
UC Berkeley
UC Berkeley Previously Published Works

Title
K2 DISCOVERS A BUSY BEE: AN UNUSUAL TRANSITING NEPTUNE FOUND IN THE BEEHIVE 
CLUSTER

Permalink
https://escholarship.org/uc/item/7d09h2tf

Journal
The Astronomical Journal, 152(6)

ISSN
0004-6256

Authors
Obermeier, Christian
Henning, Thomas
Schlieder, Joshua E
et al.

Publication Date
2016-12-01

DOI
10.3847/1538-3881/152/6/223

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7d09h2tf
https://escholarship.org/uc/item/7d09h2tf#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Draft version August 18, 2016
Preprint typeset using LATEX style AASTeX6 v. 1.0

K2 DISCOVERS A BUSY BEE: AN UNUSUAL TRANSITING NEPTUNE FOUND IN THE BEEHIVE CLUSTER

Christian Obermeier1,2,3, Thomas Henning1, Joshua E. Schlieder4,5,6, Ian J. M. Crossfield7,8, Erik A.
Petigura9,10, Andrew W. Howard11, Evan Sinukoff11,12, Howard Isaacson13, David R. Ciardi6, Trevor J. David14,

Lynne A. Hillenbrand14, Charles A. Beichman13, Steve B. Howell,4, Elliott Horch15, Mark Everett16, Lea
Hirsch13, Johanna Teske17,18, Jessie L. Christiansen6, Sébastien Lépine19, Kimberly M. Aller11, Michael C.
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ABSTRACT

Open clusters have been the focus of several exoplanet surveys but only a few planets have so far been

discovered. The Kepler spacecraft revealed an abundance of small planets around small, cool stars,

therefore, such cluster members are prime targets for exoplanet transit searches. Kepler ’s new mission,

K2, is targeting several open clusters and star-forming regions around the ecliptic to search for tran-

siting planets around their low-mass constituents. Here, we report the discovery of the first transiting

planet in the intermediate-age (800 Myr) Beehive cluster (Praesepe). K2-95 is a faint (Kp = 15.5 mag)

M3.0± 0.5 dwarf from K2 ’s Campaign 5 with an effective temperature of 3471± 124 K, approximately

solar metallicity and a radius of 0.402± 0.050 R�. We detected a transiting planet with a radius of

3.47+0.78
−0.53 R⊕ and an orbital period of 10.134 days. We combined photometry, medium/high-resolution

spectroscopy, adaptive optics/speckle imaging and archival survey images to rule out any false posi-

tive detection scenarios, validate the planet, and further characterize the system. The planet’s radius

is very unusual as M-dwarf field stars rarely have Neptune-sized transiting planets. The compara-

tively large radius of K2-95b is consistent with the other recently discovered cluster planets K2-25b

(Hyades) and K2-33b (Upper Scorpius), indicating systematic differences in their evolutionary states

or formation. These discoveries from K2 provide a snapshot of planet formation and evolution in

cluster environments and thus make excellent laboratories to test differences between field-star and

cluster planet populations.

1. INTRODUCTION Exoplanet science is still a young field, but what stands

out is the strong diversity in the properties of both de-
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tected planets and their host stars. Already a short time

after the first transiting planet was detected by Char-

bonneau et al. (2000); Henry et al. (2000), surveys were

started with a focus on open clusters for a variety of

reasons. The higher density of stars gives surveys ac-

cess to more stars for a given field of view. Age, dis-

tance and metallicity of the member stars are well de-

termined, yielding more precise estimates for the plane-

tary and stellar parameters. Furthermore, most observed

field stars are relatively old (≥ 1 Gyr) while many cur-

rently targeted clusters present a younger sample (10-

800 Myr). In addition, planet formation in stellar clusters

may well be very different due to stronger and more fre-

quent gravitational interactions between the stars. Plan-

ets in younger clusters may also be undergoing thermal

evolution, radial contraction, or receiving high irradia-

tion from their active host stars. Therefore, open clus-

ters are an excellent laboratory to test planet formation

and evolution models. Initial transit surveys that fo-

cussed on 47 Tuc (Gilliland et al. 2000; Weldrake et al.

2005), NGC 2301 (Howell et al. 2005) and NGC 7789

(Bramich & Horne 2006), found no evidence for transit-

ing planets. Since then, fourteen planets have been dis-

covered in open clusters, namely in NGC 6811 (Meibom

et al. 2013), NGC 2423 (Lovis & Mayor 2007), M67 (Bru-

calassi et al. 2014, 2016), the Beehive (Praesepe) (Quinn

et al. 2012; Malavolta et al. 2016), the Hyades (Sato et

al. 2007; Quinn et al. 2014; Mann et al. 2016a; David et

al. 2016a) and Upper Scorpius (David et al. 2016; Mann

et al. 2016b). All planets in M67, the planet in NGC

2423, one planet in the Hyades and the Praesepe planets

were detected with the radial velocity (RV) method. All

planets in NGC 6811, one planet in the Hyades and the

planet in Upper Scorpius were discovered with the tran-

sit method. All detections were of planets that likely

harbor significant gaseous envelopes. Additionally, a ∼2

Myr old hot Jupiter located in the Taurus-Auriga star

forming region was detected via the RV method (Donati

et al. 2016).

All transiting cluster planets were detected with the

Kepler space telescope. After the failure of two of its four

reaction wheels, the original mission of Kepler ended and

was redirected for the ”second light” survey K2 (How-

ell et al. 2014). Instead of continuously observing the

same area over years, the K2 mission switches fields ev-

ery three months, stabilized by the two remaining reac-

tion wheels and solar photon pressure for the third axis

(roll angle). However, the telescope still drifts slowly

and has to be corrected by firing the thrusters every 6

hours. Photometric precision is therefore slightly lower

than during the Kepler mission but, as will be described

in the following section, can be corrected very well.

The Beehive cluster (M44), also called Praesepe, is an

open cluster targeted by K2 in Campaign 5. It is nearby

(d = 183± 8 pc, van Leeuwen 2009; Majaess et al. 2011)

and of intermediate age. Past estimates placed the age of

Praesepe at around 600 Myr (Fossati et al. 2008) but new

estimates that take into account the effects of rotation in

its high-mass members suggest an age as old 800 Myr

(Brandt & Huang 2015). Furthermore, the kinematics

(Madsen et al. 2002), metallicity (Dobbie et al. 2006)

and age (Brandt & Huang 2015) of Praesepe are very

similar to the Hyades cluster. The age of Hyades was

also redetermined to 800 Myr (David & Hillenbrand 2015;

Brandt & Huang 2015) and it is now assumed that both

clusters may share the same origin.

Since the transit signal gets stronger with decreasing

stellar radius, M dwarfs are promising targets for the

detection of small planets in an open cluster. Dressing

& Charbonneau (2015) estimate an abundance of rocky

and small sub-Neptunian planets around those stars with

periods shorter than 200 days with an average of 2.5 ±
0.2 planets per star with radii between 1 − 4R⊕. Here,

we present the discovery and validation of a transiting

Neptune-sized planet in the Praesepe cluster detected in

K2 Campaign 5 in orbit around the low-mass star K2-

95. In §2 we describe the layout of our photometric and

spectroscopic follow-up and detail the subsequent results

in §3. We validate the candidate as a planet in §4, discuss

the impact of our findings in the context of exoplanets

in clusters and the field in §5, and provide concluding

remarks in §6.

2. OBSERVATIONS

2.1. K2 target selection and photometry

We identified the star K2-95 as a potential M dwarf

target and high probability member of the Praesepe

cluster for our K2 Campaign 5 proposal (GO5006 - PI

Schlieder). Other groups also proposed this star as a po-

tential K2 target (GO5011 - PI Beichman, GO5048 - PI

Guzik, GO5095 - PI Agueros, GO5097 - PI Johnson).

K2-95 was observed during K2 Campaign 5 with nearly

continuous photometry from 2015 Apr 27 to 2015 Jul 10.

We extracted the photometry from the pixel data which

we downloaded from the MAST1.

Our photometric extraction pipeline is described in

more detail in Petigura et al. (2015) and Crossfield et al.

(2015). During K2 operations, the telescope is torqued

by solar radiation pressure which causes it to slowly roll

around the boresight. This motion causes stars to drift

across the CCD by about 1 pixel every 6 hours. As stars

are sampled by different pixels, intra-pixel sensitivity and

flat-fielding variations cause the apparent brightness of

the star to change. Thruster fires to correct for this drift

affect the pointing and therefore pixel position greatly,

giving the overall photometry a saw-tooth shape. We

1 The Mikulski Archive for Space Telescopes.
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solve for the roll angle between each frame and an ar-

bitrary reference frame and model the time- and roll-

dependent brightness variations using a Gaussian pro-

cess. Further, we adjust the size of our square extraction

aperture to minimize the residual noise in the corrected

light curve. This balances two competing effects: larger

apertures yield smaller systematic errors while smaller

apertures include less background noise. Our final square

extraction aperture is r = 1 pixel≈ 4′′. The resulting, de-

trended light curve exhibited slow, periodic, ∼1% modu-

lations with a period of about 24 days. We attribute this

modulation to spots on the rotating stellar surface. The

timescale of this variation is long compared to other M

dwarfs in Praesepe and places K2-95 among the slowest

rotators in the cluster (see also section 3.5). This varia-

tion is fitted and removed to produce the final light curve

which is shown in the top panel of Figure 1.

We searched through the optimized light curve with

the TERRA algorithm which is described in more detail

by Petigura et al. (2013). In short, it searches for periodic

box-shaped photometric dimmings and fits them with a

model from Mandel & Agol (2002). Using TERRA, we

detected a transit signal in the K2-95 light curve with a

period of P = 10.132 d and a signal-to-noise ratio (SNR)

of 23.97. The phase-folded light curve is shown in the

bottom panel of Figure 1, centered around the transit

event. We subtracted the best-fitting model transit and

iterated the TERRA algorithm to search for other tran-

sits but did not detect any secondary signals. Visual

inspection also did not reveal any additional transit fea-

tures.

2.2. Photometric follow-up

We observed K2-95 with the 2.0 m Fraunhofer Tele-

scope Wendelstein (FTW) (Hopp et al. 2014), using

the Wide Field Imager (WFI) (Kosyra et al. 2014) on

Mt. Wendelstein in the Bavarian Alps. An indepen-

dent transit detection from a ground-based facility serves

not only for period confirmation and estimation of its

uncertainty, but as evidence for the planetary nature

of the transit from a common eclipse depth at differ-

ent wavelengths. Multi-band transit photometry can

be used to characterize the planet’s atmosphere or rule

out false positive detections (Mislis et al. 2010; South-

worth et al. 2012; Mancini et al. 2013; Ciceri et al. 2016).

The limb darkening coefficients differ across photometric

bands and can be used to differentiate between plane-

tary signals and those of shallow-eclipse EBs. K2-95 was

followed up in the i’-band on UT April 16 2016 during

suboptimal weather with seeing between 1′′ and 3′′ and

cirrus activity which led to aborting the observations af-

ter about three hours, or around mid-transit. However,

due to the relative isolation of the target and reference

stars on the CCD, the data was still salvageable and we

could identify the transit after binning the data in 30 min

intervals. The light curve, seen in Figure 2, shows the

expected transit depth of 0.7% and agrees very well with

the overlaid best-fitting transit model from the K2 data,

adjusted for the respective i’-band limb darkening coef-

ficients. This light curve is already time-corrected and

indicates a slight shift in phase. This implies that our

initial period estimate may have been off by a few sec-

onds per cycle, an effect seen in follow-up of previous

K2 planet discoveries (see Beichman et al. 2016), but

it’s still inside of the period uncertainty (see also § 4.2)

of ≈ 60 sec. Following up transiting planets over larger

baselines and therefore improving period accuracy is a

valuable step in preserving the ephemeris for future stud-

ies.

2.3. IRTF/SpeX

We observed our target with the near-infrared cross-

dispersed spectrograph (SpeX, Rayner et al. 2003) on

the 3.0 m NASA Infrared Telescope Facility on Mau-

nakea. While K2 targets are already pre-characterized

with broadband photometry, spectral typing is essential

for more accurate stellar properties. K2-95 was observed

on UT December 09 2015 under excellent conditions with

a clear sky and an average seeing of 0.5′′. We used the

instrument’s short cross dispersed mode (SXD) with the

0.3 x 15′′ slit which provides a wavelength range of 0.68-

2.5µm and a resolution of R ≈ 2000. The target was

placed at two locations along the slit and was observed

in an ABBA pattern with 16×185s integrations for a

total integration time of 2960s. For telluric correction

and wavelength calibration, we observed an A0 standard

star plus arc and flat lamp exposures right after the tar-

get. We reduced the data with the SpeXTool package

(Vacca et al. 2003; Cushing et al. 2004) which performs

flat fielding, sky subtraction, bad pixel removal and sub-

sequently spectral extraction and combination, telluric

correction, wavelength+flux calibration and order merg-

ing. We achieved a median signal-to-noise ratio (SNR) of

70 per resolution element in the J- (1.25µm), 80 in the

H- (1.6µm) and 60 in the K-band (2.2µm). We com-

pare the JHK-band spectra to late-type standards from

the IRTF Spectral Library (Rayner et al. 2009), seen in

Figure 3. The best visual match for K2-95 lies between

M2 and M3 standards across all infrared bands.

2.4. Keck/HIRES

We obtained a high-resolution optical spectrum of K2-

95 using the HIRES echelle spectrometer on the 10m

Keck I telescope (Vogt et al. 1994) on UT December 23

2015. High-resolution spectroscopy can be used to rule

out false-positive detection scenarios such as eclipsing bi-

naries by searching for secondary line features that are

created by a possible companion star. Our observation
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Figure 1. Top: Calibrated and normalized K2 photometry for K2-95. The upper red lines indicate the detected transits

with the corresponding points also marked in red. Bottom: Period-folded light curve with the best-fitting transit model

overlaid as a red line.

Figure 2. Normalized photometry in the i’-band for K2-95, recorded with the Wendelstein WFI. We overlaid the

best-fitting transit model from the K2 data, adapted with appropriate quadratic limb darkening parameters for the

i’-band. The binned points (black) agree very well with the model (red line), however, the transit was shifted by about

27 min (new center indicated by the blue line) which indicates an error in the initial period estimate within the fitting
uncertainties. The original points (light grey) are shown in the background.

followed the procedures of the California Planet Search

(CPS, Howard et al. 2010). We used the ”C2” decker,

providing a spectral resolution of R = 55000, and sub-

tracted the sky from the stellar spectrum. We utilized

the HIRES exposure meter to automatically terminate

the exposure when SNR = 32 per pixel was achieved.

The HIRES spectrum was reduced using standard CPS

procedures and cover ∼3600 – 8000 Å. Two additional

spectra were obtained on UT December 24 and 29 using

a redder setting of HIRES at R=48,000; these data are

described in Pepper et al. (2016, in prep.).

2.5. Keck/NIRC2

We obtained high resolution NIR images of K2-95 us-

ing NIRC2 on the 10m Keck II telescope using the target

as a natural guide star to drive the AO system. High-

resolution imaging is a useful tool for constraining the

probability of a blended background star. We observed

the target on UT January 16 2016 in the K-band, follow-

ing a multi-point dither pattern with integration times

short enough to avoid saturation. We used the dithered

images to subtract the sky background and remove dark

current, then aligned, flat-fielded, and stacked the indi-

vidual images. The star appears single and has no close

companions within several arcseconds. To estimate the

sensitivity of the NIRC2 observations, we injected fake

sources with SNR = 5 into the combined image at sepa-

rations that are integral multiples of the star’s FWHM.

We show our final image and the 5σ sensitivity curve in

the left panel of Figure 4.

2.6. Gemini-N/DSSI
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Figure 3. JHK-band IRTF/SpeX spectra of K2-95, compared to K4V-M6V standard spectra from the IRTF spectral

library. Every spectrum is normalized to the continuum. The target is a best visual match for types M2V and M3V

in all three bands, which is very clear in the K-band. This is consistent with both our SED fitting results and the

spectral typing using spectroscopic indices.

We also obtained speckle imaging of K2-95 in two nar-

row band filters centered at 880 nm and 692 nm using

the DSSI camera (Horch et al. 2009) on the 8m Gemini

North telescope on UT January 16 2016. We followed

a standard observing procedure where the star was cen-

tered in the field, guiding was established, and many im-

ages were taken using 60 ms exposures. The data were

reduced and combined into a final reconstructed image

using the techniques described in Horch et al. (2011) and

Howell et al. (2012). These procedures perform auto-

matic model fits (single, double, triple) and provide es-

timates of the magnitude difference and separation for

multiple systems. K2-95 was found to be a single star.

We measured the background sensitivity of the recon-

structed DSSI image, using a series of concentric annuli

centered on the target. The innermost annulus is at the

telescope diffraction limit where our sensitivity is zero.

The sensitivities in the subsequent annuli are interpo-

lated using a cubic spline to produce a smooth sensitiv-

ity curve. The 880 nm reconstructed DSSI image and

sensitivity curve are shown in the right panel of Figure

4.

2.7. Archival imaging

Data taken from photographic plates, now digitally

scanned and available online2, cover several decades of

astrometry. Our target was first observed in 1954 by

the Digital Sky Survey (DSS) in the red and blue chan-

nels with an additional epoch from 1989 and 1990, re-

spectively. We show the DSS-red plates from 1954 and

1989 in Figure 5. The images are centered on the epoch

2015 coordinates of the target in the EPIC database

(08:37:27.059, +18:58:36.07) and the K2 aperture is over-

laid as a green square. The target’s proper motion of

1.4 arcsec over the course of 35 years results in a visi-

2 http://irsa.ipac.caltech.edu/applications/finderchart/
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Figure 4. Results from high-resolution imaging of K2-95. Left: Keck/NIRC2 K-band image and contrast curve.

Right: Gemini-N/DSSI 880 nm reconstructed image and contrast curve. The star appears single in both images and

the sensitivity curves rule out the majority of close companions or background stars that would contribute significant

flux to the transit light curve.

ble shift in position, seen in comparison of the middle

and left panels in Figure 5. There is no indication for

a background star at the 2015 epoch position, based on

the archival data. If there is a star still hidden in the

background it must be quite faint in which case it would

not significantly dilute the transit signal.

3. HOST STAR CHARACTERIZATION

Validation of the transiting planet candidate and con-

straints on its physical parameters require detailed char-

acterization of the host star’s properties. We used several

approaches to estimate the fundamental parameters of

K2-95, including medium-resolution spectroscopy, multi-

band photometry and kinematics. We also place further

constraints on close bound companions and background

stars from our high-resolution spectroscopy and imag-
ing. The results of these data are used to perform a false

positive probability analysis of the planet candidate and

estimate its properties. The final stellar properties are

shown in Table 1.

3.1. Medium-resolution spectroscopy

We apply the index based methods of Mann et al.

(2013a,b, 2015) and equivalent width (EW) based meth-

ods of Newton et al. (2014, 2015) to our SpeX spectrum

in order to estimate the metallicity, temperature, radius,

and luminosity of K2-95. These approaches are empiri-

cally calibrated by using wide M dwarf binary compan-

ions and nearby bright M dwarf standards with interfer-

ometrically measured radii. Our SpeX spectrum, shown

in Figure 3, suffers from poor telluric correction in the J

and H-bands. These residuals result from the long expo-

sure time of the target which led to a large time baseline

(nearly 1 hour) and non-ideal airmass difference (>0.1)

Parameter K2-95 Reference

Epoch J2000 1

RA 08:37:27.059 1

DEC +18:58:36.07 1

µα −36.7± 3.0mas yr−1 2

µδ −15.1± 3.0mas yr−1 2

RV 35.2± 0.2 km s−1 3

Kp 15.498mag 1

g’ 17.779± 0.00240mag 4

r’ 16.596± 0.00110mag 4

i’ 15.369± 0.00079mag 4

z’ 14.789± 0.00096mag 4

y’ 14.529± 0.00220mag 4

J 13.312± 0.01700mag 5

H 12.738± 0.02300mag 5

K 12.474± 0.01900mag 5

Spectral Type M3.0± 0.5 6

Teff 3471± 124K 6, 8

Teff 3384± 100K 7

d 171± 15 pc 7

d 172± 14 pc 3

[Fe/H] 0.11± 0.17 6, 8

Radius 0.402± 0.050R� 6, 8

Radius 0.381± 0.070R� 7

Luminosity 0.021± 0.008L� 6, 8

Mass 0.361± 0.069 M� 6

Density 7.81± 1.90g cm−3 6

Table 1. Stellar parameters for K2-95. References are:

1 - EPIC Catalogue; 2 - Kraus & Hillenbrand (2007); 3 -

this work; 4 - Pan-STARRS1 3π catalog (version PV3);

5 - 2MASS catalog; 6 - this work, using (Mann et al.

2016a); 7 - this work, using SED fitting from Obermeier

et al. (2016); 8 - this work, using Newton et al. (2015)
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Figure 5. K2 photometry with the pixels used for the light curve creation (left). DSS plates observed in red in 1954

(middle) and 1989 (right). The square shows the dimensions and location of the aperture that was used for the

candidate’s photometry. Over these past 35 years, K2-95 moved about 1.4 arcsec, which is noticeable in comparison

of both images.

between the target and A0 calibrator. To avoid the sys-

tematic effects introduced when using the index based

methods of Mann et al. (2013b) in regions of poor telluric

correction (Mann et al. 2013a; Newton et al. 2015) we use

only their K-band relations. Prior to any analyses, the

spectrum was shifted by its radial velocity estimated via

cross-correlation with an M dwarf standard.

To estimate the star’s metallicity, we use IDL soft-

ware provided by A. Mann and E. Newton3. Using

the Mann et al. (2013a) K-band index relations, we es-

timate a metallicity [Fe/H] = 0.09± 0.09 dex. The K-

band EW based methods of Newton et al. (2014) pro-

vide [Fe/H] = 0.12± 0.14 dex. The uncertainties were

estimated using Monte Carlo sampling. These estimates

are consistent with each other and also with the metallic-

ity of Praesepe, [Fe/H] = 0.12± 0.04 dex (Boesgaard et

al. 2013).

We estimate the effective temperature using the K-

band index relations of Mann et al. (2013b) and the H-

band EW-based relations of Newton et al. (2015) using

IDL software provided by A. Mann and E. Newton4. The

K-band relations provide Teff = 3460± 73 K where the

adopted uncertainty is the scatter in the polynomial re-

lation. The H-band relations yield Teff = 3481± 100 K.

The uncertainty was estimated using Monte Carlo sam-

pling of the measurement error in the spectrum. These

consistent effective temperatures are used to estimate

the radius and luminosity of the star using the afore-

mentioned empirical calibrations. Following the Mann et

al. (2013b) relations, we estimate R∗ = 0.393± 0.036 R�
and L∗ = 0.017± 0.006 L�. The Newton et al.

(2015) relations provide R∗ = 0.411± 0.034 R� and

L∗ = 0.024± 0.006 L�. These fundamental parameters,

estimated by using different methods, are consistent at

3 https://github.com/awmann/metal, https://
github.com/ernewton/nirew

4 https://github.com/awmann/Teff rad mass lum,
https://github.com/ernewton/nirew

the < 1σ level. We adopt the means of these estimates

for further analyses and calculate conservative uncer-

tainties by adding the individual errors in quadrature.

The final values are provided in Table 1. The meth-

ods of Mann et al. (2013b) also provide estimates of

the star’s mass and density, M∗ = 0.361± 0.069 M� and

ρ∗ = 7.81± 1.90 g cm−3, respectively. We further used

the H20 K2 index (Rojas-Ayala et al. 2012) to estimate

the spectral type of the star. We find K2-95’s type to be

M3.0 ± 0.5, consistent with visual comparisons to stan-

dard stars and our spectroscopic temperature estimates.

3.2. SED fitting

We utilize the SED fitting code from Obermeier et al.

(2016) as an additional layer of our stellar type char-

acterization. In contrast to spectroscopy, this approach

relies on broad-band photometry. We extract the Pan-

STARRS1 3π data (version PV3) for this star and cross-

match its coordinates with the 2MASS catalog. For the

synthetic stellar SED catalog, we use the newest version

of the PARSEC isochrones package (Bressan et al. 2012)

which includes improvements for low-mass stars that

were calibrated for Praesepe (Chen et al. 2014). The age

of the cluster is known (Brandt & Huang 2015), therefore

we restrict the synthetic model population to 800 Myr

and Praesepe’s metallicity of ([Fe/H] = 0.12 dex). Since

the isochrone models are for nonrotating stars, we fur-

thermore include a second set of isochrones at 650 Myr.

We create a 10th order polynomial to interpolate be-

tween the distance-dependent extinction values given in

the 3D dust map from Green et al. (2015)5 and itera-

tively fit distance and extinction until both converge. We

find that the final photometric fits for temperature and

radius, Teff = 3386± 100 K and R∗ = 0.43± 0.070R�,

agree very well with the spectroscopic results and the ex-

tinction is negligible with E(B−V) = 0.0016. The bet-

5 http:// argonaut.rc.fas.harvard.edu/
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ter fit was for the 650 Myr model with a marginally bet-

ter χ2 of 7.83 against 7.97. We also estimate a distance

of 171±15 pc which is consistent with a Praesepe clus-

ter membership and the derived distance of 172±14 pc

based on kinematic distance and K-band magnitude.

3.3. High-Resolution Spectroscopy

We use the methodology and algorithm of Kolbl et al.

(2015) to search for blended background stars or close

spectroscopic binary companions in our HIRES spec-

trum. The secondary line analysis compares the observed

spectrum to a suite of about 600 well characterized,

slowly rotating HIRES spectra of FGKM stars from the

California Planet Search and attempts to identify resid-

uals consistent with a fainter secondary star. For faint,

late-type stars like K2-95, this method is sensitive to

spectroscopic companions projected within one half the

HIRES slit width (0.4′′), with approximate V -band fluxes

as small as 3% of the primary flux and ∆RV > 10 km s−1.

This sensitivity range complements our high-resolution

imaging. The algorithm also measures the barycentric

corrected primary RV using telluric lines. The analysis

revealed no secondary lines within the above sensitiv-

ity limits. Using the color-temperature conversions of

Pecaut & Mamajek (2013), we estimate that the Kolbl

et al. (2015) analysis of our HIRES spectrum rules out a

large range of close companions on circular orbits down

to ∼M5.5 types on ∼75 day or shorter orbits. Addi-

tionally, we measure RV = 35.2± 0.2 km s−1, consistent

with other Praesepe members. The combined RV con-

straints from our multi-epoch HIRES observations are

described further in § 4.1.

We also use the HIRES spectrum to investigate Hα

emission at 6563 Å. Hα emission is a magnetic activity in-

dicator in low-mass stars and can be used to place coarse

constraints on a star’s age (West et al. 2008). Kafka &

Honeycutt (2006) and Douglas et al. (2014) present Hα

measurements for low-mass Praesepe members, including

K2-95. They find that M3 type stars in Praesepe exhibit

a wide range of emission levels, with equivalent widths

(EWs) spanning approximately 0 to -8 Å (where nega-

tive EWs represent emission). K2-95 is on the low end of

the emission distribution for stars of similar spectral type

in their studies, with only a hint of weak emission. We

show a portion of our HIRES spectrum surrounding Hα

in Figure 6 compared to a field age planet host with sim-

ilar spectral type, K2-9 (Montet et al. 2015; Schlieder et

al. 2016). The Hα line morphology of K2-95 is different

from the weak absorption observed in the older star K2-9,

it exhibits narrow emission peaks in the line wings. This

profile is consistent with model predictions for weakly ac-

tive low-mass dwarfs (Cram & Mullan 1979) and similar

to Hα profiles observed for the slowest rotating M dwarfs

in the younger Pleiades cluster (P∼15 days, Stauffer et al.

2016). We conservatively estimate EWHα = −0.1± 0.1

which is consistent with previous EW measurements and

broadly consistent with expectations for an M3 dwarf in

Praesepe.

We further cross-correlated our HIRES spectrum with

a slowly rotating, rotationally broadened M dwarf stan-

dard to place constraints on the projected rotational ve-

locity v sini. This analysis revealed that the star has a

low rotational velocity with the best-match broadened

spectrum having v sini < 3 km s−1. This low v sini and

the long rotation period (∼24 days) estimated from de-

trended K2 photometry are consistent with the slowest

rotating Praesepe M dwarfs presented in Douglas et al.

(2014). Both indications of slow rotation are also con-

sistent with the low level of magnetic activity inferred

from the Hα line. The slow rotation of this intermediate

age M dwarf is remarkable when considering its close in

planet (see §4) and may indicate differences in angular

momentum evolution due to initial conditions, the pri-

mordial disk, planet formation, or planet migration. In

contrast, the very similar Hyades M dwarf planetary sys-

tem K2-25 is among the fastest rotating M dwarfs in that

cluster with a period of ∼1.9 days (Douglas et al. 2014;

Mann et al. 2016a; David et al. 2016a).

3.4. High-Resolution Imaging

Using the Gemini/DSSI speckle results, we can con-

strain the contamination from nearby sources. The DSSI

data in the 880 nm band provide the best constraints to

bound and background companions at very close sepa-

rations. At a separation of 0.1′′, our sensitivity to com-

panions is ∆mag(880 nm) ≈ 3.5 mag.

Our Keck/NIRC2 AO imaging provides deeper con-

straints on close background and bound companions at

larger separations. At separations of 0.2′′ and 0.5′′, we

estimate sensitivity to companions with ∆K ≈ 5 mag

and ∆K ≈ 8 mag, respectively. This effectively rules

out all background sources within these separations that

could contribute significant flux to the light curve. We

use the relations of Pecaut & Mamajek (2013) to esti-

mate that our combined Keck and Gemini imaging rule

out all bound companions at the same distance down

to the hydrogen burning limit at separations of 0.1′′ (17

AU) and well into the brown dwarf regime at & 0.5′′ (86

AU). We use both our Keck/NIRC2 and Gemini/DSSI

contrast curves as constraints in the false positive prob-

ability analysis.

3.5. Cluster Membership, Kinematics, and Age

K2-95 was first identified as a candidate member of

Praesepe by Williams et al. (1994) and was subse-

quently included in the proposed member lists of sev-

eral works including Hambly et al. (1995) and Adams

et al. (2002). Kraus & Hillenbrand (2007) combined
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Figure 6. HIRES spectrum of K2-95 (black) centered

on the Hα line compared to the known M dwarf planet

host K2-9 (red). The weak activity is consistent with the

lower end of the the distribution for similar spectral type

stars in Praesepe and the star’s slow rotation.

photometry, astrometry, and the kinematics of well de-

fined cluster members in a maximum likelihood analy-

sis to estimate that K2-95 has a >99% probability of

cluster membership. To further investigate its Prae-

sepe membership, we use the star’s partial kinematics

and the methods described in Lépine & Simon (2009)

to estimate a kinematic distance (dkin) and predicted

radial velocity (RVp). In the analysis we adopt the

UVW Galactic velocities of Praesepe from van Leeuwen

(2009) and estimate errors using Monte Carlo sampling.

We find dkin = 172± 14 pc, consistent with our SED-

based estimate of the star’s distance and the average
cluster distance, and RVp = 34.1± 0.9 kms−1, consis-

tent with our measured RV from Keck/HIRES spec-

troscopy. The consistency of these predictions and mea-

surements, along with the spectroscopic indications of

activity in our HIRES data, confirms the membership

of K2-95 in the low-mass population of Praesepe which

places a conservative constraint on its age of 600-800

Myr. We also use the kinematic distance and K-band

magnitude of the star to determine its luminosity using

the conversions of Pecaut & Mamajek (2013). We esti-

mate L∗ = 0.021± 0.003 L�. At the age of Praesepe, an

M3 dwarf is expected to be on the main sequence and

has stopped radial contraction. We can therefore com-

bine our measured effective temperature and luminosity

through the Stefan-Boltzman law to estimate the star’s

radius, R∗ = 0.40± 0.01 R�. These alternate estimates

of the star’s fundamental parameters are consistent with

those from our SpeX spectroscopy and SED fitting.

4. PLANET VALIDATION

4.1. False positive probability

For a transiting planet-signal, there are five common

sources of false-positive identification or transit mischar-

acterization, most of which are created by eclipsing bi-

naries (EB’s):

• Background star

• Blended EB system

• Unblended EB system

• Double-period EB system

• Hierarchical EB companion

Our collected data in form of photometry, spectroscopy

and high-resolution imaging can be used to place a num-

ber of constraints on the data to limit or even completely

rule out all of the above scenarios. In the K2 data itself,

we detected no secondary eclipse that would be indicative

of an EB. Based on archival and high-resolution imag-

ing and high-resolution spectra, a background source is

strongly constrained to less than 3% of flux dilution and

can be ruled out completely for a separation of more than

0.2 arcsec. This makes any kind of background blend or

triple system highly improbable. In case it did exist, it

would not impact the planet parameters significantly.

For a more quantitative assessment, we utilize the

false positive probability (FPP) calculator vespa (Mor-

ton 2012, 2015) which is open source and freely avail-

able online6. This program compares the light curve

to transit shapes created by false-positive sources and

combines this with priors about stellar population, mul-

tiplicity frequencies and the planet occurrence rate for

the corresponding fitted parameters. We supply the al-

gorithm with all of our determined constraints, includ-

ing stellar photometry from 2MASS and WISE, contrast

curves from high-angular resolution imaging and the light

curve from K2. Furthermore, we also extract the photo-

metric light curve from Vanderburg & Johnson (2014),

remove the periodic modulations, recover the signal with

the Pan-Planets signal detection pipeline (Obermeier et

al. 2016) and then perform the same analysis. This way,

we end up with an independent confirmation based on

a different data reduction and signal detection routine.

Based on all of the above constraints, the results from

vespa rule out all false positive scenarios to a FPP of less

than 0.02% for both analyses. While vespa does not fit

blended planetary systems, there are strong constraints

on this scenario based on high-resolution imaging and

the upper limit of 3% in flux dilution for background

sources which makes this scenario highly unlikely. As

6 https://github.com/timothydmorton/vespa
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an additional layer of security, we furthermore obtained

three RV points based on high-resolution spectroscopy in

order to constrain any EB or double-period EB scenario.

4.1.1. Unblended EB system

The unblended EB scenario consists of very shallow

eclipses of both stars which may emulate a planet’s tran-

sit light curve. There are many constraints to this sce-

nario in the case of K2-95: the signal of a secondary

eclipse is absent in the light curve data and the high-

resolution spectroscopy excludes the presence of a second

star down to 10 km s−1 and 3% flux. Based on both our

own observation with HIRES and the two additional data

points from Pepper et al. (2016, in prep.), we cover a

time baseline of 6 days that we use to construct a 5σ up-

per limit for the maximum RV amplitude that could still

fit to the data and is shown in Figure 7 in the top panel.

The result is an amplitude 941 m s−1 which equates to

5.25 MJ, a giant planet. These limitations mean that this

signal can not be modeled as an unblended EB system.

4.1.2. Double-period EB system

The double-period case is different to other scenarios

in that it assumes an EB system in which both partners

have the same size and eclipse each other. This changes

fundamental parameter such as the relative eclipse dura-

tion and impacts limits for the secondary eclipse - strong

constraints make this scenario more likely.

Both partners must have similar radii in this case. As

in the single-period EB scenario, we combine our HIRES

RV measurement with the two measurements presented

in Pepper et al. (2016, in prep.). We again set limits

for which the RV curve is outside of 5σ of the individ-

ual points, which is shown in Figure 7 in the middle and

bottom panels. Two cases have to be considered, de-

pending on whether the initial transit time (ITT) was at

phase 0 or 0.5 (ITT 0 and ITT 0.5, respectively). The

subsequent limit is a RV of 2270 m s−1 for ITT 0 and

1343 m s−1 for ITT 0.5. Taking the stellar mass deter-

mined by medium-resolution spectroscopy and assuming

a circular orbit, this translates to 15.46 MJ, a low-mass

brown dwarf, or 9.14 MJ, a giant planet. Any stellar com-

panion would produce a much stronger RV signal and an

eclipse of the primary in front of a brown dwarf cannot

create such a strong signal.

Additionally, K2-95 has a probability of more than 99%

for being a member of the Praesepe cluster, which means

that the baseline of the fitted RV curve for the case of

ITT 0, RV = 36.3 km s−1, should be consistent with the

cluster RVp = 34.1± 0.9 kms−1. ITT 0 is only consis-

tent at 3σ which further decreases the likelihood of this

scenario. In contrast, the RV baseline for a single-period

transiting planet scenario is very consistent with a best

fit of 34.8 kms−1.

Figure 7. Radial velocity for K2-95 in the single-period

(top) and double-period scenario (middle+bottom),

phased to the corresponding period and ITT scenario.

ITT stands for the initial time phase of the first recorded

eclipse, i.e. whether the primary or secondary star

eclipsed first. The RV curve (blue) shows the maximum

amplitude consistent with the points at 5σ. Two phases

are shown for better clarity with repeated points grayed

out and the error bars of the points are given in 1σ (red)

and 5σ (light red). The green line shows the baseline fit.

Therefore, in combination with all of the other con-

straints (e.g. AO imaging, archival optics, stellar char-

acterization), the transit signal can not be modeled suc-

cessfully with this scenario and we can rule it out.

4.2. Planet parameters

We analyze the light curve of K2-95 with a approach

similar to the one described in more detail by Crossfield

et al. (2015)7. In brief: Relying on the emcee package

(Foreman-Mackey et al. 2013), we use the open-source

BATMAN light curve code (Kreidberg 2015) which we

optimized for long-cadence data. Utilizing the free and

open-source LDTk/pyLDTk package from Parviainen &

Aigrain (2015)8, we propagate our measured Teff , surface

gravity, metallicity and their respective uncertainties

into limb-darkening coefficients for use as priors in our

fit. The overall fitted parameters in our analysis are the

candidate’s orbital period P, initial transit time T0, incli-

nation i, eccentricity e, longitude ω, scaled semi-major

axis a/R? and the fractional candidate radius Rp/R?.

The starting parameters for the fit are taken from our

TERRA output. In the fit, we assume a linear ephemeris

7 Further information about the most up- to-date method will
be found in Crossfield et al. (2016), in prep.

8 https://github.com/hpparvi/ldtk
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for the transits which should be a valid simplification

since there is no evidence for any kind of TTV’s in

the light curve. The best-fitting properties and their

uncertainties are shown in Table 2. We estimate the

Parameter Units K2-95

T0 BJDTDB - 2454833 2338.1477+0.0018
−0.0019

P d 10.13389+0.00068
−0.00077

i deg 88.77+0.86
−1.59

RP /R? % 7.86+1.69
−0.93

R?/a — 0.0400+0.0187
−0.0068

T14 hr 2.84+0.36
−0.26

T23 hr 2.18+0.26
−0.72

a AU 0.0653+0.0039
−0.0045

RP RE 3.47+0.78
−0.53

R? R� 0.402+0.050
−0.050

M? M� 0.361+0.069
−0.069

Table 2. Best-fitting properties of K2-95 and its planet

based on the BATMAN code.

planet’s mass using the mass-radius relation9 provided

by Wolfgang & Lopez (2015) and Wolfgang et al. (2015),

M/M⊕ = 2.7(R/R⊕)1.3 to MP = 13.71± 3.62 M⊕
10.

However, using the relation provided by Weiss &

Marcy (2014), M/M⊕ = 2.69(R/R⊕)0.93, we get

MP = 8.77+1.88
−0.53 M⊕. A third mass-radius rela-

tion, published by Chen & Kipping (2016)1112,

yields MP = 8.26+1.77
−0.50 M⊕ based on the relation

M/M⊕ = (R/R⊕)1.70. The mass-radius models lead

to different estimates of the planet’s mass. While the

results from Wolfgang & Lopez (2015) are higher than

the other two, the difference is still small enough for

the masses to be marginally consistent with each other.

The absence of TTV’s in the system means that the

mass can not be determined through other means as of

now. We estimate the RV amplitude of this planet to be

6.8±1.8 m s−1, based on the Wolfgang & Lopez (2015)

results.

5. DISCUSSION

So far, only very few planets have been detected in

clusters, even less with the transit method. K2-95b is

only the third known planet in an open cluster that or-

bits around an M dwarf. Assuming a typical density

of small gas planets, it probably belongs to the class of

Neptune-size planets with a similar chemical composi-

tion and H/He atmospheres (Marcy et al. 2014; Weiss &

Marcy 2014; Rogers 2015).

9 And their code: https://github.com/dawolfgang/MRrelation
10 The code cannot handle asymmetrical errors, hence we se-

lected the larger of both uncertainties.
11 https://github.com/chenjj2/forecaster
12 The code cannot handle asymmetrical errors, hence we used

the larger of both uncertainties.

However, it is remarkable that the occurrence rate of

planets with the radius and period of both K2-25 (Mann

et al. 2016a; David et al. 2016a) and K2-95b is very low

around field stars (Dressing & Charbonneau 2015; Mul-

ders et al. 2015). Furthermore, the recently discovered

planet K2-33b in the open cluster Upper Scorpius (David

et al. 2016; Mann et al. 2016b) exhibits an unusually

large radius as well. While there are four discovered sys-

tems with planet radii higher than K2-95b and K2-25b,

those planets are even larger and orbit higher-mass stars.

Furthermore, their received stellar flux appears to be sig-

nificantly higher. The distribution of planetary radii and

received radiation against the host star mass are shown

in Figure 8. We placed following restrictions: All planets

in this Figure have to be confirmed and we extract the

most recent planetary and stellar parameters from the

NASA exoplanet archive (Akeson et al. 2013). Further-

more, the host star radii have to be below 0.5 R� and

the planet irradiance was calculated when missing.

The probability of detecting two such planets in a clus-

ter without any detections in the larger field star sample,

plus another detection in a scarcely populated region of

larger-radius planets, is too low to be random chance.

We present three possible implications from this:

• The formation of short-period planets is different

in clusters due to gravitational interactions during

migration. An indication for this may be the higher

occurrence rate of hot Jupiters in M67 measured

by Brucalassi et al. (2016). However, Meibom et

al. (2013) found an occurrence rate similar to that

of field stars for NGC 6811. As of now, there is

insufficient information to confirm this theory.

• M dwarfs remain active for several hundred Myr

after their formation to a varying degree (Shkol-

nik & Barman 2014). Strong UV emission in the

relatively young Hyades and Praesepe cluster M

dwarfs might lead to the inflation seen in Figure 8.

However, no emission could be detected by GALEX

down to 19.9 mag in the far UV and 20.8 mag in the

NUV (Bianchi et al. 2011). Young planets may also

be larger due to initial heat from formation (Mann

et al. 2016a).

• It is possible that this is due to a selection bias

since young stars are more active. Their variability

may mask many of the small-planet transit signals,

leading to a perceived imbalance. However, K2-95

is only weakly active so while a selection bias may

exist, it is unlikely to be the sole reason.

Measuring the stellar UV activity and the planet’s

mass will allow to determine whether the reason behind

the large radii is inflation due to strong UV irradiation
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Figure 8. Planet radius as a function of the host star mass (left) and received radiation (right), comparing our discovery

K2-95 (red star) to planet detections in open clusters (orange hexagons), ground-based surveys (blue diamonds), space-

based (Kepler+K2) surveys (green squares), and revised values for several Kepler planets from Gaidos et al. (2016)

(black circles). Similar to Mann et al. (2016a), only stellar radii below 0.5 R� and periods below 100 d were included.

Two exceptions to those criteria are RV-planet GJ 3470b and K2-33b which got added due to their similarity despite

a larger host star radius. All RV detections and inflated planets are labelled.

and/or initial heat. If that were the case, they could be

seen as outliers of the general planet mass-radius relation

and might be similar to GJ 436b, a Neptune-sized planet

first detected by RV measurements (Butler et al. 2004)

that is showing visible transits (Gillon et al. 2007) and

appears to evaporate (Ehrenreich et al. 2015). However,

as it can be seen in Figure 8 on the right, GJ 436b receives

several times of K2-95b’s radiation so it is questionable

whether this may apply here. Both cluster detections

also orbit noticeably smaller stars than the larger Nep-

tunian planets.

Besides this anomaly, K2-95b is also intriguing for a

number of other reasons, especially for having a well-

determined distance, (young) age and metallicity. Only

very few planets are known around relatively young stars

and new detections will contribute towards establishing

a more accurate timeline of planetary development.

Assuming a circular orbit - considering the transit du-

ration shows no indication of ellipticity a valid simplifica-

tion - and using the mass-radius relation from Wolfgang

& Lopez (2015), we calculate the radial velocity ampli-

tude to 6.8±1.8 m s−1. While an accuracy of m s−1 is

entirely feasible today with instruments like HIRES or

HARPS, the target is too faint to realistically achieve this

with today’s telescopes in reasonable observing times.

However, future dedicated infrared spectrographs such

as IRD and HPF (Kotani et al. (2014) and Mahadevan

et al. (2012), respectively) will allow the determination

of the planet’s mass. This in turn will also provide ad-

ditional data for the calibration of the mass-radius rela-

tion of Neptune-sized gas planets. Next-generation large

telescopes such as the E-ELT or the TMT may enable a

detailed study of the planet’s atmosphere.

As an alternative to spectroscopy, multi-band photom-

etry enables a more detailed study of the planet, even

for stars that are too faint for atmosphere spectroscopy.

Depending on the photometric band, the transit eclipse

depth may vary due to Rayleigh scattering or varying

opacities which allows to model the atmosphere (Mis-

lis et al. 2010; Southworth et al. 2012; Mancini et al.

2013; Ciceri et al. 2016). While this is possible to do

with single-band photometric instruments, simultaneous

multi-band capture with GROND (Greiner et al. 2008)

or the upcoming 3 channel imager 3KK at Mt. Wen-

delstein (Lang-Bardl et al. 2010) would be much more

advantageous.

6. SUMMARY
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We report on the discovery of a Neptune-sized planet

in the Beehive cluster (Praesepe) that orbits a cool dwarf

star. Discussing and subsequently ruling out each possi-

ble false-positive detection scenario, we validate the plan-

etary nature of this candidate. Using detailed follow-up,

including ground-based transit recording, spectroscopy

and high-resolution imaging, we characterize both the

host star and its planet. We noticed a radius anomaly

for this planet and the previously detected K2-25b, both

planets around M dwarfs in clusters. Both of them pos-

sess radii that are in a region seemingly unpopulated by

planets orbiting comparable field stars. Detailed study

and future observations will reveal whether this is due to

different planet formation or evolution in open clusters.

We thank the staff of the Wendelstein observatory for

technical help and strong support during the data acqui-

sition, including observing the target for us. We espe-

cially thank Ulrich Hopp for his constructive input dur-

ing and after observations.

The research of J.E.S was supported by an appoint-

ment to the NASA Postdoctoral Program at NASA Ames

Research Center, administered by Universities Space Re-

search Association through a contract with NASA.

E.A.P acknowledges support through a Hubble Fellow-

ship.

Some of the data presented herein were obtained at the

W.M. Keck Observatory (which is operated as a scientific

partnership among Caltech, UC, and NASA) and at the

Infrared Telescope Facility (IRTF, operated by UH un-

der NASA contract NNH14CK55B). The authors wish

to recognize and acknowledge the very significant cul-

tural role and reverence that the summit of Maunakea

has always had within the indigenous Hawaiian commu-

nity. We are most fortunate to have the opportunity to

conduct observations from this mountain.

Based on observations obtained at the Gemini Obser-

vatory, which is operated by the Association of Universi-

ties for Research in Astronomy, Inc., under a cooperative

agreement with the NSF on behalf of the Gemini partner-

ship: the National Science Foundation (United States),

the National Research Council (Canada), CONICYT

(Chile), Ministerio de Ciencia, Tecnoloǵıa e Innovación
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Douglas, S. T., Agüeros, M. A., Covey, K. R., et al. 2014, ApJ,

795, 161

Dressing, C. D., & Charbonneau, D. 2015, ApJ, 807, 45

Ehrenreich, D., Bourrier, V., Wheatley, P. J., et al. 2015, Nature,

522, 459

Espinoza, N., & Jordán, A. 2015, MNRAS, 450, 1879

Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J.

2013, PASP, 125, 306

Fossati, L., Bagnulo, S., Landstreet, J., et al. 2008, A&A, 483, 981

Gilliland, R. L., Brown, T. M., Guhathakurta, P., et al. 2000,

ApJL, 545, L47

Gillon, M., Pont, F., Demory, B.-O., et al. 2007, A&A, 472, L13

Green, G. M., Schlafly, E. F., Finkbeiner, D. P., et al. 2015, ApJ,

810, 25

Greiner, J., Bornemann, W., Clemens, C., et al. 2008, PASP, 120,

405

Haisch, K. E., Jr., Lada, E. A., & Lada, C. J. 2001, ApJL, 553,

L153

Hambly, N. C., Steele, I. A., Hawkins, M. R. S., & Jameson, R. F.

1995, A&AS, 109,



14

Henry, G. W., Marcy, G. W., Butler, R. P., & Vogt, S. S. 2000,

ApJL, 529, L41
Henry, T. J., Jao, W.-C., Subasavage, J. P., et al. 2006, AJ, 132,

2360

Hopp, U., Bender, R., Grupp, F., et al. 2014, Proc. SPIE, 9145,
91452D

Horch, E. P., Veillette, D. R., Baena Gallé, R., et al. 2009, AJ,
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Lépine, S., & Simon, M. 2009, AJ, 137, 3632
van Leeuwen, F. 2009, A&A, 497, 209

Madsen, S., Dravins, D., & Lindegren, L. 2002, A&A, 381, 446

Mahadevan, S., Ramsey, L., Bender, C., et al. 2012, Proc. SPIE,
8446, 84461S

Majaess, D. J., Turner, D. G., Lane, D. J., & Krajci, T. 2011,

Journal of the American Association of Variable Star Observers
(JAAVSO), 39, 219

Mancini, L., Ciceri, S., Chen, G., et al. 2013, MNRAS, 436, 2
Mandel, K., & Agol, E. 2002, ApJL, 580, L171

Mann, A. W., Brewer, J. M., Gaidos, E., Lépine, S., & Hilton,
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