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Functional connectivity of the
sensorimotor cerebellum in
autism: associations with sensory
over-responsivity
Melis E. Cakar 1* , Nana J. Okada2,3,4, Kaitlin K. Cummings3,4,5,
Jiwon Jung3,4, Susan Y. Bookheimer3,4, Mirella Dapretto3,4

and Shulamite A. Green3,4

1Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles,
CA, United States, 2Department of Psychology, Harvard Medical School, Boston, MA, United States,
3Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los
Angeles, CA, United States, 4Jane and Terry Semel Institute for Neuroscience and Human Behavior,
University of California Los Angeles, Los Angeles, CA, United States, 5Department of Psychology and
Neuroscience, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
The cerebellum has been consistently shown to be atypical in autism spectrum

disorder (ASD). However, despite its known role in sensorimotor function, there is

limited research on its association with sensory over-responsivity (SOR), a

common and impairing feature of ASD. Thus, this study sought to examine

functional connectivity of the sensorimotor cerebellum in ASD compared to

typically developing (TD) youth and investigate whether cerebellar connectivity is

associated with SOR. Resting-state functional connectivity of the sensorimotor

cerebellum was examined in 54 ASD and 43 TD youth aged 8-18 years. Using a

seed-based approach, connectivity of each sensorimotor cerebellar region

(defined as lobules I-IV, V-VI and VIIIA&B) with the whole brain was examined

in ASD compared to TD youth, and correlated with parent-reported SOR severity.

Across all participants, the sensorimotor cerebellum was functionally connected

with sensorimotor and visual regions, though the three seed regions showed

distinct connectivity with limbic and higher-order sensory regions. ASD youth

showed differences in connectivity including atypical connectivity within the

cerebellum and increased connectivity with hippocampus and thalamus

compared to TD youth. More severe SOR was associated with stronger

connectivity with cortical regions involved in sensory and motor processes and

weaker connectivity with cognitive and socio-emotional regions, particularly

prefrontal cortex. These results suggest that atypical cerebellum function in ASD

may play a role in sensory challenges in autism.
KEYWORDS

cerebellum, autism spectrum disorder, sensorimotor, sensory over-responsivity,
functional connectivity, fMRI
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1 Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental

disorder characterized by socio-emotional and communicative

difficulties, repetitive behaviors, and altered sensory processing

(1). While the neurobiology underlying the etiology of ASD is

quite complex, reflecting the considerable heterogeneity that

characterizes this disorder, emerging research has consistently

implicated cerebellar atypicalities in ASD (2–7). The cerebellum

shows differences in structure, such as reduced Purkinje cell size and

numbers, as well as function, such as atypical activation in the

anterior cerebellum during motor tasks, in ASD (8–14). However,

how these cerebellar atypicalities contribute to ASD features

remains unclear. In particular, despite the recognized role of the

cerebellum in sensorimotor processing (15), there are almost no

studies that investigate the relationship between cerebellar function

and sensory processing difficulties in ASD, which are known to be

both extremely prevalent and a barrier to quality of life (16, 17).

More than 90% of children with ASD experience sensory

processing atypicalities, and in particular at least 56-70% of youth

with ASD experience sensory over-responsivity (SOR; 16, 18–20).

SOR, characterized by an extreme discomfort in response to sensory

stimulation, can be particularly impairing for children with ASD and

has been previously linked to challenges with emotion regulation,

communication, and daily-life adaptive skills (17, 21–23). Functional

magnetic resonance imaging (fMRI) studies in the past decade have

shown that SOR is associated with greater neural sensitivity and

reduced neural habituation in sensory-limbic regions, such as the

amygdala and primary sensory cortices during sensory stimulation

(24, 25). Similar to other complex features of ASD, SOR involves

multiple neural networks, including altered patterns in fronto-

amygdala (24, 25), thalamus (26), and salience network

connectivity (27, 28). Thus far, cerebellar circuits have not been

investigated as a contributing factor to SOR in ASD. However, given

the known role of the cerebellum in both sensorimotor processing

and in ASD, the lack of cerebellum research in relation to SOR leaves

a significant gap in our understanding of the neural mechanisms

underlying this impairing feature of ASD.

While no studies to date have specifically investigated the link

between the cerebellum and SOR, recent research has found

evidence for atypical function of the cerebellum in sensorimotor

processing in ASD. Specifically, a resting-state functional

connectivity (rsFC) study has shown that the cerebellum is

functionally more connected with cortical sensorimotor networks

in youth with autism, suggesting a role for the cerebellum in atypical

sensorimotor processing in ASD (11). Additionally, altered

cerebellar functional connectivity was recently linked to broad

sensory processing issues, as well as to socio-communicative signs

of autism and restricted interests (29). Oldehinkel et al. (29) found

that elevated connectivity between the cerebellum and

somatosensory and motor cortices in ASD was associated with

more severe sensory symptoms, further suggesting that atypicalities

in the sensorimotor cerebellum may contribute to altered sensory

processing in ASD. However, this particular study did not

distinguish between different types of sensory processing
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symptoms in ASD, which vary widely and can, for example,

include sensory under-responsivity and atypical sensation seeking

in addition to SOR (30). Thus, the contribution of the cerebellum to

specific sensory symptoms, particularly SOR (given its impairing

nature) requires further study.

In the current study, we investigated differences in rsFC of the

sensorimotor cerebellum in children and adolescents with ASD

compared to typically developing peers (TD), as well as associations

between cerebellar functional connectivity and SOR symptoms in

ASD. We focused on the regions of the cerebellum that have

previously been shown to play a key role in sensorimotor

processing, namely lobules I-VI, VIIIA and VIIIB (9, 11, 15, 31–

35). The anterior lobe of the cerebellum (lobules I-V and parts of

VI) and lobules VIIIA and VIIIB are functionally connected with

sensorimotor cortical regions (11, 36, 37) and house sensorimotor

homonculi (15) – body maps analogous to that on the cerebral

cortex. Within the anterior lobe, lobules V and VI have been

reported to be particularly functionally connected with visual and

auditory cortices (34, 36); accordingly, we distinguished lobules V-

VI from lobules I-IV in our study. We also differentiated lobule VIII

(i.e., lobules VIIIA and VIIIB) from lobules I-VI due to anatomical

distance (i.e., anterior versus posterior cerebellum; 9). For each of

the three sensorimotor cerebellar seed regions (lobules I-IV, V-VI,

and VIII), we aimed to examine the differences in connectivity in

ASD compared to TD youth, and the association between

connectivity and SOR severity within youth with ASD.
2 Materials and methods

2.1 Participants

Participants were 54 ASD (16F) and 43 TD (10F) children and

adolescents, aged 8.3 - 18.0 years. Written informed consent was

obtained from all parents and from children who were 13 years or

older; written assent was given by participants who were younger

than 13 years. ASD diagnosis was confirmed with the Autism

Diagnostic Interview-Revised (ADI-R; 38), Autism Diagnostic

Observation Schedule - second edition (ADOS-2; 39), and best

clinical judgment. Groups did not differ significantly in age, sex,

ethnicity, race, or head motion (see Table 1). IQ was assessed using

the Wechsler Abbreviated Scales of Intelligence (WASI; 40), and

participants had a full-scale IQ of 75 or above. ASD participants had

significantly lower full-scale IQ than TD participants (see Table 1),

and thus, IQ was entered as a covariate in between-group analyses.

Data were initially collected for 56 ASD and 47 TD participants.

Participants with maximum absolute head motion (i.e., maximum

head motion with respect to the reference volume) greater than

4mm and who were significant motion outliers for both maximum

and mean absolute motion (i.e., mean head motion with respect to

the reference volume) were excluded from our analysis (2 ASD and

1 TD). 3 TD participants were additionally excluded due to brain

anomalies (2 TD) and elevated SOR severity (1 TD). All study

procedures were approved by the University of California, Los

Angeles, Institutional Review Board.
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2.2 Measures

Sensory Processing 3-Dimensions Scale (SP3D) Inventory (41)

was used to assess SOR where parents indicated sensory experiences

listed on the SP3D checklist that bother their child. The number of

items (auditory, tactile or visual) were summed to calculate a total

SOR score as in previous research (e.g. 42, 43), with a higher score

denoting more severe SOR. Anxiety was measured using parent

report on the Screen for Child Anxiety Related Emotional Disorder

(i.e., SCARED) questionnaire (44) and included as a covariate in

SOR analyses due to the high correlation between anxiety and SOR

symptoms (e.g., 45).
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2.3 MRI data acquisition

fMRI data were acquired on a Siemens Prisma 3-Tesla scanner

with a 64-channel head coil. During the resting-state scan,

participants fixed their gaze on a white crosshair on a black

background, displayed using a pair of 800x640 resolution magnet-

compatible 3D goggles under computer control (Resonance

Technologies, Inc.). The resting-state scan was the first functional

scan completed as part of a larger protocol. Scans were acquired

using an EPI multiband acquisition lasting 8 minutes and covering

the entire cerebral volume (TR=720ms, FOV=208 mm, TE=37ms,

flip angle=52°, in-plane voxel size=2mm², 72 slices, multi-band

acceleration factor=8).
2.4 Data preprocessing and analysis

2.4.1 Behavioral data analysis
Group differences in SOR and anxiety were investigated with

independent-samples t-tests using R Version 4.1.2. Because SOR is

commonly reported as being correlated with anxiety (e.g., 45), we

also examined the association between SOR and anxiety in the

current study sample.

2.4.2 Neuroimaging data analysis
The fMRI data were analyzed using the FMRIB Software

Library (FSL)1, Version 5.0.11. Preprocessing steps included

spatial smoothing (Gaussian kernel full width at half

maximum=5mm) and the regression of mean white matter,

cerebrospinal fluid, and global signal times series. To remove

potential confounds resulting from head motion, Independent

Component Analysis - Automatic Removal of Motion Artifacts

(ICA-AROMA) was used, and single-subject components identified

as motion or noise were regressed out (46, 47). Single-subject

functional data were then registered to the MNI152 T1 2-mm

template brain (12 degrees of freedom) using the registration matrix

estimated prior to spatial smoothing.

We used seed-based connectivity analyses to examine

functional connectivity between three regions of the sensorimotor

cerebellum and the whole brain. Lobules I-IV, lobules V-VI and

lobule VIII (including VIIIA and VIIIB) were defined as the three

seed regions due to their association with sensorimotor processing

(e.g., 9, 11, 15, 34). Cerebellar seeds were created with the Spatially

Unbiased Infra-tentorial Template (SUIT; 48) probabilistic

cerebellar atlas and thresholded at 75%, keeping only voxels with

at least 0.75 probability of belonging to a certain lobule (i.e.,

belonging to a certain lobule in at least 75% of individuals

included in the probabilistic atlas; Supplementary Figure 1). The

75% threshold was chosen for most complete lobule representation

with the least overlap among lobules.

FSL’s fMRI Expert Analysis Tool (FEAT, version 6.00) was

utilized to run a fixed-effects model for each subject, and FSL’s Local

Analysis of Mixed Effects State (FLAME 1 + 2; 49–51) was used for
TABLE 1 Descriptives.

ASD (mean
± SD)

TD (mean
± SD)

t
or c2

N 54 43 –

Age (years) 13.60 ± 2.95 13.02 ± 3.07 p=0.35

Sex (females) 16 10 p=0.48

Ethnicity

Hispanic or Latino/a 18 13 p=0.83

Not Hispanic or Latino/a 36 30

Race

American Indian/
Alaska Native

1 1 p=0.821

Asian 6 9

Black or African American 5 4

White 33 23

More than One Race 6 3

Unknown or Not Reported 3 3

Scanner head motion

Mean absolute
motion2 (mm)

0.40 ± 0.19 0.39 ± 0.19 p=0.82

Mean relative
motion2 (mm)

0.13 ± 0.05 0.12 ± 0.04 p=0.35

Components removed3 111.87 ± 31.25 117.95 ± 30.80 p=0.34

Components kept3 142.81 ± 32.40 139.79 ± 27.25 p=0.62

WASI full-scale IQ 104.91 ± 16.21 114.44 ± 12.84 p=0.002

SOR total score 9.33 ± 7.47 1.05 ± 1.62 p<0.001

Anxiety total score
(SCARED Parent)

18.06 ± 12.05 6.30 ± 6.54 p<0.001
1Fisher’s exact test was used to assess independence of the variables.
2Mean absolute motion and mean relative motion are values that refer to average head motion
relative to the reference volume and previous volume, respectively. Both values were estimated
using FSL’s MCFLIRT tool.
3Single-subject components that were identified by ICA-AROMA as motion or noise were
regressed out (i.e., Components removed). The number of remaining components were
reported as ‘Components kept.’
ASD, Autism spectrum disorder; TD, Typically developing; WASI, Wechsler Abbreviated
Scale Intelligence; SOR, sensory over-responsivity; SCARED, Screen for Child Anxiety Related
Disorders. Higher scores of SOR and SCARED indicate more severe SOR and
anxiety, respectively.
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higher-level group analyses. For each cerebellar seed, the time-series

from the cerebellar region were isolated in individual subject space

and correlated with neural activity in every other voxel in the brain

to create single-subject connectivity maps. Prior to performing

group level analyses, z-statistic maps were generated using

Fischer’s r-to-z transformation. All whole-brain contrasts were

corrected for multiple comparisons using Gaussian random-field

theory (i.e., a type of Family-Wise Error (FWE) rate correction) in

FSL with a voxel-wise threshold of z>3.1 (within-group contrasts)

or z>2.3 (between-group contrasts and correlations with SOR) and

a cluster-corrected threshold of p<0.05. Supplemental between-

group and SOR correlation analyses were conducted at a more

stringent voxel-wise threshold of z>2.7 and included in the

Supplementary Information (Supplementary Figures 2 and 3).

To assess SOR correlations with cerebellar rsFC in ASD, SOR was

entered as a bottom-up regressor in each whole-brain analysis (one for

each of the three cerebellar seed regions). Anxiety severity was included

as a covariate in these analyses to examine the unique effect of SOR

over and above anxiety, due to previously reported high correlations

between SOR and anxiety symptoms (e.g., 45, 52). Parameter estimates

indexing connectivity strength were extracted from each cluster

showing a significant correlation with SOR and plotted to identify

potential outliers. Supplemental analyses were conducted to assess the

effect of anxiety on cerebellar connectivity over and above the effect of

SOR severity (see Supplementary Information).

All analyses (i.e., within-group, between-group and SOR

correlations) were repeated with age as a covariate of no interest

to ensure that our findings were not due to age variability in the

sample (see Supplementary Information).
3 Results

3.1 Behavioral measures

To examine group differences in SOR and anxiety, we

performed independent-samples t-tests. The ASD group had

significantly higher SOR [t (59.17)=7.92, p<0.001, 95% confidence

interval= (6.19, 10.38); Table 1) and anxiety symptoms [t (84.82)

=6.12, p<0.001, 95% confidence interval= (7.94, 15.57)] compared

to the TD group. SOR was positively correlated with anxiety in the

ASD sample (r=0.32, p=0.02), but not in the TD sample

(r=0.06, p=0.71).
3.2 Cerebellar connectivity

Within-group analyses. Across lobules, the sensorimotor

cerebellum showed functional connectivity with sensorimotor and

visual regions, although the specific regions and extent of

connectivity varied depending on the seed region (see Figure 1

and Table 2). More specifically, all lobules showed extensive

functional connectivity within the cerebellum (including with the

vermis), and with the sensorimotor cortex, primary visual regions
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(i.e., intracalcarine and supracalcarine cortices), fusiform cortex,

lingual gyrus, precuneus and cuneal cortex, and the brainstem.

In both ASD and TD groups, lobules I-IV were additionally

funct iona l ly connected wi th pos ter ior and anter ior

parahippocampal gyrus, posterior cingulate gyrus and bilateral

hippocampus (Figure 1A, left; Table 2). Lobules V-VI showed

additional connectivity with the posterior parahippocampal gyrus,

posterior cingulate gyrus, lateral occipital cortex, occipital pole,

temporal cortex, higher-order sensory regions (i.e., superior parietal

lobule, anterior supramarginal gyrus and operculum), and right

hippocampus. Lobule VIII showed further functional connectivity

with the lateral occipital cortex, occipital pole, higher-order sensory

regions (i.e., superior parietal lobule, anterior supramarginal gyrus,

operculum and planum temporale) and temporal cortex.

Between-group analyses. In representing between-group

analyses (Figure 1), ASD>TD contrasts were masked posthoc with

the within-group contrast representing positive functional

connectivity in ASD at z>2.3 to display clusters that show greater

positive connectivity in ASD compared to TD. Similarly, ASD<TD

contrasts were masked by the within-group contrast demonstrating

positive functional connectivity in TD at z>2.3 to display clusters

that show greater positive connectivity in TD compared to ASD.

The ASD and TD groups showed significant differences in

connectivity across cerebellar seeds. Lobules I-IV showed stronger

connectivity in ASD compared to TD with right hippocampus/

tha lamus ( la tera l pulv inar nucleus) , r ight poster ior

parahippocampal gyrus, right lingual gyrus and the brainstem as

well as with cerebellar lobules I-IV, left lobules V and IX, and vermis

IX and X (Figure 1A, right; Table 2). In ASD, lobules V-VI showed

stronger connectivity compared to the TD group with right superior

lateral occipital cortex/white matter, and weaker connectivity with

cerebellar bilateral crus II, bilateral crus I, right lobule VI, and

vermis VI and crus II (Figure 1B, right; Table 2). The ASD group

showed weaker lobule VIII functional connectivity with right crus I,

right lobule VI, fusiform cortex, and lingual gyrus compared to the

TD group.
3.3 SOR correlations with
cerebellar connectivity

To determine whether sensorimotor cerebellar connectivity was

associated with SOR in ASD, we used SOR as a regressor in whole-

brain analyses, co-varying for anxiety.

SOR severity correlated negatively with lobule I-IV connectivity

with supplementary motor cortex/superior frontal gyrus (Figure 2).

ASD youth with higher SOR had weaker lobule V-VI connectivity

with cerebellar right Crus I and II (Table 2). SOR was negatively

correlated also with connectivity between lobule VIII and lateral

and medial prefrontal cortex (lPFC and mPFC, respectively); and

positively correlated with connectivity between lobule VIII and

precentral and postcentral gyri, superior parietal lobule, superior

lateral occipital cortex, paracentral lobule, and precuneus.

To ensure that correlations with SOR (e.g., Figure 3) were not

driven by outliers, we extracted parameter estimates from regions
frontiersin.org
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where connectivity strength was significantly correlated with SOR.

We evaluated the parameter estimates for outliers (i.e., ± 3

interquartile range) and detected no outliers. We additionally

visually inspected parameter estimate – SOR severity scatterplots

for any potential outliers. All the correlations remained significant

after removing any potential connectivity-SOR outliers, indicating

that these correlations were not driven by outliers.

We additionally investigated the effect of anxiety on cerebellar

functional connectivity over and above SOR severity, and found no

significant associations between anxiety and cerebellar connectivity.

We replicated all our analyses controlling for age to account for

age variability in our sample and found comparable results with age

as a covariate (Supplementary Figures 4, 5).
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4 Discussion

The focus of this study was to investigate resting-state

functional connectivity of the sensorimotor cerebellum in ASD

compared to TD youth. Additionally, we examined the association

between cerebellar connectivity and sensory over-responsivity

within ASD youth. The sensorimotor cerebellum overall showed

widespread connections within the cerebellum and with

sensorimotor and visual areas, brainstem, precuneus and cuneus.

Each of the three seeds also displayed distinct areas of connectivity

with the limbic system (lobules I-IV and lobules V-VI) and higher-

order sensory regions (lobules V-VI and lobule VIII). These

connectivity patterns were, for the most part, consistent across
FIGURE 1

Whole-brain resting-state functional connectivity of the sensorimotor cerebellum. Within-group (left): Within-group ASD and TD functional contrasts
were thresholded at Z>3.1, cluster corrected at p<0.05. Between-group (right): Between-group functional contrasts were thresholded at Z>2.3,
cluster corrected at p<0.05. Full-scale IQ was included as a covariate in between-group analyses. Cerebellar lobules showed differences in
connectivity between ASD and TD groups (red: ASD>TD; blue: ASD<TD). ASD>TD was masked by the ASD within-group contrast to display clusters
that show greater positive connectivity in ASD compared to TD. Similarly, ASD<TD was masked by the TD within-group contrast to display clusters
that show reduced positive connectivity in ASD compared to TD. ASD: autism spectrum disorder; TD: typically developing youth.
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TABLE 2 Cluster peak coordinates.

Lobule Contrast Region1 Coverage Area2 Voxels Z-
max

x y z

WITHIN-GROUP ANALYSES

Lob I-IV ASD Right lobules I-IV Cerebellum: [bilateral] lobules V, VI, Crus I, Crus II, VIIb, VIIIa,
VIIIb, and IX, and vermis (VI, Crus II, VIIb, VIIIb, IX, X).
Cerebrum: [bilateral] anterior and posterior parahippocampal
gyrus, fusiform cortex, intracalcarine cortex, supracalcarine cortex,
occipital pole, cuneal cortex. Subcortical: brainstem, bilateral
hippocampus and right thalamus.

13239 10.4 14 -40 -18

Left lobules I-IV 10.2 0 -48 -10

[Left] Lobules I-IV/
lobule V/precuneus

8.39 -6 -54 -4

[Left] Lingual
Gyrus/precuneus

6.55 -10 -54 2

Right precuneus 6.3 18 -56 14

Vermis VIIIa 5.89 2 -66 -34

[Right] Posterior
cingulate gyrus/
occipital gyri

5.63 14 -48 2

Left precentral gyrus Left postcentral gyrus 982 5.07 -16 -28 72

[Right] Precentral gyrus/
white matter/
paracentral lobule

4.7 6 -28 64

Right postcentral gyrus 4.13 12 -36 68

Lob V-VI ASD Left lobule VI/
fusiform gyrus

Cerebellum: [bilateral] lobules I-IV, V, Crus I, Crus II, VIIb, VIIIa,
VIIIb, IX and X; and vermis (VI, Crus II, VIIb, VIIIa, VIIIb, IX and
X). Cerebrum: [bilateral] posterior parahippocampal gyrus,
posterior cingulate gyrus, fusiform cortex, intracalcarine cortex,
supracalcarine cortex, occipital pole, cuneal cortex, precuneus,
lingual gyrus, inferior and superior lateral occipital cortex, inferior
temporal gyrus (temporooccipital and posterior), right middle
temporal gyrus (temporooccipital), superior parietal lobule.
Subcortical: brainstem, right hippocampus/thalamus

44568 11.5 -24 -58 -22

Right lobule VI/
fusiform gyrus

10.7 20 -66 -18

Right lobule V 9.46 8 -62 -18

Left occipital
fusiform gyrus

9.28 -34 -78 -14

Left lingual gyrus 9.12 -8 -66 -8

Left precentral gyrus – 1159 5.36 -44 -16 42

Left postcentral gyrus 5.01 -52 -18 48

[Left] White matter/
anterior supramarginal
gyrus/
parietal operculum

4.11 -46 -30 34

[Right] Postcentral
gyrus/precentral gyrus

– 716 5.11 46 -18 42

White matter/right
precentral gyrus/middle
frontal gyrus

3.57 30 -10 48

Left supplementary
motor cortex

– 588 5.95 0 -6 58

[Right] Supplementary
motor cortex/superior
frontal gyrus

4.29 4 -4 74

Right anterior
cingulate gyrus

4.14 10 6 40

Left central
opercular cortex

[Left] Planum temporale, Heschl’s gyrus 280 5.02 -46 -20 18

[Left] Central opercular
cortex/precentral gyrus

4.56 -46 -10 12

(Continued)
F
rontiers in P
sychiatry
 06
 fro
ntiersin
.org

https://doi.org/10.3389/fpsyt.2024.1337921
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Cakar et al. 10.3389/fpsyt.2024.1337921
TABLE 2 Continued

Lobule Contrast Region1 Coverage Area2 Voxels Z-
max

x y z

WITHIN-GROUP ANALYSES

Left parietal
operculum cortex

4.18 -34 -30 20

White matter 3.62 -36 -40 18

Left insular cortex 3.6 -34 -20 20

[Right] Superior
parietal lobule/
postcentral gyrus

– 154 5.13 28 -40 52

Lob VIII ASD [Right] Lobule
VIIIa/VIIIb

Cerebellum: [bilateral] lobules I-IV, V, VI, Crus I, Crus II, VIIb, IX
and X; and vermis (VI, Crus II, VIIb, VIIIa, VIIIb and IX).
Cerebrum: [bilateral] lingual gyrus, occipital fusiform gyrus,
inferior and superior lateral occipital cortex, intracalcarine cortex,
left supracalcarine cortex, occipital pole, cuneal cortex, middle
temporal gyrus (temporooccipital), right inferior temporal gyrus
(temporooccipital). Subcortical: brainstem

26379 10.1 26 -54 -56

Left Lobule VIIIa 9.81 -32 -40 -50

Left Lobule VIIIb 9.68 -18 -54 -54

[Right] Superior
parietal lobule/
postcentral gyrus

Right precuneus 1684 5.97 28 -42 70

[Right] Superior lateral
occipital cortex/superior
parietal lobule

5.52 12 -56 70

White matter 3.84 20 -58 44

Left superior
parietal lobule

Left postcentral gyrus 1429 6.1 -20 -52 70

Left superior lateral
occipital cortex

4.56 -8 -62 64

Left precuneus 4.56 -8 -54 66

[Right] Parietal
operculum cortex/
superior
temporal gyrus

Right planum temporale 864 5.71 58 -28 20

White matter/right
anterior supramarginal
gyrus/
parietal operculum

5.18 54 -32 34

Right anterior
supramarginal gyrus

4.02 68 -24 26

Left parietal
operculum cortex

– 592 4.79 -58 -30 18

[Left] Parietal
operculum cortex/
planum temporale

4.63 -64 -32 26

[Left] Postcentral gyrus/
anterior
supramarginal gyrus

3.52 -46 -28 36

[Left] Central opercular
cortex/
parietal operculum

3.4 -46 -20 16

[Left] Supplementary
Motor Cortex/
paracentral lobule

– 374 4.79 -2 -10 60

(Continued)
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TABLE 2 Continued

Lobule Contrast Region1 Coverage Area2 Voxels Z-
max

x y z

WITHIN-GROUP ANALYSES

Left precentral gyrus 4.47 -6 -14 70

[Right] Precentral
Gyrus/superior
frontal gyrus

3.94 20 -14 70

Left precentral gyrus Left insular cortex 194 4.92 -62 0 6

Left central
opercular cortex

3.57 -46 -4 4

[Left] Planum polare/
central opercular cortex

3.53 -52 0 0

Lob I-IV TD Left lobules I-IV Cerebellum: [bilateral] lobules V, VI, Crus I (left Crus I/left
occipital fusiform cortex), Crus II, VIIb, VIIIa, VIIIb, IX, and right
lobule X;, and vermis (VI, Crus II, VIIb, VIIIa, VIIIb and IX).
Cerebrum: [bilateral] anterior and posterior parahippocampal
gyrus, fusiform cortex, intracalcarine cortex, supracalcarine cortex,
cuneal cortex, precuneus, posterior cingulate gyrus, lingual gyrus;
[left] posterior inferior temporal gyrus and temporal pole.
Subcortical: bilateral hippocampus, left amygdala, brainstem

15077 9.79 -2 -48 -20

Right lobules I-IV 9.76 2 -48 -2

Vermis VIIIa/VIIb 5.63 6 -68 -34

[Right] Precentral
gyrus/
paracentral lobule

Right superior parietal lobule 1328 4.97 4 -30 70

Left postcentral gyrus 4.89 -12 -36 70

Left precentral gyrus 4.85 -2 -30 70

Right postcentral gyrus 4.46 10 -38 76

Right parietal
operculum cortex

[Right] Heschl’s gyrus/insular cortex 130 3.96 40 -22 20

Right planum temporale 3.59 38 -30 14

Lob V-VI TD Left lobule VI/
occipital cortex

Cerebellum: [bilateral] lobules I-IV, V, Crus I, Crus II, VIIb, VIIIa,
VIIIb, IX, and X; and vermis (VI, Crus II, VIIb, VIIIa, VIIIb and
IX). Cerebrum: [bilateral] posterior parahippocampal gyrus,
posterior cingulate gyrus, intracalcarine cortex, supracalcarine
cortex, occipital pole, superior and inferior lateral occipital cortex,
fusiform cortex, lingual gyrus, cuneal cortex, precuneus, middle
temporal gyrus (temporooccipital), inferior temporal gyrus
(temporooccipital and posterior). Subcortical: brainstem,
right hippocampus

44566 10.9 -10 -70 -16

Left lobule VI/
fusiform cortex

9.99 -28 -62 -18

Right lobule VI/
occipital cortex

9.8 14 -72 -16

Vermis VI 9.73 6 -74 -20

Left occipital
fusiform gyrus

9.28 -36 -68 -18

Right lingual Gyrus 9.21 18 -64 -12

Right
postcentral gyrus

– 552 4.82 32 -34 70

[Right] Superior lateral
occipital cortex/superior
parietal lobule

4.17 28 -58 60

Right precentral gyrus – 496 5.42 44 -12 50

Right Postcentral gyrus 4.19 42 -20 42

[Right] Anterior
supramarginal gyrus/
postcentral gyrus

3.29 42 -34 46

(Continued)
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TABLE 2 Continued

Lobule Contrast Region1 Coverage Area2 Voxels Z-
max

x y z

WITHIN-GROUP ANALYSES

Left superior
parietal lobule

Left postcentral gyrus 334 4.56 -30 -46 62

Left superior lateral
occipital cortex

3.89 -20 -60 62

Left parietal
Operculum Cortex

Left anterior supramarginal gyrus 159 4.18 -46 -38 24

[Left] Parietal
Operculum Cortex/
superior temporal gyrus

3.21 -60 -28 20

Right parietal
operculum cortex

Right anterior supramarginal gyrus 139 5.19 56 -22 20

[Right] Postcentral
gyrus/central
opercular cortex

3.58 62 -12 16

Lob VIII TD Right lobule VIIIb Cerebellum: [bilateral] lobules I-IV, V, VI, Crus I, Crus II, VIIb, IX
and X; and vermis (VI, Crus II, VIIb, VIIIa, VIIIb and IX).
Cerebrum: [bilateral] postcentral gyrus, superior parietal lobule, left
posterior parahippocampal gyrus. parietal operculum cortex,
planum temporale, right anterior and posterior supramarginal
gyrus, lingual gyrus, fusiform cortex, intracalcarine cortex,
supracalcarine cortex, occipital pole, inferior and superior lateral
occipital cortex, cuneal cortex, precuneus, middle temporal gyrus
(temporooccipital), inferior temporal gyrus (temporooccipital and
left posterior). Subcortical: brainstem

39782 10.3 22 -48 -54

Right lobule VIIIa 9.9 32 -46 -52

Left lobule VIIIb 9.38 -22 -48 -52

Left lobule VIIIa 9.24 -24 -60 -54

[Left] Anterior
supramarginal cortex/
parietal
operculum cortex

[Left] Postcentral gyrus, central opercular cortex 667 5.25 -58 -32 26

[Left] Superior parietal
lobule/postcentral
gyrus/white matter

162 4.49 -32 -40 44

BETWEEN-GROUP ANALYSES

Lob I-IV ASD>TD [Right] Hippocampus/
thalamus (lateral
pulvinar nucleus)

Right posterior parahippocampal gyrus, right lingual gyrus,
brainstem; cerebellar [bilateral] lobules I-IV, left lobules V and IX,
vermis IX and X

542 3.6 20 -32 -6

ASD>TD White matter – 20 2.78 34 -34 32

Lob V-VI ASD>TD White matter/right
superior lateral
occipital cortex

– 17 2.6 26 -64 32

Lob V-VI ASD<TD Left crus II Right crus II; bilateral crus I; right lobule VI; vermis VI and crus II 576 4.2 0 -82 -34

Lob VIII ASD<TD Right crus I [Right] Cerebellar lobule VI, occipital fusiform gyrus, lingual gyrus,
temporal occipital fusiform cortex

448 3.41 52 -66 -28

SOR ANALYSES

Lob I-IV SORneg Supplementary motor
cortex/bilateral superior
frontal gyrus

– 427 4.47 6 -4 66

Lob V-VI SORneg Right crus I Right crus II 653 4.04 42 -66 -38

Lob VIII SORneg White matter Lateral and medial prefrontal cortex 433 4 18 30 -2

SORpos Left precentral gyrus [Left] Postcentral gyrus, superior parietal lobule, precuneus 910 4.03 -14 -30 68

(Continued)
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ASD and TD participants. However, the ASD participants did show

some significant connectivity differences, particularly within the

cerebellum, and between the sensorimotor cerebellum and the

hippocampus, thalamus, visual regions, and the brainstem. In

addition, within youth with ASD, SOR was associated with

sensorimotor cerebellar connectivity with both sensorimotor and

visual regions and regions implicated in cognitive and socio-

emotional processing. To our knowledge, this is the first study

that examined cerebellar atypicalities in the context of sensory over-

responsivity in autism.
4.1 Functional connectivity of the
sensorimotor cerebellum

For the purposes of the current study, we delineated the

sensorimotor cerebellum as three seeds involving lobules I-IV,

lobules V-VI and lobule VIII, due to the extensive literature

indicating their involvement in sensorimotor processing (e.g., 9,

11, 15, 34). Our results indicated that for both the ASD and TD

groups, all three seeds (i.e., lobules I-IV, V-VI and VIII) showed

connectivity within the cerebellum, including within the lobule in

consistence with Bernard et al. (53), and widespread connectivity

with sensorimotor regions, especially visual, somatosensory and

motor cortices. Thus, in contrast to prior studies (36), we found

connectivity with visual regions across all examined lobules,

although lobules V-VI and lobule VIII showed more extensive

functional connectivity with the occipital lobe, including the lateral

occipital cortex and occipital pole. In terms of sensorimotor cortex,

lobules I-IV were also predominantly functionally connected with

primary sensory and motor cortices, whereas lobules V-VI and VIII

showed more extensive connectivity with higher-order sensory

regions. Taken together, our results suggest that processing of

sensory signals is integrated across multiple cerebellar lobules,

though certain lobules may play a more distinct role in higher-

order processing of sensory information.

In addition to connectivity with sensory and motor cortical

regions, the sensorimotor cerebellum was functionally connected

with limbic regions. We found functional connectivity between the

limbic system (i.e., hippocampus, parahippocampal gyrus and

posterior cingulate gyrus) and lobules I-IV and V-VI across both

ASD and TD participants. These findings are consistent with the
Frontiers in Psychiatry 10
growing literature that reports functional connectivity between the

cerebellum and the hippocampus (see 54 for a review). While the type

of information encoded in this circuitry cannot be determined from

the current resting-state study, cerebellar-limbic connectivity may

reflect that sensory processing is interrelated with cognitive and

emotional processing. Additionally, these results demonstrating

connectivity between limbic regions and cerebellar lobules

associated with sensory processing also challenge the idea that

cerebellar subregions can be divided into specialized sensorimotor

and supramodal cognitive zones as initially proposed (11, 36, 55).

These findings are thus also consistent with research showing that

sensorimotor cerebellar lobules are activated during cognitive tasks

(56, 57) and contain representations of non-sensorimotor cerebral

networks (e.g., 32, 55).
4.2 Diagnostic group differences in
sensorimotor cerebellum connectivity

While the cerebellar networks identified here were overall

consistent across ASD and TD groups, there were some notable

regions of diagnostic group differences, particularly with sensory

regions and hippocampus as well as within the cerebellum.

Visual networks showed distinct patterns of cerebellar

connectivity in ASD compared to TD. We found enhanced

connectivity between lobules I-IV and lingual gyrus and between

lobules V-VI and lateral occipital cortex, while lobule VIII displayed

weaker connectivity with lingual gyrus and the fusiform cortex in

ASD. Differences in cerebellar connectivity with these visual regions

involved in functions such as object recognition and face processing

might contribute to atypical processing of visual information in

ASD (e.g., 58–60). Furthermore, the sensorimotor cerebellum,

particularly lobules I-IV, displayed stronger functional

connectivity with the right thalamus in ASD. The thalamus plays

an important role in relaying and integrating sensory information

(61) and connects cerebello-cortical loops (62). Critically,

thalamocortical networks show distinct connectivity patterns in

autism (63–67), and thalamic connectivity has been implicated in

sensory challenges in ASD youth (26, 68) and in infants with high

familial likelihood for ASD (69). Greater connectivity between

thalamus and sensorimotor cerebellum therefore may be another

indicator of increased processing of sensory information and
TABLE 2 Continued

Lobule Contrast Region1 Coverage Area2 Voxels Z-
max

x y z

SOR ANALYSES

SORpos White matter/
precuneus/
paracentral lobule

[Left] Superior parietal lobule, superior lateral occipital cortex 708 4.38 -18 -42 36
fro
ntiersin
1Regions listed in bold are peaks; those listed in italics are subpeaks within the same cluster as the coordinates above them.
2Additional regions covered by the cluster beyond the peak are described.
x, y, and z refer to the left–right, anterior–posterior, and inferior–superior dimensions, respectively; Z refers to the Z-score at those coordinates (local maxima or submaxima). Voxels indicate
cluster size. Within- and between-group analyses are cluster corrected for multiple comparisons, z>3.1 (within-group) or z>2.3 (between-group and correlations with SOR), p<.05. ASD>TD and
ASD<TD contrasts were masked by the ASD and TD within-group contrast, respectively, to display clusters that show greater positive connectivity in ASD compared to TD, and vice versa. ASD,
autism spectrum disorder; TD, typically developing youth; SOR, sensory over-responsivity.
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atypical sensory error signals (see discussion of prediction

models below).

Additionally, we found stronger connectivity in ASD between

the sensorimotor cerebellum (i.e., lobule I-IV) and the

hippocampus compared to in TD youth. Along with the

cerebellum, the hippocampus shows structural and functional

differences in ASD (70–73), and is also implicated in autistic

features, including challenges in social behavior and memory

processing as well as strengths in visuo-spatial tasks (see 74 for a

review). Importantly, recent literature on hippocampal function

suggests that the hippocampus is involved not only in spatial

memory, but also in the organization of different kinds of

information (i.e., cognitive mapping (74, 75); to help us adapt to

changes in our environment. Greater connectivity between the

hippocampus and the sensorimotor cerebellum could thus be

related to greater neural resources devoted to the organizational

mapping of sensory information in ASD, which might contribute to

both sensory strengths and challenges seen in ASD. This idea is

consistent with previous findings demonstrating stronger reactivity

in response sensory stimulation in both the hippocampus and

cerebellum in autistic youth (24).

Finally, compared to TD, the ASD group showed greater

within-cerebellum connectivity of lobules I-IV, and weaker

within-cerebellum connectivity of lobules V-VI and VIII,

including with the cerebellar crus I and II. These results are in

alignment with previous research showing differences in local

functional connectivity of the cerebellum in autism (76, 77), and

may indicate distinct functional organization of the cerebellum in

ASD. Particularly, a decreased connectivity between the

sensorimotor cerebellum and crus I and II, which are functionally

connected with the PFC, may indicate reduced integration of

processing across functionally distinct cerebellar networks (78).

More research is needed to determine how such organizational

differences might lead to differences in information processing.
4.3 Sensorimotor cerebellum connectivity
and SOR

Given the role of the cerebellum in sensorimotor processing and

its demonstrated functional connectivity differences with sensory

processing regions in ASD, we further examined whether

sensorimotor cerebellar connectivity was associated with SOR

symptoms in ASD. We found that more severe SOR symptoms

were related to heightened cerebellar connectivity with the primary

motor cortex and primary and higher-order sensory regions in

ASD, providing a link between atypical cerebellar function in ASD

and SOR. This finding is in alignment with Oldehinkel et al. (29)

who found stronger cerebellum-sensorimotor network connectivity

to be associated with more severe sensory symptoms. Previous

research has shown that more severe SOR is associated with reduced

habituation in sensory regions (25), suggesting that individuals with

ASD and SOR might not adapt to sensory stimuli in the

environment. The cerebellum is involved in error-based learning

and maintains prediction models of sensory consequences of

actions (79). Atypicalities in cerebellar connectivity with the
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sensorimotor network could be a sign of altered cerebellar

signaling of sensory predictions to the sensorimotor network in

ASD. This alteration in signaling could indicate lowered

predictability of sensorimotor signals and consequently of the

external world in ASD (5, 80), leading to reduced habituation and

heightened reaction to sensory information as seen in SOR. In

addition to alterations in habituation, more severe SOR has

previously been linked to lower PFC-amygdala connectivity

during sensory stimulation (24, 25), indicating that top-down

emotion regulation through the PFC may be reduced in ASD

youth with severe SOR. In the current study, more severe SOR in

ASD was also associated with weaker sensorimotor cerebellum-PFC

connectivity, such that youth with higher SOR showed lower lobule

VIII connectivity with mPFC and lPFC. Moreover, more severe

SOR was additionally associated with weaker functional

connectivity between the sensorimotor cerebellum and crus I and

II, the part of the cerebellum that is particularly implicated in socio-

emotional function (34, 81, 82). Taken together, these findings

suggest that reduced sensorimotor cerebellum connectivity with

supramodal regions – important to cognition and emotional

processing – as well as increased connectivity with sensorimotor

cortex, may contribute to SOR experiences in ASD, and are in line

with research demonstrating heightened allocation of mental

resources to sensory information, sometimes at the expense of

processing other types of information, in autism (e.g., 83, 84).
4.4 Limitations and future directions

The current study has multiple strengths, including examining

shared and distinct connectivity of three different sensorimotor

cerebellar regions. We also investigated for the first time the role of

the cerebellum in SOR in ASD youth, with a relatively large sample

compared to prior studies. Nevertheless, our investigation has some

limitations. First, while there are many dimensions of sensorimotor

function such as sensory acquisition, discrimination and

integration, the current study focused on sensory modulation (i.e.,

how to regulate and respond to incoming sensory information), and

specifically SOR, in ASD. Previous research in neurotypical

populations examined the role of the cerebellum in other aspects

of sensory processing (85), such as in sensory discrimination and

acquisition (86, 87) as well as with tasks that involve biological

motion (88) and pain stimuli (89). Moreover, atypicalities in

multiple aspects of sensorimotor processing have been reported in

autism, including differences in integration of sensory feedback

(e.g., 90, 91), altered activation and connectivity during motor tasks

(e.g., 12) and atypical updating of sensory prediction models (e.g.,

92). While SOR warrants particular attention from researchers due

to its impairing nature and its developmental progression across

adolescence in ASD, future research should characterize the

involvement of the cerebellum in the full range of sensory

processing atypicalities seen in ASD, including other sensory

modulation atypicalities (i.e., sensory under-responsivity and

sensory seeking).

Second, in the current study, we assessed SOR severity with

parent-report. While parent-report (along with self-report) is one of
frontiersin.org
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the most common methods to assess sensory features in ASD

samples (93, 94), it may not capture all aspects of one’s sensory

experiences. In fact, parent-reported, self-reported and observed

sensory assessments may tap into different aspects of sensory
Frontiers in Psychiatry 12
processing and complement one another (42, 95). For example,

while parent-report might involve insights into behavioral

responses to sensory stimuli and past history of sensory

challenges, self-report could better represent internal experience,

especially in older participants, and observed assessments (in the

presence of an experimenter) may capture ability to regulate

sensory responses rather than purely sensory experience (42, 95–

97). In investigating the link between SOR and cerebellar function,

future studies could utilize an integrated (i.e., self-reported, parent-

reported and observed SOR) approach to measure SOR

comprehensively and also interrogate how cerebellar connectivity

relates to different aspects of sensory processing.

Third, while our sample included a relatively large number of

females compared to many autism studies, the current study was

underpowered to examine sex differences in cerebellar connectivity

and its relationship with SOR. Emerging evidence shows that that

sensory symptoms and restricted and repetitive behaviors (RRBs)

may have different underlying neurobiology in girls versus boys

with ASD (e.g., 27, 98), and thus future studies should examine sex

differences in cerebellar connectivity and their differential

relationship to SOR. Fourth, the sample in the current study is a

pediatric sample including youth in middle childhood and

adolescence. The development of the cerebellum continues

through adolescence, with different parts of the cerebellum

reaching their mature state at distinct times during development

(99–101). Cerebellar responses to aversive sensory information may
FIGURE 2

Connectivity of the sensorimotor cerebellum in ASD correlating with SOR. SORpos: Regions where resting-state functional connectivity with lobules
I-IV, lobules V-VI and lobule VIII correlates positively with SOR severity (left, in red). SORneg: Regions where resting-state functional connectivity
with the cerebellar lobules correlates negatively with SOR (right, in blue). There were no significant clusters where connectivity with lobules I-IV and
V-VI correlated positively with SOR. SOR was entered as a bottom-up regressor in analyses, and anxiety was included as a regressor of no-interest.
In right c), the images show the same cluster. Contrasts were thresholded at z>2.3 and cluster corrected at p<0.05. SOR, sensory over-responsivity;
N.S., no significant clusters.
FIGURE 3

Association between lobule V-VI connectivity strength and SOR.
Example plot demonstrating the negative correlation between SOR
severity and the strength of connectivity between lobules V-VI and
the cluster covering right crus I and II, also portrayed in Figure 2B
(right). Y values are residuals after partialling out the effect of
anxiety, which was covaried in the analyses.
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also change across development (43). Thus, future studies should

investigate how connectivity of the sensorimotor cerebellum evolves

during development, especially during adolescence, and how these

developmental changes relate to SOR severity. Fifth, in the current

study, the sensorimotor regions within the cerebellum were defined

based on the neuroanatomy of the brain region. However, recent

research has shown that anatomical cerebellar regions do not map

on to functional subdivisions (56), indicating that the sensorimotor

cerebellum might be more accurately defined by functional masks.

In fact, sensorimotor cerebellar lobules encompass functional

regions that are activated during non-sensorimotor processes,

such as theory of mind, working memory and verb generation

tasks (56, 57). Lobule VI, in particular, is involved in cognition and

executive function (102). Thus, anatomical sensorimotor seeds

might include non-sensorimotor subsections of the cerebellum as

well as exclude sensorimotor functional regions outside of the

anatomically defined lobules. Hence, future studies should use

functionally defined sensorimotor cerebellum masks to assess the

connectivity of the sensorimotor regions within the cerebellum.

Furthermore, while we conducted analyses with cerebellar seeds,

alternative analytic approaches to examine cerebellar connectivity

(e.g., investigating cerebellar connectivity with cerebral seeds or

with smaller seed regions) could be explored in future studies.

Finally, while SOR is particularly prevalent in the autistic

population, TD individuals also experience SOR symptoms. In

fact, our original sample included one TD participant with

elevated SOR severity, who was excluded from our final sample.

Future research should also investigate SOR variability in other

populations and whether altered cerebellar functional connectivity

is involved in neural mechanisms of SOR in typical development or

other non-autistic populations.
5 Conclusion

In the current study, we found that, across both diagnostic

groups, the three sensorimotor cerebellar seeds that were examined,

namely lobules I-IV, V-VI and VIII, were all functionally connected

with sensorimotor and visual areas, brainstem, precuneus and

cuneus, but showed distinctions in their connectivity with limbic

and higher-order sensory regions. Youth with ASD had atypical

connectivity of the cerebellum with the thalamus, hippocampus,

parahippocampal gyrus, brainstem, and the visual cortex as well as

within the cerebellum. In relation to SOR, we showed that more

severe SOR is associated with stronger connectivity between the

sensorimotor cerebellum and cerebral sensorimotor regions and

precuneus, and weaker connectivity between the cerebellum and

cognitive and socio-emotional regions, particularly the prefrontal

cortex. These findings provide evidence for a link between

functional cerebellar atypicalities in ASD and SOR for the first

time. The current study adds to the recent literature indicating the

involvement of cerebellar atypicalities in the differences in

perception and behavior seen in ASD. Taken together with past

research that described a role for the cerebellum in socio-

communicative symptoms of ASD, our findings suggest that the
Frontiers in Psychiatry 13
cerebellum should be considered in the study of ASD and as well as

the study of atypical sensory processing in other populations.
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