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Apamin structure and
pharmacology revisited

Alexey I. Kuzmenkov1†, Steve Peigneur2†, Joshua A. Nasburg3†,
Konstantin S. Mineev1,4†, Maxim V. Nikolaev5,
Ernesto Lopes Pinheiro-Junior2, Alexander S. Arseniev1,4,
Heike Wulff3, Jan Tytgat2 and Alexander A. Vassilevski1,4*
1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow,
Russia, 2Toxicology and Pharmacology, KU Leuven, Leuven, Belgium, 3Department of Pharmacology,
University of California, Davis, Davis, CA, United States, 4Moscow Institute of Physics and Technology,
Moscow Region, Dolgoprudny, Russia, 5Sechenov Institute of Evolutionary Physiology and
Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia

Apamin is often cited as one of the few substances selectively acting on small-

conductance Ca2+-activated potassium channels (KCa2). However, published

pharmacological and structural data remain controversial. Here, we

investigated the molecular pharmacology of apamin by two-electrode

voltage-clamp in Xenopus laevis oocytes and patch-clamp in HEK293,

COS7, and CHO cells expressing the studied ion channels, as well as in

isolated rat brain neurons. The microtitre broth dilution method was used

for antimicrobial activity screening. The spatial structure of apamin in

aqueous solution was determined by NMR spectroscopy. We tested apamin

against 42 ion channels (KCa, KV, NaV, nAChR, ASIC, and others) and confirmed

its unique selectivity to KCa2 channels. No antimicrobial activity was detected

for apamin against Gram-positive or Gram-negative bacteria. The NMR solution

structure of apamin was deposited in the Protein Data Bank. The results

presented here demonstrate that apamin is a selective nanomolar or even

subnanomolar-affinity KCa2 inhibitor with no significant effects on other

molecular targets. The spatial structure as well as ample functional data

provided here support the use of apamin as a KCa2-selective

pharmacological tool and as a template for drug design.

KEYWORDS

apamin, Apis mellifera, bee venom, calcium-activated potassium channel, ion channel,
spatial structure

1 Introduction

Highly selective molecules that can interact with specific ion channel isoforms serve as

invaluable molecular tools for fundamental and applied pharmacology (Hille, 2001; Wulff

et al., 2019). The history of using such substances goes hand-in-hand with the discovery

and investigation of their molecular targets (Hille, 2001). Indeed, selective molecular

probes helped to identify and characterize a number of physiologically critical ion

channels (Kuzmenkov and Vassilevski, 2018). For example, marine guanidinium and
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scorpion polypeptide toxins were used in pioneering studies for

the purification of voltage-gated Na+ channels (NaV)

(Hartshorne and Catterall, 1981; Barhanin et al., 1983; Hanke

et al., 1984). Moreover, NaV are traditionally classified based on

isoform sensitivity to tetrodotoxin (Narahashi, 2008). A plethora

of other ion channel-selective compounds has been extracted

from different animal venoms (Herzig et al., 2020).

In the 1960s, Habermann examined the venom of the

honeybee Apis mellifera and purified a minor peptide

component that he named “apamin” (Habermann and Reiz,

1965; Habermann, 1972); the toxin was shown to induce

muscle spasms, jerks, and convulsions when injected into

mice (LD50 ≈ 4 mg kg−1, i.v.). The symptoms are apparently

of central origin because the toxicity increases by a factor of

1,000–10,000 and the progression of poisoning is faster in case of

i.c.v. injection, but the clinical picture stays the same

(Habermann, 1977, Habermann, 1984). Primary structure

determination showed that apamin contains 18 amino acid

residues (Haux et al., 1967; Shipolini et al., 1967), with two

intramolecular disulfide bonds (Cys1–Cys11 and Cys3–Cys15)

(Callewaert et al., 1968). Moreover, the C-terminal residue is

amidated; this post-translational modification is common for

peptide toxins from animal venoms (Kuzmenkov et al., 2015).

Studies of the spatial structure of apamin began as early as the

late 1970s, but no atomic coordinates have been deposited in the

Protein Data Bank. The first NMR study provided an erroneous

assignment of the secondary structure elements (Bystrov et al.,

1980), which was corrected in further works (Wemmer and

Kallenbach, 1983; Pease and Wemmer, 1988). The most

recent work (Le-Nguyen et al., 2007) presented both a

solution NMR structure of apamin and an X-ray structure of

its N-terminally acetylated analog, which differ in the packing of

the N-terminal region, the length of the ɑ-helix, and the χ3 angles
of the disulfide bridges. In addition, whereas apamin is

monomeric in solution, the X-ray structure is a dimer, and

that dimeric structure was deposited in the Cambridge

Crystallographic Data Centre (https://www.ccdc.cam.ac.uk;

database identifier: NIWFEF).

Apamin played a key role in the identification and

characterization of a novel subset of Ca2+-activated K+ ion

channels (KCa) (Banks et al., 1979; Lazdunski, 1983; Garcia

et al., 1991). Since the early 1980s, this toxin has been widely

utilized to differentiate KCa channels into “apamin-sensitive” and

“apamin-insensitive” because it selectively affected only the

small-conductance KCa channels (KCa2, SK2, or SKCa) and not

intermediate-conductance (KCa3.1) or large-conductance

(KCa1.1) KCa channels. (Burgess et al., 1981; Romey and

Lazdunski, 1984; Pennefather et al., 1985). After the cloning

of SK channels from rat and human brain and their expression in

Xenopus laevis oocytes, the direct activity of apamin was shown

on these molecular targets (Köhler et al., 1996; Grunnet et al.,

2001a). A number of pharmacological studies using X. laevis

oocytes and mammalian cells indicated that among the three SK

isoforms apamin was more potent on KCa2.2 (SK2 or SKCa2;

IC50 = 0.03–0.14 nM) and less potent on KCa2.1 (SK1 or SKCa1;

IC50 = 0.7–12 nM) (Köhler et al., 1996; Shah and Haylett, 2000;

Strøbaek et al., 2000; Grunnet et al., 2001a), whereas KCa2.3

(SK3 or SKCa3) channels showed an intermediate sensitivity

(IC50 = 0.6–4.0 nM) (Ishii et al., 1997; Grunnet et al., 2001b;

Grunnet et al., 2001a).

Those investigations led to a prevailing view in the literature

that apamin is a selective probe for just SK channels. Quite

surprisingly, data to support this claim by showing absence of

activity on other targets are missing. Moreover, some published

studies actually claim various off-target activities of apamin. For

example, it was assumed that apamin affects Ca2+ and/or Na+

channels in the embryonic chicken heart (Bkaily et al., 1985;

Bkaily et al., 1991; Bkaily et al., 1992). On the contrary, in another

study human cardiac Ca2+, Na+, or K+ channels were not affected,

with the exception of SK channels (Yu et al., 2014). Apamin was

also reported to affect inward-rectifier K+ channels Kir3.1/3.4 and

the voltage-gated K+ channel KV1.3 (Jin and Lu, 1998; Voos et al.,

2017); however, the activity of the toxin on those channel

isoforms expressed individually is yet to be shown.

To verify the molecular pharmacology of such an important

compound as apamin and to resolve the contradictory claims, we

performed a large-scale electrophysiological profiling of this

toxin against various molecular targets. We conclude that

apamin is indeed a selective inhibitor of small-conductance

KCa channels.

2 Materials and methods

2.1 Materials

For consistency, we used apamin purified from the honeybee

Apis mellifera venom (product number A1289) and synthetic

melittin (M4171) purchased from Sigma-Aldrich. TRAM-34 was

synthesized as described (Wulff et al., 2000). Other low-molecular-

weight compounds were purchased from Sigma-Aldrich:

acetylcholine chloride (ACh; A6625), capsaicin (M2028),

capsazepine (C191), glycine (G7126), kainic acid monohydrate

(K0250), and N-methyl-D-aspartic acid (NMDA; M3262).

2.2 Nomenclature of targets and ligands

Ion channel targets and their ligands are presented according

to IUPHAR/BPS Guide to PHARMACOLOGY (http://www.

guidetopharmacology.org) and are permanently archived in

the Concise Guide to PHARMACOLOGY 2021/22 (Alexander

et al., 2021). For potassium channel ligands of protein and

peptide nature, readers are advised to consult the Kalium

database (https://kaliumdb.org) (Kuzmenkov et al., 2016;

Tabakmakher et al., 2019).
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2.3 Analytical chromatography

Apamin purity was confirmed using reversed-phase (RP)

HPLC on a Vydac 218TP54 C18 column (4.6 × 250 mm;

Separations Group) in a linear gradient of acetonitrile

concentration (0%–60% in 60 min) in the presence of 0.1%

trifluoroacetic acid (TFA). 1525 Binary HPLC pump and

2489 UV/Visible detector under the control of Breeze

2 software (all from Waters) were used for chromatography.

2.4 Mass spectrometry

Molecular mass measurements were performed using

MALDI on an Ultraflex III TOF-TOF instrument (Bruker).

2,5-Dihydroxybenzoic acid (Sigma-Aldrich) was used as a

matrix. Measurements were carried out in the reflector mode,

which enabled isotopic resolution. Calibration was performed

using the ProteoMass Peptide MALDI-MS Calibration Kit

(Sigma-Aldrich). Mass spectra were analyzed with the Data

Analysis 4.3 and Data Analysis Viewer 4.3 software (Bruker).

2.5 Peptide concentration measurements

Apamin and melittin concentrations were determined by UV

spectrophotometry. To obtain absorption spectra of those

substances in the UV range, lyophilized peptides were

dissolved in 0.5 ml of water (Milli-Q produced on a Merck

Millipore Water Purification System). We used a UV-

1800 spectrophotometer (Shimadzu) and quartz cuvettes with

an optical path length of 1.0 cm; water served as a reference

solution. Apamin does not contain aromatic amino acid residues;

therefore, absorbance at 205 nm was used to measure the

concentration (Anthis and Clore, 2013). Melittin contains

tryptophan, and so its absorbance was measured at 280 nm

and the calculations were performed accordingly (Beaven and

Holiday, 1952).

2.6 Antimicrobial assay

Apamin was tested against Gram-positive (Enterococcus

faecalis ATCC 29212, Staphylococcus aureus subsp. aureus

ATCC 29213) and Gram-negative bacteria (Escherichia coli

ATCC 25922, Pseudomonas aeruginosa ATCC 27853)

following the previously described modification of the

microtitre broth dilution method (Vassilevski et al., 2010).

Those bacterial strains were also subjected to the treatment by

melittin in the same concentration range to serve as a positive

control.

Briefly, bacteria were cultured in a low-salt LB medium. The

two-fold microtitre broth dilution assay was carried out in 96-

well sterile plates in a final volume of 100 μL. Mid-exponential-

phase cultures were diluted to a final concentration of 105 colony-

forming units·ml−1. Pure peptides were dissolved in 10 μL of

water and added to 90 μL of the bacterial dilution. The samples, a

non-treated control and a sterility control were tested in five

independent experiments (n = 5). The microtitre plates were

incubated for 24 h at 37°C, and growth inhibition was determined

by measuring the absorbance at 620 nm. Minimum inhibitory

concentration (MIC) is expressed as the lowest concentration of

peptide that caused 100% bacterial growth inhibition.

2.7 NMR spectroscopy

For NMR studies 1 mg of apamin was dissolved in 320 μL of

H2O/D2O mixture (95:5) and placed into a 5-mm Shigemi NMR

tube. The sample pH was adjusted to 3.2. NMR spectra of apamin

were recorded using a 600-MHz Bruker Avance III NMR

spectrometer, equipped with a triple-resonance cryogenic

probe, at 25°C. We recorded the following spectra: DQF-

COSY, NOESY (120 ms), ROESY (200 ms), TOCSY (80 ms),
13C and 15N-HSQC at natural abundance. 3JHNHA were

measured by the line shape analysis of cross-peaks in NOESY

spectra, whereas 3JHAHB couplings of AMX spin systems were

determined by the line shape analysis of cross-peaks in 2D

TOCSY spectra.

3D structure calculation was performed using the simulated

annealing/molecular dynamics protocol as implemented in the

CYANA software package version 3.98 (Güntert et al., 1997). The

disulfide linkages were introduced based on previously published

data (Callewaert et al., 1968). 100 structures were obtained

starting from random conformations and the 10 best were

then selected for further analysis. Visual inspection of the

calculated structures and figure drawings were performed

using PyMOL (Schrödinger) and MOLMOL (Koradi et al.,

1996) software.

2.8 Expression of ion channels in X. laevis
oocytes

The following genes encoding ion channel subunits were

expressed in Xenopus oocytes: for voltage-gated potassium

channels, KV [rKV1.1 (GenBank accession number: NM_173095),

rKV1.2 (NM_012970), hKV1.3 (NM_002232), rKV1.4

(NM_012971), rKV1.5 (NM_012972), rKV1.6 (NM_023954),

hKV2.1 (NM_004975), hKV3.1 (NM_004976), rKV4.3

(NM_031739), hKV7.1 (NM_000218), hKV7.2/7.3 (NM_004518/

NM_004519), hKV10.1 (EAG1; NM_172362), hKV11.1 (hERG;

NM_000238), Shaker-IR from Drosophila melanogaster

(NM_167595; amino acids 6–46 deleted), and KQT-1 from

Caenorhabditis elegans (NM_171710)], inward-rectifier potassium

channels, Kir [mKir3.1/3.2 or GIRK1/2 (NM_008426/
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XM_011246104)], voltage-gated sodium channels, NaV [rNaV1.1

(NM_030875), rNaV1.2 (NM_012647), rNaV1.3 (NM_013119),

rNaV1.4 (NM_013178), hNaV1.5 (NM_198056), mNaV1.6

(NM_001077499), hNaV1.7 (NM_002977), rNaV1.8

(NM_017247), rβ1 (NM_001271045), hβ1 (NM_001037), and

the arthropod channels BgNaV1 from Blattella germanica

(U73583) and VdNaV1 from Varroa destructor (AY259834), and

TipE from D. melanogaster (NM_079196)], transient receptor

potential channels, TRP (human TRPV1, NM_080704), nicotinic

acetylcholine receptors, nAChR [human α1β1γδ (NM_001039523,

NM_000747, NM_005199, NM_000751), α4β2 (NM_000744,

NM_000748), and α7 (NM_000746)].

Linearized plasmids bearing the ion channel genes were

transcribed using the mMESSAGE mMACHINE SP6 or

T7 transcription kits (Ambion) to prepare the respective

cRNA. The harvesting of stage V–VI oocytes from

anaesthetized female X. laevis frogs was described previously

(Liman et al., 1992; Peigneur et al., 2021). Oocytes were injected

with 50 nL of cRNA at a concentration of 1 ng nl−1 using a

microinjector (Drummond Scientific). The oocytes were

incubated at 16°C in ND96 solution containing (in mM):

NaCl, 96; KCl, 2; CaCl2, 1.8; MgCl2, 2; and HEPES, 5

(pH 7.4), supplemented with 50 mg l−1 gentamicin sulfate.

2.9 Expression of ion channels in
eukaryotic cells

HEK293 cells stably expressing hKCa1.1 (BK, GenBank

accession number: NM_002247), hKCa2.1 (SK1, NM_002248),

and hKCa3.1 (IK, AH009923) or COS7 cells stably expressing

hKCa2.3 (SK3, AJ251016) were generated and cultured as

previously described (Sankaranarayanan et al., 2009).

HEK293 cells stably expressing rKCa2.2 (SK2, NM_019314)

were a gift from Dr. Mio Zhang (Chapman University, Irvine).

CHO cells were used for transient expression of acid-sensing

ion channels (ASIC). These cells were cultured in a CB-150 CO2

incubator (Binder) at 37°C in a humidified atmosphere of 5%

CO2. Cells were maintained under standard culture conditions

(DMEM/F12, 10% fetal bovine serum, and 50 mg l–1 gentamicin)

in 35 mm2 Petri dishes. Transfection was performed using 0.5 μg

of plasmids encoding rASIC1a (NM_024154), rASIC2a

(NM_001034014), or rASIC3 (NM_173135) gifted by Dr.

Alexander Staruschenko (University of South Florida, Tampa)

with 0.5 μg of a GFP-encoding plasmid and Lipofectamine 2000

(Invitrogen) according the manufacturer’s protocol. Patch-clamp

experiments were performed 48 h after transfection.

2.10 Isolation of rat neurons

Wistar rats (12–18 days old, both sexes) were deeply

anaesthetized with isoflurane and sacrificed by cervical

dislocation followed by decapitation. The brains were quickly

removed and immersed in ice-cold (2°C–4°C) artificial

cerebrospinal fluid (ACSF) of the following composition (in

mM): NaCl, 124; KCl, 5; CaCl2, 1.3; MgCl2, 2; NaHCO3, 26;

NaH2PO4, 1.24; and D-glucose, 10; aerated with carbogen (95%

O2, 5% CO2). Transverse slices, comprising hippocampus and

striatum, were cut with a 7000 SMZ-2 vibratome (Campden

Instruments) and stored at room temperature (22°C–24°C) in

ACSF aerated with carbogen. Neurons were isolated from the

slices by vibrodissociation (Vorobjev, 1991). The effects of

apamin on ionotropic glutamate receptors (iGluR) were

studied on hippocampal pyramidal neurons of the CA1 area

expressing GluN2A/B NMDA receptors (Monyer et al., 1994;

Foster et al., 2010) and Ca2+-impermeable GluA2-containing

AMPA receptors (Wenthold et al., 1996; Seifert et al., 2000)

and on giant cholinergic interneurons of the striatum expressing

Ca2+-permeable GluA2-lacking AMPA receptors (Buldakova

et al., 1999). The experiments on ASIC were carried out on

hippocampal interneurons of the lacunosum-moleculare and

radiatum layers of the CA1 region, which express ASIC1a/

2 heteromers (Weng et al., 2010).

2.11 Two-electrode voltage-clamp

Recordings were performed at room temperature

(18°C–22°C) using a Geneclamp 500 amplifier (Molecular

Devices) controlled by a pClamp data acquisition system

(Axon Instruments). Whole-cell currents from oocytes were

recorded 1–4 days after cRNA injection. Bath solution

composition was ND96, or HK containing (in mM): NaCl, 2;

KCl, 96; CaCl2, 1.8; MgCl2, 2; and HEPES, 5 (pH 7.4). Voltage

and current electrodes were filled with 3 M KCl. Resistances of

both electrodes were kept at 0.7–1.5 MΩ. Elicited currents were

sampled at 1 kHz and filtered at 0.5 kHz (for potassium currents)

or sampled at 20 kHz and filtered at 2 kHz (for sodium currents)

using a four-pole low-pass Bessel filter. Leak subtraction was

performed using a −P/4 protocol.

Currents were evoked by a 100 ms (NaV) or 500 ms (KV)

depolarization to the voltage corresponding to the maximal

activation of the channels in control conditions from a

holding potential of −90 mV. For nAChR experiments, the

oocytes were voltage-clamped at a holding potential

of −70 mV and continuously superfused with ND96 via

gravity-fed tubes at 0.1–0.2 ml min−1, with 5 min incubation

times for the bath-applied peptides. ACh was applied via

gravity-fed tubes until peak current amplitude was obtained

(1–3 s), with 1–2 min washout periods between applications.

The nAChR were gated by a particular time duration pulse of

ACh for the respective nAChR subtype (200 μM for α1β1γδ and
α4β2; 100 μM for α7) at 2 ml min−1. Data were sampled at 500 Hz

and filtered at 200 Hz. TRP currents were measured in

ND96 at −90 mV during 400 s. Capsaicin (2 μM) was used as
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an agonist and capsazepine (10 μM) as an antagonist of TRPV1.

Peak current amplitude was measured prior to and following the

application of the peptide. All data were obtained in at least five

independent experiments (n ≥ 5).

2.12 Patch-clamp of HEK293 or COS7 cells

All experiments were conducted with an EPC-10 amplifier

(HEKA) in the whole-cell configuration with a holding potential

of –80 mV. Pipette resistances averaged around 2.5 MΩ.

Solutions of apamin in Na+ Ringer were freshly prepared

during the experiments from 100 μM stock solutions in

Roswell Park Memorial Institute medium (RPMI). For current

measurements, we used an internal pipette solution containing

(in mM): K+ aspartate, 160; MgCl2, 2.08; HEPES, 10; EGTA, 10;

and CaCl2, 8.55 (1 μM free Ca2+); pH 7.2; osmolarity 310 mOsm.

Free Ca2+ concentrations were calculated with MaxChelator

(developed by Chris Patton, Stanford University) assuming a

temperature of 25°C, pH 7.2, and ionic strength of 160 mM. Na+

Ringer was used as an external solution containing (in mM):

NaCl, 160; KCl, 4.5; CaCl2, 2; MgCl2, 1; and HEPES, 10; pH 7.4;

osmolarity, 315 mOsm. Please note that the provided

concentrations are what was weighed in to achieve an initially

hyperosmolar solution that was diluted with water to 310 mOsm

for the internal and 315 mOsm for the external solution as

measured with a VAPRO Vapor pressure osmometer

(Wescor). A slight 5 mOsm difference in osmolarity between

internal and external solution improves the sealing rate.

KCa2 and KCa3.1 currents were elicited by 200-ms voltage

ramps from –120 to 40 mV applied every 10 s, and the fold

decrease of slope conductance at –80 mV was taken as a measure

of apamin-induced channel inhibition. TRAM-34 was used to

block KCa3.1. KCa1.1 channel activity was recorded with a step

protocol, in which cells were stepped to +40 mV for 100 ms at

30-s intervals. Concentration-dependent current inhibition was

fitted with the Hill equation using Prism 8 (GraphPad

Software). All data were collected in at least five independent

experiments (n ≥ 5).

2.13 Patch-clamp of rat neurons or CHO
cells

In this case, the holding potential was set at –70 mV. Signals

were filtered at 10 kHz and sampled at 20 kHz. Drugs were

applied using an RSC-200 (BioLogic) perfusion system. The

extracellular solution contained (in mM): NaCl, 143; KCl, 5;

CaCl2, 2.5; D-glucose, 10; and HEPES, 10; and the pH was

adjusted to 7.4 with HCl. 10 mM MES was used in the

extracellular solution in experiments on ASIC. The patch

pipettes (2.5–3.5 MΩ) were made from borosilicate glass

(WPI) using a P-97 puller (Sutter Instruments). The pipette

solution contained (in mM): CsF, 100; CsCl, 40; NaCl, 5; CaCl2,

0.5; EGTA, 5; and HEPES, 10; and the pH was adjusted to

7.2 with CsOH. All experiments were performed at room

temperature (22°C–24°C). NMDA receptors were activated by

100 μM NMDA and 10 μM glycine. AMPA receptors were

activated by 100 μM kainate. ASIC of rat neurons were

activated by pH drops from pH 7.4 to 6.5. ASIC1a, ASIC2a,

and ASIC3 homomers were expressed in CHO cells and activated

by pH 6.5, 5.0, and 6.8, respectively. Lyophilized apamin was

freshly dissolved in extracellular solution prior to the experiment.

After recording the control response, the patched cell was

superfused for 40 s with extracellular solution containing

apamin, and then the response to co-application of the

agonist and apamin was recorded. Offline data analyses were

performed using Origin 9.1 (OriginLab) software. All data were

collected from at least five experiments (n ≥ 5).

2.14 Data analysis and statistics

Data and statistical analysis comply with recommendations on

experimental design and analysis in pharmacology (Curtis et al.,

2018). All data points in the apamin concentration-response curves

on KCa channels are means ± standard deviation (SD) from at least

five independent experiments. IC50s are reported with 95%

confidence intervals (CI). The CI is based on the fit for the

averaged currents. Student’s two-tailed unpaired t-test was used

to assess the significance of the effect of apamin in rat neurons

(current in the presence of apamin vs current in control). A value of

p < 0.05 was considered statistically significant.

3 Results

3.1 Confirmation of apamin sample purity

Natural apamin isolated from bee venom was purchased

from Sigma and subjected to analytical RP-HPLC. It presented a

single symmetrical Gaussian peak (Figure 1A) corresponding

to >95% purity. The fraction corresponding to the individual

component was further inspected by MALDI mass spectrometry.

The measured monoisotopic molecular mass ([M + H]+ =

2026.7 Da; Figure 1A, inset) did not differ significantly from

the calculated value for apamin (2026.9 Da; Δ = 0.2 Da).

3.2 Apamin spatial structure in solution

As there is no apamin structure in the PDB, we solved it with

NMR spectroscopy in solution based on the recorded J-couplings

and NOE distances (Supplementary Figure S1). NMR chemical

shifts, experimental restraints, and the spatial structure were

deposited to the BMRB and PDB databases under the accession
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codes 34641 and 7OXF, respectively. The obtained structure fits

all the experimental data and is characterized by a low backbone

RMSD value (0.24 Å), which confirms that it is well converged

(Supplementary Table S1).

Apamin forms a short ɑ-helix (Ala9–Gln16) and a β-turn
(Asn2–Ala5; Figures 1B–D). Additionally, the amide group of

Lys4 forms a hydrogen bond with the side chain carbonyl of

Asn2, which is in agreement with the previously published

decelerated hydrogen-deuterium exchange of Lys4 amide

(Bystrov et al., 1980). Analysis of the structure reveals no

electrostatic, π-cation, or stacking interactions that could

stabilize the observed apamin conformation.

3.3 Antimicrobial activity

The antibacterial assay showed no activity of apamin against

either Gram-positive or Gram-negative bacteria up to a

concentration of 50 μM. Melittin, on the other hand,

displayed the expected antimicrobial effect. Its MIC values on

E. faecalis, S. aureus, E. coli, and P. aeruginosawere 0.5, 3, 1.5, and

6 μM, respectively.

3.4 Apamin pharmacology

We estimated the activity of apamin against five KCa, one Kir,

15 KV, 10 NaV, three ASIC, and one TRP, as well as three nAChR

(Table 1; Figures 2, 3). The inhibitory effect was detected only for

the three isoforms of KCa2 (SK2 or SKCa) channels (Figures

2A–C). We constructed concentration-response curves for the

susceptible channels (Figure 2D) and confirmed that apamin

displays the expected nanomolar and subnanomolar affinity to

these channels. The IC50 values were 4.1 nM, 87.7 pM, and

2.3 nM, respectively for KCa2.1, KCa2.2, and KCa2.3 (Table 1).

Apamin had no effect on the intermediate-conductance KCa3.1

(IK) or large-conductance KCa1.1 (BK) currents at 5 μM (Figures

2E,F, respectively).

FIGURE 1
Analytical RP-HPLC of apamin and its structure in solution. (A) 10 nmol of peptide was injected onto a Vydac C18 column (4.6 × 250 mm).
Reflector-mode MALDI mass spectrum with an isotopic resolution of the purified peptide is shown in the inset. (B) Amino acid sequence of apamin.
The numbering is shown above. Amino acid residues are colored with respect to their chemical properties: positively charged residues are shown in
blue, negatively charged in red, hydrophobic in green, hydrophilic uncharged in magenta, and cysteines in yellow. Disulfide bridges are shown
with lines. (C) A set of 10 NMR structures with the fewest restraint violations (PDB ID: 7OXF). Disulfide bridges are colored in yellow and labeled. (D)
The spatial structure of apamin is shown in a ribbon representation. The ɑ-helix is colored pink, and the rest of the main chain is gray. Side chains of
the peptide are labeled and colored, the coloring is as in panel (B). Disulfide bridges are shown as yellow sticks.
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TABLE 1 Apamin potency against tested ion channels. KCa channels were expressed in HEK293 cells (KCa2.3, in COS7 cells); KV, Kir, NaV, TRP, and
nAChR were expressed in X. laevis oocytes; homomeric ASIC1a, ASIC2a, and ASIC3 were expressed in CHO cells; native NMDA and Ca2+-
impermeable AMPA receptors were investigated in hippocampal CA1 pyramidal cells; native Ca2+-permeable AMPA receptors were studied in giant
cholinergic interneurons of the striatum; and native ASIC1a/2 heteromers were investigated in hippocampal interneurons of the lacunosum-
moleculare and radiatum layers of the CA1 region.

IC50 with 95% Confidence Interval

Ca2+-activated K+ Channels (KCa)

KCa1.1 KCa2.1 KCa2.2 KCa2.3 KCa3.1

N.E. [1.02 ± 0.07 (n = 5)] 4.1 nM 87.7 pM 2.3 nM N.E. [0.99 ± 0.05
(n = 5)]

95% CI 3.3–5.0 nM 95% CI 74.2–103.3 pM 95% CI 1.8–2.9 nM

Voltage-gated K+ channels (KV)

KV1.1 KV1.2 KV1.3 KV1.4 KV1.5 KV1.6 KV2.1

N.E. [0.97 ± 0.02 (n = 5)] N.E. [0.99 ± 0.03
(n = 5)]

N.E. [1.03 ± 0.04
(n = 5)]

N.E. [0.99 ± 0.02
(n = 5)]

N.E. [0.95 ± 0.04
(n = 5)]

N.E. [1.02 ± 0.01
(n = 5)]

N.E. [1.05 ± 0.03
(n = 6)]

KV3.1 KV4.3 KV7.1 KV7.2/7.3 KV10.1 KV11.1

N.E. [0.99 ± 0.02 (n = 5)] N.E. [0.97 ± 0.03
(n = 5)]

N.E. [0.93 ± 0.05
(n = 5)]

N.E. [1.00 ± 0.01
(n = 5)]

N.E. [1.02 ± 0.04
(n = 6)]

N.E. [1.07 ± 0.06
(n = 5)]

Shaker-IR KQT-1

N.E. [0.98 ± 0.04 (n = 5)] N.E. [1.01 ± 0.02
(n = 5)]

Inwardly rectifying K+ channels (Kir)

Kir3.1/3.2

N.E. [1.02 ± 0.04 (n = 6)]

Voltage-gated Na+ channels (NaV)

NaV1.1 NaV1.2 NaV1.3 NaV1.4 NaV1.5 NaV1.6 NaV1.7

N.E. [0.93 ± 0.04 (n = 5)] N.E. [0.97 ± 0.02
(n = 6)]

N.E. [0.98 ± 0.06
(n = 5)]

N.E. [1.06 ± 0.08
(n = 5)]

N.E. [1.00 ± 0.03
(n = 5)]

N.E. [1.09 ± 0.06
(n = 6)]

N.E. [0.93 ± 0.08
(n = 5)]

NaV1.8 BgNaV1 VdNaV1

N.E. [0.95 ± 0.04 (n = 5)] N.E. [0.96 ± 0.06
(n = 5)]

N.E. [0.97 ± 0.01
(n = 5)]

Transient receptor potential channels (TRP)

TRPV1

N.E. [1.20 ± 0.09 (n = 5)]

Nicotinic acetylcholine receptors (nAChR)

α1β1γδ α4β2 α7

N.E. [1.06 ± 0.03 (n = 6)] N.E. [0.95 ± 0.07
(n = 6)]

N.E. [1.10 ± 0.08
(n = 6)]

Acid-sensing ion channels (ASIC)

ASIC1a/2 native ASIC1a ASIC2a ASIC3

N.E. [0.99 ± 0.12 (n = 10)] N.E. [0.99 ± 0.03
(n = 6)]

N.E. [1.01 ± 0.03
(n = 7)]

N.E. [0.99 ± 0.02
(n = 7)]

Glutamate receptors (GluR)

AMPA (Ca2+-
impermeable)

AMPA (Ca2+-
permeable)

NMDA

N.E. [0.98 ± 0.03 (n = 7)] N.E. [1.01 ± 0.02
(n = 6)]

N.E. [0.96 ± 0.07
(n = 14)]

N.E., no effect at 5 μM concentration. The current ratio (Iapamin/Icontrol) with an indication of SD, and of the n is displayed in the square brackets.
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The effects of apamin on native iGluR (Ca2+-permeable and

Ca2+-impermeableAMPAreceptors as well asNMDAreceptors) and

ASIC were studied in isolated neurons of rat brain. Extracellular

application of apamin alone did not produce noticeable effects on the

holding currents. We compared the whole-cell currents through the

receptors in control and in the presence of apamin. At a

concentration of 5 µM, it produced no effects on the three types

of iGluR and ASIC. In the case of NMDA receptors we noticed that

the current in the presence of apamin tended to be slightly lower than

in control (in some cells up to ≈15%), although this difference was

not statistically significant (Iapamin/Icontrol = 0.96 ± 0.07, p > 0.05, n =

14; Supplementary Figure S2).

4 Discussion

4.1 Apamin’s 3D structure

Apamin was investigated several times, by different groups,

using both crystallography and NMR spectroscopy. To our

surprise, no atomic coordinates were deposited in the PDB,

limiting the utility of those studies to further progress. We,

therefore, performed a solution NMR study, solved our own

structure (Figures 1C,D), and deposited it in the PDB (accession

code: 7OXF).

At least four papers reported the spatial structure of

apamin. The first study used NMR and was published by

Bystrov and coworkers in 1980 (Bystrov et al., 1980).

However, the reported structure appears erroneous due to

the wrong positioning of the secondary structure elements

(for instance, the ɑ-helix was proposed to be formed in the

region 6–13, which is incorrect). Two later NMR studies were

published in 1983 and 1988 (Wemmer and Kallenbach, 1983;

Pease and Wemmer, 1988) and reported a conformation that

seems almost correct, with the ɑ-helix in the region 9–17, and a

β-turn formed by residues 2–5. Finally, the most recent work

by Aumelas and coworkers (Le-Nguyen et al., 2007) reported

an NMR structure of apamin and an X-ray structure of its

analog. The NMR structure from that study is in perfect

agreement with the apamin conformation observed in our

work. The X-ray structure, on the other hand, presents a

dimer and differs in the conformation of the N-terminus,

the length of the ɑ-helical segment (9–18 in the case of

X-ray and 9–16 in NMR), and the dihedral angles of the

disulfide bonds. These differences are apparently due to

crystal packing constraints.

FIGURE 2
Apamin effects on KCa channels expressed in HEK293 or COS7 cells (in the case of KCa2.3). (A) Effect of increasing concentrations of apamin
(10 nM and 500 nM in red and blue, respectively) on KCa2.1 currents. Note that the currents visible above 0 mV are carried by endogenous KV
channels in HEK cells. (B) Effect of increasing concentrations of apamin (75 pM and 100 nM in red and blue, respectively) on KCa2.2 currents. (C) Effect
of increasing concentrations of apamin (20 nM and 500 nM in red and blue, respectively) on KCa2.3 currents. (D) Concentration-response
curves for KCa2.1 (in dark purple), KCa2.2 (teal), and KCa2.3 (red). Data points are mean ± SD from five independent measurements per concentration.
(E) KCa3.1 currents (in black) are insensitive to 5 µM apamin (red) but are potently blocked by 1 µM TRAM-34 (blue). (F) KCa1.1 currents evoked by
depolarization steps to +80 mV (in black) are insensitive to 5 µM of apamin (red).
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4.2 Apamin shows no antimicrobial effects

Honeybee Apis mellifera venom is well known to display

antibacterial and antifungal effects, which are mostly due to its

major component melittin, one of the best-studied cytolytic

peptides (Habermann, 1972; Raghuraman and Chattopadhyay,

2007). Expectations of similar activity in apamin are reasonable

because animals usually produce several similar toxins or even

“libraries” of toxins, which is the case for both neurotoxic and

cytolytic components (Vassilevski et al., 2009). However, apamin

testing against Gram-positive and Gram-negative bacteria

revealed no effect up to a very high concentration of 50 μM.

At the same time, melittin shows prominent antimicrobial effects

at low micromolar concentrations, and since its content in bee

venom is ≈ 20 times higher, the chances that apamin shares a

similar mode of action are very low.

FIGURE 3
Electrophysiological profiling of apamin. Shown are representative traces of currents through the corresponding ion channels in control (gray)
and after application of 5 μM toxin (blue). In the case of nAChR, TRPV1, and GIRK1/2, blue bars indicate apamin application. In nAChR, arrows indicate
agonist (ACh) application. In TRPV1, the open bar shows agonist (capsaicin, CAP) application, and gray bar, antagonist (capsazepine, CZP) application.
In GIRK1/2, presentation of different bath solutions is shown as line segments. In ASIC traces, application of the activating pH is shownwith gray
bars. And in GluR traces, gray bars depict the application of agonists. CaImp, Ca

2+-impermeable; CaP, Ca
2+-permeable.
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4.3 Apamin’s revisited pharmacology

Small-conductance Ca2+-activated K+ channels (KCa2, SK, or

SKCa) are a group of three α-subunit isoforms (KCa2.1–2.3) that

can form mature channels of either homo- or heterotetrameric

structure (Köhler et al., 1996; Strassmaier et al., 2005). Similarly

to many other K+ channels, each SK α-subunit contains six

transmembrane segments (S1–S6, with S5 and S6 contributing

to the pore domain). Unlike KV channels or large-conductance

Ca2+-activated K+ channels (BK or KCa1.1), the gating of SK

channels is insensitive to transmembrane voltage. KCa2 channels

have no Ca2+ binding sites in their α-subunit, but they form a

stable complex with calmodulin that acts as their Ca2+ sensor (Xia

et al., 1998). All three isoforms of KCa2 are widely expressed in

the central nervous system (Stocker and Pedarzani, 2000; Chen

et al., 2004) and found in sensory neurons and the heart (Köhler

et al., 1996; Xu et al., 2003; Tuteja et al., 2005; Skibsbye et al.,

2014); KCa2.2 is also important in the liver (Feranchak et al.,

2004); and KCa2.3 is found in many tissues (Herrera et al., 2003;

Tamarina et al., 2003; Chen et al., 2004). According to the Mouse

Brain Atlas (http://www.mousebrain.org) (Zeisel et al., 2018),

KCa2.1 is highly expressed in neurons of the cerebral cortex,

midbrain red nucleus, hindbrain, and sensory neurons; KCa2.2 in

the cerebral cortex, thalamus, hippocampus, spinal cord,

midbrain, hindbrain, erector muscle, and sensory neurons, as

well as glial cells; and KCa2.3 in the diencephalon, nuclei of

cranial nerves, medulla, thalamus, hypothalamus, ventral

midbrain, hindbrain, cerebellum, enteric and erector muscle

neurons, as well as enteric fibroblasts.

The number of known polypeptide or peptide toxins acting

on KCa2 with high (nanomolar) affinity is limited. According to

the Kalium database (https://kaliumdb.org) (Kuzmenkov et al.,

2016; Tabakmakher et al., 2019), six of these substances were

identified in scorpion venom (AmP05, maurotoxin, Pi-1,

scyllatoxin, tamapin, and Ts9). Scyllatoxin (α-KTx 5.1) from

Leiurus quinquestriatus hebraeus (Shakkottai et al., 2001) and

tamapin (α-KTx 5.4) fromMesobuthus tamulus (Pedarzani et al.,

2002), in particular, show high potency against KCa2.2 with IC50

values in the subnanomolar range. Interestingly, apamin shares a

similar sequence motif RXCQ with several scorpion toxins that

inhibit KCa channels: X = R in apamin and AmP05, M in

scyllatoxin, and P in Pi-1. In all these toxins the RXCQ motif

is found in an α-helix. Replacement of “X” in the RXCQ motif of

scyllatoxin with a positively charged residue (e.g., lysine or 2,4-

diaminobutyric acid) resulted in derivatives with enhanced

selectivity for KCa2.2 over KCa2.3 (Sabatier et al., 1993, 1994;

Shakkottai et al., 2001). The importance and generality of this

motif will be clarified in the future.

Structure-activity studies showed that one of the two adjacent

arginine residues (Arg13 and Arg14) and Gln17 of apamin are key

determinants of its activity (Vincent et al., 1975; Sandberg, 1979;

Labbé-Jullié et al., 1991). Mutagenesis suggested that one of these Arg

residues interacts with Asp341 (S5–P region) of KCa2.2 channel pore

region, whereas Gln17 interacts with Asn368 (P–S6; numbering

according to rKCa2.2, UniProt accession number: P70604) (Ishii

et al., 1997). Two additional positions in the pore region were

subsequently proposed to be involved in apamin sensitivity

[His337 or His485 of KCa2.2 and KCa2.3 (Q9UGI6), respectively,

and Asn345 of KCa2.2; all in S5–P] (Lamy et al., 2010). Those studies

advocated in favor of apamin acting like a pore blocker. On the other

hand, some investigations reported that the S3–S4 extracellular loop

may be an essential molecular determinant of apamin sensitivity

suggesting an allosteric mode of action and not direct pore blockage.

Thus, a point mutation (Thr216Ser) significantly influences KCa2.1

(Q92952) sensitivity towards apamin (Nolting et al., 2007). In

addition, the three-amino-acid motif in the S3–S4 loop of KCa2

channels (216TYA218 in hKCa2.1,
244SYA246 in hKCa2.2, and

393SYT395

in hKCa2.3) was implicated in forming the binding interface for

apamin (Weatherall et al., 2011). In the absence of a solved 3D

structure of a KCa2 channel, it is difficult to predict the details of

molecular interactions with apamin. One tempting possibility is that

the long S3–S4 loop protrudes to the pore domain and together they

form a common binding site for apamin.

It is apamin from the honeybee venom (Habermann and

Reiz, 1965; Habermann, 1972) that is the most prominent

peptide ligand of KCa2. Indeed, since the early 1980s apamin

has been used as the main pharmacological agent to distinguish

KCa2 channels from other K+ channels (Burgess et al., 1981;

Romey and Lazdunski, 1984; Pennefather et al., 1985).

Subsequent studies on cloned KCa2 confirmed that these three

channel isoforms are the molecular targets of apamin (Köhler

et al., 1996; Shah andHaylett, 2000; Strøbaek et al., 2000; Grunnet

et al., 2001a). However, later studies also claimed some off-target

activities of apamin. One series of publications reported

inhibition of Ca2+ and Na+ channels in embryonic heart

tissues (Bkaily et al., 1985, 1991, 1992). And another study

pointed to KV1.3 as a target (Voos et al., 2017). Our extensive

electrophysiological measurements disagree with or directly

disprove these claims. Apamin does not present any activity

on neither of the expressed Na+ channels nor KV1.3.
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