect speakers’ choices.

Specifically, we use generalized linear models with a logit
linking function (Breslow & Clayton, 1993; for an introduc-
tion, see Agresti, 2002, Ch. 12) to predict changes in the
log-odds of contraction use. Such mixed logit models can
be understood as extensions of ordinary logistic regression
models that (among other things) allow us to account for ran-
dom effects due to speakers. Here each speaker is modeled
as having a different base rate of contraction use, and the in-
fluence of our independent variables is computed relative to
each speakers’ individual tendencies.2 Confidence intervals
are calculated for each factor in the model. When the coef-
ficient estimate corresponding to a factor significantly differs
from zero, we conclude that that factor influences speakers’
decisions about contraction use. While we test the contribu-
tion of several factors in each model, no corrections for multi-
ple hypothesis testing are performed. Mixed models perform
partial pooling of the variance within each level, resulting in
conservative claims about the contribution of each predictor.

For unbalanced corpus data like ours, it is especially im-
portant to guard against spurious results due to collinearity.
To minimize the impact of collinearity, all factors were cen-
tered before being entered into the analysis. For some highly-
correlated factors, collinearity remained even after taking
these steps. For pairs of highly correlated factors (r > .5),
we regressed one factor against the other in a linear model and
used the residuals from the fit as continuous independent vari-
ables in the mixed effects model. These techniques resulted in
lower mean and maximum pairwise correlations among pre-
dictors in each dataset (maximum pairwise correlations after
residualization: BE: 0.43; HAVE: 0.44; NOT: 0.69).

2The analyses presented here were also run using bootstrapping
with random cluster replacement to account for random effects of
speakers. In this framework, additional significance testing was per-
formed using model comparison (χ2 tests on changes in log likeli-
hood). The pattern of results was the same.

Factors
Gender We include speaker sex as a factor in the analysis,
as male speech has been shown to exhibit a higher degree
of reduction than female speech (for phonetic reduction, see
Bell et al., 2003; for syntactic reduction, see Jaeger, 2006).

Speech rate Unsurprisingly, speakers are generally more
likely to reduce forms during fast speech, although –to the
best of our knowledge– this has not been directly tested for
morphological contraction (for phonetic reduction, see Bell
et al., 2003; for syntactic reduction, see Jaeger, 2006). We ex-
pect that faster speech rates will correlate with more contrac-
tions. Speech rate was calculated using the time alignment
provided by the automatic segmentation process (Calhoun
et al., 2005). Each utterance is divided up into a series of
“speech windows” characterized by breaths and pauses. The
duration of these windows is measured in seconds. The au-
tomatic segmentation record is used to provide a count of the
number of syllables within a speech window. Speech rate
is the number of syllables per second in the speech window
containing the reducible element. In an analyses below, we
use log-transformed speech rates, which are more normally
distributed (Bell et al., 2003). We used the exclusion criteria
mentioned above in an attempt to avoid artifacts that could be
introduced by phrase boundaries and small sample sizes.

Global naturalness and complexity Each dialogue in the
corpus contains information provided by the transcribers to
characterize the transcription process. We include the tran-
scribers’ ratings of transcription difficulty and conversation
naturalness as two measures of the overall perceived com-
plexity and fluency of the conversation.

Phrase length Speakers tend to speed up as the length of
their utterances increases. In general, the speech rate at the
beginning of an utterance is slower than that at the end. We
include two factors to account for these length effects. We
measure the length in words of the phrase governing the word
before the reducible element, and the length in words of the
phrase governing the reducible element.

Frequency Word frequency is known to affect production
(Griffin & Bock, 1998). In particular, low-frequency words
are harder for speakers to access than high-frequency words.
Availability-Based Production (Ferreira & Dell, 2000), men-
tioned above, maintains that speakers structure their utter-
ances in ways that buy them time to prepare difficult words
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and phrases. By this account, the frequency of a word should
predict contraction use: speakers should use full forms more
before low-frequency words than high-frequency words, to
provide themselves more time for lexical access. We include
the probability (i.e. normalized frequency) of the word pre-
ceding the target (the host that the contracted forms encliti-
cize to) and the word following the target in the regression
analysis.

Information The information conveyed by a word is
closely related to how predictable that word is in its con-
text. Words that are perfectly predictable given their sur-
roundings don’t actually provide any new information; con-
versely, words that are hard to predict are highly informa-
tive. We use Shannon information content as a measure
of a word’s information. Information, again, is defined in
terms of it’s probability, I(word) =−log p(word) (Shannon,
1948). The probability of a word is approximated as its con-
ditional probability given its immediate context. For each
item in our data set, we estimate the conditional probabil-
ity of a reducible element occurring given the context of
its neighboring words. For a string of words before host
target after (where target is the reducible element) we
calculate p(target|before,host), p(target|after), and
p(after|host,target).3 Probability estimates are com-
puted directly from the corpus, and no back-off or smoothing
is employed. UID predicts that speakers will tend to use full
forms (rather than contractions) when the reducible element
is high in information. Uttering a full form takes longer, and
so prevents informative elements from causing a non-optimal
spike in the rate of information transmission (cf. Levy &
Jaeger, 2007).

Results
In the following discussion we report the magnitude and sig-
nificance level of the slope parameters for a series of mixed
logit effects models. In this analysis, parameters are mea-
sured in units of change in log odds. Positive values for pa-
rameters correspond to a change in favor of using a full form,
while negative values correspond to a change in favor of using
a contraction. Unless otherwise noted, all significant regres-
sion parameters are significant at a level of p < 0.0001.

BE
Study 1 models reducible BE based on 9,379 instances (31%
full forms) from 355 different speakers. The slope parame-
ters for several factors fail to reach significance. Speaker sex,
transcription difficulty, speech rate, length of parent phrase
are all insignificant (p > .10) . Higher transcriber ratings for
conversation naturalness correlate with a decrease in the log
odds of full BE (β = −0.14, p < 0.005). Speakers’ use of
full BE correlates with the length of the phrase preceding BE
(henceforth host phrase) (β = 0.36).

Higher log probability of the host correlates with a de-
crease in full forms (logP(h) in Figure 1: β =−0.99), while
higher log probability of the word following BE correlates
with a small increase (logP(a) : β = 0.09).

3We use an abbreviated from of this notation when referring to
these words and quantities throughout the subsequent analysis.

Finally, all measures of the information load on BE and
on the word following BE are significantly correlated with an
increase in full forms. When more information is conveyed
by BE, speakers are more likely to use a full form, (I(t|b,h):
β = 0.38; I(t|a): β = 0.37). Additionally, the more full forms
are used, the higher the information content on the word fol-
lowing BE (I(a|h, t) : β = 0.16).

HAVE
Study 2 models reducible HAVE based on 2,411 instances
(32% full forms) from 322 different speakers. Speaker sex,
conversation naturalness, speech rate, and length of parent
phrase all fail to reach significance (p > 0.10) . Transcription
difficulty is marginally significant, with greater difficulty cor-
relating with an increase in full HAVE (β = 0.12, p < 0.10).
Longer host phrases correlate with an increase in full HAVE
(β = 0.69).

The log probability of the preceding and following word
have similar effects on the use of the contracted form of
HAVE. Speakers are less likely to use full forms in the con-
text of more frequent words (logP(h) : β =−0.79; logP(a) :
β =−0.19).

The information content of HAVE and of the word after
HAVE also affect contraction use. Speakers are more likely
to use the full form, as the information content of HAVE in-
creases (I(t|b,h) : β = 0.21; I(t|a) : β = 0.65). Similarly,
speakers are more likely to use a full form, the higher the
information content of the word following HAVE (I(a|h, t) :
β = 0.14).

NOT
Study 3 models reducible NOT based on 5,034 instances
(10% full forms). Speaker sex, conversation naturalness,
and length of the parent phrase fail to reach significance
(p > 0.10). Conversations rated as being more difficult to
transcribe have more full forms (β = 0.21, p < 0.005). Un-
like in the first two studies, speech rate reaches significance,
and in the expected direction. Speaker are more less likely to
use a full form, the faster they speak (β =−0.89, p < 0.005).

Higher log probability of the host correlates with lower
log-odds of the full forms (logP(h) : β = −0.17). In con-
trast, higher log probability of the following word correlates
with higher log-odds of the full form (logP(a) : β = 0.16, p <
0.0005), as was the case in Study 1 on BE.

Full forms of NOT were more likely to occur as the in-
formation borne by NOT increased. This held true both
when information was calculated using the preceding context
(I(t|b,h) : β = 0.79) and when it was calculated using the fol-
lowing context (I(t|a) : β = 1.05). For NOT, the information
carried by the following word actually corresponded to a de-
creased use in full forms (I(a|h, t) : β = −0.11, p < 0.05).
That is, speakers’ use of contractions increased when the
word following NOT was more informative.

Discussion
Overall, speakers use contractions in a manner that is pre-
dicted by UID. As indicated by the information-related pa-
rameters shown in the first three panels of Figure 1, full forms
tend to be used at points of high information within the ut-
terance, thereby extending the time during which the high
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Figure 1: Estimated changes in log-odds (coefficient estimates) associated with predictors in the model

information element is uttered. This result is consistently
found on measures of the information of the reducible ele-
ment (I(t|b,h) and I(t|a)). The information of the follow-
ing word (I(a|h, t)), however, has smaller and less consistent
effects on reduction. In the cases where the target element
encodes a larger amount of information, using a full form is
predicted by UID. Use of a full form lowers the rate of infor-
mation transmission, avoiding a peak and maintaining a more
uniform information density. These findings reinforce results
reported at multiple levels of linguistic representation.

There are other aspects of these results that are worth not-
ing. Our investigations showed trends in the expected direc-
tion for speech rate, but only revealed a significant influence
of speech rate on reduction in one data set (NOT). This is
troubling, as speaking rate has previously been shown to play
an important role in other reduction phenomena at several lev-
els of linguistic representation (Aylett & Turk, 2004; Bell et
al., 2003; Jaeger, 2006, inter alia). Also, previous studies
have found speech rate effects on syntactic reduction using
the same automatically extracted speech rate information that
we have employed here (Jaeger, 2006). It is possible that
transcribers had difficulty distinguishing between full and re-
duced forms for high speech rates, perhaps reverting to a de-
fault, which would make the annotation noisy with regard to
speech rate. It may also be the case that BE and HAVE occur
in similar positions in prosodic domains, or at least that their
use is more similar to each other than to the use of NOT. If this
supposition holds, our current methods for estimating speech
rate may work well at the positions where NOT is generally
found, but poorly for BE and HAVE. It will be important to
continue to refine our methods for estimating speech rate as
this research goes forward.

Additionally, the role of log probability in driving contrac-
tion use merits further attention. We consistently find that
higher log frequency of the word preceding the reducible el-
ement (logP(h)) is associated with a high probability of us-
ing a contraction. While this effect is largely driven by the
prevalence of personal pronouns and auxiliary verbs as hosts
to contractions, the effect remains when host type is included
in the analysis as a categorical factor. High frequency words
following a reducible element (logP(a)), on the other hand,
have varying effects on reduction across our data sets. This
variability is unexpected. If anything, the a priori expectation

was that speakers’ use of contraction should increase pre-
ceding high-frequency words, because the frequency of the
following word can be seen as a measure of its availability.
Given that previous studies on other reduction phenomena
have provided strong evidence for availability-based produc-
tion accounts that predict more frequent contraction before
available words and phrases, and given that we do observe the
expected effect for the conditional probability of the follow-
ing word for BE and HAVE (cf. the first column in Figure 1),
we plan to investigate this puzzling result in future research.

Finally, further evaluation of our statistical models is re-
quired. The stability of the confidence intervals presented
here will be investigated using Highest Posterior Density in-
tervals. Model comparison will be performed via the Condi-
tional AIC measure in addition to log likelihood tests. The-
oretically motivated interactions between predictors will be
tested.

General Discussion
Formal descriptions of ideal performance on a cognitive task
offer a useful benchmark in the study of cognition. In this
paper we provide further evidence for the view that a suit-
able characterization of ideal performance on a communica-
tion task involves transmitting information at a uniform rate
close to channel capacity (Genzel & Charniak, 2002), result-
ing in uniform information density. In three corpus studies
of morphosyntactic reduction, we show that speakers make
use of the variability licensed by their mental grammar in
ways that are consistent with a UID strategy. Our findings
extend previous work on the redundancy-sensitivity of seg-
ment, word, and syntactic reduction (Aylett & Turk, 2004;
Bell et al., 2003; van Son & van Santen, 2005; Jaeger, 2006;
Levy & Jaeger, 2007) to the level of morphology.

Studies 1-3 address the most basic predictions of UID, but
there are several outstanding issues which we intend to in-
vestigate in continuations of this work and novel corpus and
behavioral studies. First, while we address the issue of rate
of transmission, we have yet to directly investigate channel
capacity. Speakers may differ in their channel capacity and
these differences may affect speakers’ production strategies.
Second, it remains to be determined whether speakers can
work around channel limitations. For example, in a situation
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where channel capacity is highly constrained by the articula-
tory system, speakers could in theory employ multiple chan-
nels. Speakers may use supra-segmental features of language,
like gesture and prosody, to modulate the rate of information
being transmitted per channel at different points in an utter-
ance.

As mentioned previously, one of the features of rational ac-
counts of cognition is that performance is optimized relative
to certain constraints. Perhaps the most important constraint
is that these strategies are implemented by human cognitive
processes. General computational principles that character-
ize the human language production system (like UID) must
eventually be linked to neural implementation. Similarly, it
is important to understand how these computational princi-
ples relate to the cognitive mechanisms and representations
postulated by algorithmic theories of language production.

Availability-Based Production directly addresses the cog-
nitive mechanisms of language production (Ferreira & Dell,
2000). Recall that in ABP, the form of speakers’ utterances
is generally determined by limitations on the production sys-
tem’s ability to retrieve and integrate upcoming material in
the utterance. This predicts that speakers will put off low-
frequency, unpredictable, or highly informative elements of
an utterance because those features take more time to pre-
pare. The same cognitive resources that ABP credits for
shaping production may also constrain whatever higher-level
optimization strategies a speaker is using. For example, the
channel capacity assumed in UID may be a speaker-internal
construct (as opposed to a limitation that exists between in-
terlocutors). If limits on communication between processing
systems determine the availability of mental representations,
then availability can be thought of as a measure of how effi-
ciently information is being transmitted within the processing
system, and can be directly related to theories like UID.

The study of language production as a rational system
stands to provide important insights. In UID, the charac-
terization of communication in information-theoretic terms
opens a wide set of issues to be explored. In this paper,
one particular prediction of UID was borne out: namely, that
speakers use the variability allowed by the morphosyntactic
structure of their language to avoid peaks and troughs in the
rate of information transmission. Ongoing work tests further
predictions of UID in language production, and new efforts
will attempt to relate this computational level theory to cog-
nitive mechanisms and representations.
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