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Abstract

Utilizing Problem Structure in Optimization Algorithms for Model Predictive Control

by

Anthony David Kelman

Doctor of Philosophy in Engineering – Mechanical Engineering

University of California, Berkeley

Associate Professor Francesco Borrelli, Chair

In this work we perform control design and demonstrate the effectiveness of model pre-
dictive control (MPC), an optimization based control approach that is capable of satisfying
state and input constraints and using forecasts of disturbance inputs, for the application
of energy efficient control of heating, ventilation, and air conditioning systems in buildings.
We derive simplified control oriented models and express the relevant constraints and dis-
turbance predictions, and show that online solution of the resulting optimization problems
is able to reduce energy consumption while satisfying occupant thermal comfort constraints
and limits on control actuator inputs.

We investigate the implementation challenges of applying model predictive control to
large systems, focusing on online solution of an optimization problem at every time step.
We show that it is critical to take advantage of problem structure in system modeling and the
formulation of the constraints and objective function. Applying an interior point algorithm
making use of parallel sparse linear algebra solvers performs well, solving nonlinear MPC
problems with tens of thousands of variables and constraints in less than a minute on modern
multicore processors. We design an optimization modeling tool that allows simple expression
of a MPC problem and efficient interfaces to compiled optimization solvers, calculating
sparse derivatives and constraint Jacobians automatically. Finally we examine specialized
optimization algorithms for linear systems with polyhedral constraints, reusing repeated
model data for time invariant systems to solve block banded linear systems of equations.



i



ii

Contents

Contents ii

List of Figures iv

List of Tables v

1 Introduction to Model Predictive Control 1

2 Application to Energy Efficient Buildings 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Configuration Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 System Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Optimal Control Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Local Optima Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.8 Detailed Derivation for Physics-based Rules . . . . . . . . . . . . . . . . . . 39

3 Computational Challenges for Large Scale Real Time Optimization 46
3.1 Control Design With Predictions and Constraints . . . . . . . . . . . . . . . 46
3.2 Nonlinear Predictive Control Formulation . . . . . . . . . . . . . . . . . . . 48
3.3 MPC Solution by Interior Point Method . . . . . . . . . . . . . . . . . . . . 49
3.4 Sparsity Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5 Sparse Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Optimization Modeling Tools 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Internal mathematical representation . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Simulink interface implementation . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 Automated generation of an efficient optimization problem . . . . . . . . . . 64
4.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



iii

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Specialized Optimization Algorithms for Linear MPC 69
5.1 Condensed Versus Sparse MPC Formulation . . . . . . . . . . . . . . . . . . 69
5.2 Algorithm Choices for Convex Quadratic Programs . . . . . . . . . . . . . . 71
5.3 Alternating Direction Method of Multipliers . . . . . . . . . . . . . . . . . . 72
5.4 Linear System Solution for Equality Constrained Least Squares . . . . . . . 73
5.5 Implementation and Numerical Results . . . . . . . . . . . . . . . . . . . . . 74

6 Summary of Contributions and Future Outlook 77

Bibliography 79



iv

List of Figures

2.1 Dual-duct, single fan HVAC system schematic, denoted configuration A . . . . . 8
2.2 Single-duct variable air volume with reheat HVAC system schematic, denoted

configuration B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Recorded data from an AHU supply fan in the Bancroft Library at University of

California, Berkeley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Zone thermal loads Q̇i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Case 1 zone results. Shown dashed in the first plot are Tzi and T zi . . . . . . . 20
2.6 Case 1 AHU results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Case 2 overview. Note the precooling and spike in cooling power immediately

before noon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.8 Case 3 overview. Note the timing of the precooling and the intentional plateau

in cooling power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.9 Families of local optima for HVAC configuration A . . . . . . . . . . . . . . . . 26
2.10 Venn diagram of potentially optimal scenarios . . . . . . . . . . . . . . . . . . . 29
2.11 Local optima for HVAC configuration B . . . . . . . . . . . . . . . . . . . . . . 32
2.12 Visualization of optimal cost values as a function of zone temperatures at the

intermediate time step t = ∆t . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.13 Cost variation in a neighborhood around each local optimum solution . . . . . . 37

3.1 Full model KKT matrix sparsity pattern . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Reduced model KKT matrix sparsity pattern . . . . . . . . . . . . . . . . . . . 56
3.3 Ipopt wall time (not counting function evaluations) on full and reduced problem,

varying linear solver and number of threads . . . . . . . . . . . . . . . . . . . . 58

4.1 Work flow with BLOM. First a model is created and validated using the BLOM
library. Then, it is converted to an optimization problem and exported to one of
the supported solvers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Simple example of dynamic system with state and input constraints and a quadratic
cost function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Coupled masses MPC example from [65] . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Number of inner Krylov iterations at each outer ADMM iteration . . . . . . . . 75



v

List of Tables

2.1 Parameter values used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Parameters used for both configurations . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Configuration A parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Result details, configuration A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Configuration B parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Result details, configuration B . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7 Locally optimal solutions for different discretization methods, configuration B . 35
2.8 Number of local optima with various prediction horizons and discretization methods 38

4.1 BLOM with Ipopt performance on a large HVAC problem for various prediction
horizon lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



vi

Acknowledgments

This work has been partially supported by United Technologies Research Center (UTRC)
under grant W912-09-C-0056 and by U.S. Air Force Office of Scientific Research (AFOSR)
under grant FA9550-09-1-0106. This material is based upon work supported by the National
Science Foundation under Grant No. 1239552. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author and do not necessarily
reflect the views of the National Science Foundation.

I would like to thank my committee, labmates, collaborators, family and friends.



1

Chapter 1

Introduction to Model Predictive
Control

Many problems in control design are naturally expressed in terms of dynamic optimization.
Starting from a mathematical model of how a system evolves over time as a function of
its current states x, controlled inputs u, and uncontrolled disturbances w, we would like
a strategy for selecting u in such a way that the system minimizes (or maximizes) some
objective function while satisfying a set of constraints.

The dynamic model of a system may be specified implicitly as a set of differential algebraic
equations. For continuous time systems we can write the dynamic optimization problem as
follows.

min
U,X

∫ T

0

J(x(t), u(t), w(t), t)dt (1.1a)

subj. to, ∀ t ∈ [0, T ],

f(ẋ(t), x(t), u(t), w(t), t) = 0 (1.1b)

g(ẋ(t), x(t), u(t), w(t), t) ≤ 0 (1.1c)

x(0) = x0 (1.1d)

The initial state x0 is treated as a known constant value, either measured or estimated from
the present state of the system. The time horizon over which the optimization is performed
is denoted T . The cost function is J(x, u, w, t) and the dynamic evolution of the system
is captured in the equality constraint f(ẋ, x, u, w, t) = 0. An explicit ordinary differential
equation is a special case where f(ẋ, x, u, w, t) = ẋ − fex(x, u, w, t). The minimization is
performed over the space of input trajectories U = {u(t) | t ∈ [0, T ], u(t) ∈ Rm} and state
trajectories X = {x(t) | t ∈ [0, T ], x(t) ∈ Rn}. In a nominal predictive control problem, we
assume the disturbance trajectories w(t) follow known forecast values.
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For discrete time systems we write

min
U,X

N−1∑
k=0

J(x(k + 1), x(k), u(k), w(k), k) (1.2a)

subj. to, ∀ k ∈ {0, . . . , N − 1},
f(x(k + 1), x(k), u(k), w(k), k) = 0 (1.2b)

g(x(k + 1), x(k), u(k), w(k), k) ≤ 0, (1.2c)

x(0) = x0 (1.2d)

where the optimization time horizon is N steps. In discrete time the minimization is
performed over the space of input trajectories U = {u(k) | k ∈ {0, . . . , N − 1}, u(k) ∈ Rm}
and state trajectories X = {x(k) | k ∈ {1, . . . , N}, x(k) ∈ Rn}. The disturbance trajectories
w(k) are assumed to follow known forecast values as in the continuous time setting.

In the general case there may not be a closed form solution to problems of the form (1.1)
or (1.2), so a numerical solution approach will be necessary. The space of input and state
trajectories U,X in the continuous time problem (1.1) is infinite dimensional, so some form
of finite dimensional parameterization is necessary for numerical solution. Either the value
domain or the time domain can be discretized to achieve this.

Discretizing in the value domain can be achieved by representing the continuous time
trajectory spaces in terms of a series of basis functions, then expanding the differential
equation in terms of those basis functions. The optimization can then be performed over the
parameters of the basis decomposition, where a finite truncation of the basis series results
in a parameterization that approximates the true optimum trajectories. This is commonly
performed using orthogonal polynomials as basis functions, however orthogonal polynomials
are not necessarily closed for nonlinear differential equations.

Discretizing (1.1) in the time domain transforms it into a finite dimensional problem of
the form (1.2). Explicit continuous time ordinary differential equations can be approximated
as (either explicit or implicit) discrete time difference equations via multistep or Runge Kutta
methods.

The above dynamic optimization problems (1.1) and (1.2) are open loop constrained fi-
nite time optimal control (CFTOC) problems. Disturbance predictions are made ahead of
time for the entire horizon, and state measurements are available only for the initial point.
If the optimal input trajectory were applied for the entire prediction horizon length, model
mismatch and inaccuracy in disturbance predictions would accumulate and could cause di-
vergence from the predicted optimal state trajectory. Since newer state measurements and
disturbance prediction data will become available at later times in the horizon, it is beneficial
to re-plan a new CFTOC problem with a shifted horizon.

In control applications we are often interested in the limit as the horizon length goes to
infinity, for steady state tracking behavior or systems that remain operational much longer
than the characteristic time constant of their dynamics. Model predictive control (MPC)
is the closed loop receding horizon application of repeated solutions of CFTOC problems.
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Using newly measured state data as the initial point in each optimization problem makes
MPC a feedback control scheme. The initial values of the optimal input trajectory are
applied to the system then a new optimization problem is solved at the next time step.

The natural statement of an MPC problem in terms of dynamic optimization means hard
constraints on inputs and states can be rigorously enforced while optimizing the desired
control objective, large numbers of input and state variables can be handled in the dynamic
system model, and predictive forecast knowledge of future uncontrolled disturbance inputs
can be utilized to improve system performance. The disadvantage of MPC is that it requires
solving an optimization problem over an entire prediction horizon at each time step. That
optimization problem must be solved in real time within the length of a time step so the
first optimal input value can be applied to the system.

In this thesis we will discuss the application of model predictive control to energy efficient
control of buildings, and the performance advantages and implementation challenges in ap-
plying MPC to this type of system. We will examine the details of optimization formulation,
algorithmic solution, and linear algebra scalability to the general problem of applying MPC
to large systems, and taking advantage of modern computational platforms.

In chapter 2 we derive the system model for an optimization formulation of the problem of
maximizing efficiency in heating, ventilation, and air conditioning (HVAC) systems in build-
ings. Simulation and experimental results demonstrate sophisticated closed loop behavior
that resembles existing state of the art digital control strategies, but does not require manu-
ally writing out the implementation logic for when to apply or how to tune these heuristics.
Applying a numerical optimization solver to the problem identifies energy efficient inputs
based entirely on the system model, constraints, and objective function. We investigate
the nonlinearity of the system and its consequences in terms of local optima of the MPC
optimization problem.

In chapter 3 we discuss the details of optimization algorithms for large scale MPC, and
computational challenges for real time optimization. Optimization algorithms using parallel
sparse direct linear algebra are shown to perform well on MPC problems with tens of thou-
sands of variables and constraints, solving a nonlinear constrained optimization problem in
under a minute on modern multicore processors.

In chapter 4 we design a tool that allows a user to specify a dynamic system model,
objective function, and constraints in a direct manner. The tool, called the Berkeley Library
for Optimization Modeling, is responsible for extracting the problem structure, transforming
the user model input into a sparse multivariate polynomial parameterization. This param-
eterization allows for derivatives to be automatically calculated in closed form by efficient
compiled optimization solver interfaces. The user does not have to carry out the tedious
and error prone task of symbolic differentation of their objective and constraint functions.
Sparse Jacobians and Hessians can be calculated efficiently from the polynomial representa-
tion, resulting in good performance even for large nonlinear systems.

We conclude by looking at the characteristic block banded problem structure arising
from propagation of system dynamics over the time horizon in MPC optimization problems.
This structure can be exploited in the linear algebra operations that are the computational
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bottleneck at each iteration of an optimization algorithm. For time invariant systems in
particular, we show how the constant repeated problem data of the linear system model
matrices can be exploiting when using iterative linear algebra techniques to solve the linear
systems of equations to determine a descent direction.
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Chapter 2

Application to Energy Efficient
Buildings

We study the problem of heating, ventilation, and air conditioning (HVAC) control in a
typical commercial building. We propose a model predictive control (MPC) approach which
minimizes energy cost while satisfying occupant comfort and control actuator constraints,
using a simplified system model and incorporating predictions of future weather and occu-
pancy inputs.

Extensive numerical simulations show the effectiveness of the proposed approach. In
particular, the MPC is able to systematically reproduce a variety of well-known commer-
cial solutions for energy savings, which include demand response, “economizer mode” and
precooling/preheating.

In simplified physics-based models of HVAC systems, the product between air temper-
atures and flow rates arising from energy balance equations leads to a non-convex MPC
problem. Fast computational techniques for solving non-convex optimization can only pro-
vide certificates of local optimality. Local optima can potentially cause MPC to have worse
performance than existing control implementations, so deserve careful consideration. The
objective of this chapter is to investigate the phenomenon of local optima in the MPC opti-
mization problem for a simple HVAC system model.

In the first part of this chapter, simplified physics-based models and MPC design for
two common HVAC configurations are introduced. In the second part, simulation results
exhibiting local optima for both configurations are presented. We perform a detailed analysis
on the different types of local optima and their physical interpretation. We then use this
analysis to derive physics-based rules to rule out classes of locally optimal control sequences
under specific conditions.

This chapter is based on work that has been previously published in [35] and [37].



CHAPTER 2. APPLICATION TO ENERGY EFFICIENT BUILDINGS 6

2.1 Introduction

The building sector consumes about 40% of the energy used in the United States and is
responsible for nearly 40% of greenhouse gas emissions, see [50]. It is therefore economically,
socially and environmentally significant to reduce the energy consumption of buildings. Pre-
vious work by [29, 47, 53] has evaluated the energy saving potential of model predictive
control (MPC) for heating ventilation and air conditioning (HVAC) in buildings.

This chapter focuses on model predictive control (MPC) of HVAC systems over networks
of thermal zones. The main idea of model predictive control is to use a model of the plant
to predict the future evolution of the system [11, 49]. At each sampling time, an open-loop
optimal control problem is solved over a finite horizon. The optimal command signal is
applied to the process only during the first sampling interval. At the next time step a new
optimal control problem based on new measurements of the state is solved over a shifted
horizon. Model predictive control has become the accepted standard in the process industry
for solving complicated constrained multivariable control problems, see [56]. The success of
MPC is largely due to its ability to simply and effectively handle hard constraints on states
and control inputs.

We consider two common configurations of HVAC systems. The first configuration is
known as dual-duct, single fan [26]. The second configuration is known as single-duct variable
air volume (VAV) with reheat. For each HVAC configuration we derive simplified low-order
thermal models for the temperature dynamics and energy costs. Our intent is to use the
simplest possible physics-based model that can capture the main contributions to dynamics
and energy consumption.

Simulation results presented in Section 2.5 show good performance and computational
tractability of the resulting scheme. Additionally, the model predictive controller exhibits
desirable control behaviors that resemble modern advanced heuristic strategies for HVAC
control, reproducing those strategies in a systematic manner.

The resulting model predictive controllers are generally non-convex optimization prob-
lems. Nonlinear programming (NLP) solvers based on sequential quadratic programming
[52] or interior point methods [64] cannot guarantee global optimality. In this chapter, we
study the local optima of the MPC optimization problem for the two aforementioned HVAC
configurations. We present physical explanations for each local optimum observed in our
results and two detailed investigations into the optimization behavior.

Examples of nonlinear MPC problems exhibiting local optima have been presented in
previous literature [62]. The main contribution of this chapter is the detailed investigation
into several factors influencing the local optima behavior for simplified models of HVAC
systems, and derivation of physics-based rules to classify and rule out a subset of local
optima a priori.

For the dual-duct HVAC configuration we observed local optima corresponding to differ-
ent system operating modes. We investigate analytical behavior of the different operating
modes in terms of a subset of the gradient and constraint optimality conditions to determine
worst case a-priori conditions under which certain modes can be ruled out as suboptimal.
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For the single-duct HVAC configuration we observed local optima corresponding to different
transient sequences of control actions. In this case we investigate the effect of system model
discretization method on the local optima results of the MPC problem.

2.2 Configuration Descriptions

This section describes the mechanical components and control inputs of the two HVAC
system configurations we focus on.

Configuration A

The HVAC system configuration known as dual-duct, single fan is shown in Figure 2.1.
Supply air is heated and cooled to desired temperatures in two separate duct systems by a
pair of coils (water-to-air heat exchangers). The water flow rate across each coil is controlled
by a modulating valve in order to maintain a desired air side outlet temperature setpoint.
The two separate duct systems route hot and cold air to mixing boxes at each thermal zone
(typically one or several rooms). A mixing box contains a pair of linked dampers (position-
controlled louvers), designed so that when the hot side damper closes, the cold side damper
opens and vice-versa. We refer to these mixing boxes as the zone dampers. The zone dampers
serve as a control actuator to provide the desired mixed supply air temperature to a zone.
The supply air can be set anywhere in the range between the cooling coil outlet temperature
and the heating coil outlet temperature.

In existing simple HVAC control schemes there is no communication between zones, and
the central cooling and heating coils are set to constant conservative setpoints. This ensures
heating and cooling capacity is always at the system design value, but in the majority of
operating conditions below that design capacity, this basic control design wastes a great deal
of energy.

Mixed zone air returns to the central air handling unit (AHU) through a return duct.
A set of AHU dampers can either exhaust the return air to ambient and use fresh outside
air as input to the supply fan, or recirculate the return air, or some combination of the
two. Usually the return air will be cooler than outside air temperature on a hot day when
cooling is required, or warmer than outside air on a cold day when heating is required. So
conventional practice is to recirculate as much air as possible, while maintaining a minimum
fraction of fresh air for acceptable indoor air quality. However, the opposite scenario of
cooling when return air is warmer than outside air (or heating when return air is cooler than
outside air) can occur, and in that case using 100% outside air consumes the least total coil
energy. This is known as economizer operation.

The described dual-duct single fan configuration is an outdated HVAC design. It was
prevalent before the advent of inexpensive and reliable variable frequency drives (VFD) for
HVAC fans. Without a VFD, the supply fan runs at a constant design speed at all times,
often wasting energy due to excess unused capacity. Because the mixing box dampers are
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Figure 2.1: Dual-duct, single fan HVAC system schematic, denoted configuration A

linked at each zone, the pressure drop of the entire distribution system to the zones is not
highly sensitive to the positions of the zone dampers. Therefore the total flow rate through
the supply fan is effectively constant for a given supply fan speed, and the proportions of
that flow rate delivered to each zone are also constant. For this reason, this type of system
is known as a constant air volume (CAV) system.

We consider systems where the supply fan is equipped with a variable frequency drive
(VFD), so the fan speed and therefore the total flow rate can be controlled. We will assume
there is a sensor measuring total flow rate, and a lower-level controller for the VFD fan speed
to track a desired total flow rate setpoint. Since the mixing box dampers for each zone are
linked, the individual zone flow rates are not independently controllable. As a first-order
approximation, we treat the flow splits to each zone as constant. This system will be denoted
configuration A in the remaining sections.

In summary, the control inputs in this system are: the total supply fan flow rate, the
outside air flow rate into the AHU, the cooling coil outlet temperature setpoint, the heating
coil outlet temperature setpoint, and the zone mixing box supply temperature setpoints.
The states in this system are the zone temperatures.

Configuration B

In this section we introduce an alternative HVAC system configuration, known as single-duct
variable air volume (VAV) with reheat. We consider an air handling unit serving multiple
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zones, as before. The AHU in this configuration is capable of using either recirculated zone
exit air, fresh outside air, or a mix of the two. As shown in Figure 2.2, all of the supply air
flows through a cooling coil. The cool air is distributed by a fan to the VAV boxes at each
zone. A VAV box consists of a damper and a heating coil. We assume there is a supply
flow rate sensor in each VAV box, and a lower-level controller for damper position to track
a desired zone supply flow rate. The heating coil is used to warm the supply air if that zone
requires heating.

Return Air

Supply

Fan

Zone 

1

AHU 

Dampers

Cooling

Coil

Heating

Coils

Zone 

Dampers

. . .

Zone 

2

Zone 

3
. . .

Outside

Air

Exhaust

Air

Figure 2.2: Single-duct variable air volume with reheat HVAC system schematic, denoted
configuration B

Compared to configuration A, this single-duct system has local control over heating
rather than one central heating coil, and the VAV dampers provide individual control over
the supply flow splits delivered to each zone. This capability allows outlier zones with
unusually high or unusually low thermal loads to be controlled without requiring more flow
to be delivered to all other zones. The single-duct configuration also avoids the inefficiency
of mixing, and one duct system requires less material and space to install than two so the
single-duct configuration is often less expensive. Due to these factors, HVAC systems of the
single-duct configuration are more common in modern construction.

In summary, the control inputs in this system are: the flow rates of air supplied to each
zone, the outside air flow rate into the AHU, the cooling coil outlet temperature setpoint,
and the heating coil outlet temperature setpoints at each zone. The states in this system
are the zone temperatures.
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2.3 System Modeling

In order to develop control-oriented thermal models of limited order and reduced complexity,
we make the following assumptions:

A1 The average lumped temperature dynamics of the thermal zones can be reasonably
approximated as first-order. We therefore combine the thermal capacitance of the air,
walls, furnishings, and other contents of zone i into a single lumped parameter denoted
(mc)i.

A2 Humidity is not explicitly included in our model.

A3 All dynamics except those of the thermal zones are neglected. Actuators are assumed
to instantly meet their control setpoints.

A4 A prediction of the thermal loads Q̇i in each zone due to occupants, equipment, and
all heat transfer to or from ambient and other zones is known in advance. Predicted
outside air temperature Toa is also known.

Assumption A2 limits the applicability of our model to sensible heat loads rather than
latent loads. Latent heat and humidity considerations are important for cooling applications
in many climates. Our model is not intended to be high enough fidelity to capture these
effects, rather it aims to be reasonably physically representative while remaining simple
enough to analyze in closed form.

Assumption A3 neglects all lags in system actuators and lower-level controllers. Those
lags could be significant relative to the time constants of the thermal zones in some systems.
Our model formulation and MPC methodology can easily be extended to include these lags
when necessary, but they are neglected here for simplicity. Similarly, weakening assumption
A1 by using a model with multiple states and capacitances per zone would be straightforward.

Assumption A4 is optimistic, because these predictions will never be perfectly accurate.
Extensions of this work could account for sensitivity to inaccuracies in predictions by for-
mulating robust or stochastic MPC problems. We consider only the nominal MPC problem
in this chapter.

Thermal Zone Model

A first order energy balance gives the following continuous time system dynamics for the
temperature Tzi of zone i

(mc)i
d

dt
Tzi = Q̇i + ṁzicp(Tsi − Tzi), (2.1)

where cp is the specific heat capacity of air and Tsi is the temperature of the supply air
delivered to zone i. The flow rate ṁzi and supply temperature Tsi are inputs to this model
from the HVAC system.
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If we neglect heat transfer by radiation, the thermal loads Q̇i can be represented as an
affine function of the zone temperatures

Q̇ =

 Q̇1
...

Q̇n

 = R

 Tz1
...
Tzn

+ Q̇offset, (2.2)

where n is the number of thermal zones served by the same AHU, R is a symmetric n × n
matrix of inter-zone heat transfer coefficients and Q̇offset is a n× 1 vector of constant terms
from the predicted thermal load.

A higher-fidelity model of zone thermal dynamics would include multiple states per zone
in a higher order RC network [48].

The compact form of (2.1) for all n zones together is

M
d

dt
Tz = R Tz + Q̇offset + cp diag(ṁz)(Ts − Tz), (2.3)

where M = diag((mc)1, . . . , (mc)n), Tz = [Tz1, . . . , Tzn]T , ṁz = [ṁz1, . . . , ṁzn]T , and
Ts = [Ts1, . . . , Tsn]T .

Let uz = [ṁT
z , T

T
s ]T , A(uz) = M−1(R − cp diag(ṁz)), B(uz) = cpM

−1 diag(ṁz)Ts, and
w = M−1Q̇offset, then (2.3) has the following state-affine form

d

dt
Tz = A(uz)Tz +B(uz) + w. (2.4)

Assuming ṁz, Ts, and Q̇offset are piecewise constant (zero-order held) with sample rate
∆t, we discretize (2.4) using the trapezoidal method

T+
z − Tz

∆t
= A(uz)

T+
z + Tz

2
+B(uz) + w, (2.5)

where T+
z denotes the value of Tz at the next discrete time step t + ∆t. We choose the

trapezoidal discretization as a compromise between simplicity and numerical stability. We
examine the effect of using different discretization methods in Section 2.6.

This zone thermal model is used for both HVAC configurations, however the mass flow
rates ṁz and temperatures Ts of supply air differ depending on the HVAC configuration.

HVAC System Model

Configuration A

The HVAC control inputs in this configuration are: the total mass flow rate at the supply
fan ṁs, the outside air flow rate into the AHU ṁoa, the cooling coil setpoint Tc, the heating
coil setpoint Th, and the zone mixing box supply temperature setpoints Ts = [Ts1, . . . , Tsn]T .
The number of thermal zones served by the same AHU is denoted n.
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The portion of the total supply flow delivered to each zone, denoted ϕi for zone i, is
constant so that

ṁzi = ϕiṁs, where ϕi ≥ 0 ∀ i ∈ {1, . . . , n} and
n∑
i=1

ϕi = 1. (2.6)

In this configuration the individual zone supply flows are derived variables which depend on
the supply fan flow rate.

In configuration A, only part of the supply flow passes through the heating and cooling
coils. The partial flow rates depend on the zone supply temperatures and flow splits.

ṁh =
n∑
i=1

ṁzi(Tsi − Tc)
Th − Tc

, and ṁc = ṁs − ṁh, (2.7)

where ṁh and ṁc are respectively the mass flow rates through the heating and cooling coils.
The coil flows do not directly influence the zone temperature dynamics, but will be important
for the coil energy consumption in Section 2.3.

Configuration B

The HVAC control inputs in this configuration are: the mass flow rates of air supplied to
each zone ṁz = [ṁz1, . . . , ṁzn]T , the outside air flow rate into the AHU ṁoa, the cooling coil
setpoint Tc, and the heating coil setpoints at each zone Th = [Th1, . . . , Thn]T . The supply air
temperature Tsi delivered to zone i is equal to the VAV box heating coil setpoint, Tsi = Thi.

All of the supply flow passes through the cooling coil in configuration B, but only the
flow to a single zone passes through each heating coil. The coil flow rates are then

ṁhi = ṁzi, and ṁc = ṁs =
n∑
i=1

ṁzi, (2.8)

where ṁhi is the flow rate through the heating coil at zone i, and ṁc is the flow rate through
the cooling coil. The total mass flow rate at the supply fan is again denoted ṁs. For
configuration B the total flow rate is a derived variable which depends on the individual
zone flows.

Common Components

In both configurations, we assume the ratio of supply flow rate to return flow rate is the same
for all zones. Neglecting heat transfer to or from the return duct, the return air temperature
Tr is therefore given by a flow-rate-weighted average

Tr =

∑n
i=1(ṁziTzi)∑n
i=1 ṁzi

. (2.9)
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The AHU mixed air temperature Tm is similarly a flow-weighted average of outside air
temperature Toa and return temperature Tr

Tm =
ṁoaToa + (ṁs − ṁoa)Tr

ṁs

. (2.10)

In this model the return and mixed air temperatures influence the coil energy consumption,
but not the zone dynamics.

Cost Function: Energy Consumption and Price

Energy use of the cooling and heating coils is calculated by integrating over time the air-
side thermal power ṁ cp∆T , based on the models in the previous section. We represent the
operating characteristics of the cold and hot water circuits with two parameters: efficiency
ηh for the hot side, and coefficient of performance ηc for the cold side. The two HVAC
configurations A and B have different flow rates and delta temperatures across the coils, so
the expressions for the power used by the coils depend on the configuration.

For both configurations cooling coil power Pc has the form

Pc =
cp
ηc
ṁc(Tm − Tc), (2.11)

where ṁc is given by (2.7) for configuration A and by (2.8) for configuration B.
For configuration A the heating coil power Ph is

Ph =
cp
ηh
ṁh(Th − Tm), (2.12)

where ṁh is given by (2.7).
For configuration B the total power of all heating coils is

Ph =
n∑
i=1

(
cp
ηh
ṁzi(Tsi − Tc)

)
. (2.13)

A higher-fidelity model would include ancillary equipment such as water pumps and
cooling towers, as well as a detailed water-side energy balance. These would be represented by
non-constant ηh and ηc as functions of state and input using performance maps, effectiveness
curves, etc. In this simplified model we take these parameters to be constants.

In both configurations the electrical power Pf used by the supply fan is

Pf =
ṁs ∆p

ρ ηf
, (2.14)

where ṁs is the mass flow rate through the fan, ∆p is the pressure difference across the fan,
ρ is the air density, and ηf is the efficiency of the fan. Assuming incompressible flow gives
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∆p proportional to ṁ2
s, where the ratio of proportionality depends on the flow resistance of

all the downstream zone dampers.
In configuration A we assume the flow resistance of the mixing boxes is constant, so we

can take ∆p = ρ ηfκAṁ
2
s where the constant parameter κA captures the fan efficiency and

duct pressure losses. Equation (2.14) then becomes

Pf = κAṁ
3
s. (2.15)

In configuration B however, the flow resistance of the VAV dampers depends on their
positions. At higher flow rates with the dampers more open, the overall flow resistance is
lower. So the increase of pressure drop with flow rate will be slower than quadratic, and fan
power increases slower than cubic. For simplicity we restrict our model to polynomial form,
so we take ∆p = ρ ηfκBṁs. With this form of simplification for configuration B, we have

Pf = κBṁ
2
s. (2.16)

A higher-fidelity model would include detailed pressure drop characteristics of the ducts
and dampers as functions of flow rate, and a representation of fan speed control incorporating
fan performance curves. We have abstracted all notions of the supply pressure control loop
into our simplified model (2.16), with an implicit assumption that the supply fan is operated
at the minimum power level necessary to deliver the desired total flow rate to all the zones.
Fig. 2.3 shows that a quadratic fit of recorded fan power data from a real VAV system under
supply pressure control is reasonably accurate.

We introduce several parameters to reflect utility pricing. The cost in dollars per unit
energy content is denoted re for electricity, rh for heating fuel (typically gas, or steam from a
central plant). These costs may vary in time, especially for electricity, to reflect time-of-use
or dynamic utility pricing. We assume time variation of utility rates occurs in a zero-order
hold manner at sample rate ∆t.

We also incorporate a feature of some utility structures wherein peak electric power use
is penalized. Some utilities only implement this peak-use charge during certain hours of
the day, so we express this feature by defining a windowing function ψ(t). The value of
ψ(t) equals the given cost per unit peak power during restricted time intervals, and zero
elsewhere.

The total utility cost from time t to time t + N∆t, where N is the prediction horizon
length in number of steps, is

J =

∫ t+N∆t

t

(rePf + rePc + rhPh)dτ + max
τ∈[t,t+N∆t]

(ψ(τ)(Pf + Pc)). (2.17)

Constraints

The system states and control inputs are subject to constraints due to control requirements
and actuator limits. Since the control inputs differ for the two HVAC configurations, some
of these constraints only apply to one configuration.
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Figure 2.3: Recorded data from an AHU supply fan in the Bancroft Library at University
of California, Berkeley

In our models for both configurations, the coil capacity constraints are particularly sim-
plified. A higher-fidelity model would constrain the coil capacities more accurately using
detailed energy balances and performance maps.

Configuration A

• Th ≥ Tm, heating coil can only increase temperature. (2.18a)

• Th ≤ T h, heating coil setpoint must be less than hot water temperature. (2.18b)

• Tsi ≤ Th ∀ i ∈ {1, . . . , n}, supply temperature must be less than heating coil setpoint.
(2.18c)

Configuration B

• ṁzi ≤ ṁzi ≤ ṁzi ∀ i ∈ {1, . . . , n}, zone supply flow must be between minimum
(2.19a)

ventilation requirement and maximum VAV box capacity.

• Tsi ≤ T h ∀ i ∈ {1, . . . , n}, heating coil setpoint must be less than hot water temperature.
(2.19b)
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Common Constraints

• ṁs ≤ ṁs ≤ ṁs, total supply flow must be between min overall (2.20a)

ventilation requirement and max fan capacity.

• ṁoa ≤ ṁoa ≤ ṁs, outside air flow must be above a minimum value for indoor (2.20b)

air quality, and cannot be greater than total supply flow.

• Tc ≤ Tm, cooling coil can only decrease temperature. (2.20c)

• Tc ≥ T c, cooling coil setpoint must be greater than cold water temperature. (2.20d)

• Tsi ≥ Tc ∀ i ∈ {1, . . . , n}, supply temperature must be greater than cooling coil setpoint.
(2.20e)

• T zi ≤ Tzi ≤ T zi ∀ i ∈ {1, . . . , n}, zone temperature must be within comfort range.
(2.20f)

In the above constraints, limit values denoted by ? and ? are treated as system parameters,
assumed to be known in advance.

Model Summary

Combining the HVAC system model from Section 2.3 and the discretized thermal zone model
from Section 2.3, the consolidated model can be expressed as

f(xk+1|t, xk|t, uk|t, wk|t) = 0 ∀ k ∈ {0, . . . , N − 1}. (2.21a)

where xk|t is the value of the state vector (zone temperatures Tz) at time t+ k∆t predicted
at time t, uk|t is the value of all control inputs at time t+ k∆t predicted at time t, and wk|t
is the value of the disturbance inputs Q̇offset and Toa at time t+ k∆t predicted at time t.

The constraints from Section 2.3 can be expressed as

g(xk+1|t, xk|t, uk|t, wk|t) ≤ 0 ∀ k ∈ {0, . . . , N − 1}. (2.21b)

Define the continuous-time one-step cost as

J ck|t =

∫ t+(k+1)∆t

t+k∆t

(rePf + rePc + rhPh)dτ. (2.21c)

The integral (2.21c) is approximated according to the trapezoidal discretization for consis-
tency with the discretization of the state dynamics (2.5). Let Jk|t be the discretization of
(2.21c). The peak power charge is discretized by taking the maximum over the discretely
sampled time instants rather than a continuous time interval.

The system model f , control inputs u, cost J , and constraints g are different for the two
HVAC configurations.
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For configuration A, the model f applies the zone supply temperatures and flows, with
flow splits from (2.6), to the thermal zone model (2.5). The control inputs are u =
[ṁs, ṁoa, Tc, Th, T

T
s ]T . The cost function J combines (2.7), (2.9)-(2.12), and (2.15). The

constraint function g combines (2.18a)-(2.18c), (2.20a)-(2.20f), (2.9), and (2.10).
For configuration B, the model f applies the zone supply temperatures (with Ts = Th)

and flows to the thermal zone model (2.5). The control inputs are u = [ṁT
z , ṁoa, Tc, T

T
h ]T .

The cost function J combines (2.8)-(2.11), (2.13), and (2.16). The constraint function g
combines (2.19a)-(2.19b), (2.20a)-(2.20f), (2.9), and (2.10).

2.4 Optimal Control Design

Model predictive control solves at each time step t the following optimization problem

min
U,X

N−1∑
k=0

Jk|t + max
k∈{0,...,N}

(ψ(t+ k∆t)(Pf + Pc)) (2.22)

subj. to, ∀ k ∈ {0, . . . , N − 1},
f(xk+1|t, xk|t, uk|t, wk|t) = 0

g(xk+1|t, xk|t, uk|t, wk|t) ≤ 0

x0|t = Tz(t)

where U = {u0|t, . . . , uN−1|t} is the set of predicted control inputs at time t,
X = {x1|t, . . . , xN |t} is the set of predicted system states at time t, starting from initial
state x0|t = Tz(t) and applying the input sequence U to the system model (2.21a).

The peak power charge maxk∈{0,...,N}(ψ(t + k∆t)(Pf + Pc)) can be reformulated by in-
troducing an epigraph variable ξ and expressing the maximization as additional inequality
constraints.

min
U,X,ξ

N−1∑
k=0

Jk|t + ξ (2.23)

subj. to, ∀ k ∈ {0, . . . , N − 1},
f(xk+1|t, xk|t, uk|t, wk|t) = 0

g(xk+1|t, xk|t, uk|t, wk|t) ≤ 0

ψ(t+ k∆t)(Pf + Pc) ≤ ξ

ψ(t+N∆t)(Pf + Pc) ≤ ξ

x0|t = Tz(t)

Let the optimal control input solution of problem (2.23) at time t be denoted by
U? = {u?0|t, . . . , u?N−1|t}. Then, the first step of U? is input to the system, u(t) = u?0|t. The

optimization (2.23) is repeated at time t+∆t, with the updated new state x0|t+∆t = Tz(t+∆t)
yielding a moving or receding horizon control strategy.
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The optimization problem (2.23) has nonlinear cost and nonlinear constraints. In order
to solve this optimization problem we use the interior-point NLP solver Ipopt [64] via the
Yalmip toolbox [43].

2.5 Simulation Results

We present simulation results for configuration B in the following cases:

1. Nominal case, re uses “low” value from Table 2.1 and ψ(t) = 0 at all times.

2. Modified electric rate schedule: re uses “high” value between 12 noon and 4:30 PM
and the “low” value at all other times. No peak power charge, ψ(t) = 0.

3. Peak power penalty: ψ(t) = 1 $/kW and re uses “low” rate at all times.

Table 2.1: Parameter values used

Parameter Value Units
n 5 zones
N 48 steps
∆t 1800 s
cp 1 kJ/(kg·K)

(mc)i 1000 kJ/K
R 0 kW/K
ηh 0.9 dimensionless
ηc 4 dimensionless
κf 0.065 kW·s2/kg2

re

{ “high” = 1.5 · 10−4

“low” = 3 · 10−5 $/kJ

rh 5 · 10−6 $/kJ
T0 18 ◦C

T zi

{ 6:30 AM to 6:30 PM = 21
7 PM to 6 AM = 12

◦C

T zi

{ 6:30 AM to 6:30 PM = 24
7 PM to 6 AM = 32

◦C

ṁzi

{ 6:30 AM to 6:30 PM = 0.025
7 PM to 6 AM = 0

kg/s

ṁzi 1.5 kg/s
T c 5 ◦C
T h 40 ◦C

dr 0.9 dimensionless
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For ambient temperature Toa, we use a sinusoid with period 1 day, minimum value 10 ◦C
at time 1:30 AM, and maximum value 30 ◦C at 1:30 PM. Zone thermal loads Q̇i are set to
the time-varying profiles shown in Fig. 2.4. The results of case 1 are shown in Fig. 2.5 and
2.6, case 2 is shown in Fig. 2.7, and case 3 is shown in Fig. 2.8.
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Figure 2.4: Zone thermal loads Q̇i

We observe several interesting behaviors for the nominal case 1 in Fig. 2.5 and 2.6. Before
the occupied period begins at 6:30 AM, zone 5 is set to zero flow and zones 1-4 have a small
flow rate at the maximum heating temperature to counteract the cooling loads (negative Q̇i).
All zones preheat to satisfy the tighter occupied temperature constraints before the occupied
hours begin. From 6:30 AM until 9 AM, zone 5 is in cooling mode but the other zones are
in heating. This period is an economizer mode condition: a mix of outside air maintains the
mixed temperature close to T zi, while zone 5 satisfies its cooling demand with a very large
flow rate. After 9 AM the ambient temperature is warmer than the return temperature so
the AHU dampers return to maximum recirculation. The cooling coil activates at this time,
reaching its lowest setpoint by 10AM. Zones 1-4 begin transitioning to cooling mode here.
Immediately before the end of the occupied period at 6:30 PM, we see a cooling coil supply
temperature reset behavior. The load prediction is much lower after 6:30 PM, so the cooling
coil begins increasing its setpoint early, trading lower cooling power for higher fan power
(the flow to zone 5 must increase to keep it cooled using warmer supply air). The erratic
one-at-a-time heating of zones 1-4 after 10:30 PM appears to be a consequence of the return
temperature dependence on mass flows. When only one zone is heated with a large mass
flow (others at low flow), the return temperature is influenced most by the high-flow zone.
Increased return temperature reduces the required heating coil energy for the next zones to
be heated.
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Figure 2.5: Case 1 zone results. Shown dashed in the first plot are Tzi and T zi

Both case 2 in Fig. 2.7 and case 3 in Fig. 2.8 demonstrate precooling of zone 5 and
lengthened cooling of zones 1-4, but with different timing and intent. In case 2, ψ(t) = 0
but the electric rate re has a higher value between 12 noon and 4:30 PM. So precooling
is only performed immediately before noon, with a corresponding spike in cooling power,
so that less cooling energy is used between 12 noon and 4:30 PM. In case 3, ψ(t) = 1 so
load-shifting is used to minimize peak power. Zone 5 is precooled beginning earlier in the
morning, increasing cooling power at a time when it would otherwise be low and shifting
electric power use away from the times it would normally be highest.

Our computational results show that in response to either time-varying electric rates (re,
case 2) or peak power penalties (ψ(t), case 3), this optimization-based controller does not use
appreciably more total energy. We are not showing the combination of re high and ψ(t) = 1
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Figure 2.6: Case 1 AHU results

here, but the results are very similar to case 3. Imposing a penalty on peak power rules out
the type of short-duration precooling seen in case 2.

This MPC algorithm has shown encouraging results in a few interesting cases for a sample
problem. The control performance, entirely from an optimization origin, exhibits aspects
of heuristic HVAC control such as economizer control, supply temperature reset, demand
response, precooling, and load-shifting in a coordinated manner. The computational time
for each of the above cases was less than one minute, faster than the time scales of a HVAC
system. Additional work is necessary in the areas of system identification, model validation,
and thermal load prediction. Extensions could include robust or stochastic MPC for this
system, wherein we account for uncertainty in future thermal load values and the effects of
model mismatch.

Experimental deployments of these algorithms were performed in [7], [6], and [1]. Closed
loop performance on physical buildings confirmed the advanced control behavior and con-
straint satisfaction observed in simulations, and demonstrated 20 to 60 percent energy savings
relative to standard practice digital HVAC control.
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Figure 2.7: Case 2 overview. Note the precooling and spike in cooling power immediately
before noon

2.6 Local Optima Analysis

Ipopt and other fast nonlinear programming codes are not global solvers for non-convex
problems, so these algorithms can converge to a local optimizer. We must provide guess
values of the optimization variables to initialize the first iteration of a NLP solver. Denote
these guess values by Û and X̂ for the input and state trajectories respectively. If the guess
trajectories (Û, X̂) are feasible according to the constraints (2.21a) and (2.21b), then the
cost value at the corresponding local optimizer (U?,X?) must be less than or equal to the
cost value at the starting guess. In this work the term region of attraction of a local optimizer
(U?,X?) refers to the set of initial guesses (Û, X̂) that converge to the same local optimizer
(U?,X?) when using a given NLP algorithm.

There are several methods commonly used in practice to select an initial guess (Û, X̂) for
nonlinear MPC. Using a shifted version of the MPC solution from the previous time step is
known as warm start and often results in faster NLP convergence. Or if a representation of a
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Figure 2.8: Case 3 overview. Note the timing of the precooling and the intentional plateau
in cooling power

baseline current-practice controller for the same system is available, then we can generate a
guess (Û, X̂) by simulating the baseline controller in closed-loop with the simplified system
model (2.21a). This strategy has the desirable property that any local optimum MPC solu-
tion will outperform a baseline control strategy according to open-loop prediction, assuming
the baseline controller does not violate any constraints.

For a non-convex optimization problem, if there are multiple local optima then the local
optimizer (U?,X?) and the local optimum cost value obtained by a NLP algorithm depend

on the initial guess (Û, X̂). Regardless of the method used to select it, there is no guarantee
that the initial guess is in the region of attraction of the global optimum solution.

In this section we first show simulation results exhibiting local optima for HVAC config-
uration A and present physical interpretations of the observed local optima. Informed by
these example results, we then derive analytical physics-based rules for configuration A that
can be used to rule out local optima such as those observed in our example results. Then
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we show simulation results exhibiting local optima for HVAC configuration B and present
physical interpretations. Lastly we perform more detailed simulations for configuration B
comparing different system model discretization methods.

Configuration A

Our simulations revealed the presence of local optima for configuration A in a small instance
of the optimization problem (2.22) with three zones and a prediction horizon of 2 steps.
System parameter values for this example are given in Table 2.2 and Table 2.3. The initial
state condition and all other system model parameters are held constant for all simulations.

The local optima are found by repeated execution of a NLP algorithm. Each execution of
the NLP algorithm is started from a randomly selected initial guess, uniformly distributed
within the allowable range of states and control inputs. This method is not guaranteed
to find the global optimum or identify every possible local optimum, however over many
samples the probability of identifying local optima having large regions of attraction should
increase.

Table 2.2: Parameters used for both configurations

Description Symbol Value Units

Number of zones n 3 -
Prediction horizon length N 2 steps
Discrete sample time (step length) ∆t 1800 s
Air specific heat capacity cp 1 kJ / (kg·K)
Heat transfer matrix R 0 kW / K
Outside air temperature Toa 16 C
Cold water coefficient of performance ηc 4 kWthermal/kWelectric

Hot water efficiency ηh 0.9 kWthermal/kWfuel

Electric utility rate re 0.108 $/kWhelectric

Heating fuel utility rate rh 0.018 $/kWhfuel

Peak power penalty φ(t) 0 $/kWelectric

Max fan capacity ṁs 6 kg / s
Min total ventilation ṁs 0.015 kg / s
Min fresh air ṁoa 0.015 kg / s
Heating coil max temperature T h 40 C
Cooling coil min temperature T c 5 C

We found 6 distinct families of local optima in this example. At the first time step the set
of locally optimal solutions exhibit two different control modes: a heating mode and a cooling
mode. At the second time step, the local optima exhibit three different control modes: a
heating mode, a cooling mode, and a third intermediate mode. Every combination of modes
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Table 2.3: Configuration A parameters

Description Symbol Value Units

Zone thermal capacitance (mc)i 100 kJ / K

Fixed thermal loads Q̇offset [3, 4.5, 6]T kW
Zone flow splits ϕi 0.333 -
Fan power coefficient κA 0.08 kW/(kg/s)3

Upper comfort bound T zi 24 C
Lower comfort bound T zi 21 C
Initial state conditions Tzi(0) 22 C

for the first and second time step was feasible, so over the horizon of 2 steps we have six
families of local optima. Different local optima belonging to the same family have different
heating or cooling coil setpoints. The cost value, state trajectories, and all other control
inputs are equal within a family. The coil setpoints and zone supply temperatures of each
family are illustrated in Figure 2.9 and full results are given in Table 2.4. Coil temperature
setpoints denoted by “Fig.2.9” in Table 2.4 correspond to the x-axis ranges highlighted in
Figure 2.9.

Table 2.4: Result details, configuration A

Family ṁs ṁoa Tc Th [T+
z1, T

+
z2, T

+
z3]

# t (kg/s) ṁs (C) (C) (C) J? ($)

1
0 1.667 1 Fig.2.9 16 [21, 24, 24]

0.095
∆t 1.688 1 Fig.2.9 16 [21.56, 24, 24]

2
0 1.667 1 Fig.2.9 16 [21, 24, 24]

0.113
∆t 2.25 1 16 Fig.2.9 [21, 21, 24]

3
0 2.524 1 16 Fig.2.9 [21, 21, 24]

0.133
∆t 1.8 1 Fig.2.9 16 [21, 24, 24]

4
0 2.524 1 16 Fig.2.9 [21, 21, 24]

0.143
∆t 2.25 1 16 Fig.2.9 [21, 22.74, 24]

5
0 1.667 1 Fig.2.9 16 [21, 22.5, 24]

0.177
∆t 3 0.69 18 18 [21, 22.5, 24]

6
0 2.524 1 16 Fig.2.9 [21, 22.5, 24]

0.21
∆t 3 0.69 18 18 [21, 22.5, 24]

In this example the zones have positive thermal loads Q̇i so the supply temperatures must
be lower than the zone temperatures in order to counteract the loads and remain within the
comfort range. Because the zones have different thermal load values but the flow rates to
different zones have fixed ratios in configuration A, the required supply temperatures will in
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Figure 2.9: Families of local optima for HVAC configuration A

general be different for each zone. In order for the zone dampers to be capable of meeting
the required supply temperatures, as a consequence of constraints (2.18b) and (2.20e) the
heating coil setpoint must be warmer than the highest required supply temperature and the
cooling coil setpoint must be cooler than the lowest required supply temperature.

The outside air temperature here is Toa = 16 C, which is cooler than the zone tem-
peratures so this is an economizer condition. Free cooling is available by using outside air
instead of recirculated return air at the AHU, reducing coil energy. The difference between
the cooling mode and the heating mode is whether the outside air is cooled or heated before
being supplied to the zones. The zones must be cooled in all feasible modes for this example,
so the names of the modes here refer only to which coil is consuming energy in the AHU.

In the cooling mode, the cooling coil setpoint Tc is strictly less than 16 C and the heating
coil setpoint Th is equal to 16 C (no heating of the outside air). In the heating mode, the
heating coil setpoint Th is strictly greater than 16 C and the cooling coil setpoint Tc is equal
to 16 C (no cooling of the outside air). The intermediate mode is a special case where a
single supply temperature can meet all of the different thermal loads. The single supply
temperature for these parameters is 18 C which is warmer than outside air temperature, so
this mode can be realized by mixing outside air with recirculated air. When AHU mixed
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temperature Tm equals 18 C, the cooling and heating coil setpoints can both be set to 18
C requiring no coil energy at all. This mode requires zones with different loads to be at
different temperatures, so it is not possible at the first time step when all of the zones have
the same initial condition temperature.

Note that in cooling mode, the cooling coil setpoint Tc can have any value between 5 and
16 C as long as it is less than or equal to the coolest zone supply temperature. Likewise in
heating mode, the heating coil setpoint Th can have any value between 16 and 40 C as long
as it is greater than or equal to the warmest zone supply temperature. When Tc is cooler or
Th warmer than necessary, the zone dampers compensate to maintain the same mixed supply
temperatures Ts. A lower cooling coil setpoint or a higher heating coil setpoint requires less
flow through the respective coil to produce the same zone supply temperatures.

Cooling mode is feasible for low supply flow rates, where all required zone supply tem-
peratures are below 16 C (otherwise the heating coil setpoint would need to be warmer than
outside air temperature). Heating mode is feasible at higher flow rates, where all required
supply temperatures are above 16 C but cooler than the zone temperatures. The heating
mode will require a higher flow rate to counteract the same thermal load, since the difference
between supply and zone temperatures will be smaller than for the cooling mode.

The intermediate mode is feasible at the second time step. A supply temperature of 18 C
and a high supply fan flow rate of 3 kg/s are capable of maintaining steady-state conditions
within the comfort bounds in all zones. At that steady state zone temperature condition, the
return temperature is 22.5 C so a mix of 31% recirculated flow and 69% outside air produces
the necessary supply temperature without using either the cooling or heating coils at all. At
the first time step, either cooling mode or heating mode can reach the required state values
for this third mode from the initial conditions.

Table 2.4 confirms that the modes requiring lower flow rates have lower overall cost
(accounting for coil energy as well). Cooling mode requires less flow than heating mode, and
both require less flow than the intermediate mode. Therefore, the lowest-cost family of local
optima is in cooling mode at both time steps. Due to the initial conditions, heating mode
at the second time step requires less flow than heating mode at the first time step to remain
inside the comfort bounds. So the second-lowest-cost family of local optima is in cooling
mode at the first step, then heating mode at the second step. The third-lowest-cost family
is the reverse: heating mode then cooling mode. The fourth-lowest cost family is in heating
mode at both steps. The fifth-lowest cost family is in cooling mode then the intermediate
mode. The highest-cost family of local optima is in heating mode then the intermediate
mode.

The apparent global optimum family 1 corresponds to the intuitive control strategy of
cooling the supply air to achieve cooling of the zones. The heating and intermediate modes
are physically feasible according to the system model, but would not be used by a conven-
tional controller in this operating condition. We would like a way of preventing MPC from
selecting an unintuitive control strategy when such a strategy is clearly suboptimal. In the
next section we use the simplified model to derive rules and conditions to determine when
this is possible.
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Physics-based Rules

In this section, we use the simplified model for configuration A to derive rules that can
exclude local optima under specific conditions. These rules will apply to all instances of this
system model, at every time step, regardless of the number of zones or the length of the
prediction horizon.

First we examine the unconstrained partial derivatives of the coil powers (2.11) and (2.12)
with respect to coil temperature setpoints. Substituting (2.7) into the coil powers (2.11) and
(2.12) gives

rePc + rhPh =
recp
ηc

(Tm − Tc)

(
n∑
i=1

ṁzi(Th − Tsi)
Th − Tc

)
+
rhcp
ηh

(Th − Tm)

(
n∑
i=1

ṁzi(Tsi − Tc)
Th − Tc

)
.

(2.24)
The partial derivatives of (2.24) with respect to coil temperature setpoints Tc and Th are

∂

∂Tc
(rePc + rhPh) = −cp

(
re
ηc

+
rh
ηh

)
Th − Tm

(Th − Tc)2

(
n∑
i=1

ṁzi(Th − Tsi)

)

and
∂

∂Th
(rePc + rhPh) = cp

(
re
ηc

+
rh
ηh

)
Tm − Tc

(Th − Tc)2

(
n∑
i=1

ṁzi(Tsi − Tc)

)
. (2.25)

The partial derivative with respect to Tc is nonpositive so if Th 6= Tm then Tc should be
as large as possible to minimize coil power. The partial derivative with respect to Th is
nonnegative so if Tm 6= Tc then Th should be as small as possible to minimize coil power.

Minimizing Th subject to (2.18a), (2.18c) and maximizing Tc subject to (2.20c), (2.20e),
the control variables at each time step for any local optimum must fall under one of 4
scenarios. The scenarios correspond to different possible orderings of mixed temperature
Tm, minimum supply temperature Ts,min = mini Tsi, and maximum zone supply temperature
Ts,max = maxi Tsi, and are defined by the following inequality functions.

(S1) Tc = Ts,min ≤ Tm and Th = Ts,max ≥ Tm

(S2) Tc ≤ Ts,min ≤ Tm and Th = Tm ≥ Ts,max

(S3) Tc = Tm ≤ Ts,min and Th ≥ Ts,max ≥ Tm

(S4) Tc = Tm ≤ Ts,min and Th = Tm ≥ Ts,max, so Tsi = Tm for all zones i

Note that S2 has an additional degree of freedom on Tc and S3 has an additional degree
of freedom on Th, due to cancellations in (2.24). In S2 when Th = Tm, the coil cost is
independent of Tc. In S3 when Tc = Tm, the coil cost is independent of Th.

These scenarios are not mutually exclusive. In fact, S4 = S1 ∩ S2 ∩ S3. The boundaries
and intersection sets of these 4 scenarios are shown with a Venn diagram in Figure 2.10.
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Figure 2.10: Venn diagram of potentially optimal scenarios

In scenario S1, either the cooling coil or the heating coil can be actively using energy, or
both, or neither. In scenario S2, the cooling coil can be actively using energy but the heating
coil does not. In scenario S3, the heating coil can be actively using energy but the cooling
coil does not. In scenario S4, neither coil is actively using energy. By the terminology of the
previous section, S2 corresponds to the cooling mode, S3 corresponds to the heating mode,
and S4 corresponds to the intermediate mode. When a coil is inactive, its setpoint is equal
to the mixed air temperature so it uses no energy. There may still be air flow through an
inactive coil, according to equation (2.7).

The partial derivative and constraint conditions used to derive these scenarios are a subset
of the optimality conditions of problem (2.22). At each time step, the control variables of
any locally optimum solution to problem (2.22) must be contained in one of the scenarios.
Hence we can restrict the search space to the union S1 ∪ S2 ∪ S3 ∪ S4. Our goal is to further
restrict the search space for the global optimum by identifying conditions when one or more
of the scenarios can be ruled out.

We propose to do so by calculating a-priori lower and upper bounds on the possible cost
values of local optima within each scenario. We denote these cost bounds by Si,lb(v) and
Si,ub(v) for each scenario i ∈ {1, 2, 3, 4}. These bounds are functions only of the constant
system model parameters collected in v, where

v = (M, cp, R, Q̇offset, ∆t, ϕ, Toa, ηc, ηh, κA, re, rh, ṁs, ṁs, T c, T h, T z, T z ).

The derivation of the functions Si,lb(v) and Si,ub(v) is lengthy and reported in Appendix 2.8.
We determine which scenarios can be ruled out using the following steps.

Algorithm 1 Elimination of scenarios

1. If S1,lb(v) ≥ S2,ub(v) or S1,lb(v) ≥ S3,ub(v) or S1,lb(v) ≥ S4,ub(v), then S1 can be ruled
out
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2. If S2,lb(v) ≥ S1,ub(v) or S2,lb(v) ≥ S3,ub(v) or S2,lb(v) ≥ S4,ub(v), then S2 can be ruled
out

3. If S3,lb(v) ≥ S1,ub(v) or S3,lb(v) ≥ S2,ub(v) or S3,lb(v) ≥ S4,ub(v), then S3 can be ruled
out

4. If S4,lb(v) ≥ S1,ub(v) or S4,lb(v) ≥ S2,ub(v) or S4,lb(v) ≥ S3,ub(v), then S4 can be ruled
out

We rule out scenarios by including additional constraints in the optimization problem
(2.22). The additional constraints restrict the search space to a subset of the scenarios, and
eliminate any local optima that would otherwise be found in the removed scenarios. Note
that the resulting optimization problem is still non-convex in the remaining scenarios. The
additional constraints do however reduce the size of the feasible region of the optimization
problem, so may improve convergence speed and simplify the task of identifying multiple
local optima. Further iterative refinement to calculate bounds within smaller subregions
cannot be performed a-priori because the number of regions required would be prohibitive.
Performing this refinement online requires a branch and bound algorithm.

Configuration B

Our simulations revealed the presence of local optima for configuration B in a small instance
of the optimization problem (2.22) with three zones and a prediction horizon of 2 steps.
System parameter values for this example are given in Table 2.2 and Table 2.5. Compared
to the example previously presented for configuration A in Section 2.6 the zone thermal
capacitances are higher, the thermal loads are smaller, and the comfort bound temperatures
are time-varying. As in Section 2.6, the initial state condition and all other system model
parameters are held constant for all simulations. The local optima are generated by repeated
execution of the optimization algorithm starting from randomly selected initial guesses.

We found 6 distinct local optima for configuration B in this example. Each of the local
optima here was a single point, rather than a connected family of solutions as in configuration
A. For all six local optima, only outside air is used so ṁs = ṁoa, and the heating and cooling
coils are inactive with Tc = Th = 16 C at all time steps. In this example outside air is
sufficient to counteract the small zone thermal loads and cool the zones to remain within
the time-varying comfort bounds.

The six optima are qualitatively very similar to one another: in the first time step, one
zone is cooled to slightly below 24 C, another zone is cooled to approximately 25 C, and a
third zone remains at the initial upper bound of 26 C (see the upper row of Figure 2.11).
In the second time step, all 3 zones are controlled to reach the reduced upper bound at 24
C. Mass flow rates are large for time steps when a zone requires a 2 C temperature change,
intermediate for steps when a zone requires a 1 C temperature change, and small for steps
when the zone temperature change is small (see the lower row of Figure 2.11). The difference
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Table 2.5: Configuration B parameters

Description Symbol Value Units

Zone thermal capacitance (mc)i 8000 kJ / K

Fixed thermal loads Q̇offset [1
3
, 1

2
, 2

3
]T kW

Fan power coefficient κB 0.4 kW/(kg/s)2

Max VAV capacity ṁzi 6 kg / s
Min zone ventilation ṁzi 0.005 kg / s
Upper comfort bound: step 1 T zi(1) 26 C
Upper comfort bound: step 2 T zi(2) 24 C
Lower comfort bound: step 1 T zi(1) 19 C
Lower comfort bound: step 2 T zi(2) 21 C
Initial state conditions Tzi(0) 26 C

between the local optima here is a matter of sequencing: the local optima correspond to the
6 different ordered permutations of 3 zones.

Table 2.6: Result details, configuration B

Point ṁz1 ṁz2 ṁz3 ṁs

# t (kg/s) (kg/s) (kg/s) (kg/s) J? ($)

1
0 1.0612 0.5092 0.0667 1.6371

0.11738†
∆t 0.005 0.5928 1.0617 1.6595

2
0 1.0612 0.05 0.5232 1.6344

0.11751†
∆t 0.005 1.0432 0.6158 1.664

3
0 0.4739 1.1007 0.0667 1.6413

0.11753†
∆t 0.5908 0.005 1.0617 1.6575

4
0 0.0333 1.1007 0.5019 1.6359

0.11779†
∆t 1.0247 0.005 0.6368 1.6664

5
0 0.4526 0.05 1.1403 1.643

0.11783†
∆t 0.6119 1.0432 0.005 1.6601

6
0 0.0333 0.4666 1.1403 1.6402

0.11796†
∆t 1.0247 0.6348 0.005 1.6645

Table 2.6 gives the cost values and flow rates for each of the 6 locally optimal solutions.
The cost values (†) show very little variation between the local optima, only 0.5% difference
between the lowest cost and highest cost points. The differences in cost are due to the
different thermal load values for each zone. While we would expect the differences in cost
to grow if we increased the differences in zone thermal loads, the optimal solutions for
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Figure 2.11: Local optima for HVAC configuration B

other control variables such as coil setpoints and percentage of outside air flow may change
significantly for different system parameters such as thermal loads. The solution to the
optimization problem may vary discontinuously as a function of its parameter data.

For a constant supply temperature, less flow is required to counteract a positive thermal
load when zone temperature is higher due to (2.1). So the control strategy that cools the
zones with the lowest thermal loads first is the most efficient here, keeping the high-load
zones at higher temperatures for longer. This strategy is point 1, so the results confirm this
statement. Point 2 partially cools the highest-load zone before the intermediate-load zone,
and point 3 fully cools the intermediate-load zone before the lowest-load zone. Point 4 fully
cools the lowest-load zone last instead of first but is otherwise in order, and point 5 fully
cools the highest-load zone first instead of last but is otherwise in order. Point 6 cools the
highest-load zone first and the lowest-load zone last.

The small difference in cost between points 2 and 3, and between points 4 and 5, is a
consequence of which zone is fully cooled at the first time step. The fastest-cooled zone (zone
1 for points 1 and 2, zone 2 for points 3 and 4, zone 3 for points 5 and 6) is then supplied
with exactly the lower bound minimum flow rate at the second time step. At the minimum
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flow rate, the change in zone temperature during the second time step is larger for higher
thermal loads. Therefore the higher the thermal load, the more a zone must be overcooled
at the first time step in order to remain below 24 C at the second time step. This additional
required energy causes points 5 and 6 to have higher cost than points 3 and 4, and points 3
and 4 to have higher cost than points 1 and 2.

Although the local optima in this example have practically equivalent costs, the individual
local optima attain that cost by means of different control strategies. Depending on the
method used for initializing the optimization algorithm at sequential time steps, the presence
of local optima could lead to undesirable oscillatory switching behavior. In larger problem
instances with more zones and longer prediction horizons, examples similar to this one could
possess a combinatorial number of local optima, corresponding to sequencing permutations.
Thorough enumeration of local optima by random sampling quickly becomes intractable for
larger problem sizes because both the number of local optima and the computational effort
to solve a single instance tend to increase with problem size.

Discretization Comparison

The local optima we observed for configuration B in the previous section were related to
transient dynamic behavior. To investigate these local optima in more detail, we revisit the
issue of system model discretization. The physics-based model (2.1) is a continuous-time dif-
ferential equation, and including this continuous-time model directly in a MPC formulation
would lead to an infinite dimensional differential-algebraic optimization problem. To solve
the underlying continuous control problem computationally, we must numerically discretize
time. We choose to perform a fixed-step discretization so the size of the resulting discrete
optimization problem is known in advance.

In (2.5) and all results presented above, we used the trapezoidal discretization method.
In this section we compare the results of forward Euler (abbreviated FE), trapezoidal (TR),
and exact (EX) discretization methods on a modified version of the example from Section
2.6.

(FE) Forward Euler: the simplest method to implement, it is explicit but only first-order
accurate in the timestep. Forward Euler is numerically unstable if the discrete time
step is larger than the time constant of the continuous system dynamics. The resulting
discrete system from the forward Euler discretization method is

T+
z − Tz

∆t
= A(uz)Tz +B(uz) + w. (2.26)

(TR) Trapezoidal method: equivalent to approximating the time variation of zone temper-
atures as piecewise linear. This method is second-order accurate in the timestep and
has the desirable property of A-stability [18], meaning the trapezoidal discretization
of any stable continuous-time system gives a stable discrete-time system. The trape-
zoidal method is implicit so requires solution of a nonlinear system of equations at
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each timestep. These implicit systems of equations are included in our optimization
formulation in constraint (2.21a) and solved by the nonlinear programming algorithm.
The resulting discrete system from the trapezoidal discretization method is

T+
z − Tz

∆t
= A(uz)

T+
z + Tz

2
+B(uz) + w. (2.27)

(EX) Exact discretization: reproduces the exact solution values at the discrete sampling
times. A closed-form discrete solution is not always possible for a general nonlinear
differential equation. Since the continuous dynamics (2.4) have state-affine form and we
are assuming the control inputs and disturbances are zero-order held, there is a solution
given by the matrix exponential for this system. The resulting discrete system from
the exact discretization is

A(uz)T
+
z +B(uz) + w = eA(uz)∆t(A(uz)Tz +B(uz) + w), (2.28)

where eA(uz)∆t is the matrix exponential.

Each of the above discretization methods is an approximation to the same continuous-
time problem, but different discretizations result in different discrete-time optimization prob-
lems (2.22). Changing the discretization method modifies the structure and form of nonlin-
earities in the equality constraints (2.21a). Different discretization methods can therefore
have different optimal cost and solution values.

Next we present 4 aspects of the effect of discretization method: (1) existence of local
optima, (2) shape of cost function around local optima, (3) verification of local optima, and
(4) extension to longer prediction horizon.

Existence of Local Optima

The solution method and parameters used here are identical to those in Section 2.6, with two
exceptions. Here we consider only two zones (n = 2) with fixed thermal loads
Q̇offset = [1/3, 2/3]T . Note that with 3 zones we observed 6 local minima corresponding
to the 6 different ordered permutations of 3 zones, but now with 2 zones there are only 2
possible ordered permutations.

Table 2.7 summarizes the (locally) optimal solutions for each of the discretization meth-
ods. The local optimum numbered as 1 is the observed solution with lowest cost (presumed
but not proven to be the global optimum) for each method. It is observed that forward Euler
and the trapezoidal method have two locally optimal solutions, while the exact discretization
results in a single optimal solution in this example. Furthermore, the local solutions with
the trapezoidal discretization have much closer cost values to the exact discretization than
do the solutions with forward Euler. This is as expected, due to the higher order of accuracy
of the trapezoidal method and the transient nature of the solutions in this example.

The substantially lower cost values of the locally optimal solutions for the forward Eu-
ler method are also due to discretization inaccuracy. The energy delivered to a zone is
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Table 2.7: Locally optimal solutions for different discretization methods, configuration B

Discretization Average Solution [Tz1, Tz2] (C) at Cost variation
method runtime (s) number time t = ∆t J? ($) relative to EX

FE 0.244
1 [23.93, 26.00] 0.042325 –19.32%
2 [26.00, 23.86] 0.042458 –19.06%

TR 0.327
1 [23.98, 26.00] 0.052022 –0.83%
2 [26.00, 23.99] 0.052419 –0.07%

EX 0.787 1 [24.00, 26.00] 0.052458 0

proportional to flow rate times the difference between supply and zone temperatures. The
forward Euler method treats that temperature difference as constant throughout a time step,
whereas in reality the temperature difference decreases over time as a zone is cooled. Hence
the forward Euler method predicts that a lower flow rate is required to deliver the same total
energy to a zone.

Table 2.7 also lists the average solver time for the different discretization methods. The
exact discretization is more time consuming than forward Euler or the trapezoidal method
due to exponential function computations. This implementation used unoptimized Matlab
code for the objective and constraint functions via the Yalmip toolbox, but we expect that an
implementation with optimized code for real-time execution on a much larger-scale system
would show similar trends.

Shape of Cost Function Around Local Optima

In Figure 2.12 we explore the optimal cost as a function of zone temperatures at the in-
termediate time step t = ∆t for each discretization method. This is achieved by including
additional constraints fixing the zone temperature values Tz at time t = ∆t, and executing a
modified version of problem (2.22) for each entry on a sampled grid of vectors Tz. The locally
optimal solutions from Table 2.7 are marked by a green dot at each lower-cost solution 1,
and a red dot at each higher-cost solution 2 (for FE and TR, but not for EX since it has
only one solution).

We make several observations from Figure 2.12. For all 3 discretization methods the
optimal cost is not very sensitive to the sum of the zone temperatures at time t = ∆t, but
is highly sensitive to the difference between the zone temperatures at time t = ∆t. In other
words, as long as the overall cooling delivered to both zones sums to 2 C total temperature
change over the first time step, the energy cost over the whole horizon is close to optimal.
This corresponds to the intuition that it is better to operate the system at a lower rate for
a longer period of time. If both zones are cooled by too much or too little at the first time
step, the total energy cost will be significantly higher.

Additionally, the cost values with the trapezoidal method are very similar to the cost
values with the exact discretization. The cost values for forward Euler did not match as
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(c) Exact discretization

Figure 2.12: Visualization of optimal cost values as a function of zone temperatures at
the intermediate time step t = ∆t

well due to the inaccuracy of the FE discretization. In the exact discretization, the cost
varies monotonically along the floor of the valley between the points Tz = [24, 26]T and
Tz = [26, 24]T and there is only one local optimum. The trapezoidal and forward Euler
discretizations, on the other hand, show a saddle-shaped cost behavior leading to a second
local optimum close to Tz ≈ [26, 24]T . The non-convex direction of the saddle shape is much
more pronounced for the forward Euler discretization.

Verification of Local Optima

To verify that the solutions found in Table 2.7 are all local optima, we examine the cost varia-
tion in the neighborhood around each identified solution T ?z by fixing
Tz = T ?z + [d cos θ, d sin θ]T at time t = ∆t. Note that for local optima with T ?z ≈ [24, 26]T

at time t = ∆t (numbered 1 and marked by green dots in Figure 2.12), only values of
θ ∈ [180, 360] ◦ will result in feasible Tz = T ?z + [d cos θ, d sin θ]T inside the comfort region.
For local optima with T ?z ≈ [26, 24]T at time t = ∆t (numbered 2 and marked by red dots in
Figure 2.12), only values of θ ∈ [90, 270] ◦ will result in feasible Tz = T ?z + [d cos θ, d sin θ]T

inside the comfort region.
In Figure 2.13 we plot the cost variation of these neighboring points

Tz = T ?z + [d cos θ, d sin θ]T with respect to each local optimum as a function of θ, for 3
small values of d. The positive cost variation across all feasible values of θ indicates that the
cost value increases in every feasible direction away from the local optima. If we were to plot
similar curves for cost variation of the exact discretization around the point Tz ≈ [26, 24]T ,
the cost variation would be negative for θ near 135 ◦. This point was not a local optimum
for the exact discretization. We also note that the vertical scale for the cost variation is two
orders of magnitude larger for the forward Euler discretization than the other two. Possibly
due to the more pronounced saddle non-convexity observed in Figure 2.12, the forward Euler
method has larger local slopes in the vicinity of the local optima.
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Figure 2.13: Cost variation in a neighborhood around each local optimum solution

Extension to Longer Prediction Horizon

In Table 2.8 we show the number of local optima we observed with an increasing length
of prediction horizon from N = 2 to N = 6. The forward Euler discretization shows an
increasing number of locally optimal solutions with longer prediction horizon N , and the
exact discretization results in a single optimal solution for all horizon lengths considered.
The trapezoidal discretization exhibited multiple optima for prediction horizon length N up
to four, but only one optimal solution for N ≥ 5. This result for the trapezoidal method is
unexpected and requires further analysis.

The results of this section present some interesting challenges. The discretized system
dynamics (2.26), (2.27), and (2.28) all contain bilinear product terms between temperature
states and flow inputs, as well as between temperature inputs and flow inputs. So the exact
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Table 2.8: Number of local optima with various prediction horizons and discretization meth-
ods

N=2 N=3 N=4 N=5 N=6
FE 2 6 9 17 42
TR 2 6 3 1 1
EX 1 1 1 1 1

discretization (2.28) is also a non-convex problem, but for our example it demonstrated cost
variation (with respect to a small subset of intermediate state variables) that appeared to be
convex or very nearly convex. It may be possible to transform or reformulate this problem
in such a way that it decomposes into a convex part and a non-convex part, which can then
be taken advantage of by an optimization algorithm.

The exact discretization may also be difficult to compute if the matrix A(uz) is not diago-
nal, for example when heat transfer between neighboring zones is included. The trapezoidal
discretization approximates the cost values of the exact discretization with a practically
acceptable accuracy, and one of its local optima is a close approximation of the exact dis-
cretization’s optimal solution. However the trapezoidal discretization introduced additional
local optima (for horizon lengths N = 2, 3, or 4) at points where the exact discretization
would have identified a descent direction, and the control strategies at these additional local
optima are quite different. In our particular example for this configuration all identified local
optima had similar cost values to one another, but this might not be the case for different
system parameters.

2.7 Conclusions

We have studied the problem of using model predictive control (MPC) for heating, ventila-
tion, and air conditioning (HVAC) systems in a typical commercial building for two common
HVAC configurations. We derived simplified physics-based nonlinear system models for each
configuration, then investigated the phenomenon of local optima by solving the nonlinear
MPC problem using the local nonlinear programming solver Ipopt. We have shown by simu-
lation that the resulting optimization problem exhibits local optima for both configurations.
We performed a detailed analysis of the different types of local optima and their physical
interpretation.

For the dual-duct HVAC configuration, the local optima in our example results had
notably different energy costs, so finding a globally optimal control strategy has obvious
significance. We have divided the optimization search space into 4 regions and proposed an
algorithm that can exclude one or more of those regions from consideration a priori. Physics-
based rules like the ones we have identified are particularly useful for a branch and bound
scheme, as they reduce the size of the search space when they can be applied.
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For the single-duct configuration, the local optima in our example results had very similar
cost values but differed in transient sequencing. We have shown that the choice of discretiza-
tion method has an important influence on the existence, number, and characteristics of local
optima. The issue of discretization method with physics-based continuous-time models for
nonlinear MPC deserves further study. A partially convex decomposition, if possible, may
make up for some of the computational drawbacks of the exact discretization.

2.8 Detailed Derivation for Physics-based Rules

Here we present derivation steps for the physics-based rules from Section 2.6. We begin by
integrating the continuous-time dynamics (2.1) over a time step of ∆t assuming the control
inputs of supply flow rate and supply temperature are held piecewise constant, giving

(mc)i(T
+
zi − Tzi) = ∆t(Q̇i,avg + ṁzicp(Tsi − Tzi,avg)), (2.29)

where Q̇i,avg = 1
∆t

∫ t+∆t

t
Q̇idτ and Tzi,avg = 1

∆t

∫ t+∆t

t
Tzidτ . Solving for Tsi, we obtain

Tsi = Tzi,avg +
1

ṁzicp

(
(mc)i

∆t
(T+

zi − Tzi)− Q̇i,avg

)
. (2.30)

Let βi =
1

cp

(
(mc)i

∆t
(T+

zi − Tzi)− Q̇i,avg

)
, then Tsi = Tzi,avg +

1

ṁzi

βi. (2.31)

If βi > 0, then decreasing ṁzi (leaving all other variables unchanged) increases supply
temperature Tsi. If βi < 0, then decreasing ṁzi decreases supply temperature Tsi.

Zone and return temperatures can be bounded by applying the comfort constraints
(2.20f), T zi ≤ Tzi,avg ≤ T zi which implies mini T zi ≤ Tr,avg ≤ maxi T zi. The mixed tempera-
ture can be bounded using (2.10) and (2.20b), giving min(Tr,avg, Toa) ≤ Tm ≤ max(Tr,avg, Toa)
therefore min(mini T zi, Toa) ≤ Tm ≤ max(maxi T zi, Toa).

We can bound βi by applying the comfort constraints as follows. Let R+ = max(R, 0)
and R− = min(R, 0) taken elementwise. Then β

i
≤ βi ≤ βi, where

β
i

=
1

cp

(
(mc)i

∆t
(T zi − T zi)−R+T zi −R−T zi − Q̇offset

)
and βi =

1

cp

(
(mc)i

∆t
(T zi − T zi)−R+T zi −R−T zi − Q̇offset

)
. (2.32)

Applying (2.31), the sum of supply temperatures times flow rates is

n∑
i=1

ṁziTsi =
n∑
i=1

(ṁziTzi,avg + βi) = ṁsTr,avg +
n∑
i=1

βi, (2.33)

where Tr,avg = 1
∆t

∫ t+∆t

t
Trdτ . The second equality in (2.33) is due to (2.9).
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Scenario S1

In scenario S1, Tc = Ts,min and Th = Ts,max. Substituting (2.33) into the cost (2.24) gives

rePc + rhPh =
recpṁs(Tm − Ts,min)

ηcṁs(Ts,max − Ts,min)

(
ṁs(Ts,max − Tr,avg)−

n∑
i=1

βi

)

+
rhcpṁs(Ts,max − Tm)

ηhṁs(Ts,max − Ts,min)

(
ṁs(Tr,avg − Ts,min) +

n∑
i=1

βi

)
. (2.34)

Let j = arg mini Tsi and k = arg maxi Tsi. Substituting Ts,min = Tzj,avg + 1
ϕjṁs

βj and

Ts,max = Tzk,avg + 1
ϕkṁs

βk into (2.34) and adding the cubic fan cost (2.15) gives

rePf + rePc + rhPh =

κAṁ
3
s +

recp

(
ṁsTm − ṁsTzj,avg − βj

ϕj

)(
ṁsTzk,avg + βk

ϕk
− ṁsTr,avg −

∑n
i=1 βi

)
ηc

(
ṁsTzk,avg + βk

ϕk
− ṁsTzj,avg − βj

ϕj

)
+
rhcp

(
ṁsTzk,avg + βk

ϕk
− ṁsTm

)(
ṁsTr,avg − ṁsTzj,avg − βj

ϕj
+
∑n

i=1 βi

)
ηh

(
ṁsTzk,avg + βk

ϕk
− ṁsTzj,avg − βj

ϕj

) . (2.35)

We can combine (2.35) into a single rational polynomial function of ṁs with quartic
numerator and linear denominator. We note that (2.34) and (2.35) cannot have singular-
ities in scenario S1 because the denominator term (Ts,max − Ts,min) ≥ 0 by construction,
with equality only possible for S4 (where there are additional cancellations, see Section 2.8).
The partial derivative ∂

∂ṁs
(rePf + rePc + rhPh) can be combined into a rational polynomial

function of ṁs with quartic numerator and quadratic denominator, and also has no sin-
gularities in S1. Local minima can therefore only occur at real roots of the numerator of
∂

∂ṁs
(rePf + rePc + rhPh), or at the minimum or maximum feasible flow rates for scenario S1.
The range of flow rates ṁs for which S1 is feasible is determined by (2.31), the constraints

(2.18b) and (2.18c) which require Ts,max ≤ T h, the constraints (2.20d) and (2.20e) which
require Ts,min ≥ T c, and the requirement for scenario S1 that Ts,min ≤ Tm ≤ Ts,max.

If βi > 0 for all zones i, then

max

(
ṁs,

βk

ϕk(T h − Tzk,avg)
,

βj
ϕj(Tm − Tzj,avg)

)
≤ ṁs ≤ ṁs. (2.36)

If βi < 0 for all zones i, then

max

(
ṁs,

βj
ϕj(T c − Tzj,avg)

,
βk

ϕk(Tm − Tzk,avg)

)
≤ ṁs ≤ ṁs. (2.37)

We calculate the upper and lower cost bounds for S1 as follows.
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Algorithm 2 Cost bounds for scenario S1

1. Initialize S1,lb(v) =∞ and S1,ub(v) =∞

2. If ∂
∂ṁs

(rePf + rePc + rhPh) > 0 at minimum feasible flow rate ṁs, then

a) Evaluate (rePf + rePc + rhPh) at minimum feasible flow rate

b) Calculate bounds (rePf + rePc + rhPh)lb and (rePf + rePc + rhPh)ub using comfort
constraints and mixed temperature range

c) Set S1,lb(v) = (rePf + rePc + rhPh)lb

d) Set S1,ub(v) = (rePf + rePc + rhPh)ub

3. If ∂
∂ṁs

(rePf + rePc + rhPh) < 0 at maximum feasible flow rate ṁs, then

a) Evaluate (rePf + rePc + rhPh) at maximum feasible flow rate

b) Calculate bounds (rePf + rePc + rhPh)lb and (rePf + rePc + rhPh)ub using comfort
constraints and mixed temperature range

c) Set S1,lb(v) = min(S1,lb, (rePf + rePc + rhPh)lb)

d) Set S1,ub(v) = min(S1,ub, (rePf + rePc + rhPh)ub)

4. For each real root of ∂
∂ṁs

(rePf + rePc + rhPh) = 0 within feasible range of flow rates
ṁs,

a) Evaluate (rePf + rePc + rhPh) at root of ∂
∂ṁs

(rePf + rePc + rhPh) = 0

b) Calculate bounds (rePf + rePc + rhPh)lb and (rePf + rePc + rhPh)ub using comfort
constraints and mixed temperature range

c) Set S1,lb(v) = min(S1,lb, (rePf + rePc + rhPh)lb)

d) Set S1,ub(v) = min(S1,ub, (rePf + rePc + rhPh)ub)

Scenario S2

In scenario S2, Th = Tm so substituting (2.33) into the cost (2.24) gives

rePc + rhPh =
recp
ηc

n∑
i=1

ṁzi(Tm − Tsi) =
recp
ηc

(
ṁs(Tm − Tr,avg)−

n∑
i=1

βi

)
. (2.38)

Mixed temperature Tm must be between return temperature Tr,avg and outside air tem-
perature Toa, so if outside air is warmer than return temperature then Tm should be set equal
to Tr,avg and supply flow should be minimized (due to fan cost).

If outside air is cooler than return temperature and βi > 0 for all zones i, then scenario
S2 is infeasible because
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• Tm ≤ max(Tr,avg, Toa) from (2.10) and (2.20b),

• Tsi = Tzi,avg + 1
ṁzi

βi > Tzi,avg by (2.31) when βi > 0, so

• ṁsTs,max ≥
∑n

i=1 ṁziTsi >
∑n

i=1 ṁziTzi,avg = ṁsTr,avg, last equality due to (2.9).

When Tr,avg ≥ Toa this contradicts the requirement for scenario S2 that Tm ≥ Ts,max.
If βi < 0 for all zones i, then scenario S2 may be feasible when Tr,avg ≥ Toa, and the

partial derivative ∂
∂ṁs

(rePf + rePc + rhPh) will have a real root where

∂

∂ṁs

(rePf + rePc + rhPh) = 3κAṁ
2
s +

recp
ηc

(Tm − Tr,avg) = 0. (2.39)

The range of flow rates ṁs for which S2 is feasible is determined by (2.31), the constraints
(2.20d) and (2.20e) which require Ts,min ≥ T c, and the requirement for scenario S2 that
Ts,max ≤ Tm.

Again letting j = arg mini Tsi and k = arg maxi Tsi, the flow rate ṁs must be in the range

max

(
ṁs,

βj
ϕj(T c − Tzj,avg)

,
βk

ϕk(Tm − Tzk,avg)

)
≤ ṁs ≤ ṁs. (2.40)

We calculate the upper and lower cost bounds for S2 as follows.

Algorithm 3 Cost bounds for scenario S2

1. Initialize S2,lb(v) =∞ and S2,ub(v) =∞

2. If ∂
∂ṁs

(rePf + rePc + rhPh) > 0 at minimum feasible flow rate ṁs, then

a) Evaluate (rePf + rePc + rhPh) at minimum feasible flow rate

b) Calculate bounds (rePf + rePc + rhPh)lb and (rePf + rePc + rhPh)ub using comfort
constraints and mixed temperature range

c) Set S2,lb(v) = (rePf + rePc + rhPh)lb

d) Set S2,ub(v) = (rePf + rePc + rhPh)ub

3. If ∂
∂ṁs

(rePf + rePc + rhPh) < 0 at maximum feasible flow rate ṁs, then

a) Evaluate (rePf + rePc + rhPh) at maximum feasible flow rate

b) Calculate bounds (rePf + rePc + rhPh)lb and (rePf + rePc + rhPh)ub using comfort
constraints and mixed temperature range

c) Set S2,lb(v) = min(S2,lb, (rePf + rePc + rhPh)lb)

d) Set S2,ub(v) = min(S2,ub, (rePf + rePc + rhPh)ub)

4. For each real root of ∂
∂ṁs

(rePf + rePc + rhPh) = 0 within feasible range of flow rates
ṁs,
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a) Evaluate (rePf + rePc + rhPh) at root of ∂
∂ṁs

(rePf + rePc + rhPh) = 0

b) Calculate bounds (rePf + rePc + rhPh)lb and (rePf + rePc + rhPh)ub using comfort
constraints and mixed temperature range

c) Set S2,lb(v) = min(S2,lb, (rePf + rePc + rhPh)lb)

d) Set S2,ub(v) = min(S2,ub, (rePf + rePc + rhPh)ub)

Scenario S3

In scenario S3, Tc = Tm so substituting (2.33) into the cost (2.24) gives

rePc + rhPh =
rhcp
ηh

n∑
i=1

ṁzi(Tsi − Tm) =
rhcp
ηh

(
ṁs(Tr,avg − Tm) +

n∑
i=1

βi

)
. (2.41)

Mixed temperature Tm must be between return temperature Tr,avg and outside air tem-
perature Toa, so if outside air is cooler than return temperature then Tm should be set equal
to Tr,avg and supply flow should be minimized (due to fan cost).

If outside air is warmer than return temperature and βi < 0 for all zones i, then scenario
S3 is infeasible because

• Tm ≥ min(Tr,avg, Toa) from (2.10) and (2.20b),

• Tsi = Tzi,avg + 1
ṁzi

βi < Tzi,avg by (2.31) when βi < 0, so

• ṁsTs,min ≤
∑n

i=1 ṁziTsi <
∑n

i=1 ṁziTzi,avg = ṁsTr,avg, last equality due to (2.9).

When Tr,avg ≤ Toa this contradicts the requirement for scenario S3 that Tm ≤ Ts,min.
If βi > 0 for all zones i, then scenario S3 may be feasible when Tr,avg ≤ Toa, and the

partial derivative ∂
∂ṁs

(rePf + rePc + rhPh) will have a real root where

∂

∂ṁs

(rePf + rePc + rhPh) = 3κAṁ
2
s +

rhcp
ηh

(Tr,avg − Tm) = 0. (2.42)

The range of flow rates ṁs for which S3 is feasible is determined by (2.31), the constraints
(2.18b) and (2.18c) which require Ts,max ≤ T h, and the requirement for scenario S3 that
Ts,min ≥ Tm.

Again letting j = arg mini Tsi and k = arg maxi Tsi, the flow rate ṁs must be in the range

max

(
ṁs,

βk

ϕk(T h − Tzk,avg)
,

βj
ϕj(Tm − Tzj,avg)

)
≤ ṁs ≤ ṁs. (2.43)

We calculate the upper and lower cost bounds for S3 as follows.

Algorithm 4 Cost bounds for scenario S3
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1. Initialize S3,lb(v) =∞ and S3,ub(v) =∞

2. If ∂
∂ṁs

(rePf + rePc + rhPh) > 0 at minimum feasible flow rate ṁs, then

a) Evaluate (rePf + rePc + rhPh) at minimum feasible flow rate

b) Calculate bounds (rePf + rePc + rhPh)lb and (rePf + rePc + rhPh)ub using comfort
constraints and mixed temperature range

c) Set S3,lb(v) = (rePf + rePc + rhPh)lb

d) Set S3,ub(v) = (rePf + rePc + rhPh)ub

3. If ∂
∂ṁs

(rePf + rePc + rhPh) < 0 at maximum feasible flow rate ṁs, then

a) Evaluate (rePf + rePc + rhPh) at maximum feasible flow rate

b) Calculate bounds (rePf + rePc + rhPh)lb and (rePf + rePc + rhPh)ub using comfort
constraints and mixed temperature range

c) Set S3,lb(v) = min(S3,lb, (rePf + rePc + rhPh)lb)

d) Set S3,ub(v) = min(S3,ub, (rePf + rePc + rhPh)ub)

4. For each real root of ∂
∂ṁs

(rePf + rePc + rhPh) = 0 within feasible range of flow rates
ṁs,

a) Evaluate (rePf + rePc + rhPh) at root of ∂
∂ṁs

(rePf + rePc + rhPh) = 0

b) Calculate bounds (rePf + rePc + rhPh)lb and (rePf + rePc + rhPh)ub using comfort
constraints and mixed temperature range

c) Set S3,lb(v) = min(S3,lb, (rePf + rePc + rhPh)lb)

d) Set S3,ub(v) = min(S3,ub, (rePf + rePc + rhPh)ub)

Scenario S4

In scenario S4, Tc = Tm and Th = Tm so the coil cost rePc + rhPh = 0. However, scenario S4
is only feasible if the flow rate ṁs is such that every zone supply temperature has the same
value Tsi = Tzi,avg + 1

ϕiṁs
βi = Tm, so

ṁs =
βi

ϕi(Tm − Tzi,avg)
, ∀ i. (2.44)

We calculate the upper and lower cost bounds for S4 as follows.

Algorithm 5 Cost bounds for scenario S4

1. Calculate bounds ṁs,lb and ṁs,ub of (2.44) using comfort constraints and mixed tem-
perature range
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2. If ṁs,lb > ṁs or ṁs,ub < ṁs, then S4 is infeasible so set S4,lb(v) =∞ and S4,ub(v) =∞

3. Otherwise set S4,lb(v) = reκAṁ
3
s,lb and S4,ub(v) = reκAṁ

3
s,ub
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Chapter 3

Computational Challenges for Large
Scale Real Time Optimization

In this work we discuss methods of implementing nonlinear predictive control on a parallel
computational platform. We focus on the ability of these methods to handle, in a systematic
way, large-scale systems with nonlinearities and constraints. We propose a method based
on parallel linear algebra algorithms and apply this method to energy efficient control of
commercial buildings. The proposed model predictive controller (MPC) minimizes energy
consumption while satisfying occupant thermal comfort by using predictive knowledge of
weather and occupancy profiles.

We present a numerical study examining the capabilities of state-of-the-art interior point
optimization solvers to utilize parallel linear algebra. We are particularly concerned with the
sparsity of large scale MPC problems and how well the linear algebra algorithms are able to
take advantage of that sparsity.

This chapter is based on work that has been previously published in [36].

3.1 Control Design With Predictions and Constraints

Our goal in this work is to design a controller which:

1. satisfies constraints on states and control inputs,

2. incorporates predictions of future disturbances,

3. accounts for and can handle system nonlinearities, and

4. can be implemented in real-time for a large scale system (hundreds to thousands of
states and inputs).

We categorize established control design approaches for addressing these issues into 3
general families.
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Ad-hoc decentralized design

The first approach corresponds to current practice in a number of industries. Simple PID
controllers are designed for small local control loops, with manually tuned or scheduled
gains, setpoints, and modes of operation. Controllers of different subsystems communicate
in a limited fashion using application-specific heuristic coordination schemes. These schemes
are based on the accumulated experience of application engineers over many years.

This design method is labor-intensive for large scale systems, but the resulting controllers
are not computationally demanding; they can readily be implemented using inexpensive em-
bedded hardware. This typically leads to a distributed layout of local sensing, computation,
and actuation hardware, with communication between separate controllers over a wired or
wireless network.

The disadvantage of this method is verifying performance and constraint satisfaction
requires extensive tuning and simulation. Prediction data can be incorporated in certain
setpoint or mode schedules, but this amplifies the need for tuning and simulation, and can
rarely be done in a systematic manner. As observed in practice, performance is highly
variable and constraints are often violated.

A specific example of coordination heuristics from the heating, ventilation, and air con-
ditioning (HVAC) industry is known as trim and respond [61]. If a thermal zone is close to
violating a comfort constraint and the local zone controller is saturated at its input limit,
that zone controller sends a request to a higher-level air handling unit (AHU) controller.
Based on the combined requests from all of the zones it serves, that AHU controller makes
slow adjustments to the supply fan speed or cooling coil supply temperature. These trim
and respond (also known as supply pressure reset or supply temperature reset) heuristics
are observed to reduce energy consumption, but can be difficult to tune and deploy so are
currently considered advanced methods within the HVAC industry.

Centralized design of distributed policy

In this approach a centralized control problem is posed to determine the optimal inputs (sub-
ject to constraints and forecasts), but rather than solving that problem directly, a distributed
policy of local computation and pairwise communication is designed to obtain the same so-
lution iteratively. This is a well-studied approach, building on a great deal of distributed
control and optimization literature [8].

Examples of this approach include dual decomposition [40, 42, 46, 57] and the alternat-
ing direction method of multipliers [12, 39]. These methods perform well and have been
applied successfully on linear or unconstrained systems, but for nonlinear constrained sys-
tems these methods are not necessarily guaranteed to converge to a valid solution of the
original centralized problem.
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Distributed computation of centralized controller

Centralized solution of predictive control for a large scale, constrained, nonlinear system is
computationally demanding. Serial performance of computer hardware has largely plateaued
for the past 5-10 years due to power and thermal limitations. Improvements in technology
following Moore’s law have continued, but are now being applied to increase parallelism
rather than serial performance [5].

Several authors have investigated parallel approaches to improve the performance of
predictive control [16, 32, 44]. Much of this literature has focused on control of linear
systems, and using field-programmable gate array (FPGA) architectures. In contrast with
this literature, we propose leveraging the research progress and available algorithms from
the high performance computing community, specifically parallel direct solvers for sparse
systems of linear equations.

In the following sections we present the mathematical statement of nonlinear predictive
control and the interior point method for solution of the associated optimization problem.

3.2 Nonlinear Predictive Control Formulation

The basic idea of model predictive control (MPC) is to solve at each time step t the following
optimization problem

min
U,X

N−1∑
k=0

J(xk+1|t, xk|t, uk|t, wk|t) (3.1)

subj. to, ∀ k ∈ {0, . . . , N − 1},
f(xk+1|t, xk|t, uk|t, wk|t) = 0

g(xk+1|t, xk|t, uk|t, wk|t) ≤ 0

x0|t = x(t)

where xk|t is the vector of states at time t + k∆t predicted at time t, uk|t is the vector of
control inputs at time t+ k∆t predicted at time t, wk|t is the vector of disturbances at time
t+ k∆t predicted at time t, U = {u0|t, . . . , uN−1|t}, and X = {x1|t, . . . , xN |t}. We denote the
number of time steps in the prediction horizon by N . The initial state vector measured at
time t is x(t). We denote the contribution to the cost function at each time step by J , the
discrete-time system dynamic model (with sample rate ∆t) by f , and the constraints by g.

Let the optimal solution of problem (3.1) at time t be denoted by U? = {u?0|t, . . . , u?N−1|t}.
Then, the first step of U? is input to the system, u(t) = u?0|t. The optimization (3.1) is

repeated at time t + ∆t, with the updated new state x0|t+∆t = x(t + ∆t) yielding a moving
or receding horizon control strategy.

In this chapter we focus on nominal MPC formulation, i.e. the disturbance forecast
{w0|t, . . . , wN−1|t} is assumed to be known perfectly in advance. Stochastic MPC formula-
tion accounts for uncertainty in predicted disturbances and model mismatch as part of the
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control design. We would also like stochastic MPC to satisfy properties 1-4 from section
3.1. However this requires several additional steps to translate a stochastic control problem
into a tractable deterministic computation. There are important issues to consider such
as managing the tradeoff between conservatism and complexity, optimizing over nominal
inputs versus feedback policies, performing nonlinear system identification with measured
data versus using linear models and accounting for larger model errors, using explicit chance
constraints versus sample-based methods, propagating uncertainty and risk allocation for
nonlinear systems, etc. Our numerical examples will demonstrate improved performance on
nominal MPC problems, and we hypothesize that the same computational methods used
here will be capable of improving performance of stochastic MPC formulations as well.

3.3 MPC Solution by Interior Point Method

We solve problem (3.1) using a primal-dual interior point method [51]. Our computational
experience implementing large scale nonlinear MPC in multiple experiments has shown that
interior point methods can handle nonlinearities and large sparse optimization problems with
better performance and reliability than active set methods. We avoid sequential quadratic
programming (SQP) since the individual iterations of an interior point method are less
expensive than a full QP subproblem, and nonconvexity is more difficult to handle in a SQP
framework.

First, we consolidate the control and state variables over the prediction horizon into
a single optimization variable z = [uT0|t, x

T
1|t, u

T
1|t, . . . , x

T
N−1|t, u

T
N−1|t, x

T
N |t]

T . Let Jt(z) =∑N−1
k=0 J(xk+1|t, xk|t, uk|t, wk|t),

gt(z) =

 g(x1|t, x(t), u0|t, w0|t)
...

g(xN |t, xN−1|t, uN−1|t, wN−1|t)

 ,

and ft(z) =

 f(x1|t, x(t), u0|t, w0|t)
...

f(xN |t, xN−1|t, uN−1|t, wN−1|t)

 .
Introducing slack variables s, problem (3.1) can be equivalently restated as

min
z,s

Jt(z) (3.2)

subj. to gt(z) + s = 0

ft(z) = 0

s ≥ 0.
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Let λ be the dual variables (Lagrange multipliers) associated with the inequality con-
straints, and let ν be the dual variables associated with the dynamics. The Karush-Kuhn-
Tucker (KKT) optimality conditions for problem (3.2) are

∇Jt(z) +∇gt(z)λ+∇ft(z)ν = 0 (3.3a)

gt(z) + s = 0 (3.3b)

ft(z) = 0 (3.3c)

s ≥ 0 (3.3d)

λ ≥ 0 (3.3e)

ΛS1 = 0, (3.3f)

where Λ = diag(λ), S = diag(s), and 1 = [1, . . . , 1]T .
In a primal-dual interior point method, we restrict the slack and inequality dual variables

to be strictly positive, and solve a sequence of approximate problems,

∇Jt(z) +∇gt(z)λ+∇ft(z)ν = 0 (3.4a)

gt(z) + s = 0 (3.4b)

ft(z) = 0 (3.4c)

s > 0 (3.4d)

λ > 0 (3.4e)

ΛS1 = µ1. (3.4f)

This approximate problem can be interpreted as adding a penalty term of the form
−µ1T log(s) to the cost function. By decreasing the barrier parameter µ → 0, solutions
to (3.4) approach solutions to (3.3).

A solution to (3.4) is iteratively obtained using Newton’s method. Denote the primal-
dual guessed solution at iteration j by z(j), s(j), λ(j), ν(j). Each iteration of Newton’s method
solves for a step direction ∆z(j),∆s(j),∆λ(j),∆ν(j) such that

∇2L(j)
t 0 ∇gt(z

(j)) ∇ft(z
(j))

∇gt(z
(j))T I 0 0

∇ft(z
(j))T 0 0 0

0 Λ(j) S(j) 0




∆z(j)

∆s(j)

∆λ(j)

∆ν(j)

 = r(j), (3.5)

where ∇2L(j)
t is the Hessian of the Lagrangian function Jt(z) + λTgt(z) + νT ft(z) evaluated

at z(j), λ(j), ν(j), and r(j) is a residual vector. We eliminate ∆s(j) to obtain the equivalent
system  ∇2L(j)

t ∇gt(z
(j)) ∇ft(z

(j))
∇gt(z

(j))T −(Λ(j))−1S(j) 0
∇ft(z

(j))T 0 0

∆z(j)

∆λ(j)

∆ν(j)

 = r̃(j). (3.6)
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We refer to system (3.6) as the KKT system for one interior point iteration, and the
matrix on the left hand side as the KKT matrix. This KKT matrix is symmetric and indef-
inite, reflecting the saddle-point nature of the optimality conditions at a solution (minimum
in the primal variables, maximum in the dual variables). For large scale MPC problems the
Hessian of the Lagrangian and the Jacobians of the constraints and dynamics are sparse,
the consequences of which we will discuss in the next section. Solving the sparse symmetric
indefinite system of linear equations (3.6) at each iteration is the computational bottleneck
of an interior point method.

3.4 Sparsity Considerations

There are two sources of sparsity in the KKT system for a large scale MPC problem. The
first source of sparsity is block-bandedness of the Hessian and Jacobians, since the cost,
dynamics, and constraint functions only depend on the control inputs at a single time step
and the states at two consecutive time steps. This block-banded structure has been noted
and taken advantage of in the context of MPC by several authors [20, 65, 66].

The second source of sparsity has been largely neglected in the MPC literature, but it
is of critical importance to achieving acceptable optimization performance with large scale
problems. This is the sparsity within the band: the problem-dependent structure of the
Hessian and Jacobian within each time step. The sub-blocks of these matrices at every time
step are also sparse since the cost nonlinearities, constraint functions, and system dynamic
models only depend on a subset of the state and control variables. Large scale systems
do not have all-to-all dense dependencies, and algorithms for control of large scale systems
cannot rely on dense linear algebra if they are to have any hope of scaling well. This sparsity
within the band has likely received less attention because it is entirely problem-dependent
and therefore difficult to make general conclusions about. However, many sparse linear
algebra algorithms are designed to be general-purpose, applying strategies that are designed
for good performance across as many sparsity structures as possible.

Formulating the optimization problem in a sparse manner can also be time-consuming
depending on the modeling environment and programming language(s) being used. Mod-
eling tools designed for forward simulation rarely provide the gradients, Jacobians, or Hes-
sians needed by optimization algorithms; special-purpose languages for optimization such as
AMPL [23] are unfamiliar to many application engineers and can be difficult to use collab-
oratively to develop large models.

We have developed a tool called the Berkeley Library for Optimization Modeling (BLOM,
see Chapter 4 for more information) so system models, constraints and cost function can be
formulated in Simulink [63] using an intuitive block diagram model. BLOM automatically
extracts an efficient sparse problem representation (with closed-form Jacobian and Hessian)
from the block diagram model and interfaces directly with compiled optimization solvers
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such as Ipopt [64]. The problem representation used by BLOM is

min
x

r∑
i=1

ci

(
n∏
j=1

x
Pij

j

)
(3.7)

subj. to
r∑
i=1

Kli

(
n∏
j=1

x
Pij

j

)
= 0, ∀ l ∈ {1, . . . ,m}

x ≤ x ≤ x,

where x ∈ Rn is an optimization vector including all variables over the entire prediction
horizon, c ∈ Rr is a cost coefficient vector, P ∈ Rr×n is a sparse matrix of exponents,
K ∈ Rm×r is a sparse matrix of constraint coefficients, and −∞ ≤ x ≤ x ≤ ∞ are lower and
upper bound vectors with elements equal to ±∞ for unbounded variables.

With this formulation, any optimization problem with a polynomial-like nonlinearity
structure (also including non-integer exponents, and rational functions via implicit equal-
ities) can be encoded in two sparse matrices, a cost vector and two bound vectors. The
formulation can also be extended to include transcendental functions by reserving a few very
large exponent values to represent special function exception codes.

3.5 Sparse Linear Algebra

Computational algorithms for solving sparse linear systems of equations fall into two cat-
egories: direct methods and iterative methods. We present an overview of these methods
below.

Direct methods

Direct methods are based on matrix factorizations. In the case of a symmetric indefinite
matrix A, the most common approach is the LDLT factorization. The objective of this
method is to find a permutation matrix Π, a lower triangular matrix L with unit diagonals,
and a block-diagonal matrix D with 1× 1 and 2× 2 diagonal blocks, such that

A = ΠLDLTΠT . (3.8)

The permutation matrix Π is generally not unique. For sparse A, the permutation matrix
serves two purposes: pivoting for numerical stability (to avoid dividing by zero or very small
values), and reordering to reduce fill-in of the triangular factor L. The sparsity pattern
of the factor L depends on the sparsity pattern of ΠTAΠ and the locations of any 2 × 2
blocks in D. The objective of a sparse factorization algorithm is to choose a permutation
Π such that the factor L is as sparse as possible while maintaining numerical stability. The
amount of memory and number of floating point operations (flops) required to carry out the
factorization are both smaller if L has fewer nonzero entries.
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It is known that finding the optimal permutation Π is NP-complete [19], but good heuris-
tic strategies are available. Different implementations of sparse direct symmetric indefinite
factorizations vary in the details of the reordering strategies and many other aspects, see
[25] for an in-depth discussion.

Direct factorization algorithms are typically divided into 3 phases. First, an “analyze”
phase (also known as symbolic factorization) examines the sparsity pattern of A to make an
initial guess for Π, predict the amount of fill-in that will occur in L, and preallocate memory
and data structures. In the context of MPC, the sparsity pattern of the KKT matrix is fixed
between interior point iterations and control time steps, so this step can be performed offline
and its results can be reused repeatedly.

Next, the numeric factorization is performed to calculate the values of L and D. If a zero
or small value appears on the diagonal during the factorization, pivoting will be required to
maintain numerical stability. This changes the permutation relative to the prediction from
the analyze phase, and may lead to increased fill-in of L, possibly requiring dynamic reallo-
cation of memory to modify the predicted sparsity structure of L and store the additional
nonzero entries. The numerical values of the KKT matrix can change between every interior
point iteration, so this phase needs to be performed online.

Finally, once the factors are completely calculated, they are used to obtain the solution
vector. If we are solving Ax = b and we have computed a factorization of the form (3.8), we
solve for x as follows.

ΠLDLTΠTx = b

Ly = ΠT b

LT z = D−1y

x = Πz

The triangular systems Ly = ΠT b and LT z = D−1y are simple to solve by forward and
backward substitution, and D is simple to invert since it is block-diagonal with very small
blocks. This substitution phase is less computationally demanding than calculating the fac-
torization; in the dense n×n case the factorization phase is O(n3) flops and the substitution
phase is O(n2) flops. For the sparse case the flop counts are functions of the number of
nonzero entries and the sparsity pattern of L, but factorization is still a higher-order term
than back-solve.

Iterative methods

An alternative class of algorithms for solving a sparse system of linear equations Ax = b are
iterative methods, also known as Krylov subspace methods. These methods calculate the
Krylov subspace by repeated sparse matrix-vector multiplication, forming the sequence

{x,Ax,A2x, . . . , Akx}.
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After each multiplication by A, the “best” solution vector in the Krylov subspace is selected
based on some criterion. Commonly used criteria include conjugate gradients, minimum
residuals, etc.

Iterative linear solvers are attractive because the parallelization and communication pat-
terns of sparse matrix-vector multiplication are much simpler to implement than a direct
factorization. There is no pivoting or fill-in to deal with. However the solution vector from
an iterative method has a much greater error than the solution from a direct method. The
number of iterations k required to obtain a solution with a desired accuracy depends on
the condition number of the matrix A. Practical performance of iterative methods therefore
relies heavily on preconditioners.

A preconditioner is a matrix M that is simple to invert and results in a low condition
number for the matrix M−1A. Instead of solving Ax = b, we apply the inverse of the
precondioner to both sides and solve M−1Ax = M−1b.

There has been recent work to adapt interior point algorithms to use iterative linear
solvers on the KKT system [17]. This is a topic of continuing research; the experimental
implementations are considerably less robust than established algorithms based on direct
linear solvers. Convergence of iterative methods can be a challenge, particularly for interior
point optimization methods since the logarithmic barrier terms lead to ill-conditioning of
the KKT matrix when the solution is close to a constraint.

We believe iterative linear algebra methods have significant potential for optimization and
MPC, especially for implementation on advanced parallel architectures such as GPUs and
message passing clusters, and as mainstream computers move in the direction of increasing
parallelism.

3.6 Numerical Results

For numerical evaluation we use 2 nonlinear MPC problems from HVAC models created
using BLOM. The full model has 24826 optimization variables, 23146 equality constraints
and 5940 inequality constraints. A reduced-order model of a subset of the same system has
7547 optimization variables, 7147 equality constraints and 1480 inequality constraints. Both
models have prediction horizon lengths of 20 time steps. The sparsity patterns of the KKT
matrices are shown in Figures 3.1 and 3.2.

Note that the third block-banded section of the Jacobian in these examples contains
the dynamic coupling between adjacent time steps. The dynamic equality constraints are
grouped after the nonlinear function equalities here. The full model is just over 3 times larger
than the reduced model and the Hessian structures are somewhat different, but superficially
these problems appear quite similar due to the block-banded sparsity over time.

We solve these two optimization problems on an Intel Xeon E5410 with 4 physical cores
(8 virtual cores due to hyperthreading) running Red Hat Enterprise Linux 5. We use Ipopt
[64] linked to the optimized Intel Math Kernel Library (MKL) version 10.3 for Basic Linear
Algebra Subprograms (BLAS) implementation.
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Figure 3.1: Full model KKT matrix sparsity pattern

Ipopt can use the following sparse direct linear solvers:

1. MUMPS [4] has a distributed-memory parallel version available, but this would re-
quire using an unsupported message-passing branch of Ipopt. The version of MUMPS
supported by conventional Ipopt is serial.

2. HSL [30] MA27 is a serial algorithm.

3. HSL [30] MA57 [21] is a serial algorithm, the successor to MA27. An additional feature
of MA57 is that it performs aggregation of neighboring sparse elements into small dense
blocks, to improve computational efficiency using BLAS operations.

4. HSL [30] MA77 is a serial out-of-core algorithm, meaning it is designed to save in-
termediate factorization results to disk during the factorization process. This is only
beneficial for extremely large problems that are too large to hold in memory, which
is not the case for KKT matrices from optimization problems that can be solved in
real-time.
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5. HSL [30] MA86 is a parallel multithreaded algorithm using OpenMP. Due to finite
precision arithmetic and unpredictable order of operations in this algorithm, results
from MA86 can actually vary slightly between different invocations, although all of
the results will be equally numerically accurate. Compounded over many iterations of
Ipopt, the overall optimization may take a variable number of iterations.

6. HSL [30] MA97 is a parallel multithreaded algorithm using OpenMP that, unlike
MA86, is specifically designed to obtain binary-identical results using any number
of threads. MA97 is not yet officially supported by Ipopt, but a prototype interface is
available from the HSL team, which we are using here.

7. PARDISO [34, 60, 59] is a parallel multithreaded algorithm using OpenMP.

8. WSMP [27, 28] is a parallel multithreaded algorithm using POSIX threads.
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Figure 3.2: Reduced model KKT matrix sparsity pattern

Refer to [41] for a more complete survey of available sparse direct linear solvers. The
non-convex constrained nonlinear programming algorithm in Ipopt [64] requires inertia infor-
mation (the number of positive, negative, and zero eigenvalues) from the KKT linear systems
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that it factorizes at each iteration in order to guarantee robust convergence properties. Only
sparse direct solvers that use a symmetric indefinite Bunch-Kaufman [13] factorization are
able to calculate inertia information efficiently, so the number of solvers that are capable of
being used in Ipopt is limited.

For the first 4 serial algorithms, the only potential parallelism is in BLAS operations,
assuming a multithreaded BLAS implementation such as Intel MKL is being used. We
experimented with other optimized BLAS implementations, but found the performance less
consistent and the multithreading behavior more difficult to control with available libraries
other than MKL. We also experimented with nested parallelism, using multithreaded BLAS
operations with the multithreaded sparse solvers, but this resulted in worse performance
than when we allocated all parallel threads to the sparse solver.

The results for the full and reduced problems, varying the linear solver and number of
threads (BLAS threads for serial algorithms, solver threads for parallel algorithms) are shown
in Figure 3.3. All Ipopt algorithm and linear solver options were left at their default values,
with the exception of the choice of linear solver, and wsmp num threads to control multi-
threading with WSMP. We show the Ipopt wall time not counting the function evaluations.
The function evaluations are performed by interface code that calculates the Jacobian and
Hessian values from the BLOM problem formulation (3.7). This user code took less than 5%
of the total execution time on average for the full problem, and around 11% of the total time
on average for the reduced problem. The performance of this code can be further improved,
but that is not the focus of this study.

We can see from the results that multithreading by BLAS operations alone provides only
a negligible performance improvement on the full problem with MUMPS or MA57, and in
fact leads to worse performance on the reduced problem or with MA77. The reductions
to dense sub-block operations performed by these sparse solvers are evidently too small for
multithreaded BLAS to help much. MA27 does not use BLAS operations, so there is no
noticeable change in its performance with different numbers of threads.

The sparse linear solvers that are designed as parallel algorithms do show meaningful
parallel speedup on the full problem, and on the reduced problem as well in the case of
MA86 and WSMP. The choice of linear solver can make up to a factor of 3 difference in
serial performance, and WSMP demonstrates a parallel speedup of roughly another factor of
3, using 8 threads on the large problem. We can clearly see less benefit beyond 4 threads; this
is likely due to the hyperthreading architecture of this processor. These sparse factorization
algorithms are computationally demanding enough that the 4 virtual cores are not as capable
as the original 4 physical cores.

3.7 Conclusions

In this work we demonstrated a parallel method for the solution of constrained nonlinear
model predictive control, using sparse direct factorization algorithms that are available to
use with the interior point optimization solver Ipopt. Careful consideration must be paid to



CHAPTER 3. COMPUTATIONAL CHALLENGES FOR LARGE SCALE REAL TIME
OPTIMIZATION 58

1 2 3 4 6 8
30

50

100

200

300

500
Full problem

Ip
op

t t
im

e 
(s

ec
on

ds
)

Number of threads

 

 

1 2 3 4 6 8
5

10

20

30

50

100
Reduced problem

Ip
op

t t
im

e 
(s

ec
on

ds
)

Number of threads

MUMPS
MA27
MA57
MA77
MA86
MA97
PARDISO
WSMP

Figure 3.3: Ipopt wall time (not counting function evaluations) on full and reduced problem,
varying linear solver and number of threads

sparse formulation of large scale problems, for which we have developed a modeling tool and
efficient structured sparse representation for nonlinear programs.

Our numerical results demonstrate useful parallel speedup of a large scale MPC problem
on a typical multicore workstation, particularly with the linear solver WSMP. A worthwhile
investigation area will be to examine what specific aspects of the WSMP algorithm result in
its good performance on our problems, to see if we can further exploit tailored factorization
strategies. It remains to be seen how well parallel sparse direct methods will scale to an
increasing number of processors. We could look into using the message passing Ipopt branch
and conducting numerical experiments with the linear solvers that have distributed-memory
versions available, namely MUMPS, PARDISO, and WSMP, on larger clusters.

Our results only made use of direct linear solvers, but we anticipate iterative linear
solvers will play an increasing role in optimization and control algorithms. This may require
further development of optimization approaches that do not suffer from the ill-conditioning
of interior point methods, [67] is one potential example.
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Chapter 4

Optimization Modeling Tools

We present the Berkeley Library for Optimization Modeling (BLOM), an open-source tool for
optimization-based modeling and control formulation implemented in Simulink [63]. The un-
derlying structure for BLOM is a novel way of representing linear and nonlinear mathematical
functions that allows for easy computation of closed form gradients, Jacobians and Hessians.
This formulation provides an efficient problem representation for optimization-based mod-
eling and is scalable to large optimization problems. With BLOM, an optimization-based
controller for a dynamic system can be developed and exported from the same model that
is used in forward simulation.

BLOM is capable of solving several types of optimization problems, including static opti-
mization problems and optimization problem with dynamics. Its intended use is for nonlinear
model predictive control. We present results where BLOM is able to handle problems with
tens of thousands of variables.

This chapter is based on work that has been previously published in [38].

4.1 Introduction

In order to design an optimization-based controller, a researcher or engineer can choose a tool
from two main groups: simulation oriented tools or optimization oriented tools. Model-based
optimization is typically difficult to do with existing tools. Requirements not commonly met
by modeling tools designed for conventional forward simulation include: representation of
constraints and a cost function, distinguishing unknown input signals that can be freely cho-
sen from signals with known input values, and efficient calculation of derivatives for gradient,
Jacobian, and Hessian information used by optimization algorithms. There are several mod-
eling languages that use block diagram or objected oriented approaches to describe systems.
Examples include: Simulink [63], Modelica [24], and ASCEND [55].

Many languages and tools exist for optimization modeling [33, 15], but a common weak-
ness of existing methods is that they can be cumbersome to use for forward simulation, and
model validation and verification is more difficult than in a simulation environment. The
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language characteristics of optimization-oriented tools can be unfamiliar and difficult to use
for engineers who are familiar with system modeling but are not optimization experts, which
limits collaborative model development opportunities on large scale systems. A large model
that is developed using a conventional simulation and technical computing environment like
Matlab or Simulink can be difficult to translate into an optimization formulation in languages
like AMPL [23], GAMS [58], or AIMMS [10].

Recently the Optimica [2, 3] extension for the Modelica language was introduced. This
extension facilitates the conversion of a dynamic model into an optimization problem.

In this paper, we propose a tool called the Berkeley Library for Optimization Modeling
(BLOM) which bridges the gap between simulation oriented tools and optimization oriented
tools. BLOM is based on a new formulation for representing linear and nonlinear mathemat-
ical functions that aims to address some of the limitations of simulation-oriented tools. This
formulation allows for direct computation of closed form gradients, Jacobians and Hessians.
The initial model formulation interface is based on Simulink, and BLOM provides a set of
Matlab functions which transform a Simulink model into an optimization problem using our
representation format. This problem representation is then used in a compiled interface to an
optimization solver such as Ipopt [64]. BLOM can be expanded in the future to use the same
internal problem representation with other model formulation interfaces and optimization
solvers.

The primary intended use of BLOM is for nonlinear model predictive control (MPC)
problems, but static optimization problems with no system dynamics or time horizon can
also be represented, formulated, and solved. BLOM currently requires all functions to be in
C2 to allow for the computation of the Hessian. Another limitation of BLOM is that it does
not allow for the use of all Simulink blocks, but many commonly-used blocks are supported.

In Section 4.2, we describe the proposed mathematical formulation used in BLOM. We
then describe the Simulink interface implementation in Section 4.3. The way that BLOM
exports models for optimization problems is further elaborated in Section 4.4. In 4.5 we
present a few problems that BLOM is capable of handling. We conclude in Section 4.6.

4.2 Internal mathematical representation

We consider optimization problems of the following form:

min
x∈Rn

f(x) (4.1a)

s.t. g(x) = 0 (4.1b)

xl ≤ x ≤ xu (4.1c)

xl ∈ {R ∪ −∞}n, xu ∈ {R ∪∞}n (4.1d)

where xl and xu are the upper and lower bound vectors for the optimization variables x.
Elements of x that are unbounded above or below have the corresponding elements of xu or
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xl equal to +∞ or −∞, respectively.
Consider the function, y = f(u) where y ∈ Rm, u ∈ Rn and f ∈ C2, with the scalar input

elements denoted by uj and the scalar output elements denoted by yj. We propose that the
input-output relationship of this function can be represented in the following way:

0 =
r∑

k=1

Kik

(
n∏
j=1

v(uj, Pkj)

)(
n+m∏
j=n+1

v(yj−n, Pkj)

)
,

∀ i ∈ {1, . . . ,m}. (4.2)

The parameterized function v is defined as

v(x, p) =


xp if p is not an exception code

exp(x) if p is the code for exp
log(x) if p is the code for log
etc.

(4.3)

We define a list of exception codes to represent transcendental functions. This list can be
extended to include any differentiable single-operand function.

The matrices K ∈ Rm×r and P ∈ Rr×(n+m) contain, respectively, the coefficient and
exponent data of a multivariable polynomial-like function. The number of monomial terms
in this function is given by r. Typically the matrix P will be sparse, and K may be sparse
as well.

This representation is versatile enough to represent rational functions as well. If the
desired input-output relationship is y = f(u)/g(u) where f(u) and g(u) are polynomial-like
functions and g(u) 6= 0, this can be captured by encoding the constraint 0 = f(u)− y · g(u)
in the P and K matrices.

In addition, the formulation facilitates the calculation of closed-form gradients, Jacobians
and Hessians for solvers that make use of derivative information, such as Ipopt.

In the optimization formulation, there is no need to distinguish between input and output
variables (u and y in (4.2)). Therefore, (4.2) for a single row i of K can be restated as

fi(x) =
r∑

k=1

Kik

(
n+m∏
j=1

v(xj, Pkj)

)
, (4.4)

where fi(x) is the constraint function of vector x. The derivative of a fi(x) with respect to
a variable xd is

∂fi(x)

∂xd
=

r∑
k=1

Kik
∂v(xd, Pkd)

∂xd

(∏
j∈J

v(xj, Pkj)

)
, (4.5)

where J is the set of variable indexes excluding d, J = {1, . . . , d− 1, d+ 1, . . . , n+m}. The
second derivative can be computed in a similar way.

Only the non zero elements of the Jacobian and Hessian matrices are exported to a solver,
because sparsity structure is immediately available from the K and P matrices. This sparse
structure results in efficient performance for very large problems.
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4.3 Simulink interface implementation

BLOM consists of three main parts. First, there is the Simulink front end, where a dynamic
model is represented using built-in Simulink blocks and our BLOM library blocks. Second, a
set of Matlab functions is used to convert a Simulink model into the internal mathematical
representation described in Section 4.2. Lastly, this problem representation is used by an
interface to an optimization solver such as Ipopt. In the following Sections, we describe how
we implement different parts of an optimization problem in Simulink.

Mathematical representation applied to Simulink blocks

Most commonly used Simulink blocks can be represented using the P and K matrices de-
scribed in Section 4.2. For example, an addition block with scalar inputs x1, x2, x3 and
output y can be represented internally in BLOM as

P =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (4.6)

K =
(
1 1 1 −1

)
(4.7)

where the columns of P represent the inputs x1, x2, x3 and output y, respectively. Many
mathematical blocks in Simulink can be represented by appropriate P and K matrices. Many
commonly used mathematical blocks in Simulink are currently supported in BLOM. The P
and K matrix formulation allows for the expansion of BLOM’s functionality of Simulink
blocks for many other Simulink blocks that have yet to be supported.

We formulate an optimization problem by introducing variables for the output signals
of every mathematical block in the Simulink model, and equality constraints to enforce
the input-output relationship of each block. This implicit approach increases the size of
the optimization problem compared to an expression-tree approach, but the system model
sparsity structure is preserved in the optimization formulation. An expression-tree approach
would lead to an optimization problem with fewer variables and equality constraints, but
the constraints and cost function would be denser and the calculation of gradient, Jacobian,
and Hessian information would be more complicated due to nested nonlinearities.

Inequality constraints

Inequality constraints are marked in a Simulink model using the Bound block from the
BLOM Library. The bound block has two user-defined parameters, Upper Bound and Lower
Bound, with default values inf and -inf respectively. There are also three check boxes
which specify whether the bound is enforced at the first time step, intermediate time steps,
and/or the final time step of a dynamic problem.
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Forward simulation 

Model validation

Auto translation

Export opt problem

BLOM model

Optimization results:

e.g. optimal control, 

system identification

IPOPT,fmincon,

etc.

Problem data

Figure 4.1: Work flow with BLOM. First a model is created and validated using the BLOM
library. Then, it is converted to an optimization problem and exported to one of the sup-
ported solvers.

Cost function

The cost function for optimization is represented in Simulink by a BLOM Library block
called Cost with one input signal. This block does not play any role in forward simulation
mode, but the input signal is treated as a cost function in an optimization problem. If the
input signal is a vector, the current version sums the input elements. In the future, an option
setting will be available to determine which norm to take over the input elements (1, 2, or
∞).

For models with system dynamics and time horizons longer than 1 step, the cost function
is a discrete accumulator of this signal. This functionality can be further expanded to
continuous integrator, the peak value of the input signal over the time horizon, or norm (1,
2, or ∞) over time of the input signal. Like the Bound block, an option allows the user to
choose whether to include initial time steps, intermediate time steps, and/or final time steps
in this summation or integral.

If there are multiple cost function blocks within the same BLOM model, the optimization
cost function is treated as the sum of the values over all cost function blocks.

Control and external inputs

There are two classes of input signals to a BLOM model: unknown signals that the optimiza-
tion algorithm is free to choose in order to minimize the cost function subject to constraints,
and time-varying signals with a known trajectory of values over a future horizon. We will
refer to the former as control inputs, and the latter as external inputs. In a MPC problem,
external inputs correspond to predicted future model parameters or disturbances.
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Both classes of inputs are parameterized as uniformly-sampled time series. Time variation
for each input signal within one time step is important for discretization accuracy. It can be
either piecewise linear and continuous (first order hold (FOH)), or piecewise constant with
discontinuities at the sample times (zero order hold (ZOH)).

We assume all input signals have the same sample rate, with the exception of an optional
simple implementation of move blocking on control inputs [14]. In order to reduce the
number of optimization variables, the user can specify that certain control inputs should
have constant values over some integer number of time steps.

In forward simulation, control input and external input blocks take input signals from
non-BLOM sources in Simulink, such as Constant or From Workspace blocks. Optimization
formulation only requires the dimensions of control and external input signals. The values
used for external input trajectories over the optimization horizon are communicated between
the Matlab workspace and the optimization solver, and do not need to be the same values
as used in the Simulink block diagram.

Discrete-time and continuous-time states

BLOM can support both discrete-time and continuous-time models. Discrete states are
implemented using the 1/z Unit Delay block in Simulink, and continuous states are im-
plemented using the 1/s Integrator block in Simulink. If a BLOM model contains mul-
tiple Unit Delay blocks, they are all assumed to have the same sample rate. For hybrid
discrete/continuous-time models, the inter-sample behavior of a discrete state block will be
set to either zero order hold or first order hold as an optional field.

Continuous-time models are converted into finite dimensional optimization problems us-
ing a fixed-timestep discretization method. If there are both discrete and continuous states
in the same model, the discretization step length for the continuous states must be equal
to the sample time of the discrete states. The discretization method and the timestep
length are specified by the user. The discretization method can be any general Runge-Kutta
method, either explicit or implicit, of arbitrary order, specified by the user in the form of a
Butcher tableau. Runge-Kutta methods require the introduction of additional variables for
intermediate function calculations at minor time steps.

4.4 Automated generation of an efficient optimization

problem

As shown in Figure 4.1, after a model is created in Simulink and validated in BLOM, that
model can be converted to an optimization problem and exported to a solver. This Section
details this process.
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Figure 4.2: Simple example of dynamic system with state and input constraints and a
quadratic cost function.

Model structure extraction

To extract the model, BLOM first locates the Cost and Bound blocks. From there, BLOM
does a standard breadth first search that begins at these blocks and ends at the control
and external input blocks. BLOM considers each scalar variable of every block found in the
breadth first search as an optimization variable to consider in the formulation. Thus, for
each relevant block, BLOM will generate the relevant P and K matrices relating the inputs
and outputs of that block.

When the breadth first search is complete, BLOM then has a set of variables for the
model in one time step. These variables are then replicated for each time step, with state
variables being related between adjacent time steps to account for the propagation of model
dynamics over time. This causes the P and K matrices to scale linearly across time steps
and retain a sparse structure that allows for efficient computation.

Solver initialization and model validation

BLOM uses Simulink’s forward simulation capabilities to obtain equality-feasible starting
guesses for an optimization solver. Ensuring inequality feasibility may be intractable in for-
ward simulation mode, especially for non-trivial models. Therefore, this step is not manda-
tory. The forward simulation is also used for model validation.

Once the forward simulation is done in Simulink for a feasible starting guess, the extracted
model can be considered a standalone process and does not require the use of Simulink
anymore. The remainder of the problem is done in Matlab and Ipopt. In addition, if the
model does not change, the model only needs extracted once. Once extracted, it is possible
to change any external values and run the optimization problem as a standalone process.
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Table 4.1: BLOM with Ipopt performance on a large HVAC problem for various prediction
horizon lengths

Prediction horizon length 5 10 15 20 25 30
Number of variables in solver 7147 12176 18553 24846 31223 37516
Number of constraints 7329 15151 22974 30796 38619 46441
Non-zeros in Jacobian and Hessian 24057 52208 80442 108593 136827 164978
Number of solver iterations 46 230 89 82 65 68
Total solution time [sec] 2.5 8.6 26.2 48 42 97
Time spent in BLOM callbacks 11% 11% 9% 6.8% 8% 5%

Interface to optimization solvers

Once a model is created in Simulink and the optimization cost, constraints, and inputs
are specified using BLOM Library blocks, the problem can be exported to an optimization
solver. The interface requirements will vary depending on the solver being used, but generally
a solver requires a set of user-defined functions to evaluate the cost, constraints, gradients,
Jacobian, and Hessian for the optimization problem.

The BLOM problem representation allows these functions to be written in a general-
purpose and straightforward way. Specialized code generation for a particular problem can
be performed, but is not mandatory and in our experience code generation does not scale
well to very large problems. We have implemented a compiled C++ interface to the solver
Ipopt [64], which is a state of the art open source interior point solver for sparse nonlinear
programming. This interface reads the P and K matrices and bound vectors from the
BLOM representation for any general problem and evaluates the nonlinear functions that
Ipopt requires at each iteration of its algorithm. These function evaluations contribute only
a small fraction of the time required to solve an optimization problem.

4.5 Examples

Simple MPC

Consider the discrete dynamic system xk+1 = 0.9xk + uk with bounded input |u| ≤ 2 and
state constraints 0.5 ≤ x ≤ 1. We want to create a constrained finite time optimal control
(CFTOC) problem with cost J =

∑N−1
k=0 0.5x2

k+1 + 2u2
k.

Figure 4.2 shows a BLOM model that is used to create the CFTOC problem. The system
dynamics and cost function are implemented using built-in Simulink math function blocks.
Two constraint blocks (called “Bound” in Figure 4.2) are enforcing maximum and minimum
inequality conditions. This system has a single input u that is marked by an input block
to let BLOM know that it is a free optimization variable. In order to convert this model
to an optimization problem, the user specifies the prediction horizon (N) and the following
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CFTOC problem is created

min
uk,xk

N−1∑
k=0

0.5x2
k+1 + 2u2

k

s.t. :− 2 ≤ uk ≤ 2, 0.5 ≤ xk ≤ 1,

xk+1 = 0.9xk + uk, x0 = x(0)

k = 0, . . . , N. (4.8)

Large scale HVAC example

BLOM is used for nonlinear MPC design of a large HVAC system [6]. The system consists
of 42 thermal zones and the system dynamics are modeled with 430 state variables that
represent thermal masses of elements in a building. In addition the model includes an air
handling unit (AHU) model, fan model and 41 variable air volume (VAV) box models with
one reheating coil each. The thermodynamic model is bilinear and additional nonlinear
terms exist in the model. This system has 85 control variables that need to be determined
at each time step.

Table 4.1 presents performance of the BLOM library with Ipopt solver on this problem.
We present the execution time of problem preparation and solution for various problem
sizes. The table shows that even for very large problems with more than 20000 variables and
constraints, the library achieves good performance and Ipopt converges quickly to a KKT
point of the CFTOC problem.

Future development

Although the BLOM library is already used in large scale industry projects, we plan to
further improve and expand on its functionality for a greater scope of problems. BLOM
can be developed to include support of advanced MPC techniques, such as stochastic MPC.
Support of stochastic MPC will require properly handling stochastic external variables such
as weather and occupancy load predictions. These stochastic variables need to be propagated
properly and must be done in a way clear to the user.

There are a variety of other control problems that BLOM can be developed for, such as
for use with integer problems. We believe that the core foundation of BLOM is robust and
thus allows for future expansion.

4.6 Conclusions

We proposed a new formulation for linear and nonlinear functions which allows efficient
computation of closed form gradients, Jacobians, and Hessians often required by optimization
solvers. The P and K sparse matrices described in Section 4.2 are portable and scalable. This
formulation has proven useful when creating a Simulink library for optimization modeling.
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BLOM is a good bridge between simulation modeling and optimization tools. It uniquely
uses forward simulation for model validation. BLOM has yielded successful results for large
scale problems with tens of thousands of variables and due to its integration with Simulink,
can be easy to develop with. The ease of development helps engineers and researchers to
iterate models quickly and be able to see how their system performs under different sets of
conditions.

Although BLOM currently interfaces with Simulink, its underlying structure is to imple-
ment the mathematical formulation we’ve described given some model. Thus, it is possible
to expand BLOM’s functionality to include other model based designs or even have a text
based structure. Interfaces to optimization solvers such as Ipopt can be reused between
multiple modeling front-ends.

The most updated version of BLOM is currently available for download at http://

mpclab.net/Trac/wiki. While BLOM was developed and successfully used for several ex-
perimental projects, it is no longer being actively maintained. Since BLOM was initially
created, newer alternatives such as JuMP.jl [22], [45] based on the open source Julia lan-
guage [9] have implemented nonlinear optimization modeling functionality while achieving
good performance scalability on large problems. JuMP.jl solves similar problems as BLOM
but in a more general way and without relying on the proprietary Matlab or Simulink envi-
ronments for model creation.
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Chapter 5

Specialized Optimization Algorithms
for Linear MPC

In this chapter we discuss tailored methods for solving MPC optimization problems that
have linear system dynamics, convex quadratic cost functions, and polyhedral constraints.
This special case of the constrained finite time optimal control problem (1.2) has the form

min
U,X

1

2

N−1∑
k=0

(xTk+1Qk+1xk+1 + uTkRkuk) (5.1a)

subj. to, ∀ k ∈ {0, . . . , N − 1},
xk+1 = Akxk +Bkuk + wk (5.1b)

Fkxk +Gkuk ≤ fk (5.1c)

FNxN ≤ fN (5.1d)

x0 = x(t). (5.1e)

With nominal disturbance predictions wk, this is a quadratic program (QP).

5.1 Condensed Versus Sparse MPC Formulation

Problem (5.1) can be expressed in several equivalent formulations. The propagation of linear
state dynamics (5.1b) allows for simple substitution to define future state values in terms of
the initial conditions x0, inputs uk and disturbances wk. In the time invariant case where
Ak+1 = Ak = A and Bk+1 = Bk = B, the substitution has the form

x1

x2
...
xN

 =


B 0 · · · 0

AB B
. . .

...
...

. . . . . . 0
AN−1B · · · AB B




u0

u1
...

uN−1

+


I 0 · · · 0

A I
. . .

...
...

. . . . . . 0
AN−1 · · · A I



Ax0 + w0

w1
...

wN−1

 .
(5.2)



CHAPTER 5. SPECIALIZED OPTIMIZATION ALGORITHMS FOR LINEAR MPC 70

Using (5.2) we can state problem (5.1) as a minimization only over U with only inequality
constraints. The total number of variables in this case is reduced from (n + m)N to mN ,
however the resulting QP will have completely dense cost and constraint matrices. The cost
of solving a general dense linear system of equations scales with the cube of the dimension
when using direct factorization-based methods, if there is no special structure to exploit.
The matrices in (5.2) have a block Toeplitz structure, but that structure would be difficult
to recover from the final combined QP cost and constraint matrices.

Longer prediction horizons N allow for predictive control actions to be made further in
advance of expected disturbances, and shorter time steps ∆t results in lower discretization
error and a higher frequency controller. So it would be preferable to achieve an optimization
algorithm that scales linearly in the length of the prediction horizon N . Leaving the states
xk as optimization variables with implicit equality constraints enforcing the dynamics over
time results in a much more structured problem from a linear algebra standpoint. The
dynamic propagation over time couples states and inputs only at neighboring time steps, so
the equality constraints have a sparse structure, specifically block banded over time.

Interleaving the state and input vectors for each time step illustrates that block banded
structure as follows.


B −I 0 0 · · · · · · 0 0

0 A B −I . . .
...

...

0 0 0 A
. . .

...
...

...
...

. . . . . . . . . . . . 0 0
0 0 · · · · · · 0 A B −I





u0

x1

u1

x2
...

uN−1

xN


= −


Ax0 + w0

w1

w2
...

wN−1

 (5.3)

As long as the block structure is preserved, solving (5.3) has a cost that scales linearly with
the prediction horizon length N , and quadratically in the bandwidth (2n+m).

Expressing the equality constrained QP from (5.1) in a standard form,

min
z

1

2
zTHz (5.4)

s.t. Jz = r(t)

Kz ≤ c.

If the cost function and constraints are also time invariant, except possibly at the last time
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step N , then H and J have the following structure.

Let sk =

{
Fxk +Guk 0 ≤ k ≤ N − 1
FNxN k = N

z = [u0; s0;x1; . . . ;uN−1; sN−1;xN ; sN ]

H = diag

R, 0, IN−1 ⊗

 Q
R

0

 , QN , 0


J = diag

([
G −I
B 0

]
, IN−1 ⊗

[
F G −I
A B 0

]
, [ FN −I ]

)
+

diag

(
[ 0 0 ], IN−1 ⊗

[
−I 0 0
0 0 0

]
,

[
−I 0
0 0

])
,

r(t) = −[Fx(t); Ax(t) + w0; 0; w1; . . . ; 0; wN−1; 0],

K = diag
(
[ 0 I ], IN−1 ⊗ [ 0 0 I ], [ 0 I ]

)
,

c = [c0; . . . ; cN ]

The consolidated cost and constraint matrices have a repeated Kronecker block structure in
linear time invariant (LTI) MPC problems. The right hand side vector r(t) changes at each
time step with new state measurements and disturbance predictions.

5.2 Algorithm Choices for Convex Quadratic

Programs

As with the choice of variables and constraint structure, we similarly have a choice and set
of tradeoffs to make when selecting which class of optimization algorithm to use to solve
the QP. In Chapters 2 and 3 we focused on interior point methods because they have shown
in real world use cases to be the most robust choice on challenging non-convex problems
with many nonlinear equality and inequality constraints. For convex QPs, more classes
of algorithms will converge reliably. Interior point methods are expected to converge in a
small number of iterations on convex problems, and the worst-case number of iterations is
polynomial in the number of constraints. However each iteration is expensive, requiring the
solution of a linear system which changes values at each iteration (due to the barrier terms
for inequality constraints) to calculate the Newton step direction. Interior point methods
can also be difficult to warm start from previous solutions.

Active set algorithms, including extensions of the simplex method to handle quadratic
cost functions, have a long history and perform well in practice when constraints are linear.
The worst-case number of iterations of an active set method can be exponential in the num-
ber of constraints, but pathological problems are uncommon. When solving a sequence of
closely related optimization problems as in closed-loop MPC, active set methods are attrac-
tive because warm-starting from a previous solution is effective at reducing the number of
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iterations. The linear algebra operations at each iteration of an active set method are irreg-
ular and change size as the active set of constraints changes, which can pose implementation
challenges.

There has been substantial recent interest in first order methods, which converge more
slowly than interior point or active set methods but have simpler iterations that can be
easier to parallelize. The alternating direction method of multipliers (ADMM) [12] has been
applied in many variations. In [31] an ADMM method was applied specifically to MPC
problems and designed to run on FPGA platforms. In the next section we will follow a
similar algorithm construction but paying more specific attention to problem structure, and
targeting conventional multicore parallel processors.

5.3 Alternating Direction Method of Multipliers

We first introduce a redundant copy of the optimization variables into problem (5.4), with
an equality constraint and penalty cost so that the optimal solution of this modified problem
is equal to the solution to (5.4). The trick here is that the inequality constraints are applied
on one copy of the variables, and the equality constraints are applied on the other copy.

min
z,y

1

2
yTHy +

ρ

2
||y − z||2 (5.5)

s.t. Jy = r(t)

Kz ≤ c

z = y

The dual of problem (5.5) is given by

max
ν

min
z,y

L(z,y, ν), (5.6)

where L(z,y, ν) =
1

2
yTHy +

ρ

2
||y − z||2 + Ieq(y) + Iineq(z) + νT (y − z),

Ieq(y) =

{
0 if Jy = r(t)
∞ otherwise

,

and Iineq(z) =

{
0 if Kz ≤ c
∞ otherwise

.

The alternating direction method of multipliers applies a splitting method to problem
(5.6). First, the Lagrangian is minimized over y while holding z constant. Then it is
minimized over z while holding y constant. The dual multiplier variables are updated based
on the difference between the split primal variable vectors, and the process is repeated until
the two sets of variables converge to equaling one another at the solution to the problem.
Refer to [12] for detailed convergence properties of the method.
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y(i+1) = arg min
y
L(z(i), y, ν(i)) (5.7a)

z(i+1) = arg min
z
L(z,y(i+1), ν(i)) (5.7b)

ν(i+1) = ν(i) + ρ(y(i+1) − z(i+1)) (5.7c)

Computationally, step (5.7a) is an equality constrained least squares problem, step (5.7b) is
a projection into the inequality feasible set, and step (5.7c) is dual gradient ascent.

The equality constrained least squares step (5.7a) is the most expensive step in this
algorithm. The solution is given by the following linear system.[

H + ρI JT

J 0

] [
y(i+1)

λ(i+1)

]
=

[
ρz(i) − ν(i)

r(t)

]
(5.8)

5.4 Linear System Solution for Equality Constrained

Least Squares

We are again presented with a choice and tradeoffs in how to solve this linear system of
equations at each ADMM iteration. The authors of [31] chose to calculate the explicit
inverse of the matrix on the left hand side of (5.8). If the penalty parameter ρ is held constant
then this can be performed offline, however the inverse of a sparse structured matrix does
not preserve that structure in general cases. The block bandedness of the original matrix,
and the repeated Kronecker structure in the time invariant case, are destroyed when an
explicit inverse is calculated. The memory consumption of storing the dense inverse will
scale quadratically with the prediction horizon. Multiplying a new right hand side vector by
the stored inverse matrix is at least trivially parallelizable, but unless the number of parallel
processors is larger than the length of the prediction horizon it is not clear whether this is
worth the additional work caused by failing to preserve the problem structure.

Rather than storing the inverse of the matrix, one could calculate and store a structure-
preserving factorization. A modified Cholesky factorization applied to the quasidefinite
block banded matrix will result in factors that have a bandwidth at most twice as wide
as the original matrix. The total number of floating point operations will therefore be
much lower for problems with long horizons than if an explicit inverse were used, but the
backward substitution operation that is applied to each new right hand side is inherently
recursive so more difficult to parallelize than dense matrix-vector multiplication. And while
the factorization preserves the block banded structure, it does not preserve the repeated
Kronecker structure, since the dynamic propagation over the time horizon will result in
different magnitudes in the triangular factors for each time step.

We chose to investigate Krylov subspace methods as an alternative approach. These solve
the linear system of equations approximately with an iterative method based on repeated
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matrix-vector multiplication, but using the original structured matrix rather than a dense
unstructured inverse. If we are solving the linear systems iteratively as an inner loop inside an
outer loop optimization algorithm (here ADMM), we expect that the linear system solution
can be warm started using the previous outer iteration’s solution as a good starting guess.

The sparse matrix-vector multiplication kernel can effectively reuse block structure, and
eliminate the need to store duplicate copies of the repeated time invariant problem data.

(
IN−1 ⊗

[
F G −I
A B 0

])


x1

u1

s1
...

xN−1

uN−1

sN−1


= vec

[ F G −I
A B 0

] x1 · · · xN−1

u1 · · · uN−1

s1 · · · sN−1



The Kronecker product structure means we can reshape a large sparse matrix-vector product
into a small matrix-matrix product. Matrix-matrix operations are known to have better
cache efficiency due to performing O(n3) floating point operations on O(n2) bytes of data.
Matrix-vector operations do O(n2) work on O(n2) data, and vector-vector operations do
O(n) work on O(n) data. Operations with a low ratio of work per byte, so-called arithmetic
intensity, are limited by memory bandwidth rather than peak floating point throughput on
modern processor architectures.

5.5 Implementation and Numerical Results

We implemented a Krylov subspace method based ADMM algorithm using the templated
C++ MINRES [54] code available from https://code.google.com/p/tminres/. We ap-
plied a simple diagonal row norm preconditioner to the linear system (5.8). The penalty
parameter ρ was held constant. Dense and sparse linear algebra operations were performed
using Intel MKL version 10.3.

We applied the algorithm to the coupled masses test MPC example from [65]. We ex-

Figure 5.1: Coupled masses MPC example from [65]

tended the problem to 20 masses (40 states) and a 20 step prediction horizon. Results are
shown in Fig. 5.5. As expected, the number of Krylov iterations at each outer ADMM
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iteration starts high when both the linear system solution and the ADMM problem data are
changing rapidly in early iterations. We limited the maximum number of Krylov iterations
to 100. As the ADMM iterations proceed, the linear system warm starting behavior becomes
apparent, and later ADMM iterations are several times faster than early iterations.
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Figure 5.2: Number of inner Krylov iterations at each outer ADMM iteration

On an Intel Xeon E5410, our implementation takes an average of 72 µs per inner Krylov
iteration. Comparing the performance to a block structured factorization based interior
point algorithm from [20] on the same test problem, our algorithm is 80 times faster per
inner iteration, but requires over 6000 times as many total inner iterations. In this case
the ADMM algorithm’s convergence was too slow to be worth the improved utilization of
problem structure.

It is possible that this particular test problem was poorly conditioned, or not large enough
to properly take advantage of parallelism. Experiments than enabled multithreading in
the MKL linear algebra resulted in net slowdowns on this example due to synchronization
overhead. With a more sophisticated problem-dependent preconditioner the Krylov method
would likely have converged faster. Preconditioner design for optimization algorithms is not
yet a solved problem; there are not yet many general-purpose approaches that work robustly.
For control applications it is worth investigating automated optimal preconditioner design,
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which could be an expensive optimization problem of its own but would be performed offline
given a specific system, cost function and constraints.
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Chapter 6

Summary of Contributions and
Future Outlook

In this work we have shown the effectiveness of model predictive control for addressing
complex linear and nonlinear constrained multivariable control problems, using engineering
knowledge of system dynamics and disturbance predictions as an integral part of the online
control calculation. Solving optimization problems online is necessary for MPC of nonlinear
or large-scale systems, and poses a computational challenge to solve in real time for large
systems or fast dynamics.

Beyond the simplest simulation examples or demonstrations of the existence of local
optima, existing optimization modeling tools in Matlab did not scale well. We developed
the Berkeley Library for Optimization Modeling to fill a need for automatically translating
system model, cost function, and constraint specifications from mathematical representations
into efficient function and derivative evaluations that can be used by optimization solvers.
Today, newer tools such as JuMP [22] and the Julia language are lowering the barrier to
entry to sophisticated automatic differentiation techniques, and the ability to write high
performance algorithm implementations in a high productivity language.

The important task that these tools perform is preserving the structural sparsity infor-
mation of a user specified model all the way to the low level optimization algorithm and
underlying linear algebra. This work has explored the boundaries of the current state of
the art in optimization algorithms and sparse linear algebra and how to reach that point
with reduced engineering effort. The HVAC control application will require an entirely au-
tomated data collection, model identification, control design and deployment process before
the energy savings can recoup the engineering investment to develop and deploy advanced
controls at scale.

There remain many open questions before the current state of the art can be dramatically
improved upon. Will existing direct solvers for sparse linear systems scale to larger numbers
of cores, or solving the same problem faster, or solving larger problems in the same amount of
time? Will high performance sparse solvers and optimization algorithms be possible to write
entirely within a higher level language, in an open source redistributable environment for wide
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deployment on large clusters or cloud servers or small embedded systems? Will alternate
parallel architectures like graphics processors be possible to use for solving complicated
non-convex optimization problems? Will better methods for designing preconditioners be
developed to enable first order optimization methods and/or iterative linear algebra to clearly
outperform interior point methods with sparse direct factorizations?

There is not yet enough of a corpus of open model formulations and test cases to make
these questions clearly answerable. The operations research community has used standard
sets of difficult test problems as a yardstick with which to measure new developments for
many years. Control and MPC researchers should work towards the same ideal of openness
and reproducibility.
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[2] J. Åkesson. “Optimica An Extension of Modelica Supporting Dynamic Optimization”.
In: In 6th International Modelica Conference 2008. Modelica Association, 2008, pp. 57–
66.
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[64] A. Wächter and L. T. Biegler. “On the Implementation of an Interior-Point Filter
Line-Search Algorithm for Large-Scale Nonlinear Programming”. In: Mathematical
Programming 106.1 (2006), pp. 25–57.

[65] Y. Wang and S. Boyd. “Fast Model Predictive Control Using Online Optimization”.
In: Control Systems Technology, IEEE Transactions on 18.2 (Mar. 2010), pp. 267–278.

[66] S.J. Wright. “Interior Point Methods For Optimal Control Of Discrete-Time Systems”.
In: Journal of Optimization Theory and Applications 77 (1993), pp. 161–187.

[67] V.M. Zavala and M. Anitescu. Scalable nonlinear programming via exact differentiable
penalty functions and trust-region Newton methods. Tech. rep. Argonne National Lab-
oratory, July 2012.




