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A Low T Regulatory Cell Response May Contribute to
Both Viral Control and Generalized Immune Activation in
HIV Controllers
Peter W. Hunt1*, Alan L. Landay2, Elizabeth Sinclair1, Jeffrey A. Martinson2, Hiroyu Hatano1, Brinda

Emu1, Philip J. Norris1,3, Michael P. Busch1,3, Jeffrey N. Martin1, Cicely Brooks2, Joseph M. McCune1,

Steven G. Deeks1

1 Departments of Medicine and Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America, 2 Department of

Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America, 3 Blood Systems Research Institute, San Francisco, California,

United States of America

Abstract

HIV-infected individuals maintaining undetectable viremia in the absence of therapy (HIV controllers) often maintain high
HIV-specific T cell responses, which has spurred the development of vaccines eliciting HIV-specific T cell responses.
However, controllers also often have abnormally high T cell activation levels, potentially contributing to T cell dysfunction,
CD4+ T cell depletion, and non-AIDS morbidity. We hypothesized that a weak T regulatory cell (Treg) response might
contribute to the control of viral replication in HIV controllers, but might also contribute to generalized immune activation,
contributing to CD4+ T cell loss. To address these hypotheses, we measured frequencies of activated (CD38+ HLA-DR+),
regulatory (CD4+CD25+CD127dim), HIV-specific, and CMV-specific T cells among HIV controllers and 3 control populations:
HIV-infected individuals with treatment-mediated viral suppression (ART-suppressed), untreated HIV-infected ‘‘non-
controllers’’ with high levels of viremia, and HIV-uninfected individuals. Despite abnormally high T cell activation levels,
controllers had lower Treg frequencies than HIV-uninfected controls (P = 0.014). Supporting the propensity for an unusually
low Treg response to viral infection in HIV controllers, we observed unusually high CMV-specific CD4+ T cell frequencies and
a strong correlation between HIV-specific CD4+ T cell responses and generalized CD8+ T cell activation levels in HIV
controllers (P#0.001). These data support a model in which low frequencies of Tregs in HIV controllers may contribute to an
effective adaptive immune response, but may also contribute to generalized immune activation, potentially contributing to
CD4 depletion.
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Introduction

The HIV vaccine field has returned ‘‘back to basics’’ after a T

cell-mediated immunity vaccine recently failed to prevent HIV

infection and actually increased the risk of infection in important

subgroups of individuals [1]. Part of this process is a re-

examination of the mechanisms by which some HIV-infected

individuals spontaneously control viral replication in the absence

of antiretroviral therapy. These HIV controllers represent fewer

than 1% of chronically HIV-infected individuals and maintain

clinically undetectable plasma HIV RNA levels (operationally

defined as ,75 copies/ml) in the absence of antiretroviral

medications [2,3,4,5]. Several functional immunologic and host

genetics studies suggest that high levels of HIV-specific CD4+ and

CD8+ T cells with preserved function are likely to play an

important role in the suppression of viral replication in most of

these individuals [6,7,8,9,10,11,12,13,14,15,16,17,18,19], obser-

vations which have spurred the development of T cell immunity

vaccines for HIV. However, the mechanisms of viral control in

these individuals are likely to be heterogeneous as many HIV

controllers lack a protective HLA type, have very low frequencies

of HIV-specific T cells, or maintain control of viral replication

even after documented escape from HLA-restricted epitopes

[14,20,21,22].

It is important to recognize this heterogeneity as some

mechanisms of viral control may prevent both initial infection

and clinical progression better than others. For example, high T

cell activation and low regulatory T cell (Treg) responses in highly

exposed HIV-uninfected individuals have been consistently

associated with an increased risk of subsequent HIV infection

[23,24,25,26,27]. Higher T cell activation has also been

independently associated with more rapid CD4+ T cell decline

and clinical progression to AIDS in untreated HIV-infected

individuals [28,29,30,31,32,33]. This potentially harmful effect of
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activation has even been observed among controllers [34].

Persistent immune activation in HIV controllers may also

contribute to accelerated atherosclerosis and other non-AIDS

morbidities linked to inflammation [35]. Understanding why some

mechanisms of viral control are associated with negative

inflammatory consequences is therefore an important issue for

HIV vaccine development.

We hypothesized that an unusually low Treg response to viral

infection might allow some HIV controllers to maintain strong

antiviral immune responses at the cost of at the cost of abnormally

high generalized immune activation, potentially contributing to

CD4+ T cell decline even in the absence of clinically detectable

viremia. To address these hypotheses, we measured frequencies

of activated (CD38+ HLA-DR+), regulatory (CD4+CD25+
CD127dim), HIV-specific, and CMV-specific T cells in a large

cohort of HIV controllers. We compared these data to those

observed in three well characterized control populations: HIV-

infected individuals with treatment-mediated viral suppression,

untreated HIV-infected ‘‘non-controllers’’ with high levels of

viremia, and HIV-uninfected individuals.

Results

Characteristics of participants
A total of 52 HIV controllers with plasma HIV RNA levels ,75

copies/ml in the absence of antiretroviral therapy, 176 ART-

suppressed participants, 72 untreated HIV-infected non-controllers

with plasma HIV RNA levels .10,000 copies/ml, and 38 HIV-

uninfected participants contributed to these studies. Most were men

between 40 and 50 years of age, although compared to other HIV-

infected groups, HIV controllers were more likely to be women

(P = 0.006, Table 1). The HIV controllers were also much more

likely to be hepatitis C virus (HCV) sero-positive than the other

HIV-infected groups (70% vs. 38%, P,0.001). While all HIV

controllers had plasma HIV RNA levels ,75 copies/ml, 19 (37%)

had an episode of a clinically measurable plasma HIV RNA level

.75 copies/ml in the previous year. While the HIV controllers had

significantly higher median CD4+ T cell counts than the ART-

suppressed (683 vs. 449 cells/mm3, P,0.001) and the non-

controllers (683 vs. 251 cells/mm3, P,0.001), 9 HIV controllers

(17%) had CD4+ T cell counts below 350 cells/mm3 and 4 (7%) met

the clinical definition of AIDS (one with Kaposi’s sarcoma and three

with CD4+ T cell counts persistently ,200 cells/mm3) despite

maintaining viral suppression in the absence of therapy.

HIV controllers have low Treg frequencies despite higher
T cell activation

We and others have previously reported that most HIV

controllers maintain strikingly high frequencies of CD4+ and

CD8+ T cells producing interferon (IFN)-c and interleukin (IL)-2 in

response to HIV Gag peptides [14,19,22], consistent with their

potential role in the control of viral replication. However, as our

group has recently reported in a smaller subset of participants

(n = 30) [34], HIV controllers also had significantly higher

frequencies of activated (CD38+ HLA-DR+) CD8+ T cells

(Figure 1A) and CD4+ T cells (Figure 1B) than HIV-uninfected

participants (P,0.001 for both), even when restricting to HCV-

uninfected individuals (P,0.001). HIV controllers also had higher

frequencies of activated CD8+ T cells than ART-suppressed

participants (P = 0.017), even after adjustment for HCV sero-status,

CD4+ T cell count, and gender (P = 0.056). As we have previously

reported [34], higher frequencies of activated CD4+ and CD8+ T

cells were associated with greater CD4+ T cell depletion in HIV

controllers (P,0.001 for both, Figures S1A and S1B).

We hypothesized that a low Treg response to HIV infection

might explain why most HIV controllers maintain high HIV-

specific T cell responses but also high generalized T cell activation

levels. To assess this possibility, we sampled cryopreserved

peripheral blood mononuclear cells (PBMC) from 20 HIV

controllers, 20 ART-suppressed, and 20 untreated non-controllers,

and 34 healthy HIV–uninfected controls and compared the

frequencies of CD25+CD127dim CD4+ Tregs between groups.

Despite having higher frequencies of activated CD4+ and CD8+ T

cells than HIV-uninfected controls, the HIV controllers had a lower

median frequency of Tregs (3.9% vs. 4.9%, P = 0.014, Figure 1C).

The HIV controllers also had a lower median frequency of Tregs

than the ART-suppressed (3.9% vs. 5.0%, P = 0.008) and non-

controllers (3.9% vs. 6.8%, P,0.001). While there was no evidence

for a difference in Treg frequencies by gender within either group,

among both HIV-uninfected and HIV-infected individuals, lower

CD4+ T cell counts were associated with higher frequencies of

regulatory T cells (rho: -0.60, P,0.001). To account for differences

in absolute CD4+ T cell counts, we compared absolute regulatory T

cell counts between groups. While absolute regulatory T cell counts

were similar between HIV-infected groups, the HIV controllers

continued to have a lower median CD25+CD127dim regulatory

CD4+ T cell count than HIV-uninfected participants (33 vs. 40

cells/mm3, P = 0.004).

Table 1. Characteristics of Participants Contributing to T Cell Activation and HIV-specific T Cell Response Analyses.

Characteristic

HIV-uninfected
N = 38
Median (IQR)

HIV-infected
Controllers
VL,75 copies/ml
N = 52
Median (IQR)

HIV-infected
Antiretroviral-treated
VL,75 copies/ml
N = 176
Median (IQR)

HIV-infected
Untreated
VL.104 copies/ml
N = 72
Median (IQR)

Age, years 43 (37 to 42) 48 (45 to 52) 46 (41 to 52) 44 (40 to 49)

Female gender, no. (%) 8 (22) 16 (31) 28 (16) 12 (17)

CD4 count, cells/mm3 - 683 (466 to 942) 449 (302 to 652) 251 (169 to 395)

Plasma HIV RNA level, log10 copies/ml - ,1.9 ,1.9 4.5 (4.2 to 4.9)

Hepatitis C seropositive, no. (%) - 24 (71)1 47 (27) 23 (36)

Duration of HIV Diagnosis, years - 16 (10 to 19) 13 (8 to 17) 13 (9 to 16)

VL, Plasma HIV RNA Level.
1Hepatitis C virus serology was unavailable for 18 of 52 controllers.
doi:10.1371/journal.pone.0015924.t001

Tregs and T Cell Activation in HIV Controllers
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It is surprising that HIV controllers have lower Treg frequencies

and counts than HIV-uninfected individuals since higher levels of

antigen stimulation and inflammation would be expected to cause

greater expansion of Tregs [36]. Supporting this hypothesis,

higher plasma HIV RNA levels were strongly associated with

higher frequencies of Tregs among HIV-infected non-controllers

(rho: 0.72, P,0.001). Furthermore, among HIV controllers,

higher frequencies of regulatory T cells were associated with

higher frequencies of activated CD4+ T cells (rho: 0.49, P = 0.03)

and activated CD8+ T cells (rho: 0.46, P = 0.04, Figure 1D). Based

on these latter observations, we would have expected to observe

higher Treg frequencies in HIV controllers than in HIV-

uninfected individuals as a consequence of greater antigen

stimulation and T cell activation. The observation that HIV

controllers actually have lower Treg frequencies than HIV-

uninfected individuals thus suggests that HIV controllers have

an unusually weak Treg response to HIV infection, potentially

contributing to the high HIV-specific T cell responses and

generalized T cell activation observed.

Strong relationship between adaptive HIV-specific
immune response and generalized T cell activation in HIV
controllers

Since unusually low Treg responses in HIV controllers might

allow for both stronger adaptive HIV-specific immune responses

and generalized T cell activation, we hypothesized that there

would be a strong relationship between these two latter factors.

Among HIV controllers, higher frequencies of CD4+ T cells

producing both IFN-c and IL-2 in response to stimulation with

HIV Gag peptides were strongly associated with higher frequen-

cies of activated CD4+ T cells (rho: 0.36, P = 0.012) and activated

CD8+ T cells (rho: 0.55, P,0.001, Figure 2A). Higher frequencies

of HIV Env-specific CD4+ T cell responses were also associated

with higher frequencies of activated CD8+ T cells (n = 28,

P = 0.46, P = 0.014, Figure 2B). However, there was no evidence

for a relationship between Pol-specific or Nef-specific CD4+ T cell

responses and the frequency of activated CD4+ or CD8+ T cells.

HIV controllers with higher plasma HIV-specific antibody levels

(as assessed by de-tuned ELISA) also had higher frequencies of

Figure 1. HIV Controllers Have Abnormally Low Treg Frequencies Despite Abnormally High T Cell Activation. The frequency of
activated (CD38+ HLA-DR+) CD8+ T cells (A) and CD4+ T cells (B) in fresh whole blood was compared between 52 HIV-infected untreated HIV
controllers, 37 HIV-uninfected participants, 176 HIV-infected participants with plasma HIV RNA levels ,75 copies/ml on antiretroviral therapy, and 64
untreated HIV-infected participants with plasma HIV RNA levels .10,000 copies/ml. Cryopreserved PBMC from 34 healthy HIV-uninfected participants
in ACTG 5015 (HIV-), 20 HIV controllers, 20 antiretroviral therapy (ART)-treated participants with plasma HIV RNA levels ,75 copies/ml and 20
untreated HIV-infected participants with plasma HIV RNA levels .10,000 copies/ml were also evaluated for the frequency of CD4+ Tregs
(CD25+CD127dim). PBMC preparations were first gated on lymphocytes based on their forward and side scatter properties, then gated for CD4+

lymphocytes, then CD4+ lymphocytes positive for CD25 and only dimly expressing CD127, results expressed as a percentage of the parent CD4+

population (C). HIV controllers had lower frequencies of Tregs than HIV-uninfected controls and both other HIV-infected groups (D). Among HIV
controllers, higher frequencies of activated CD8+ T cells were associated with higher frequencies of Tregs (E). The curve represents the best-fit linear
regression model.
doi:10.1371/journal.pone.0015924.g001

Tregs and T Cell Activation in HIV Controllers
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activated CD4+ T cells (rho: 0.46, P = 0.025) and CD8+ T cells

(rho: 0.60, P = 0.002, Figure 2D).

The frequency of HIV-specific CD8+ T cells were less consistently

associated with the frequency of activated T cells. In general, there

was little evidence for an association between the frequency of HIV-

specific CD8+ T cells producing both IFN-c and IL-2 and the

frequency of activated CD4+ or CD8+ T cells. However, higher

frequencies of activated CD8+ T cells tended to be associated with

higher frequencies of CD8+ T cells producing IFN-c but not IL-2 in

response to HIV Nef (rho: 0.42, P = 0.025, Figure 2C), Pol (rho: 0.39,

P = 0.045), and Gag peptides (rho:0.22, P = 0.14).

HIV controllers also have high CMV-specific CD4+ T cell
responses

We next hypothesized that an unusually low Treg response in

HIV controllers might also contribute to higher adaptive immune

responses directed at other chronic viral infections. We chose to

focus on cytomegalovirus (CMV) since CMV is nearly ubiquitous

in HIV infected individuals, is typically controlled to nearly

undetectable levels in individuals with intact immune systems, yet

elicits high frequencies of CMV-specific T cells even in HIV-

uninfected individuals [37,38]. To address this, we compared

CMV-specific T cell responses between HIV-uninfected but

CMV-sero-positive controls, HIV controllers, and untreated

HIV-infected participants with varying plasma HIV RNA levels

(75–2000, 2001–10,000, and .10,000 copies/ml). The HIV

controllers had higher CMV pp65-specific IFN-bright CD4+ T

cell responses than HIV-uninfected controls (P,0.001, Figure 3A).

While HIV controllers had similar frequencies of pp65-specific

IFN-bright CD4+ T cells as untreated HIV-infected participants

maintaining low but detectable plasma HIV RNA levels between

75 and 2,000 copies/ml, they had significantly higher frequencies

Figure 2. Relationship between Adaptive HIV-specific Immune Responses and CD8+ T Cell Activation in HIV Controllers. The
association between the frequency of activated (CD38+ HLA-DR+) CD8+ T cells and the frequency of CD4+ T cells producing both IFN-c and IL-2 after
stimulation with overlapping HIV Gag (A) or HIV Env peptides (B), CD8+ T cells producing only IFN-c after stimulation with overlapping Nef peptides
(C), and plasma HIV-specific antibody levels (as assessed by de-tuned ELISA, D) were assessed among HIV Controllers. The curves in each plot
represent best-fit linear or quadratic regression models using untransformed data.
doi:10.1371/journal.pone.0015924.g002

Tregs and T Cell Activation in HIV Controllers
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of pp65-specific IFN-bright CD4+ T cells than HIV-infected

participants with plasma HIV RNA levels .10,000 copies/ml

(P = 0.003). Across all 4 groups of untreated HIV-infected

participants, lower plasma HIV RNA levels were associated with

higher pp65-specific CD4+ T cell frequencies (P = 0.001). Even

after adjustment for age, HIV controllers continued to have higher

pp65-specific CD4+ T cell responses than HIV-uninfected

participants (P = 0.003) and untreated HIV-infected participants

with plasma HIV RNA levels .10,000 copies/ml (P = 0.016).

Notably, HIV controllers with the highest frequencies of pp65-

specific CD4+ T cells also had the highest frequencies of Gag-

specific CD4+ T cells (rho: 0.32, P = 0.024, Figure 3B). Similar

trends were observed when comparing the frequency of CMV-

specific IFN-c+ IL-2+ CD4+ T cells across groups in a smaller

subset of individuals (data not shown). There was no evidence for a

consistent relationship between pp65-specific CD8+ T cell

responses and plasma HIV RNA levels among untreated HIV-

infected individuals.

Discussion

A wealth of data now suggest that most HIV controllers

maintain control of viral replication at least in part through potent

HIV-specific T cell responses [6,7,8,9,10,11,12,13,14,20,22],

observations that have spurred the development of vaccines that

elicit T cell responses against HIV. However, the mechanisms

responsible for a strong HIV-specific T cell response in HIV

controllers may not be without important consequences for the

immune system. As our group recently reported, most HIV

controllers have abnormally high levels of immune activation,

which is associated with significant CD4+ T cell depletion and

even AIDS despite continued control of virus replication [34]. In

the current study, we have expanded upon this prior work and

assessed potential mechanisms to explain this paradox. First,

despite abnormally high T cell activation levels, HIV controllers

have significantly lower Treg frequencies than HIV-uninfected

individuals. Second, we observed a strikingly strong relationship

between adaptive HIV-specific CD4+ T cell and antibody

responses and generalized T cell activation in HIV controllers.

Third, we observed unusually high CMV-specific CD4+ T cell

responses in HIV controllers, suggesting that their ability to mount

strong T cell responses to chronic viral infections may not be

specific for HIV. Collectively, these observations suggest that a low

Treg response may allow some HIV controllers to maintain viral

control with a strong cytotoxic HIV-specific T cell response, but

might also contribute to the negative inflammatory consequences

of generalized T cell activation in this setting (Figure 4).

Multiple mechanisms have been proposed to explain why HIV

controllers maintain low to undetectable levels of viral replication in

the absence of therapy. While it is possible that some HIV

controllers may simply be infected with defective viruses [39], most

harbor replication competent viruses that lack gross deletions or

lethal mutations [40,41]. Several lines of evidence suggest an

important role of HIV-specific T cells in the control of viral

replication. For example, most HIV controllers maintain unusually

high frequencies of HIV-specific CD4+ and CD8+ T cells

[6,7,8,9,10,11,12,13,14,19], as well as HIV-specific CD8+ T cells

with greater proliferative and cytotoxic potential [8,12,42]. While

strong HIV-specific T cell responses could conceivably be a

consequence of poor viral fitness [43,44], HIV controllers are

highly enriched for protective class I HLA alleles (i.e., B5701) and

polymorphisms associated with HLA C expression [15,16,17,18],

suggesting that CD8+ T cell responses may play an important role

in the control of HIV replication. Some HIV controllers also have

high frequencies of CD4+ T cells with cytotoxic activity [45,46].

However, many HIV controllers lack a protective HLA type, have

very low frequencies of HIV-specific T cells, or maintain control of

viral replication even after documented escape from HLA-restricted

Figure 3. HIV Controllers Have High Frequencies of CMV-specific T Cells. (A) The frequency of CD4+ T cells producing IFN-c after incubation
with CMV pp65 peptides in vitro (representative flow plot depicted in Figure 1 from reference [85]) was assessed in HIV-uninfected but CMV-
seropositive controls, HIV controllers, and untreated HIV-infected participants with varying degrees of detectable viremia (75–2000, 2001–10,000, and
.10,000 copies/ml). The HIV controllers had higher CMV pp65-specific IFN-bright CD4+ T cell responses than HIV-uninfected controls and HIV-
infected participants with high levels of viremia. HIV controllers with higher CMV pp65-specific CD4+ T cell responses also had higher HIV Gag-specific
CD4+ T cell responses (curve represents linear regression model on untransformed data, B).
doi:10.1371/journal.pone.0015924.g003

Tregs and T Cell Activation in HIV Controllers

PLoS ONE | www.plosone.org 5 January 2011 | Volume 6 | Issue 1 | e15924



epitopes [14,20,21,22]. In these individuals, non-T cell-mediated

mechanisms of control are likely. For example, HIV controllers are

highly enriched for HLA and KIR allotypes associated with

enhanced natural killer cell responses [47,48]. Other immunologic

mechanisms and host restriction factors that are yet to be fully

characterized are also likely to play a role [16,49].

It is important to acknowledge this heterogeneity in the

mechanisms of viral control in HIV controllers as some

mechanisms are likely to be associated with more negative

inflammatory consequences than others. While other cohorts have

not observed increased T cell activation levels in HIV controllers

[50,51], these studies either included individuals with nef-deleted

viruses or only included HIV controllers maintaining normal

CD4+ T cell counts. When selecting HIV controllers solely on the

basis of their ability to control viral replication, it is clear that some

controllers eventually progress to significant levels of CD4+ T cell

depletion [5,52,53], and these individuals have the highest T cell

activation levels [34]. In the current study, we also observed that

HIV controllers with the highest HIV-specific CD4+ T cell

frequencies and antibody levels had the highest levels of

generalized T cell activation and the greatest degree of CD4+ T

cell depletion. Thus, the HIV-specific immune response and

generalized T cell activation are tightly linked in HIV controllers

and these relationships appear to be stronger than those observed

in untreated HIV-infected individuals with high levels of viral

replication [54,55]. While we cannot exclude the possibility that

higher adaptive immune responses are simply a consequence of

greater degrees of low-level viral replication - particularly in

lymphoid tissues, differences between HIV controllers in the

degree of adaptive immune responses and T cell activation may

well reflect host differences in the immune response elicited by any

given level of virus replication. The extent of microbial

translocation may be one factor modulating the response to low-

level HIV replication. As we reported previously, most HIV

controllers have abnormally high plasma lipopolysaccharide levels

[34], which might drive generalized immune activation, but also

serve as an adjuvant for HIV-specific T cell responses, particularly

in gut-associated lymphoid tissue where the majority of HIV

replication is thought to occur.

Alternatively, HIV controllers may be enriched for host genetic

factors associated with strong innate and/or weak Treg responses

to viral infection. Indeed, we found that HIV controllers had

significantly lower frequencies of CD25+CD127dim CD4+ Tregs

in peripheral blood than HIV-uninfected individuals despite much

higher levels of T cell activation. While we cannot exclude the

possibility that HIV controllers preferentially retain Tregs in

lymphoid tissues, a recent study also found low frequencies of

Tregs in tissues of HIV controllers [56]. While the specific

mechanisms mediating the unusually low Treg frequencies in HIV

controllers remain unclear, a low Treg response is likely to have

competing effects in this setting. For example, several studies have

argued that that these cells are detrimental in HIV infection by

inhibiting HIV-specific T cell responses [56,57,58,59,60,61], while

others have argued that these cells are beneficial by reducing

generalized T cell activation [62,63,64,65]. Inferring causal

relationships is particularly challenging in cross-sectional studies

of in vivo Treg frequency in HIV-infected individuals since Tregs

may be induced and expanded by viral replication and resultant

inflammation [36], but once induced, act to decrease inflamma-

tion. Accordingly, we observed that HIV controllers with higher

levels of immune activation had higher frequencies of Tregs,

suggesting that inflammation was driving the induction of Tregs.

However, HIV controllers had lower Treg frequencies than HIV-

uninfected individuals despite having much higher T cell

activation, suggesting a strikingly low Treg response for the

degree of immune activation observed. This unusually low Treg

response in HIV controllers is therefore likely to be a significant

contributor to the high generalized T cell activation and HIV-

specific T cell responses observed. These results are consistent with

a recent report of decreased inhibitory immunoregulatory receptor

CTLA-4 expression on CD4+ T cells in HIV controllers [66].

Our results differ from another recent report describing

preserved Treg frequencies (as defined by FoxP3 expression) in

the peripheral blood of a much smaller cohort of 12 HIV

controllers [50]. However, FoxP3 can be expressed early in the

activation of effector CD4+ T cells without any regulatory

function [67,68,69,70,71,72], so the preserved FoxP3 expression

described in that study may simply reflect the presence of recently

Figure 4. Theoretical Model to Describe Positive and Negative Consequences of Low Treg Frequencies in HIV Controllers. A
theoretical model to describe the potential positive and negative consequences of low Treg frequencies in HIV controllers is presented. While a low
Treg response might increase HIV-specific T cell responses, contributing to the clearance of HIV-infected cells and the maintenance of extremely low
levels of viral replication, a low Treg response might also increase generalized T cell activation, contributing to CD4+ T cell decline and other
inflammation-associated comorbidities even in the presence of very low levels of viral replication.
doi:10.1371/journal.pone.0015924.g004

Tregs and T Cell Activation in HIV Controllers
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activated effector CD4+ T cells, particularly since the co-

expression of CD25 and FoxP3 in CD4+ T cells was not

presented. Low expression of CD127, as measured in our study,

may help distinguish Tregs from activated T cells and is now

routinely used with CD25 to quantify the frequency of Tregs with

suppressor function [73,74,75]. It should be noted that among

HIV-infected individuals with high levels of viral replication,

gating on CD4+/CD25+/CD127dim may include some cells that

do not express FoxP3 and thereby lack regulatory function [76].

However, Treg frequencies defined by CD4+/CD25+/CD127dim

and CD4+/CD25hi/FoxP3+ are highly correlated in HIV-infected

individuals with undetectable plasma HIV RNA levels (r = 0.91,

P,0.001) [76]. Thus, the low frequency of CD4+/CD25+/

CD127dim cells we observed in HIV controllers relative to HIV-

uninfected controls and ART-suppressed individuals (all groups

with undetectable viremia) almost certainly reflects a low

frequency of Tregs in HIV controllers. Lastly, even if HIV

controllers had similar levels of Tregs to HIV-uninfected

individuals as has been suggested in another recent report using

HIV controller samples from the same cohort [77], they would still

have unusually low Treg frequencies relative to the expansion of

activated T cells observed.

Consistent with the hypothesis that HIV controllers are

predisposed to a weak Treg response to chronic viral infections,

we observed significantly higher CMV-specific CD4+ T cell

responses in HIV controllers than non-controllers and HIV-

uninfected individuals. While we cannot exclude the possibility

that greater CMV shedding explains the higher CMV-specific

CD4+ T cell responses in HIV controllers, CMV shedding tends

to be lower in individuals with higher CD4+ T cell counts and

lower plasma HIV RNA levels [78]. Thus, the expansion of CMV-

specific CD4+ T cells in HIV controllers is unlikely to be driven by

higher levels of antigen and is more likely to reflect a more robust

proliferation of CD4+ T cells in response to CMV infection. HIV

controllers co-infected with hepatitis C virus (HCV) might also

exhibit stronger HCV-specific responses than individuals with

higher levels of HIV replication [79]. While lower levels of HIV

replication may allow for preservation of antigen-specific immune

responses, the high CMV-specific CD4+ T cell frequency in HIV

controllers relative to HIV-uninfected CMV-seropositive individ-

uals cannot be explained by this mechanism alone. While another

recent report suggested that HLA B5701+ elite controllers

maintain similar CMV- and HCV-specific CD8+ T cell responses

as non-controllers, CD4+ T cell responses were not assessed in that

study [80], and epidemiologic data suggest that HIV controllers

are much more likely to spontaneously clear HCV than viremic

HIV-infected individuals and HIV-uninfected individuals infected

with HCV [81].

In summary, we have observed that while most elite

controllers maintain high HIV-specific T cell responses, most

also have abnormally high generalized T cell activation levels,

which may occasionally contribute to significant CD4 depletion

even in the absence of clinically detectable viremia. Further-

more, those with the highest HIV-specific T cell responses have

the highest levels of generalized immune activation, suggesting

possible inflammatory consequences of T cell-mediated control

of HIV replication. An unusually low regulatory T cell response

to HIV infection may well explain this phenomenon. Perhaps the

best immune response to HIV infection is one that maintains

control of viral replication while minimizing negative inflamma-

tory consequences. Some elite controllers are able to maintain

this balance and understanding the mechanisms of control in

these individuals is likely to have important implications for HIV

vaccine research.

Materials and Methods

Participants
For comparison of HIV-specific immune responses and T

cell activation levels. HIV-infected adults were sampled from

the Study of the Consequences of the Protease Inhibitor Era

(SCOPE), a clinic-based cohort of over 1000 chronically HIV-

infected individuals at the University of California San Francisco.

From this cohort, we evaluated three distinct groups of HIV-

infected individuals: (1) HIV controllers, defined as HIV-

seropositive individuals maintaining plasma HIV RNA levels

,75 copies/ml in the absence of therapy (episodes of clinically

detectable viremia in the previous year were allowed if they were

followed by undetectable values); (2) ‘‘ART-suppressed’’

individuals maintaining plasma HIV RNA levels ,75 copies/ml

on antiretroviral therapy; and (3) untreated HIV ‘‘non-controllers’’

with plasma HIV RNA levels above 10,000 copies/mL. T cell

activation data have been previously reported on 30 of the 52 HIV

controllers and all of the ART-suppressed and untreated patients

in the current report [34], HIV-specific T cell response data have

also been reported on these individuals recently [14]. HIV-

uninfected individuals were also sampled from a study of the

immunologic determinants of atherosclerosis and have been

reported on previously [14,82].

For comparisons of CMV-specific T cell responses

between groups. In addition to the above participants,

untreated HIV-infected participants with plasma HIV RNA

levels between 75 and 10,000 copies/ml were sampled from the

SCOPE cohort. HIV-negative individuals were also sampled from

a trial of post-exposure prophylaxis following a non-occupational

exposure to HIV [83]. Only CMV-seropositive HIV-negative

participants were included in the analyses of CMV-specific T cell

responses.

For comparison of Tregs between groups. Given limited

PBMC availability, cryopreserved PBMC from different SCOPE

participant-timepoints were sampled for the measurement of both

Treg frequency and T cell activation levels in 20 HIV controllers,

20 HAART-suppressed participants, and 20 non-controllers. Only

specimens on participants with CD4+ T cell counts .350 cells/

mm3 were selected for these analyses to ensure adequate overlap

between groups. For the Treg analyses, cryopreserved PBMC

were also sampled from 34 healthy HIV-uninfected controls from

the AIDS Clinical Trials Group 5015 study [84].

Ethics Statement
All participants provided written informed consent and this

research was approved by the institutional review board of the

University of California, San Francisco.

Laboratory Studies
T cell activation. Freshly collected, EDTA-anticoagulated

whole blood was analyzed by four-color flow cytometry on a

Beckman Coulter Epics XL flow cytometer. Blood was stained on

a Beckman Coulter Prep Plus and lysed on a Beckman Coulter

TQ Prep. Activated (CD38+/HLA-DR+) T cells were identified

with FITC-conjugated anti-HLA-DR, PE-conjugated anti-CD38

(both from BD Bioscience), PC5-conjugated anti-CD3 and PE-

texas red conjugated anti-CD4 or CD8 (Beckman Coulter). The

activation markers CD38 and HLA-DR were gated from the

CD3+CD4+ or CD3+CD8+ cells on a 2-dimensional dot plot

where quadrant gates, set on an isotype control, were used to

define positive and negative populations. T cell activation levels

were reported as the percentage of CD4+ and CD8+ T cells

expressing both HLA-DR and CD38.
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Cytokine flow cytometry. Fresh whole blood was stimulated

with overlapping peptide pools (15-amino-acid peptides

overlapping by 11 amino acids) of the HIV-1 p55 Gag, Pol, Nef,

Env, or CMV pp65 protein (BD Biosciences, San Jose, CA) for 6 h

in the presence of brefeldin A, as reported recently [14].

Unstimulated cells and superantigen staphylococcal enterotoxin

B (Sigma Aldrich)-stimulated cells were used as negative and

positive controls, respectively. Cells were fixed, permeabilized, and

stained with FITC- conjugated anti-interferon (IFN)-c, PE-

conjugated anti-IL-2, APC-conjugated anti-CD3 (all BD

Bioscience) and PC5-conjugated anti-CD4 (Beckman Coulter)

and data was collected on a Becton Dickinson FACSCalibur. The

fractions of CD4+ and CD8+ T cells secreting IFN-c and/or IL-2

were determined using FlowJo software (TreeStar). In our primary

analysis of CMV-specific T cell responses, we focused on cells that

stained brightly for IFN-c. The ‘‘IFN-c bright’’ gate was set 3

decades above the IFN-c-negative population in non-stimulated

control, as previously described (representative flow plot depicted

in Figure 1 from reference [85]). Cells were initially defined as

lymphocytes based on forward- and side-scatter profiles. CD4+
and CD8+ anchor gates were drawn on the CD3+CD4+ and

CD3+CD4- populations, respectively. At least 10,000 CD3+CD4+
and CD3+CD4- events were collected for the majority of subjects;

data were excluded if ,4,000 events were collected. Cytokine

secretion levels in the negative control were subtracted to correct

for nonspecific cytokine secretion.
Treg frequencies. Cryropreserved PBMC were evaluated

using 4-color flow cytometry. Mouse anti-human monoclonal

antibodies (CD4, CD8, CD25, CD45RO, and CD127) conjugated

to fluorescein isothiocyanate (FITC), phycoerythrin (PE), PerCP,

and allophycocyanin (APC) from BD Biosciences (San Jose, CA) or

Coulter Immunology (Miami, FL) were used to stain the PBMC

preparations. Non-specific antibody binding to Fc receptors was

blocked by pre-incubation of the cells with Fcc-receptor block

(Miltenyi Biotec, Auburn, CA). All samples were evaluated within

24-hours of staining using a FACSCaliburTM flow cytometer.

Logical gating was used to identify the frequency of T regulatory

(CD4+/CD25+/CD127dim) T lymphocyte populations (Figure 1B)

[73,74,75]. Results are expressed as the percentage of the parent

CD4+ T cell population.
HIV Antibody Levels. A ‘‘de-tuned’’ enzyme immunoassay

(Organon Tecnika Vironostika [OTV], BioMerieux) was used to

measure semiquantitative HIV antibody levels on a subset of HIV

controllers [86]. The OTV is a second-generation ELISA that

detects both IgG and IgM antibodies to HIV-1 and is FDA-

approved for diagnostic testing. The less sensitive modification

involves testing 1:20,000 dilutions of plasma under abbreviated

incubation conditions and calculating a standardized optical

density (SOD) for each sample [87].

Statistical Methods. Continuous variables were compared

between groups with Kruskal Wallis tests followed by Wilcoxon

ranksum tests for pairwise comparisons. Dichotomous variables

were compared between groups with chi square and Fisher’s exact

tests. Relationships between continuous variables were assessed

with Spearman’s rank order correlation coefficients. Adjusted

differences between groups were assessed with linear regression,

calculating standard errors with heteroskedasticity-consistent

covariance matrix estimators and log-transforming outcomes

when necessary to satisfy model assumptions [88].

Supporting Information

Figure S1
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